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Abstract We consider multiobjective and parametric versions of the global minimum
cut problem in undirected graphs and bounded-rank hypergraphs with multiple edge
cost functions. For a fixed number of edge cost functions, we show that the total
number of supported non-dominated (SND) cuts is bounded by a polynomial in the
numbers of nodes and edges, i.e., is strongly polynomial. This bound also applies
to the combinatorial facet complexity of the problem, i.e., the maximum number of
facets (linear pieces) of the parametric curve for the parametrized (linear combination)
objective, over the set of all parameter vectors such that the parametrized edge costs
are nonnegative and the parametrized cut costs are positive. We sharpen this bound in
the case of two objectives (the bicriteria problem), for which we also derive a strongly
polynomial upper bound on the total number of non-dominated (Pareto optimal) cuts.
In particular, the bicriteria global minimum cut problem in an n-node graph admits
O(n3 log n) SND cuts and O(n5 log n) Pareto optimal cuts. These results significantly
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improve on earlier graph cut results by Mulmuley (SIAM J Comput 28(4):1460–
1509, 1999) and Armon and Zwick (Algorithmica 46(1):15–26, 2006). They also
imply that the parametric curve and all SND cuts, and, for the bicriteria problems, all
Pareto optimal cuts, can be computed in strongly polynomial time when the number
of objectives is fixed.

Keywords Multiobjective optimization ·Parametric optimization ·Globalminimum
cut

Mathematics Subject Classification Multiobjective optimization 90C29 ·
Parametric optimization 90C31 · Global minimum cut 05C40, 05C85

1 Introduction

We consider themulticriteria version of the global minimum cut problem in undirected
graphs. Globalminimumcut is extensively studied in combinatorial optimization since
many practical problems in, e.g., routing (subtour elimination), communications and
electrical networks, contain it as a subproblem [2]. Let G = (V, E) be an undirected
graph, and c1, . . . , ck : E → R be k cost functions, or criteria, defined on its edges.
A cut X in G is a subset of nodes X ⊆ V such that ∅ �= X �= V , and it determines
the set δ(X) of edges with exactly one end in X . The cost of cut X w.r.t. criterion j is
c j (X) := c j (δ(X)).

Many concepts and algorithms for global minimum cut generalize to hypergraphs.1

We recall that a hypergraph is a finite set of vertices V , together with a family E of
subsets of V . Thus each e ∈ E is a vertex subset e ⊆ V , and is called a hyperedge,
or simply, an edge. We say that hypergraph G = (V, E) is rank-ρ if |e| � ρ for all
e ∈ E . Thus an undirected graph is a rank-2 hypergraph, and is rank-ρ for all ρ � 2.
A cut X in hypergraph G is a non-trivial node subset, i.e., ∅ �= X ⊂ V . It cuts the
set of edges δ(X) := {e ∈ E : e ∩ X �= ∅ �= e\X}. Notice that this matches the
definition of a cut for a graph. A hypergraph is connected if all cuts X are non-empty,
i.e., δ(X) �= ∅ for every cut X . Given edge costs c j (e)(e ∈ E, j = 1, . . . , k), the cost
of a cut X w.r.t. c j is the total cost c j (X) := c j (δ(X)) = ∑

e∈δ(X) c
j (e) of all the

edges crossed by cut X .
Ideally we would like a cut that simultaneously minimizes all criteria, but such

a solution usually does not exist. Therefore, we focus on Pareto optimal solutions,
i.e., solutions that cannot be improved upon in any criterion without degrading
another criterion. Each cut X is associated with its criteria vector (or point) c(X) :=
(c1(X), . . . , ck(X)) in the criteria space R

k . Let C denote the set of all cuts, and
Y := {c(X) : X ∈ C} denote the image in the criterion space of all the cuts (note
that different cuts may give rise to the same criteria point). A point c(X ′) dominates

1 A reader only interested in graph cuts may skip the rest of this paragraph and the whole of Sect. 2; and
in the sequel replace all occurrences of “(bounded-rank) hypergraph(s)” with “graph(s)”, all Oρ,·(·) with
O(·), and ignore all mentions of rank ρ � 3.
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Multiobjective global minimum cuts 5

c(X), and by extension, cut X ′ dominates X , if c j (X ′) � c j (X) for all j = 1, . . . , k,
and c j (X ′) < c j (X) for at least one j . If there is no c(X ′) ∈ Y that dominates c(X),
then the point c(X), and by extension, the cut X itself, is non-dominated, or Pareto
optimal. In order to derive strongly polynomial bounds and algorithms, when we study
themulticriteria minimum cut problem we assume that all edge costs are nonnegative,
as negative edge costs may give rise to NP-hard minimization problems; and that all
cuts have strictly positive costs, i.e., that c j (X) > 0 for every objective j and cut X ,
for otherwise the hypergraph (V, E>0, j ) induced by the positive-cost edges (i.e., with
edge set E>0, j = {e ∈ E : c j (e) > 0}) is not connected and may have an exponential
number of minimum (zero-cost) cuts.

The computation of Pareto optimal points (i.e. non-dominated points) is related
to the field of parametric optimization. For j = 1, . . . , k − 1 we put a non-negative
parameter μ j on criterion j , and we consider the parametric optimization problem

c∗(μ) := min
X∈C

cμ(X) where cμ(X) :=
k−1∑

j=1

μ j c
j (X) + ck(X). (1)

Notice that a multicriteria problem with k objectives corresponds to a parametric
problem with a single objective and k − 1 parameters. We call cμ the parametrized
objective. If there is some positive parameter vector μ ∈ R

k−1
>0 (i.e., with all compo-

nents μ j > 0) such that cut X minimizes cμ then c(X) is Pareto optimal, we call it a
supported non-dominated (SND) point, and the cut X an SND cut. The Pareto optimal
points that are not SND points are called unsupported non-dominated (UND) points,
see Fig. 1.

A natural object to define is the dominantD of the convex hull of Y , i.e., the set of all
points x ∈ R

k that satisfy x � y for some y in the convex hull of Y . The boundary of
D (its lower convex hull) is the set of all points inD “accessible” as optimal solutions
for parametrized objectives cμ with μ � 0. Thus all SND points must lie on the
boundary of D, and every vertex of D is actually an SND point (when the costs are
in “general position”, the converse will also be true, namely, that every SND point is
a vertex of D. Otherwise, non-vertex SND points may arise as alternate optima for
certain parameter vectorsμ). The optimum cost function c∗ : Rk−1+ �→ R is piecewise
linear and concave, and its graph is in a sense the convex dual of the boundary of D
(which is piecewise linear and convex, e.g., [8,10]). This duality interchanges vertices
and facets, and so the fact that the vertices of D are SND points means that the facets
of the graph of c∗ also correspond to SND points. See Fig. 1 for an example of this
for k = 2.

In fact, our results apply to a slightly more general parametric minimum cut prob-
lem than arises from the multicriteria version, wherein we do not require either the
objectives or the parameters to be nonnegative. However, in order to derive strongly
polynomial bounds and algorithms, when we study the parametric minimum cut prob-
lem we make two assumptions on the parametric cost values that are similar to the
assumption on the cost function values for the multicriteria version: we assume that
all parametrized edge costs cμ(e) := ∑k−1

j=1 μ j c j (e) + ck(e) are nonnegative (though

a single-criterion cost function c j (e) may be negative), and that all cuts have positive
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Multiobjective global minimum cuts 7

parametrized costs, i.e., that c∗(μ) > 0. Thus we restrict attention to the following
relevant region in the parameter space:

M =
{
μ ∈ R

k−1 : cμ(e) � 0 ∀e ∈ E, and cμ(X) > 0 ∀X ⊂ V, X �= ∅
}

.

Note that M is a convex polyhedral set, defined by a finite system of strict and non-
strict linear inequalities. Readers who find this slight generalization confusing can
imagine, as in the multicriteria version, that every objective c j is nonnegative and its
minimum is positive (i.e., its support graph is connected), in which case M is just the
nonnegative orthant Rk−1+ .

Define S as the set of cuts X ∈ C which minimize cμ(X) for some μ ∈ M ; i.e., S
is the set of all SND cuts.

We define the combinatorial facet complexity2 of the parametric minimum cut
problem to be the maximum number of facets of the graph of c∗, which is equivalent
to the maximum number of vertices of D, and to the maximum number of SND
points. Our main interest here is to study the combinatorial facet complexity of global
minimum cut for hypergraphs, and thus also for graphs.We also derive sharper bounds
on combinatorial facet complexity for the bicriterion case k = 2.

