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Abstract We develop an iterative optimization method for finding the maximal and
minimal spectral radius of a matrix over a compact set of nonnegative matrices. We
consider matrix sets with product structure, i.e., all rows are chosen independently
from given compact sets (row uncertainty sets). If all the uncertainty sets are finite
or polyhedral, the algorithm finds the matrix with maximal/minimal spectral radius
within a few iterations. It is proved that the algorithm avoids cycling and terminates
within finite time. The proofs are based on spectral properties of rank-one corrections
of nonnegative matrices. The practical efficiency is demonstrated in numerical exam-
ples and statistics in dimensions up to 500. Some generalizations to non-polyhedral
uncertainty sets, including Euclidean balls, are derived. Finally, we consider appli-
cations to spectral graph theory, mathematical economics, dynamical systems, and
difference equations.
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1 Introduction

We address the problems of maximization and minimization of the spectral radius
for nonnegative matrices. Such problems are notoriously hard because the spectral
radius, as a function of matrix, is neither convex nor concave. Moreover, its Lipschitz
continuity with respect to matrix coefficients is violated at matrices with multiple
leading eigenvalues, which complicates the use of gradient and Newton’s methods.
Nevertheless, for some matrix sets, the problem of optimizing the spectral radius can
be efficiently solved. In this paper, we consider sets of nonnegative matrices with the
product structure, or, in short, product families.

Definition 1 A family A of d × d matrices is called a product family if there are
compact sets Fi ⊂ R

d , i = 1, . . . , d, such that A consists of all possible matrices
with i-th row from Fi , for all i = 1, . . . , d.

The setsFi are called uncertainty sets. Thus, product families are sets of matrices with
independent row uncertainties: their rows are independently chosen from the sets Fi .
Topologically, they are indeed products of the uncertainty sets: A = F1 × · · · × Fd .
Such families have been studied in the literature due to applications in spectral graph
theory, asynchronous systems, mathematical economics, population dynamics, etc.
(see [1,4,11,16,19,24] and the references therein). In the sequel, if the converse is not
stated, all rows from the uncertainty sets are assumed to be (entrywise) nonnegative.
Thus, we consider nonnegative product families. In a recent paper [19] it was noted
that such families admit effective methods for optimizing the spectral radius. One of
them is the spectral simplex method, whose idea was suggested in the same work [19].
This method is applied when all uncertainty setsFi are finite. It consists in consecutive
increasing of the spectral radius by one-row corrections of a matrix. The main idea is
the following. We take a matrix A from a product family A and compute its Perron–
Frobenius eigenvector v. Then, for each i = 1, . . . , d, we try to maximize the scalar
product of v with rows from the uncertainty setFi . If for all i , the maxima are attained
at the rows of A, then A is the matrix with the maximal spectral radius in the familyA.
Otherwise, we replace one row of A, say, the i th one, with the row fromFi maximizing
the scalar product. We obtain a new matrix, repeat the same procedure, and so on.

The advantage of this method is that it is applicable for both maximizing and
minimizing the spectral radius.However, a significant shortcoming is that it works only
for strictly positive matrices. If some row fromFi have a zero entry, then the algorithm
may cycle. Even if it does not cycle, the terminal matrix may not provide a solution.
A natural idea is to make all matrices positive by slight perturbations of coefficients
and then apply the algorithm to the perturbed matrices. However, in practice, this
leads to numerical errors in computing the optimal spectral radius which are difficult
to control. The reason is that in high dimensions, even a very small perturbation of
coefficients may significantly change the spectral radius (see, for instance [23], for the
corresponding analysis).

The aim of this paper is to extend the spectral simplex method for general non-
negative matrices and to study its properties. This is done in Sects. 3 and 4. To this
end, we have to elaborate a new routine for the algorithm, separately for the prob-
lems of maximizing and of minimizing the spectral radius. In case of strictly positive
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matrices, both algorithms coincide with that described in [19]. Moreover, this exten-
sion allows us to apply the spectral simplex method for the case when the uncertainty
sets Fi are not finite, but polyhedral, defined by systems of linear inequalities. Some
problems studied in the literature can be reduced to optimizing the spectral radius for
product families with polyhedral uncertainty sets, see [16] (the projection matrices in
population dynamics) and [6] (matrices with fixed graph and row sums).