A natural subproblem of parametric minimum cut is solving single-criterion (ordi-
nary)minimumcut, e.g., for somefixed value ofμ. For graphs, the fastest deterministic
algorithms for this problem run in O(|E | · |V | + |V |2 log |V |) time (Nagamochi and
Ibaraki [30], and Stoer and Wagner [42]). The fastest randomized algorithm runs in
O(|E | log3 |V |) time (Karger [17]). These algorithms are faster than minimum s–
t-cut algorithms that are based on network flows. See [31] for a detailed treatment
of graph connectivity problems. For hypergraphs there exist polynomial time algo-
rithms for finding a minimum cost cut in a hypergraph with nonnegative edge costs,
see [20,25,37].

The multicriteria versions of several combinatorial optimization problems have
been extensively studied, see Ehrgott [8] for a comprehensive survey. These prob-
lems are often intractable in the sense that the size of the set of (supported) Pareto
optimal points grows exponentially in the input size. Furthermore, it is often hard
even to verify if a given point is Pareto optimal. For example, Carstensen [3] shows
that the combinatorial facet complexity of the minimum s–t-cut problem in a graph
(namely, to find a minimum cost cut X that separates two given vertices s and t , in
the sense that |X ∩ {s, t}| = 1) is exponential, even for a single parameter (two cost
functions). Mulmuley [28] gives a simpler proof of this result. In addition, it follows
from Papadimitriou and Yannakakis [34, Theorem 6] that the decision version of the
bicriteria minimum s–t-cut problem in a graph is strongly NP-hard.

2 This is also called parametric complexity by some authors, such as Mulmuley [28] (see also [24,27]) for
the bicriterion case. We use a different terminology to avoid conflict with a different concept of parametric
(or “parametrized”, or “parameterized”) complexity, e.g., [7], which deals with finding efficient algorithms
for problems in which certain input or output “parameters” (or properties) are fixed. On the other hand,
Fernández-Baca and Venkatachalam [10] use the term combinatorial complexity to refer to the total number
of faces of all dimensions (here, 0 to k −1) of the graph of a parametric function (such as c∗ here), whereas
Schrijver [39] uses facet complexity to refer to the maximum input size of a rational linear inequality in a
system that defines a polyhedron (such as D here).
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8 H. Aissi et al.

Multicriteria global minimum cut in graphs are an exception to such intractability
results. Mulmuley [28, Theorem 3.10] considers the combinatorial facet complexity
of the parametric minimum cut problem with two objectives that may be negative,
but where all parametric edge costs are positive (a slight restriction, for the bicri-
teria case, of our more general parametric framework above). His Theorem 3.10
implies that the combinatorial facet complexity is O(|V |19 log |V | log cmax), where
cmax := maxe max{c1(e), c2(e)} is the maximum edge cost. This is a weakly polyno-
mial bound, but Mulmuley also claims (without detailed proof) that the bit sizes of
the costs can be assumed to have polynomial size without affecting the combinatorial
facet complexity, and this yields a strongly polynomial bound. In addition, Armon and
Zwick [2] show that, when the number k of criteria is fixed, the decision version of the
multicriteria minimum cut problem in graphs can be solved in strongly polynomial
time. They also point out the existence, when k is fixed, of a pseudo-polynomial time
algorithm to find all the Pareto optimal points, and of a fully-polynomial time approx-
imation scheme (FPTAS) for finding an approximate Pareto set, a notion defined by
Papadimitriou and Yannakakis [34]. All these results may be surprising since the
single-objective global minimum cut problem may be solved by solving |V |−1 mini-
mum s–t-cut problems (e.g., by fixing s and letting t vary over the other nodes). Thus,
for example, the parametric function c∗ is the pointwise minimum of |V |−1 paramet-
ric minimum s–t cut functions, each of which possibly has an exponential number of
breakpoints.

All these positive results rely on the deep and far-reaching fact that the single-
criterion global minimum cut problem on graphs has at most a strongly polynomial
number of near-optimal solutions. Indeed, given α � 1, call a cut α-approximate
if its cost is less than α times the minimum. For global minimum cut in graphs,
Dinitz et al. [6] showed that there are at most

(|V |
2

) = θ(|V |2) minimum (i.e.,
1-approximate) cuts, and that this bound is tight. Nagamochi et al. [33] and Henzinger
andWilliamson [14] show that this bound also applies to the number of α-approximate
cuts for all α < 4/3 and all α < 3/2, respectively; the latter authors also show that
3/2 is the largest approximation factor for which this result holds. More generally,
Karger [16] states (see [19] for a detailed proof) that for every α > 1 the number of
α-approximate cuts is O(|V |2α). All these results are subsumed by Karger’s result
[17] that for every α � 1 the number of α-approximate cuts in a graph is O(|V |2α�).

In this paper, we give a strongly polynomial upper bound on the combinatorial
facet complexity of global minimum cut on rank-ρ hypergraphs. Our bound hides a
constant that depends at least exponentially on ρ. For the case of two nonnegative
objectives (with positive minimum cut values), we also derive sharper bounds that are
much smaller, and follow from a simpler proof, than in [28].

As pointed out above, our bounds of the combinatorial facet complexity of global
minimum cut depend on a strongly polynomial upper bound on the number of approx-
imate optimal solutions to global minimum cut. Hence our first step, in Sect. 2, is to
generalize the results on approximate globalminimumcut fromgraphs to hypergraphs.
In particular, we extend a recent result of Kogan and Krauthgamer [21]; a proof of our
extended result is found in the Appendix. Given this, we derive in Sect. 3 a strongly
polynomial bound on the combinatorial facet complexity of global minimum cut on
hypergraphs. Then Sect. 4 studies in detail the bicriteria case, i.e., when k = 2. Finally,
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Multiobjective global minimum cuts 9

Sect. 5 shows how to adapt existing parametric algorithms for computing the graph of
the parametric function c∗, the boundary of D (SND points and cuts), and for k = 2,
the set of all Pareto optimal cuts.

2 Approximate minimum cuts for a single objective

In this section we consider a hypergraph G = (V, E) with a single, nonnegative edge
cost function c that has positive minimum cut value (without loss of generality we can
discard all zero cost edges, and then G has positive minimum cut value if and only if
it is connected). We assume that all edges e ∈ E have size 2 � |e| � |V |−1, as edges
with |e| = 1 or |V | do not contribute to any cut. We also assume that distinct edges
in E span different sets of vertices, and thus that |E | = O(|V |ρ), since if G contains
“parallel” edges that span the same set of vertices, we may replace them by a single
edge with cost equal to the sum of the costs of the parallel edges.

Theorem 1 (Adapted from Kogan and Krauthgamer [21]) For every fixed scalar α �
1 and integer ρ � 2, the number of α-approximate cuts in all rank-ρ hypergraphs G =
(V, E) with nonnegative edge costs c and positive minimum cut cost, is O

(|V |2α)
.

While Kogan and Krauthgamer only present this result for the case when α is half-
integer,3 the proof in the Appendix shows that it actually holds for all α � 1.

Karger’s O
(|V |2α�) bound for graphs [17] is tighter than that in Theorem 1 when

ρ = 2.When combined with a simple approximation of hypergraph cuts as graph cuts,
it also leads to tighter bounds for ρ = 3, and for ρ = 4 and a small (but important
in the sequel) range of values of α. To show this, in the next Proposition, we recall
a general approximation method (see, e.g., Ihler et al. [15]) and derive consequences
for bounding the number of α-approximate cuts.

Proposition 2 For every fixed integer ρ � 3, fixed scalar α � 1, and rank-ρ hyper-
graph G = (V, E) with nonnegative edge costs c and positive minimum cut cost, the

number of α-approximate cuts is O
(
|V |2B(ρ)α�

)
where B(ρ) = 1 if ρ = 3, and

B(ρ) = ρ2/4�/(ρ − 1) � ρ
4 + 1

3 if ρ � 4.

Proof We prove the result by approximating the minimum cut problem in hypergraph
G = (V, E) with edge costs c, by the minimum cut problem in the complete graph
K (V ) = (V, EK (V )) with edge costs c̃, whereby each edge e ∈ E is replaced by a
clique on the nodes in e and each edge in the clique has cost c(e)/(|e| − 1), i.e., by
letting

c̃(i, j) =
∑

e∈E :{i, j}⊆e

c(e)

|e| − 1
for all {i, j} ∈ EK (V ). (2)

In particular, every cardinality-2 edge e = {i, j} ∈ E contributes its full cost c(e) to
c̃(i, j), and thus to the cost c̃(X) of every cut X in K (V ) that crosses it. Note also that

3 Their approach also seems to require that αρ be integer, but this requirement is not mentioned in [21].
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10 H. Aissi et al.

every cardinality-3 edge e ∈ E that is crossed by cut X has two of its nodes on one
side of the cut and the other node on the other side, and thus also contributes its exact
cost 2(c(e)/2) = c(e) to c̃(X). Therefore [as it is well known, e.g., Ihler et al. [15]),
when ρ � 3 this transformation preserves all cut values, i.e., c̃(X)] =c(X) for every
cut X . The result then follows from Karger’s bound when ρ � 3.

Now assume that ρ � 4. A cut X that crosses an edge e ∈ E with cardinality
|e| � 4 crosses at least |e| − 1 edges in the clique K (e) (when exactly one node of e
is on one side of the cut), and at most |e|2/4� such edges (when half the nodes of e
are on either side). Thus every edge e ∈ E crossed by X contributes at least c(e) and

at most (|e|2/4�) c(e)
|e|−1 � ρ2/4�

ρ−1 c(e) = B(ρ)c(e) to the cost c̃(X). Therefore,

c(X) � c̃(X) � B(ρ) c(X).

Note that

B(ρ) �
(

ρ

4
+ 1

4

(

1 + 1

ρ − 1

))

� ρ

4
+ 1

3
,

where the last inequality follows from ρ � 4.
Let X∗ denote a minimum cut for (K (V ), c̃). If X is an α-optimal cut for (G, c),

i.e., c(X) � α minY∈C c(Y ), then we have

c̃(X) ≤ B(ρ) c(X) � B(ρ) α min
Y∈C

c(Y ) � B(ρ) α c(X∗) ≤ B(ρ) α c̃(X∗),

implying that X is a
(
B(ρ) α

)
-optimal cut for (K (V ), c̃). The result then again follows

from Karger’s bound when ρ � 4. ��
Combining Theorem 1 and Proposition 2 (and noting that when ρ = 4 and 1 <

α < 9/8, 2 B(ρ) α� = 2 = 2α�), we obtain:
Corollary 3 For every fixed scalar α � 1 and fixed integer ρ ≥ 2, the number of
α-approximate cuts in all rank-ρ hypergraphs G = (V, E) with nonnegative edge
costs c and positive minimum cut cost, is

O
(
|V |2α�) for ρ � 3, and

for ρ = 4 when 1 � α < 9/8;
O

(
|V |2α

)
for ρ � 4 when α � 9/8, and

for all ρ � 5.

These results show that the dependence of the number of α-approximate cuts is
polynomially bounded in the number |V | of vertices when α and ρ are fixed. On the
other hand, it is known (see, e.g., an example in [14] and its immediate generalization
to larger half-integer values of α), that the dependence on α is exponential. Similarly,
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Multiobjective global minimum cuts 11

Kogan and Krauthgamer present in [21] a family of instances showing that the depen-
dence on ρ (through the “hidden” multiplicative constant in the O

(|V |2α)
expression)

is at least exponential.

3 Minimum cuts with multiple edge costs

We are now given a hypergraph G = (V, E), and k edge cost functions c1, . . . , ck :
E → R, where k � 2 is fixed. Before considering the multiobjective version of the
problem, we start with its parametric version. Recall that for μ ∈ R

k−1 the parame-
trized cut cost is cμ(X) = ∑

e∈δ(X) cμ(e) for all cuts X in G.
Our strategy for proving the following theorem is to express the parameter space M

first as a union of regions defined by edges, then to cut each region into subregions via
a hyperplane dissection. The region for edge a is the part of M where some minimum
cut has a as a maximum cost edge w.r.t. cμ. The hyperplanes belong to a family of
hyperplanes constructed from cμ(a) and at successive relative distance β for some
appropriate β > 1, and from cμ(e) for every other edge e. The resulting subregions
are small enough that we can apply Corollary 3 to get a small number of minimum
cuts per region, and then we sum up across all subregions to get our bound.

In view of Corollary 3, we introduce the following notation: given a number r ∈
R ∪ {±∞}, and real-valued functions fρ and g, where fρ (and possibly g) depends
on a fixed parameter ρ, we say that

fρ(n) = Oρ,r (g(n)) iff fρ(n) = O (g(n)) when ρ < r; and

fρ(n) = O
(
g(n) nε

)
for all ε > 0, when ρ � r.

In particular, Oρ,+∞(g(n)) is just O(g(n)).4 Corollary 3 thus implies that, when
ε > 0 approaches 0, the number of (1+ε)-approximate cuts in all rank-ρ hypergraphs
G = (V, E)with nonnegative edge costs c and positiveminimum cut cost, approaches
Oρ,5(|V |2), i.e., O(|V |2) if ρ ≤ 4 and |V |2+o(1) if ρ ≥ 5.

Theorem 4 Given a fixed integer ρ � 2, a rank-ρ hypergraph G = (V, E) and k
edge cost functions c1, . . . , ck , the total number of cuts X minimizing cμ(X) over all

μ in M is Oρ,5

(
|E |k |V |2 logk−1 |V |

)
.

Proof For every cut X in G let

M(X) =
{

μ ∈ M : cμ(X) = min
W

{cμ(W ) : ∅ �= W ⊂ V }
}

4 This is also a slight (and parametrized) extension of the more familiar Õ notation. Indeed, recall that
f (n) = Õ(g(n)) if and only if f (n) = O(g(n) logp g(n)) for some p � 1.Then Õ(g(n)) isOρ,−∞(g(n)),
but the converse need not hold, e.g., when f (n) = g(n) h(n) with h(n) “super-polylog” [i.e., h(n) =
�(logp n) for all fixed p � 1] and h(n) = Oρ,−∞(1).
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12 H. Aissi et al.

denote the subset of parameter vectors in M for which X is a minimum cut. Recall
that S is the set of all SND cuts. For every edge a ∈ E let

Sa =
{

X ∈ S : a ∈ argmax
e∈X

cμ(e) for some μ ∈ M(X)

}

denote the set of all cuts X such that, for some μ for which X is a minimum
cut, a is an edge in X with largest cost cμ(a). It suffices to show that |Sa | =
Oρ,5

(
|E |k−1|V |2 logk−1 |V |

)
and the result will follow.

Thus, in the rest of this proof, fix edge a ∈ E such that Sa �= ∅. For every X ∈ Sa

let

Ma(X) =
{

μ ∈ M(X) : a ∈ argmax
e∈X

cμ(e)

}

so that Ma(X) �= ∅, and let
Ma =

⋃

X∈Sa

Ma(X)

denote the set of parameter vectors for which edge a has maximum cost in a minimum
cut.Wewill cover the parameter regionMa with a number L = O

(|E |k−1 logk−1 |V |)
of regions Rl (l = 1, . . . , L). We will then derive, for each region Rl , an Oρ,5(|V |2)
bound on the total number of cuts W in Sa that are minimum for some μ ∈ Rl ∩ Ma ,
i.e., such that Rl ∩ Ma(W ) �= ∅. The covering condition Ma = ⋃L

l=1 Rl implies
Sa = ⋃L

l=1{W ∈ Sa : Rl ∩ Ma(W ) �= ∅}, and the result will follow.
First, note that for every μ ∈ Ma and cut W such that a ∈ argmaxe∈W cμ(e) we

have

cμ(a) � cμ(W ) � |E |cμ(a). (3)

Since cμ(W ) > 0 for every W ∈ Sa �= ∅, this implies cμ(a) > 0.
Now fix a constant β > 1 whose value will be specified later, and let α = β−1

|E | > 0.

Compute p = 1 + �log |E |2
β−1/ logβ� so that αβ p−1 > |E |, and observe that p =

O(log |V |) (since p = O(log |E |), and |E | = O(|V |ρ) due to no parallel edges, and
ρ being constant).

Define the functions gi : Rk−1 → R by g0(μ) = 0 and

gi (μ) = α β i−1cμ(a) for i = 1, . . . , p, and

gp+1(μ) = +∞.
Inequality (3) implies that, for every μ ∈ Ma , every cut W such that a ∈

argmaxe∈W cμ(e), and every e ∈ W ,

cμ(a) � cμ(W ) � |E |cμ(a) < gp(μ). (4)

Since cμ(a) > 0,

123



Multiobjective global minimum cuts 13

0 = g0(μ) < g1(μ) < · · · < gp(μ) < gp+1(μ) = +∞ (5)

for all μ ∈ Ma .
For each e ∈ E and each i = 1, . . . , p, the hyperplane Hi,e = {μ ∈ R

k−1 :
gi (μ) = cμ(e)} dividesRk−1 into at most two regions, one where gi (μ) � cμ(e), and
the other where gi (μ) � cμ(e).