The practical efficiency of the algorithm is demonstrated in Sect. 5, in numerical
exampleswith randomly generatedmatrices of dimensions from5 to 500. For instance,
in case when the dimension d = 50 and each uncertainty set consists of two rows,
the family A has the structure of the 50-dimensional Boolean cube. The number of
vertices 250 of this cube makes the exhaustion of all matrices fromA impossible. The
spectral simplex method makes 29 iterations and finds the matrix with the maximal
spectral radius within t = 0.6s. of computer time (in a standard laptop). In dimension
d = 100 when each uncertainty set consists of 50 rows, it makes 197 iterations and
solves the problem within 25s.

In Sect. 2, we prove necessary theoretical results on one-row corrections of non-
negative matrices, which are, probably, of some independent interest. Sections 3 and 4
present the spectral simplex methods for maximizing and for minimizing the spectral
radius respectively, prove their non-cyclicity and finite convergence (Theorems 1–3).
The cases of finite and of polyhedral uncertainty sets are considered. Section 5 shows
the statistics of numerical results. In Sect. 6, wemake further extension to general con-
vex uncertainty sets, possibly non-polyhedral. In particular, if all of them are Euclidean
balls, then the maximal spectral radius can be efficiently found (Theorem 5). Finally,
in Sect. 7, we consider applications to several different areas: optimizing the spectral
radius of a graph, constructing a productive economy in the Leontief model, stability
of positive linear switching systems, and finite difference equations with nonnegative
coefficients.

Throughout this paper we use the following notation. For a matrix A, we denote
by ai its i th row. For two vector x, y ∈ R

d , we write x ≥ y (x > y) if the vector
x − y is nonnegative (respectively, strictly positive). The support of a nonnegative
vector is the set of indices of its positive entries: supp x = {i | xi > 0}. We denote by
int(·), co(·), and span(·) the interior, the convex hull, and the linear span respectively,
by |M | the cardinality of a finite set M , by (·, ·) the standard scalar product in Rd , by
‖ ·‖ the Euclidean norm, by I the d×d identity matrix. We write x ⊥ y if (x, y) = 0;
for a subset V ⊂ R

d let V⊥ = { y ∈ R
d | ∀ x ∈ V (x, y) = 0 } be its orthogonal

complement. We use the abbreviation LP for linear programming.

2 The spectral simplex method. Statement of the problem

2.1 Definitions and notation

The spectral radius ρ(A) of a matrix A is the maximal modulus of its eigenvalues. By
the Perron–Frobenius theorem, if A ≥ 0, i.e., A is (entrywise) nonnegative, then there
is a nonnegative eigenvector v such that Av = λv with λ = ρ(A). This eigenvector
is called leading, as well as the eigenvalue λ. The leading eigenvector is simple if it
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is a unique (up to multiplication by a positive constant) eigenvector corresponding
to λ. Thus, the leading eigenvector is simple if and only if the leading eigenvalue has
geometrical multiplicity one, i.e., rank(A − λI ) = d − 1

Let F1, . . . ,Fd be some sets of nonnegative d-dimensional row vectors. Each Fi

is assumed to be either finite or polyhedral. The latter means that

Fi =
{
x ∈ R

d
∣∣∣ x ≥ 0, (c i, j , x) ≤ γi, j , j = 1, . . . ,mi

}
, (1)

where ci, j ∈ R
d are given vectors and γi, j are numbers. For the sake of simplicity, we

assume all these polyhedra to be bounded. For the product familyA = F1×· · ·×Fd ,
we consider the problem of maximizing the spectral radius:

{
ρ(A) → max
A ∈ A,

(2)

and the problem of minimizing the spectral radius:

{
ρ(A) → min
A ∈ A.

(3)

In general, these two problems are totally different. Indeed, ρ(A) is the maximum
of modules of eigenvalues of A, and the problems of maximizing maximum and of
minimizing maximum are not equivalent. Nevertheless, as we see in Sects. 3 and 4,
the spectral simplex method allows us to solve these problems in a similar, although
not the same, way.

2.2 The theoretical base of the spectral simplex method

The following simple assertion can be found, for instance, in [2]. It establishes lower
and upper bounds for the spectral radius by means of an arbitrary nonnegative vector.

Lemma 1 Let a matrix A and a nonzero vector x be nonnegative,μ ≥ 0 be a number.
If Ax ≥ μx, then ρ(A) ≥ μ. If x > 0 and Ax ≤ μx, then ρ(A) ≤ μ.