Recall that, for fixed dimension d, N hyperplanes divide the d-dimensional
space R

d into O(Nd) regions ([41], see also [45] for further references). Thus
the O(|E | log(|V |)) hyperplanes Hi,e define regions R1, . . . , RL that cover the set
Ma ⊂ R

k−1, and L = O
(|E |k−1 logk−1 |V |). By (5), for each l ∈ {1, . . . , L} and

each e ∈ E there exists an index i(e, l) ∈ {0, 1, . . . , p} such that

Rl ∩ Ma = {
μ ∈ Ma : gi(e,l)(μ) � cμ(e) � gi(e,l)+1(μ) ∀e ∈ E

}
.

Consider any such region Rl and any cut W ∈ Sa . Note that (4) implies that
i(e, l) � p − 1 for all e ∈ δ(W ). Let

Rl(W ) =
{

μ ∈ Rl : a ∈ argmax
e∈W

cμ(e)

}

,

the subset of Rl such that our fixed arc a has the maximum cμ(a) value among all
edges in cut W . Then for every μ ∈ Rl(W ), the definition of i(e, l) implies that

cμ(W ) � cμ(a) +
∑

e∈δ(W )\{a} : 1�i(e,l)�p−1

cμ(e)

� cμ(a)

⎛

⎝1 +
∑

e∈δ(W )\{a} : 1�i(e,l)�p−1

α β i(e,l)−1

⎞

⎠ .

If we define
γl(W ) = 1 +

∑

e∈δ(W )\{a} : 1�i(e,l)�p−1

α β i(e,l)−1

then we can re-write this as

cμ(W ) � cμ(a) +
∑

e∈δ(W )\{a} : 1�i(e,l)�p−1

cμ(e) � cμ(a) γl(W ) (6)

for every μ ∈ Rl(W ).
The definition of α also implies that, for every μ ∈ Rl(W ),

cμ(W ) = cμ(a) +
∑

e∈δ(W )\{a} : i(e,l)=0

cμ(e) +
∑

e∈δ(W )\{a} : 1�i(e,l)�p−1

cμ(e)

� cμ(a) + |E | α cμ(a) + cμ(a) β (γl(W ) − 1)

= cμ(a) β γl(W ). (7)
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14 H. Aissi et al.

Now fix a cut X ∈ Sa such that there exist μ ∈ Rl ∩ Ma(X). Thus X is a minimum
cut for the cost cμ. For every cut W ∈ Sa such that there exists ν ∈ Rl ∩ Ma(W ), we
have

cμ(W ) � cμ(a) β γl(W ) [by (7)]

= cμ(a)

cν(a)
β cν(a) γl(W )

� cμ(a)

cν(a)
β cν(W ) [by (6)]

� cμ(a)

cν(a)
β cν(X) (by optimality of W for ν)

� cμ(a)

cν(a)
β2 cν(a) γl(X) [by (7)]

= β2 cμ(a) γl(X)

� β2 cμ(X) [by (6)].

Therefore, every cut W such that Rl ∩ Ma(W ) �= ∅ is a β2-approximate cut for the
parametrized cost cμ.

If ρ � 4 then choose any β such that 1 < β <
√
9/8, so β2 < 9/8 and, by

Corollary 3, the total number of such cuts W is O(|V |2). Otherwise (when ρ � 5),
for every ε > 0 we may choose β = β(ε) such that 1 < β(ε) <

√
1 + ε/2, and the

total number of such cuts W is O(|V |2+ε). Therefore it is Oρ,5(|V |2), and the proof
is complete. ��

Recall that the combinatorial facet complexity of the parametrized minimum cut
problem over the relevant set M of parameters is the maximum number of facets of
the graph of c∗(μ) when μ ∈ M ; equivalently, of vertices of the dominantD, and also
of SND points. Thus Theorem 4 implies:

Corollary 5 Given a fixed integer ρ � 2, a rank-ρ hypergraph G = (V, E), and a
fixed number k of edge cost functions c1, . . . , ck , the combinatorial facet complexity

of the parametrized minimum cut problem over set M is Oρ,5

(
|E |k |V |2 logk−1 |V |

)
.

We now briefly comment on the multicriteria minimum cut problem. As explained
earlier, we now assume that all edge costs are nonnegative, i.e., all c j � 0, and that
every cut cost c j (X) > 0( j = 1, . . . , k,∅ �= X ⊂ V ) (and therefore that G is
connected). Under these assumptions, the relevant region in the parameter space is
the nonnegative orthant, M = R

k−1+ and, by Theorem 4, the number of SND points
is Oρ,5(|E |k |V |2 logk−1 |V |). In Theorem 8 in the next Section, we derive a strongly
polynomial bound on the total number of (supported and unsupported) Pareto optimal
points when k = 2. However, for k � 3 we leave the following:

Open Problem In a graph or a bounded-rank hypergraph, with a fixed number k � 3
of nonnegative edge cost functions such that each cut cost is positive, is the number
of UND points polynomially bounded?
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Multiobjective global minimum cuts 15

4 Tighter bounds for minimum cuts with two nonnegative edge cost
functions

When the bound on the number of SND cuts from Theorem 4 is specialized to
k = 2 edge cost functions, it becomes Oρ,5(|E |2 |V |2 log |V |). This section sharp-
ens this bound to Oρ,5(|V |3 log |V |), an improvement by a factor |E |2/|V |. For
graphs (and rank-3 hypergraphs), this improvement is from O(|E |2|V |2 log |V |) to
O

(|V |3 log |V |). We also derive a strongly polynomial bound on the total number
of (supported and unsupported) nondominated points. Our proof strategy will rely on
partitioning the criteria space, instead of the parameter space as in Sect. 3. For this
reason, we now assume that both edge cost functions c1 and c2 are nonnegative. Note
that partitioning the criteria space fails to work in the more general case discussed in
Sect. 3 as the cost functions c j there may be negative. The results below also hold
in the case where the edge parametric costs are cμ(e) = μc1(e) + (1 − μ)c2(e) for
μ ∈ [0, 1].

For general optimization problems with several objectives, Papadimitriou and
Yannakakis [34] use a partitioning of the criteria space into rectangular regions of
exponentially increasing sizes and obtain an approximate Pareto set of weakly poly-
nomially bounded size. Here we partition the criteria space according to value of
criterion c1, and we use two properties of global minimum cuts: First (in the proofs of
Lemmas 6, 7), the polynomial bound on the number of approximate cuts from Corol-
lary 3; and second (in the proof of Theorem 8), properties of edge contractions. We
derive strongly polynomial bounds on the total number of all exact SND cuts.

The main argument used in the proof of Lemma 6 below is that every SND cut in
a c1-cost interval of relative width β > 1 is a β-approximation for the objective cμ

defined by a particular facet of the dominant polyhedronD. Then, by choosing a small
enough constant β, the number of SND cuts is shown to be Oρ,5(|V |2) per interval.
Lemma 6 Given a fixed integer ρ � 2, a rank-ρ hypergraph G = (V, E), two
nonnegative edge cost functions c1 and c2 such that all cut costs are positive, and two
reals b > a > 0, the total number of SND cuts X with c1-cost satisfying a � c1(X) �
b is Oρ,5(|V |2 log(b/a)).

Proof First, if ρ � 4 then choose any β such that 1 < β < 9/8; otherwise, i.e., when
ρ � 5, for every ε > 0 choose any β such that 1 < β < 1 + ε/2, so 2β < 2 + ε.
Next, choose n = log(b/a)/ logβ� + 1 = O (log(b/a)) to ensure that βn−1a �
b < βna. Thus we can cover the “target” interval [a, b] with half-open intervals
I j = [

β j−1a, β j a
)
for j = 1, . . . , n, such that b ∈ In .

Let X j denote the set of SND cuts X such that c1(X) ∈ I j . If X j �= ∅ then let
W be a cut in X j with largest c2-cost. Let μ > 0 be a parameter value for which
W maximizes the parametrized objective cμ = μc1 + c2. Since we only have two
criteria, for every SND cut X ∈ X j such that

(
c1(X), c2(X)

) �= (
c1(W ), c2(W )

)
, we

have β j−1a � c1(W ) < c1(X) < β j a and c2(X) < c2(W ). Thus

cμ(X) < μ c1(X) + c2(W ) < μβ j a + c2(W )

< β
(
μβ j−1a + c2(W )

)
� β

(
μ c1(W ) + c2(W )

)
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16 H. Aissi et al.