Proof Iterating the inequality Ax ≥ μx, we get Akx ≥ μkx, and therefore
‖Ak‖ ‖x‖ ≥ μk‖x‖. Thus, ‖Ak‖ ≥ μk . Taking the power 1/k and the limit as
k → ∞, we conclude ρ(A) ≥ μ. If x > 0, then there is a constant c = c(x) such that
‖B‖ ≤ c‖Bx‖ for every nonnegative matrix B. Hence, ‖Ak‖ ≤ c‖Akx‖ ≤ cμk‖x‖.
Taking the power 1/k and the limit as k → ∞, we obtain ρ(A) ≤ μ. ��

We are going to apply Lemma 1 to a leading eigenvector of a matrix as follows: if
A ≥ 0 is a matrix with a leading eigenvector v and if, for some matrix B, we have
Bv ≥ Av, then ρ(B) ≥ ρ(A). Indeed, if we write λ = ρ(A), then Bv ≥ Av = λv.
Applying Lemma 1 to the matrix B and to the vector x = v, we conclude that
ρ(B) ≥ λ.
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Now we need to introduce one notation. LetA be a nonnegative product family. A
matrix A ∈ A is said to be minimal in each row if it has a leading eigenvector v ≥ 0
such that (ai , v) = minbi∈Fi (bi , v) for all i = 1, . . . , d. It is maximal in each row if
it has a leading eigenvector v > 0 such that (ai , v) = maxbi∈Fi (bi , v), i = 1, . . . , d.

Note that the minimality in each row is defined with respect to an arbitrary leading
eigenvector v ≥ 0, while the maximality needs a strictly positive v.

Proposition 1 Let A be a nonnegative product family. If a matrix Ā ∈ A is maximal
(minimal) in each row, then it has the maximal (respectively, minimal) spectral radius
among all matrices from A.

Proof Let Ā ∈ A be maximal in each row and v̄ > 0 be the corresponding leading
eigenvector of Ā. Denote λ = ρ( Ā). For every A ∈ A, we have Av̄ ≤ Āv̄ = λv̄,
hence, by Lemma 1, ρ(A) ≤ λ. For a matrix minimal in each row, the proof is the
same. ��

Thus, to maximize the spectral radius in a product family A one needs to find a
matrix Ā ∈ A maximal in each row. Such a matrix can be constructed step-by-step,
by successive changes of rows, according to the following lemma.

Lemma 2 Let A ≥ 0 be a matrix and v be its leading eigenvector. Let a matrix B ≥ 0
be obtained from A by replacing the j th row a j with a row b j . Then we have

(a) if (b j , v) > (a j , v), thenρ(B) ≥ ρ(A). If, in addition, B > 0, thenρ(B) > ρ(A);
(b) if (b j , v) < (a j , v), thenρ(B) ≤ ρ(A). If, in addition, B > 0, thenρ(B) < ρ(A);

Proof We denote λ = ρ(A), s = (b j , v) − (a j , v), and u = Bv. Observe that
u = Av + se j = λv + se j , where e j is the j th canonical basis vector. Therefore,

B u = B
(
λv + se j

) = λu + s Be j . (4)

a) Since Av = λv, we have Bv ≥ λv, and, by Lemma 1, ρ(B) ≥ λ. If B > 0,
then (4) implies Bu > λu, because Be j > 0 and s > 0. Hence Bu > λ′u for some
λ′ > λ. By Lemma 1, ρ(B) ≥ λ′ > λ.

b) The main difficulty for this case is that the inequality Bv ≤ λv does not in
general imply ρ(B) ≤ λ. It does if the vector v is strictly positive (Lemma 1), which,
however, may not be true. That is why we consider the restriction of the vector v
to a special subspace where it is positive. Denote by I the support of v, by VI =
{(x1, . . . , xd) ∈ R

d | ∀i /∈ I xi = 0} the corresponding coordinate subspace, by
ṽ the vector v restricted to I, by Ã the I × I submatrix of A (i.e, the matrix A
restricted to VI ), by ãi the i th row of Ã, and by b̃i the row bi ∈ Fi restricted
to I.

Clearly, ρ( Ã) ≤ ρ(A). On the other hand, Ãṽ = λṽ, hence ρ( Ã) ≥ λ = ρ(A),
and therefore, ρ( Ã) = ρ(A). If j /∈ I, then (a j , v) = 0, which is incompatible with
(b j , v) < (a j , v). Consequently, j ∈ I, and hence the matrix B̃ is obtained from Ã by
replacing the row ã j with b̃ j so that (b̃ j , ṽ) < (ã j , ṽ). Since ṽ > 0, we can now apply
Lemma 1 and obtain ρ(B̃) ≤ ρ( Ã). Thus, on the subspace VI , the spectral radius of
B is smaller than or equal to the spectral radius of A. All other eigenvalues of B are
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equal to the corresponding eigenvalues of A. Hence, ρ(B) ≤ ρ(A). If B > 0, then (4)
implies Bu < λu, because Be j > 0 and s > 0. Hence u > 0 and Bu < λ′u for some
λ′ < λ. By Lemma 1, ρ(B) ≤ λ′ < λ. ��

2.3 The idea of the spectral simplex method

Starting with some matrix A1 ∈ A we build a sequences of matrices A1, A2, . . . by
the following rule: Ak+1 is obtained from Ak by changing one of its lines a

(k)
i so that

(a(k+1)
i , vk) > (a(k)

i , vk), where vk is a leading eigenvector of Ak . By Lemma 2, the
spectral radius is non-decreasing in this sequence. The process terminates, when none
of rows can be replaced, i.e., when the final matrix AN is maximal in each row. By
Proposition 1, thematrix AN has themaximal spectral radius in the familyA, provided
vN > 0.

In each step, the new row a(k+1)
i is chosen from Fi to maximize the scalar product

(a(k+1)
i , vk). If Fi is finite, then the point of maximum a(k+1)

i ∈ Fi can be found by

exhaustion. If Fi is a polyhedron, then we find a(k+1)
i among its vertices solving an

LP problem by the (usual) simplex method. Thus, the spectral simplex method acts
as a greedy algorithm at each iteration. Now we describe the formal procedure of the
algorithm.

2.4 The algorithm

Initialization. Taking arbitrary ai ∈ Fi , i = 1, . . . , d, we form a matrix A1 ∈ A with
rows a1, . . . , ad . Take its leading eigenvector v1.

Main loop. The kth iteration. We have a matrix Ak ∈ A composed with rows a(k)
i ∈

Fi , i = 1, . . . , d. Compute its leading eigenvector vk (if it is not unique, take any of
them) and for i = 1, . . . d, find a solution b̄i ∈ Fi of the following problem:

{
(bi , vk) → max
bi ∈ Fi

(5)

If Fi is finite, then this problem can be solved by exhaustion; if Fi is polyhedral, then
it is solved as an LP problem, and b̄i is found among its vertices.

If (b̄i , vk) = (a(k)
i , vk) and i ≤ d − 1, then we set i = i + 1 and solve problem (5)

for the next row. If i = d, then the algorithm terminates. In case vk > 0, the matrix
Ak is maximal in each row, and by Proposition 1, Ak = maxA∈A ρ(A), i.e., Ak is
a solution. If (b̄i , vk) > (a(k)

i , vk), then we set a(k+1)
i = b̄i , a

(k+1)
j = a(k)

j for all
j �= i and form the corresponding matrix Ak+1. Thus, Ak+1 is obtained from Ak by
replacing its i th row by b̄i . Then we start (k + 1)st iteration.

End.
The spectral simplex method for minimization problem (3) is the same, replacing

maximum by minimum in the problem (5) and omitting the positivity assumption
vk−1 > 0 in the termination of the algorithm.
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2.5 The case of strictly positive matrices

Let A be a product family with uncertainty sets Fi ⊂ R
d+ that are either finite or

polyhedral (1). Consider the problem of maximizing the spectral radius. Lemma 2
ensures that in the spectral simplexmethod, the spectral radiusρ(Ak) does not decrease
in k. However, it may not grow for several iterations, in which case the algorithm may
cycle (Example 1 below). Besides, if the algorithm terminates after some N th iteration,
and the final leading eigenvector vN is not strictly positive, then the final matrix AN

may not have the maximal spectral radius in the family A, i.e., it does not give a
solution (Example 2). Nevertheless, if all the sets Fi consist of strictly positive rows,
then none of these problems occur. In this case, Lemma 2 yields that the spectral radius
grows with iterations, and by the Perron–Frobenius theorem, each matrix A ∈ A has a
simple leading eigenvector (so, there is no uncertainty in choosing vk at each iteration),
which is, moreover, strictly positive.

Proposition 2 If all uncertainty sets Fi are strictly positive, then the spectral radius
ρ(Ak) strictly increases with iterations k of the spectral simplex method. In particular,
the algorithm does not cycle and terminates within finite time. The same is true for the
minimization problem (3), in which case ρ(Ak) strictly decreases in k.

Thus, if all rows in the sets Fi are strictly positive, then the spectral simplex method
always finds a solution within finite time, for both maximization and minimization
problems. The main issue of this paper is to adopt the method to general nonnegative
rows, in particular, to sparse matrices. There are several difficult points on this way,
we emphasize them in the next subsection.