= β cμ(W ). (8)

Therefore, every cut in X j is a β-approximate cut for the parametrized objective cμ.
By Corollary 3 and the above choice of β, the total number |X j | of such cuts is
Oρ,5(|V |2), and the total number of SND cuts X with a � c1(X) � b is at most∑n

j=1 |X j | = Oρ,5(|V |2 log(b/a)), as claimed. ��

In a given width-β interval I , let c1(I ) be the c1-cost of the SND cut in I with
minimum c1-cost, with c1(I ) equalling the left endpoint of I if it contains no SND
cut. The proof of the next lemma uses the fact that there are two types of Pareto optimal
cuts in I : Those with c1-cost greater than c1(I ), which are again β-approximations;
and the others (which must be UND cuts with c1-cost less than c1(I )), which we show
are 2-approximations for a suitable cμ objective.

Lemma 7 Given a fixed integer ρ � 2, a rank-ρ hypergraph G = (V, E), two
nonnegative edge cost functions c1 and c2 such that all cut costs are positive, and two
reals b > a > 0, the total number of Pareto optimal cuts X with c1-cost satisfying
a � c1(X) � b is Oρ,5(|V |4 log(b/a)).

Proof Let N [a, b] denote the set of all Pareto optimal cuts W with c1(W ) ∈ [a, b],
so we need to bound |N [a, b]|. Our proof considers a number of cases and subcases.
Cases 1 to 1.1.1 comprise the bulk of the proof; the other cases and subcases yield to
simpler treatment.

Case 1. There is at least one SND cut Z with c1(Z) ∈ [a, b]: Define a′′ =
min{c1(X) : X ∈ S}, so a′′ � c1(Z) and there is no Pareto optimal cut W with
c1(W ) < a′′. Similarly, define b′′ = max{c1(X) : X ∈ S}, so b′′ � c1(Z) and
there is no Pareto optimal cut W with c1(W ) > b′′. Now we restrict our attention
to the interval [a′, b′], where a′ = max{a, a′′} and b′ = min{b, b′′}. Note that
[a′, b′] ⊆ [a, b] and N [a′, b′] = N [a, b].

Case 1.1. a′ < b′: Let x1 < x2 < · · · < xN denote the distinct values of
c1(X) for all SND cuts X with a′ < c1(X) < b′. It follows from Lemma 6
that N = O

(|V |2 log(b′/a′)
)
. Let X1, . . . , XN be corresponding SND cuts,

i.e., with c1(Xi ) = xi (Since different cuts may give rise to the same point in
the criterion space there may be several choices for Xi , but this does not affect
our arguments). Define x0 = max{c1(X) : X ∈ S with c1(X) � a′} with
corresponding SND cut X0, and xN+1 = min{c1(X) : X ∈ S with c1(X) �
b′} with corresponding SND cut XN+1. For i = 0, 1, . . . , N define ν(i) as
the value of μ such that cμ(Xi ) = cμ(Xi+1) = min{cμ(X) : X ∈ C}. Thus,
ν(0) > ν(1) > · · · > ν(N ) are the successive breakpoints of the parametric
curve c∗(μ) over the interval of μ values for which SND cuts X that minimize
cμ have c1(X) ∈ [a′, b′].

• For example, suppose that in Fig. 1a we have c1(C2) < a < c1(C3) and
b > c1(C5). Then a′ = a and b′ = c1(C5); N = 2; x0 = c1(C2), x1 =
c1(C3), x2 = c1(C4) and x3 = c1(C5); ν(0) = b2, ν(1) = b3 and ν(2) =
b4.
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Multiobjective global minimum cuts 17

Every Pareto optimal cut W ∈ N [a′, b′] has c1(W ) ∈ [xi , xi+1] for some
i ∈ {0, 1, . . . , N }. Since W is Pareto optimal, its c2 cost satisfies c2(W ) ∈
[c2(Xi+1), c2(Xi )]. Since Xi and Xi+1 are both minimum cuts for μ = ν(i),
we have cν(i)(Xi ) = cν(i)(Xi+1) and so

cν(i)(W ) � ν(i) c1(Xi+1) + c2(Xi )

< ν(i) c1(Xi+1) + c2(Xi+1) + ν(i) c1(Xi ) + c2(Xi )

= 2 cν(i)(Xi ). (9)

That is, W is a 2-approximate cut for the parametrized objective cν(i). As in
Lemma 6, we cover the interval [a′, b′] by half open intervals [

β j−1a′, β j a′),
where β > 1 is an appropriately chosen constant. Now fix one of the intervals
I ′
j = [

β j−1a′, β j a′) and let N (I ′
j ) := {W ∈ N [a′, b′] : c1(W ) ∈ I ′

j }.
Case 1.1.1. There is an SND cut with c1 cost in I ′

j : Let Xi be the SND

cut with the least c1 cost among all SND cuts with c1 cost in I ′
j . Every

W ∈ N (I ′
j ) with c1(W ) < c1(Xi ) satisfies c1(W ) ∈ [xi−1, xi ] and so

by (9) is a 2-approximate cut for the parametrized objective cν(i−1); there
are again Oρ,5(|V |4) such Pareto optimal cuts. Every other W ∈ N (I ′

j )

satisfies c1(Xi ) � c1(W ) < β j a′. Since W is non-dominated, we must
have c2(W ) < c2(Xi ). Using a similar argument as for (8), we have

cμ(W ) < μ c1(W ) + c2(Xi ) < μβ j a + c2(Xi )

< β
(
μβ j−1a + c2(Xi )

)
� β

(
μ c1(Xi ) + c2(Xi )

)

= β cμ(Xi ).

This implies that W is a β-approximate cut for the parametrized objec-
tive cν(i); thus, for β chosen as in the proof of Lemma 6, there are
Oρ,5(|V |2) such cuts, and so a total of Oρ,5(|V |4) Pareto optimal cuts
in I ′

j . Since |N (I ′
j )| = Oρ,5(|V |4) for each of the O(log(b′/a′) inter-

vals I ′
j , we get |N [a, b]| = |N [a′, b′]| = Oρ,5(|V |4 log(b′/a′)) =

O(|V |4 log(b/a)), as claimed.
Case 1.1.2. I ′

j does not contain the c1 cost of any SND cut: Then every

W ∈ N (I ′
j ) has c

1(W ) ∈ [xi , xi+1] for some i such that xi < β j−1a′

and β j a′ � xi+1, hence is a 2-approximate cut for the parametrized
objective cν(i). By Corollary 3 there are Oρ,5(|V |4) such cuts.

Case 1.2 a′ = b′: Then N [a′, b′] is just the set of all SND cuts X with
c1(X) = a′, and the proof of Lemma 6 shows that |N [a′, a′]| = Oρ,5(|V |2) =
O(|V |4 log(b/a)).

Case 2. There is no SND cut Z with c1(Z) ∈ [a, b]: Then either (i) there is no
SND cut Z at all with c1(Z) < a, and thusN [a, b] = ∅; or else (ii) let as above X0
be an SND cut with largest cost c1(X0) < a and ν(0) the corresponding parameter
value, then (9) implies that everyW ∈ N [a, b] is a 2-approximate cut for the para-
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18 H. Aissi et al.

metrized objective cν(0), and thus |N [a, b]| = Oρ,5(|V |4) = Oρ,5(|V |4 log(b/a)),
as claimed.

The proof is complete. ��
The proof of the next theorem uses the following observation: every cut either has

its c1 cost in the interval
[
c1(E)
|E | , c1(E)

]
between the average and total c1 edge costs,

that has relative width |E | = O(|V |ρ) (hence log |E | = O(log |V |)) and to which
we apply the two preceding lemmas; or else the cut cannot contain any edge e with

cost c1(e) � c1(E)
|E | , in which case we can contract all such costlier-than-average edges

and recurse. Since there is at least one such edge to contract, the number of vertices
decreases by at least one in each iteration and we are done after fewer than |V | rounds
of edge contractions.