2.6 Problems in case of sparse matrices

If some rows contain zeros, then the spectral simplex method may cycle as the fol-
lowing example demonstrates.

Example 1 We consider the familyA of 3×3 matrices with the following uncertainty
sets

F1 =
{(

1

2
, 1,

1

2

)
,

(
1

2
,
1

2
, 1

)}
, F2 =

{(
0, 1, 0

)}
, F2 =

{(
0, 0, 1

)}
.

Thus, A consists of two matrices:

A1 =
⎛
⎝

1
2 1 1

2
0 1 0
0 0 1

⎞
⎠ ; A2 =

⎛
⎝

1
2

1
2 1

0 1 0
0 0 1

⎞
⎠ (6)

Denote by a(1)
1 and a(2)

1 the elements ofF1, i.e., the first rows of A1 and A2 respectively.
We start the spectral simplexmethodwith thematrix A1 and take its leading eigenvector
v1 = (1, 0, 1)T . Since

(
a(1)
1 , v1

) = 1 and
(
a(2)
1 , v1

) = 3/2, we change the first row
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from a(1)
1 to a(2)

1 passing to the matrix A2. Then we take the leading eigenvector

v2 = (1, 1, 0)T of A2. Since
(
a(2)
1 , v2

) = 1 and
(
a(1)
1 , v2

) = 3/2, we pass back to the
matrix A1 with the leading eigenvector v1. Thus, the algorithm cycles with the period
(A1A2).

The second trouble is that, without the positivity assumption, the leading eigenvec-
tor vk may not be unique, in which case the matrix Ak has a subspace (of dimension
≥2) of leading eigenvectors. This not only makes the computation of vk more difficult
and less stable numerically, but also makes the whole algorithm unstable. Indeed, a
small perturbation of the matrix Ak may cause a significant change of the eigenvec-
tor vk at kth iteration, which, in turn, changes the choice of a row a(k+1)

i and influences
all further iterations. For example, if A1 is the identity matrix of size 2, then we can
choose v1 = (1, 0)T . However, if one adds a small ε > 0 to the entry (A1)21, then we
always have v1 = (0, 1)T .

Finally, if the algorithm terminates with a matrix AN , whose leading eigenvector
have some zero entries, then AN does not necessarily provide a solution as shown
below:

Example 2 Consider the family A of 2 × 2 matrices with the following uncertainty
sets

F1 = {(
1, 0

)
,
(
3, 0

)}
, F2 =

{(
0, 2

)}
.

Thus, A consists of two matrices:

A1 =
(
1 0
0 2

)
; A2 =

(
3 0
0 2

)
(7)

The spectral simplex method (for maximization problem) starting with the matrix A1
terminates immediately with the samematrix, because A1 is maximal in each rowwith
respect to its simple leading eigenvector v1 = (0, 1)T . However, ρ(A1) < ρ(A2), and
hence, A1 is not a solution. The reason is that the leading eigenvector v1 is not positive.

The question arises whether it is possible to modify the spectral simplex method
for general nonnegative matrices in order to satisfy three requirements:

(1) to avoid cycling, i.e., to guarantee the termination within finite time;
(2) to have a simple leading eigenvector at each iteration;
(3) to have a strictly positive leading eigenvector at the last iteration.

We treat the spectral simplex method separately for maximization problem (2)
and for minimization problem (3). In each case, we consider two ways to define the
uncertainty sets Fi : as finite sets and as polyhedra given by linear inequalities (1).
Thus, we have four cases. In Sects. 3 and 4, we show that in all these cases the answer
is affirmative: the spectral simplex method can be modified to fulfill all the conditions
above.
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3 Maximizing the spectral radius

In this section, we elaborate the spectral simplex method that solves maximization
problem (2) and satisfies requirements (1)–(3) for all nonnegative matrices: it does
not cycle, gives a solution within finite time, and ensures simple leading eigenvectors
at all iterations. To this end, it suffices to pass to an irreducible family (the definition
is given below) and chose a staring matrix in a special way. The theoretical base is
provided by Propositions 3 and 4 on one-row changes of nonnegative matrices, which
are, probably, of some independent interest.

3.1 Two auxiliary facts

The following proposition ensures that if an iteration of the spectral simplex method
does not change the spectral radius, then it keeps the simplicity of the leading eigen-
vector.

Proposition 3 Let a matrix A ≥ 0 have a simple leading eigenvector v, a matrix
B ≥ 0 be obtained from A by replacing its j th row a j by b j . If (b j , v) �= (a j , v) and
ρ(B) = ρ(A), then B also has a simple leading eigenvector.

Proof Let λ = ρ(A) and āi , b̄i denote the i th rows of matrices Ā = λI − A and B̄ =
λI − B respectively. Since v is a simple eigenvector of A, we have rank( Ā) = d − 1,
i.e., the rows {āi }di=1 span a (d − 1)-dimensional subspace of Rd . Since Āv = 0, this
subspace coincides with v⊥. Hence, the dimension of linear span of the d − 1 rows
{āi }i �= j is at least d−2. By the assumption, (b̄ j , v) = (b j −λe j , v) = (b j , v)−λv j �=
(a j , v) − λv j = 0. Thus, (b̄ j , v) �= 0, and therefore b̄ j /∈ v⊥. We see that the vector
b̄ j cannot be spanned by the system {āi }i �= j , which lies within the subspace v⊥.
Consequently,

dim
(
span({āi }i �= j ∪ {b̄ j })

) = dim
(
span({āi }i �= j )

) + 1 ≥ d − 1.

Thus, rank(B̄) ≥ d − 1 and so rank(λI − B) ≥ d − 1. On the other hand, λ is the
leading eigenvalue for B, hence its geometricmultiplicity is one, and the corresponding
leading eigenvector is simple. ��
Remark 1 Thus, if we replace one line of a nonnegativematrix not changing its leading
eigenvalue but changing the scalar product with the leading eigenvector, then the
leading eigenvector remains simple. This, however, does not hold for the simplicity
of the leading eigenvalue: replacing one line under all these assumptions may make
the leading eigenvalue multiple.

The next proposition shows that if an iteration of the spectral simplex method
increases the spectral radius, then itmakes the leading eigenvector simple.We establish
a more general statement, for rank-one corrections of matrices. A matrix B is called
a rank-one correction of a matrix A if rank(B − A) ≤ 1. We use the same term for
the process of correction (i.e., for adding of a rank-one matrix to the matrix A) and
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for the result of this process (the matrix B). Clearly, replacing one line of a matrix is
a rank-one correction.

Proposition 4 Let a matrix B ≥ 0 be a rank-one correction of a matrix A ≥ 0 and
ρ(B) > ρ(A); then B has a simple leading eigenvalue.

The proof is in “Appendix”.

3.2 Fundamental theorem

Theorem 1 For the spectral simplex method for maximization problem (2), the fol-
lowing hold: if the initial matrix A1 has a simple leading eigenvector, then so have all
subsequent matrices Ak at all iterations k ≥ 1, and the algorithm does not cycle.

Proof is by induction in the number of iteration k. If thematrix Ak at kth iteration has
a simple leading eigenvector vk , then, in case ρ(Ak+1) = ρ(Ak), Proposition 3 implies
that Ak+1 also has a simple leading eigenvector. Indeed, Ak+1 is obtained from Ak by
replacing some row a(k)

j of Ak with a row b j ∈ F j such that (b j , vk) > (a(k)
j , vk).

Thus, the matrices A = Ak and B = Ak+1 satisfy the assumptions of Proposition 3. In
case ρ(Ak+1) > ρ(Ak) we apply Proposition 4, since Ak+1 is a rank-one correction
of Ak . So, the leading eigenvalue of Ak+1, and hence its leading eigenvector, is simple.
Thus, the matrices at all iterations have simple leading eigenvectors.

Let e ∈ R
d be a row of ones and E be a d × d matrix of ones. For a given

ε > 0, consider an ε-perturbed problem ρ(Aε) → max, Aε ∈ Aε for which the
uncertainty sets are Fi,ε = {

bi + εe
∣∣ bi ∈ Fi

}
, i = 1, . . . , d. If {Ak}k∈N is a

sequence of matrices obtained in the spectral simplexmethod, then for the correspond-
ing ε-perturbed matrices Ak,ε = Ak + εE , we have: if Ak+1 is obtained from Ak by
replacing its j th row a(k)

j with a row a(k+1)
j ∈ F j such that (a

(k+1)
j , vk) > (a(k)

j , vk),

then
(
a(k+1)
j + ε e, vk,ε

)
>

(
a(k)
j + ε e , vk,ε

)
, whenever ε > 0 is small enough.