Theorem 8 Given a fixed integer ρ � 2, a rank-ρ hypergraph G = (V, E), and two
nonnegative edge cost functions such that all cut costs are positive, the total number
of SND cuts is Oρ,5(|V |3 log |V |) and the total number of Pareto optimal cuts is
Oρ,5(|V |5 log |V |).
Proof Our strategy is to repeatedly apply Lemma 6 to a sequence of hypergraphs
obtained by contracting edges. As in [20,25], by contracting an edge e in hypergraph
G = (V, E) with edge costs c j to get G ′ = (V ′, E ′) we mean replacing all nodes in
e by a single “contracted node” ve (i.e., V ′ = (V \e) ∪ {ve}), and every edge f ∈ E
by an edge f ′ of same costs, c j ( f ′) = c j ( f ), wherein all nodes in e ∩ f , if any, are
replaced by the single node ve (i.e., f ′ = ( f \e) ∪ {ve} if f ∩ e �= ∅, and f ′ = f
otherwise). We then remove from E all edges f with | f | = 1 (loops, which no cut
in G ′ can cross), and all nodes that do not belong to any edge in E ′ (isolated nodes).
Conversely, every cut in the contracted hypergraph corresponds, after expanding back
the contracted node ve, to a cut with the same cost in the original hypergraph. Note
that this generalizes edge contraction in graphs, e.g., [31].

Suppose that X is a cut in G, and we contract e to get G ′. If e is not in δ(X) (“X
does not cross e”), then X ′ := X\{ve} is a cut in G ′ where f ′ is in δ(X ′) if and only
if f is in δ(X). Thus c j (X) = c j (X ′) for j = 1, 2. On the other hand, if X is a cut in
G with e ∈ δ(X) (“X crosses e”), then there is no cut in G ′ corresponding to X .

We construct a sequence of m rank-ρ hypergraphs, i = 1, . . . ,m. Hypergraph i
is Gi = (Vi , Ei ) with edge costs ci = (c1i , c

2
i ), such that (G0, c0) = (G, (c1, c2)).

Hypergraph (Gi , ci ) is derived from (Gi−1, ci−1) by contracting all edges in e ∈ Ei−1

with cost c1i−1(e) � ai−1 := c1i−1(Ei−1)

|Ei−1| , so long as |Vi−1| > ρ. Since there is at least

one edge e ∈ Ei−1 with c1-cost no less than the average ai−1, there will be at least
one edge to contract. Thus |Vi | < |Vi−1| and so m � |V | − ρ.

We associate with each hypergraph Gi in the sequence an interval [ai , bi ] where,
as defined above, ai := c1i (Ei )

|Ei | is the average edge c1i -cost in Gi , and bi = c1i (Ei ) =
|Ei |ai is the total c1i -cost. Since c1i � 0, the c1i -cost of every cut X in Gi satisfies
c1i (X) � c1i (Ei ) = bi . Every cut X in Gi either has cost c1i (X) � ai , and therefore
c1i (X) ∈ [ai , bi ], or else it cannot cross any edge e with cost c1i (e) � ai . In the latter
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Multiobjective global minimum cuts 19

case, if i < m then X does not cross any edge which is contracted when defining
Gi+1. Thus there is a cut X ′ in Gi+1 corresponding to X , and its cost c1i (δi (X)) =
c1i+1(δi+1(X ′)) � bi+1.

Let si (resp. ni ) denote the number of SND (resp. nondominated) cuts in Gi

with cost c1i (X) in [ai , bi ]. It follows that si (resp. ni ) is also the number of SND
(resp. nondominated) cuts in the original hypergraph G with cost c1(X) ∈ [ai , bi ].
Then the total number of SND cuts in G is at most

∑m
i=1 si , and it suffices to

prove that each si = Oρ,5(|V |2 log |V |). Similarly, it suffices to prove that each
ni = Oρ,5(|V |4 log |V |). These are certainly true for i = m since |Vm | � ρ and
thus sm � nm < 2ρ = O(1). For i < m, si = Oρ,5(|Vi |2 log |Ei |) by Lemma 6,
and ni = Oρ,5(|Vi |4 log |Ei |) by Lemma 7. Since |Ei | = O(|Vi |ρ) and ρ is fixed,
log |Ei | = O (log |Vi |) = O (log |V |). ��

Since distinct facets of the graph of c∗ are associated with distinct SND cuts, we
have:

Corollary 9 Under the assumptions ofTheorem8, the combinatorial facet complexity
of the bi-objective parametrized minimum cut problem is Oρ,5(|V |3 log |V |).

Notice that in the case of graphs (where ρ = 2) the bounds in Theorem 8 specialize
to there being O(|V |3 log |V |) SND cuts and O(|V |5 log |V |) UND cuts. The confer-
ence version of this paper [1] claimed a slightly better bound of O(|V |3) SND cuts,
but there was an error in its analysis of its Algorithm 2 in the proof of its Claim 3.
On the other hand, the present O(|V |5 log |V |) bound on the number of UND cuts is
better than the O(|V |7) bound of [1].

5 Algorithms

In this section we show how to combine the preceding results with several existing
algorithms, and derive strongly polynomial time deterministic algorithms for comput-
ing the optimum cost function c∗; the sets of supported and, for k = 2, unsupported
Pareto optimal points; and the sets of all corresponding minimum cuts. For this we
use three types of existing algorithms:

(1) Algorithms for solving the ordinary (single-objective) minimum cut problems,
i.e., to determine the value c∗(μ) and a corresponding minimum cut for any given
μ ∈ M , see the Introduction. Let MC = MC(|V |, |E |) denote the running time
of such an algorithm for finding a minimum cut in a hypergraph with |V | vertices
and |E | edges. Recall that MC = O(|E | · |V |+ |V |2 log |V |) ([30,42] for graphs;
[20,25,37] for hypergraphs).

(2) Algorithms for construction of the optimum cost function c∗ for μ in a convex
parameter region, see [11, Section 3.2] or [10, Section 30.4.2]. In particular, Theo-
rem 30.2 in [10] implies that if the upper envelope of the piecewise linear concave
function c∗ of d parameters has Φ facets and Ψ vertices then, it can be obtained
by evaluating c∗(μ) at O(Φ +d Ψ ) pointsμ, and then constructing the full upper
convex hull derived from the resulting hyperplanes. The latter task is dual, and
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computationally equivalent, to the well-studied question of constructing the con-
vex hull of a given set of points, e.g., [36, Section 3.4], [26, Section 7.3]. Chan’s
algorithm [4], the fastest convex hull algorithm known today, achieves this in

O
(
Φ logΦ + (Ψ Φ)1+1/(d/2�+1) logO(1) Φ

)
time. For k = 2 (hence d = 1), the

whole graph can be constructed in O (Φ T ) total time [9], where T is the time
needed for an evaluation of c∗(μ) (i.e., MC for our problem).

(3) Algorithms for producing, for a single objective, all minimum cuts and all 2-
approximate cuts. We collect and summarize a number of methods and results in
the next lemma and its proof:

Lemma 10 Let AMC1 and AMC2 denote the total time to produce all minimum cuts
and all 2-approximate cuts, respectively, in rank-ρ hypergraphs G = (V, E) with
nonnegative edge costs c and positive minimum cut value.

(i) For ρ = 2 (i.e., for graphs), AMC1 = O(|E |2|V | + |V |2|E |), and AMC2 =
O(|E | |V |4).

(ii) For ρ = 3,AMC1 = O(|V |5) and AMC2 = O(|V |6).
(iii) For ρ � 4, AMC1 = min

{
O(|V |2B(ρ)+2), Õ(|V |3|E |2)} and AMC2 =

min
{
O(|V |4B(ρ)+2), Õ(|V |5|E |2)}.

Proof (i) For the case where G is a graph, Dinitz et al. [6] present a “cactus represen-
tation” of all minimum cuts, which is a of tree of cycles on node set V such that cut X
is minimum if and only if it cuts exactly two arcs in one cycle. Nagamochi et al. [32]
use a cactus representation to show that AMC1 = O(|E |2|V | + |V |2|E |), while it
follows from [31] that AMC2 = O(|E | |V |4) (see also [18] and [35, Chapter 2] for
randomized graph cut enumeration algorithms).
(ii) If G is a rank-3 hypergraph then, as shown in the proof of Proposition 2,
the cost of a cut X is the same in graph G with edge cost function c as in the
complete graph K (V ) with edge cost function c̃ defined in the proof of that propo-
sition. Therefore one may apply the method of [32] to (K (V ), c̃) and produce in
AMC1 = O(|EK (V )|2|V | + |V |2|EK (V )|) = O(|V |5) time all minimum cuts for
(G, c), and in AMC2 = O(|EK (V )||V |4) = O(|V |6) time all 2-approximate cuts for
(G, c).
(iii) IfG is a rank-ρ hypergraph with ρ � 4, then we choose the faster of the following
two methods. First, we may apply the approximation to graph cuts in K (V ) from the
proof of Proposition 2. By (2) with α = 1 and α = 2, it suffices to produce all
αB(ρ)-approximate cuts in (K (V ), c̃), and then only retain the α-approximate cuts
for (G, c). Since ρ is fixed, it takes O(|E | + |V |2) time to compute the weights of
all clique edges (storing them in a |V | × |V | matrix). It then follows from [31] that
AMC1 = O(|E | + |V 2| + |EK (V )| |V |2B(ρ)) = O(|E | + |V |2B(ρ)+2) and AMC2 =
O(|E | + |V 2| + |EK (V )| |V |4B(ρ)) = O(|E | + |V |4B(ρ)+2).