Indeed, if an eigenvalue has the geometrical multiplicity one, then the corresponding
eigenvector is a continuous (and even smooth) function of matrix coefficients (see, for
instance, [17]). Hence the simple leading eigenvector vk of Ak continuously depends
on entries of Ak , i.e., vk,ε → vk as ε → 0. Since the perturbed matrices Ak,ε are
strictly positive, from item a) of Lemma 2 it follows that ρ(Ak+1,ε) > ρ(Ak,ε) for
all k. Thus, the spectral radii of the perturbed matrices Ak,ε strictly increase in k. On
the other hand, if the algorithm cycles, then Ak = Ak+m for some k,m, and hence
ρ(Ak,ε) = ρ(Ak+m,ε) which is a contradiction. ��

3.3 Irreducibility condition

Theorem 1 guarantees that the matrices at all iterations have simple leading eigenvec-
tors, provided so does the initial matrix A1. Hence, there is no uncertainty in choosing
eigenvectors vk of matrices Ak in each step, and the spectral simplex method does not
cycle. Moreover, the uniqueness of the leading eigenvector implies that its computa-
tion is numerically stable with respect to small perturbations of matrices. It remains
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only to find an initial matrix A1 with a simple leading eigenvector. This can be done
using irreducibility of the starting matrix.

Definition 2 A nonnegative d × d matrix is reducible if it has a nontrivial invariant
coordinate subspace, i.e., a subspace spanned by some vectors ei of the canonical
basis. Otherwise, the matrix is called irreducible.

Reducibility of a matrix A ≥ 0 means that there is a proper nonempty subset � ⊂
{1, . . . , d} such that for each i ∈ � the support of the i th column (i.e., the set of
indexes of its strictly positive components) of A is contained in �. The following fact
of the Perron–Frobenius theory is well-known (see, for instance, [10, chapter8]).

Lemma 3 An irreducible matrix has a simple leading eigenvalue.

Thus, to apply the spectral simplex method to arbitrary nonnegative uncertainty sets it
suffices to choose the starting matrix A1 irreducible. This is possible precisely when
the family A is irreducible.

Definition 3 A family A of nonnegative d × d matrices is reducible if all matrices
of A have a common nontrivial invariant coordinate subspace. If A is not reducible,
it is called irreducible.

There are several equivalent definitions of irreducibility. Consider the graph G of the
family A. This graph has d vertices; there is an edge from a vertex i to a vertex j
if there is a matrix A ∈ A such that (A) j i > 0. A family A is irreducible if and
only if its graph G is strongly connected, i.e., for every pair of vertices i, j there
is a path from i to j . If the set A is finite, then its reducibility is equivalent to the
reducibility of one matrix

∑
A∈A A. On the other hand, reducibility is equivalent to

the existence of a suitable permutation of the basis of Rd , after which all matrices
from A have a block upper-triangular form with r ≥ 2 diagonal blocks A( j) of fixed
sizes d( j), j = 1, . . . , r :

A =

⎛
⎜⎜⎜⎜⎝

A(1) ∗ . . . ∗
0 A(2) ∗ ...
...

. . . ∗
0 . . . 0 A(r)

⎞
⎟⎟⎟⎟⎠

, (8)

where for each j = 1, . . . , r , the family A( j) in the j th diagonal block is irre-
ducible [10]. Clearly, ifA is a product family, then eachA( j) is also a product family
with uncertainty sets of rowsof lengthd( j). Sinceρ(A) = max{ρ(A(1)), . . . , ρ(A(r))},
we see that the problem of maximizing of the spectral radius for a reducible product
family is equivalent to r similar problems for irreducible families of smaller dimen-
sions. This enables us to make the following assumption.

The irreducibility assumption. For the maximization problem (2) the family A is
assumed to be irreducible.

This assumption is made without loss of generality, since the general case is always
reduced to it. The irreducible block families A( j) from (8) can be found by a simple
combinatorial algorithm (see, for instance, [9]).
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Lemma 4 Assume amatrix A is from an irreducible product familyA, and v is a lead-
ing eigenvector of A. If for each j = 1, . . . , d, we have (a j , v) = maxb j∈F j (b j , v),
then v is strictly positive.

Proof Let I be the support of the vector v. For every j /∈ I, we have (a j , v) = λv j =
0, and hence (b j , v) = 0 for all b j ∈ F j , because (b j , v) ≤ (a j , v) = 0. Thus,
for each matrix B ∈ A we have (Bv) j = 0, whenever j /∈ I, which contradicts the
irreducibility of A. Consequently, the support I is full, and so v > 0. ��

Thus, without loss of generality we can impose the irreducibility assumption on the
product family A. By Lemma 4, this assumption guarantees that the final matrix AN

of the spectral simplex method has a positive leading eigenvector, i.e., Condition (3)
formulated at the end of Sect. 2 is satisfied. Conditions (1) (non-cycling) and (2)
(simple leading eigenvectors at each iteration) are also satisfied, provided the starting
matrix A1 has a simple leading eigenvector. The latter is important as the following
example demonstrates.