Alternately, we may apply the Lawler-Murty (LM) general approach for ranking
solutions to combinatorial optimization problems (see, e.g., [12,22] for treatments
generalizing [29], and [13,43] or [31, Section 4.1] for its application to ranking graph
cuts). The LM method produces a sequence (X1, X2, . . . ) of cuts, where we require
(w.l.o.g.) that node 1 be in each Xi , in nondecreasing cost order, i.e., c(X1) � c(X2) �
. . . , and such that if c(X) < c(Xi ) then X must be one of X1, . . . , Xi−1. Thus X1 is
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a minimum cut; X2 is a “second best cut”, i.e., a least cost cut (with 1 ∈ X2) distinct
from X1; X3 is a “third best cut”; and so on. The LMmethod requires solving O(|V |)
modified minimum cut problems per cut Xi produced. It is based on the repeated
application of a simple idea: X2 contains at least one vertex v /∈ X1 or its complement
V \X2 contains at least one vertex v ∈ X1\{1}. Then X2 is a best cut among |V | − 1
candidate sets Y 1

v , one for each v ∈ V \{1}, where Y 1
v is a least cost cut with 1 ∈ Y 1

v

and either (a) v ∈ Y 1
v if v /∈ X1, or (b) v /∈ Y 1

v if v ∈ X1. Case (a), 1 ∈ Y 1
v and v ∈ Y 1

v ,
is easy to enforce, for example by merging vertices 1 and v; but case (b), 1 ∈ Y 1

v and
v /∈ Y 1

v , gives rise to a hypergraph s–t-cut problem, viz, to find a minimum cost cut
Y 1

v that separates terminals s = 1 and t = v. Lawler [23] (see also [44]) shows that a
minimum s–t-cut in a hypergraph can be computed by finding a minimum cut in an
auxiliary digraph with |V |+2|E | vertices and 2dG +|E | edges, where dG = ∑

e∈E |e|
is the sum of the cardinalities of all edges in hypergraph G. Since dG = O(ρ|E |),
a minimum s–t-cut in a hypergraph can be found in Õ(|E |2) time. By Theorem 1,
using the LM method to produce the O(|V |2α) α-approximate cuts for α = 1 and
2, respectively, leads to AMC1 = Õ(|V |3|E |2) and AMC2 = Õ(|V |5|E |2), running
times that are independent of ρ. ��

Combining these algorithms and our earlier results we obtain:

Theorem 11 Given a hypergraph G = (V, E), and a fixed number k of nonnegative
edge cost functions c1, . . . , ck such that c j (X) is positive for all cuts X in G:

(i) If k = 2, there exists an algorithm that constructs the optimum cost function in
Oρ,5(|V |3 log |V | MC) time, and all cuts defining SND and Pareto optimal points
in Oρ,5(|V |3 log |V | AMC1) and Oρ,5(|V |3 log |V | AMC2) time, respectively.

(ii) If k � 3, the time needed to construct the optimum cost function and all cuts
defining SND points is

Oρ,5

(

|E |k
⌊
k−1
2

⌋

|V |2
⌊
k−1
2

⌋

log
(k−1)

⌊
k−1
2

⌋
+O(1) |V |

)

(10)

Proof (i) Follows from the use of the Eisner and Severance method [9] with Φ =
Oρ,5(|V |3 log |V |) from Theorem 8, and from the fact, established in the proof of
Lemma 7, that every Pareto optimal point is defined by a 2-approximate cut for a
facet-inducing parametrized objective.

(ii) Follows fromTheorem 30.2 in [10] using d = k−1, Φ = Oρ,5(Φ̂ )where Φ̂ =
|E |k |V |2 logk−1 |V | by Theorem 4, Ψ = O(Ψ̂ ) where Ψ̂ = Φ̂

⌊
k−1
2

⌋

by McMullen’s
Upper Bound Theorem (e.g., [26, Section 7.3]; see also [40]). Indeed, using Chan’s
convex hull algorithm [4], the time needed for constructing the lower convex hull
from the Φ hyperplanes is bounded by (10). Since the time MC for each “probe”
(evaluation of c∗(μ) for a given μ ∈ M) satisfies MC = Oρ,5(Φ̂ ) when k � 3,
the lower hull construction time (10) dominates the total time for constructing the
optimum cost function. Furthermore, for each of the Φ SND points one may produce
in AMC1 time all corresponding cuts. Since AMC1 = O(Φ̂ ) when k � 3, the lower
hull construction time (10) again dominates the total computation time. ��
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Remark 12 The results in Lemma 10 and Theorem 11 are based on deterministic algo-
rithms. The design of randomized algorithms and the study of the tradeoffs between
their running time and success probability are beyond the scope of this paper and are
left to future work.

6 Conclusion

We have extended Karger’s bounds [16,17] on the number of approximate global
minimum cuts from graphs to hypergraphs. This then allowed us to derive strongly
polynomial bounds on the number of Supported (and for the case of two objectives,
Unsupported) Pareto optimal cuts w.r.t. multiple objectives (or multiple parameters) in
both hypergraphs and graphs. These bounds, when combinedwith existing algorithms,
lead to strongly polynomial algorithms for computing all such cuts.

In addition to the open problem at the end of Sect. 3 (namely, for a fixed number
k � 3 of criteria and fixed rank ρ � 2, is there a strongly polynomial bound on the
total number of optimal points?) another open problem is to find a non-trivial lower
bound on the complexity of parametric global minimum cut. It is easy to produce
classes of instances with Θ(|V |) different facets in the graph of c∗, but so far we do
not have any classes of instances with superlinear complexity. It would be interesting
to close this gap; or even for graphs and just two criteria, to reduce the gap between
the present �(|V |) and O(|V |3 log |V |) bounds.
Acknowledgments We thank Volker Kaibel and Martin Skutella for helpful conversations around the
Upper Bound Theorem, and anonymous referees for detailed and perceptive comments, particularly for
pointing out reference [21]. The work of the third author was supported by a Discovery Grant from the
Natural Sciences and Engineering Research Council (NSERC) of Canada. The work of the last author was
supported by a Discovery Grant and a Discovery Accelerator Supplement Grant from NSERC, and by
the Center for Operations Research and Econometrics (CORE) of the Université Catholique de Louvain,
Belgium.

Appendix

In this Appendix we present a proof of Theorem 1 for arbitrary α � 1. We adapt and
extend Kogan and Krauthgamer’s [21] approach and some of their notations.

We start with a simple upper bound on theminimumcut cost in a rank-ρ hypergraph.
For every i = 2, . . . , ρ let Wi = ∑{c(e) : e ∈ E and |e| = i} denote the total cost of
all size-i edges, and c(E) = ∑ρ

i=2 Wi = ∑
e∈E c(e) the total weight of all edges.

Lemma 13 ([21]) The minimum cost of a cut in a rank-ρ hypergraph G = (V, E)

with positive edge costs c, is at most 1
|V |

∑ρ
i=2 i Wi � ρ

|V | c(E).

Proof An edge e ∈ E crosses a singleton cut C = ({v}, V \{v}) (i.e., e ∈ δ({v})) if
and only if v ∈ e. Thus an edge e crosses exactly |e| singleton cuts. If we choose a
node v uniformly at random in V and consider the resulting (random) singleton cut
{v}, then
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min
X∈C

c(δ(X)) ≤ min
v∈V c(δ({v})) ≤ E [c({v})] =

∑

v∈V

1

|V |
∑

e : v∈e∈E
c(e)

= 1

|V |
∑

e∈E
|e| c(e) = 1

|V |
ρ∑

i=2

i Wi � ρ

|V |
ρ∑

i=2

Wi = ρ

|V | c(E)

and the Lemma follows. ��
Kogan andKrauthgamer use a probabilistic argumentwhich extends to hypergraphs

by an approach introduced by Karger [16,19] for graph cuts. The first step is to define
a generalization to hypergraphs of Karger’s randomized edge contraction algorithm.
Similar generalizations for finding and counting minimum hypergraph cuts were out-
lined by Chekuri and Korula [5] and by Queyranne and Guiñez [38]. The algorithm
below, adapted from [21], is similar to these, except that (as in [19]), it stops early so
as to ensure a sufficiently high probability of generating any fixed α-approximate cut.

Algorithm 1 Contract Hypergraph
Input: a rank-ρ hypergraph G = (V, E) with edge costs c, and a parameter α � 1
Output: a cut X in G
1: Let G′ = (V ′, E ′) ← G and c′ ← c
2: while |V ′| > αρ� do
3: Choose an edge e′ ∈ E ′ with probability c′(e′)/c′(E ′)
4: Contract e′ by merging all its vertices and removing self-loops
5: end while
6: Choose uniformly at random a cut X ′ in the final hypergraph G′
7: return the cut X in G induced by the cut X ′

Theorem 1 will be an easy consequence of the following result, which is adapted
from and extends (with minor changes) Theorem 3.4 in [21]. Since we allow 2α to be
noninteger, we use, as in Karger and Stein [19, proof of Corollary 8.3], generalized
binomial coefficients

(
x

y

)

= Γ (x + 1)

Γ (y + 1)Γ (x − y + 1)

where, for simplicity, we assume x > −1 and−1 < y < x+1, and where the Gamma
function is the Euler integral Γ (x) = ∫ +∞

0 t x−1e−t dt . Since Γ (t + 1) = t Γ (t) for
all t > 0, these (generalized) binomial coefficients satisfy the recurrence

(
x

y

)

= x

x − y

(
x − 1

y

)

=
(

1 + y

x − y

)(
x − 1

y

)

(11)

when x > 0 and −1 < y < x .

Theorem 14 For every real α � 1 and every integer ρ � 2 there exists a constant
K (α, ρ) > 0 such that, for every rank-ρ hypergraph G = (V, E) with |V | > αr
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vertices, nonnegative edge costs c and positive minimum cut cost, and for every par-
ticular α-approximate cut X in G, the probability thatAlgorithm 1 outputs X or V \X
is at least K (α, ρ)

(|V |−α(ρ−2)
2α

)−1
.

We prove Theorem 14 below, after first establishing another lemma. In the rest of
this Appendix we assume that α � 1 is a fixed real number, and ρ � 2 a fixed integer.

For every integer t � 2 letGt denote the set of all edge-weighted rank-ρ hypergraphs
(G, c) with t vertices, nonnegative edge costs and positive minimum cut cost. Let
G = ⋃

t�2 Gt denote the set of all such edge-weighted hypergraphs with any number
of vertices. For (G, c) ∈ Gt and cut X in G let pt (X |G, c) denote the probability that
Algorithm 1, when applied to (G, c), outputs cut X or V \X . Let

pt = inf {pt (X |G, c) : (G, c) ∈ Gt and X is an α-approximate cut in (G, c)}

Lemma 15 If t � αρ� + 1 and we have a positive lower bound p̃u � pu for every
u = t − ρ + 1, . . . , t − 1, then pt � (t − αρ)mini=2,...,ρ p̃t−i+1/(t − α(ρ − i)).

Proof Assume that, as stated, t � αρ� + 1 and 0 < p̃u � pu for every
u = t −ρ + 1, . . . , t − 1. For any (G, c) ∈ Gt let ε denote the (random) edge selected
for contraction in step 3 of Algorithm 1. Let (G, c)/e denote the node-weighted hyper-
graph resulting from the contraction of an edge e ∈ E . Thus (G, c)/e ∈ Gt−|e|+1. Let
X be any α-approximate cut in (G, c) and let A(X, (G, c)) represent the event that
Algorithm 1, when applied to (G, c), outputs cut X or V \X . Cut X will survive the
current contraction if ε /∈ δ(X), otherwise it certainly cannot be output byAlgorithm1.
Letting X/e denote the node subset X after contraction of edge e /∈ δ(X), conditioning
over the size |e| of the contracted edge, and using the assumed lower bounds, we have

Prob {A(X, (G, c))} =
∑

e∈E\δ(X)

Prob {A(X/e, (G, c))/e} Prob{ε = e}

=
ρ∑

i=2

∑

e∈E\δ(X) : |e|=i

Prob {A(X/e, (G, c))/e} Prob{ε = e}

�
ρ∑

i=2

p̃t−i+1 Prob{ε /∈ δ(X) and |ε| = i}=
ρ∑

i=2

p̃t−i+1(xi −yi ).

where xi = Prob{|ε| = i} and yi = Prob{ε ∈ δ(X) and |ε| = i}. Using the notations
in Lemma 13 above, we have xi = Wi/c(E). Let ŵ(G, c) = minX∈C c(δ(X)) denote
the minimum cost of a cut in (G, c). By Lemma 13 we have (as in [21]):

ρ∑

i=2

yi = Prob{ε ∈ δ(X)} = c(δ(X))

c(E)

� α ŵ(G, c)

c(E)
� α

t

ρ∑

i=2

i Wi

c(E)
= α

t

ρ∑

i=2

i xi (12)
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Let η = t mini=2,...,ρ p̃t−i+1/(t − α(ρ − i)), so η > 0 and for every i = 2, . . . , ρ

p̃t−i+1 � t − α(ρ − i)

t
η

Therefore,5

Prob {A(X, (G, c))} �
ρ∑

i=2

t − α(ρ − i)

t
η(xi − yi ) (13)

= t − αρ

t
η

ρ∑

i=2

(xi − yi ) + η

ρ∑

i=2

αi

t
(xi − yi )

� t − αρ

t
η

ρ∑

i=2

xi + η

ρ∑

i=2

(
αi

t
xi − yi

)

(14)

� t − αρ

t
η = (t − αρ) min

i=2,...,ρ

p̃t−i+1

t − α(ρ − i)
(15)

where in (14) we use y � 0 and, since i � r, αi � αr � t ; and in (15) we use∑r
i=2 xi = 1, (12), and then the definition of η.
Since (13)–(15) holds for every (G, c) ∈ Gt and every α-approximate cut X in

(G, c), the proof of Lemma 15 is complete. ��
Proof of Theorem 14 For u = |V | = αρ� − ρ + 2, . . . , αρ�, Algorithm 1 directly
chooses in step 6, uniformly at random, one of the 2u − 2 cuts in C, so the probability
it outputs cut X or V \X is exactly p̃u = (2u−1 − 1)−1.

For t = αρ� + 1, . . . , αρ� + ρ − 1 recursively define

p̃t = (t − αρ) min
i=2,...,ρ

p̃t−i+1/(t − α(ρ − i)).

By Lemma 15 we have pt � p̃t for all such t . Define

K (α, ρ) = min
t=αρ�+1,...,αρ�+ρ−1

p̃t

(
t − α(ρ − 2)

2α

)

and p̂t = K (α, ρ)
(t−α(ρ−2)

2α

)−1
, so pt � p̂t > 0 for all such t .

For t � αρ� + ρ, applying Lemma 15 using p̂u in lieu of p̃u we get

pt � (t − αρ) min
i=2,...,ρ

K (α, ρ)
(t−i+1−α(ρ−2)

2α

)−1

t − α(ρ − i)
(16)

5 Readers familiar with [21] may recognize in (13)–(15) below the use of linear programming duality,
arguably a simpler alternative than the analysis of basic solutions in [21]. Indeed η is the value of the dual
variable associated with constraint (12) above.
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By induction on i = 2, . . . , ρ, equation (11) implies (as in Claim 3.6 in [21]):

(t−α(ρ−2)
2α

)

(t−i+1−α(ρ−2)
2α

) =
i∏

j=2

(

1 + 2α

t − j + 2 − αρ

)

�
(

1 + 2α

t − αρ

)i−1

� 1 + (i − 1)
2α

t − αρ

� t − α(ρ − i)

t − αρ
.

Then (16) implies

pt � K (α, ρ)

(
t − α(ρ − 2)

2α

)−1

.

completing the proof of Theorem 14. ��
Proof of Theorem 1 Theorem 14 implies that the number of α-approximate cuts
in any (G, c) ∈ G, where G = (V, E) is a rank-ρ hypergraph, is at most
K (α, ρ)−1

(|V |−α(ρ−2)
2α

)
, which is O

(|V |2α)
when α � 1 is a fixed real number and

ρ � 2 is fixed. This proves Theorem 1. ��
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