Example 3 Consider the uncertainty sets Fi , i = 1, 2, 3, from Example 1 and add
the row of ones e = (1, 1, 1) to the sets F2 and F3. All the uncertainty sets became
two-element, and so,A consists of 8 matrices. Moreover, the family A is irreducible,
since it contains a positive matrix. However, the spectral simplex method started with
the matrix A1 (formula 6) cycles as in Example 1, and the additional rows do not
help. Theorem 1 is inapplicable, because the starting matrix has non-unique leading
eigenvector.

This example shows that the irreducibility alone does not guarantee the proper work
of the spectral simplex method, and the initialization with an irreducible matrix A1 is
needed.

3.4 The algorithm. Initialization of the spectral simplex method

If the uncertainty sets Fi are finite, then we define the matrix A1 as follows:

ai = 1

|Fi |
∑
bi∈Fi

bi , i = 1, . . . , d.

Thus, the i th row of A1 is the arithmetic mean of all elements of Fi . If the family A
is irreducible, then so is the matrix A1. Hence, A1 has a simple leading eigenvector
(Lemma 3), and therefore the spectral simplex method does not cycle (Theorem 1).

So, to find the vertex of the matrix polytope P = co(A) with the maximal spectral
radius, we need to start from an interior point A1 ∈ int(P)which is, actually, the center
of mass of vertices of P . It may happen that the terminal matrix AN (with the biggest
spectral radius) does not belong toA, i.e., still has some rows from A1, which are not
elements of the sets Fi but their convex combinations. The answer (the maximum of
the spectral radius) is the same forA and for P . However, the point of maximum, the
matrix AN , may not be a matrix fromA but a convex combination of several matrices
from A. If we want to find a solution from the set A, then we replace every row a(N )

i
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of AN which is not fromFi by a row ai ∈ Fi with the largest scalar product
(
ai , vN

)
.

Since a(N )
i ∈ co(Fi ), it follows that

(
ai , vN

) ≥ (
a(N )
i , vN

)
, and hence the newmatrix

(denote it by A′
N ) satisfies A

′
NvN ≥ ANvN = λNvN . Invoking Lemma 1, we obtain

ρ(A′
N ) ≥ λN . On the other hand, λN is the largest spectral radius of matrices from P .

Therefore ρ(A′
N ) = λN , and A′

N ∈ A is the matrix of maximal spectral radius.
If the uncertainty sets Fi are polyhedra defined by linear inequalities (1), then we

construct A1 as follows. For fixed i and for every j = 1, . . . , d, solve the LP problem:
x j → max, x ∈ Fi , where x = (x1, . . . , xd). Clearly, x j ≥ 0. Let x(i j) be a vertex of
the polyhedron Fi that gives a solution. Then the i th row of A1 is the arithmetic mean
1
d

∑
x(i j). Doing this for all i = 1, . . . , d we define A1. IfA is irreducible, then so is

the matrix A1 (Lemma 3), and we can apply Theorem 1.

Remark 2 We see that in case of polyhedral uncertainty sets, an irreducible starting
matrix A1 is constructed by solving at most d2 LP problems in dimension d. In
practice, it can be obtained much faster. Let us briefly describe the algorithm. Take
some i ∈ {1, . . . , d}, set ki = 0, ai = 0 ∈ R

d and for j = 1, 2 . . ., do the following.
Solve the LP problem x j → max, x ∈ Fi and set ni := ni + 1, ai := ai + x(i j),
j := min{s > j s /∈ supp (ai )}. If j ≤ d, then we return to the LP problem.
Otherwise, we set the i th row of A1 to be 1

ni
ai . Thus, after each iteration, we add the

vector x(i j) to ai , find zero entry of a j with minimal index bigger than j and set this
index to be next j , and so on, until j > d, after which the i th row of A1 is found.
Doing this for all i we construct the matrix A1.

Note that if the algorithm does not cycle, then it terminates within finite time,
because it runs over a finite number of states (vertices of polyhedra Fi ). Combining
Theorem 1 and Lemma 4 we obtain

Theorem 2 If a product family A is irreducible and the spectral simplex method for
maximization problem (2) starts with an irreducible matrix A1, then it terminates at
a matrix with the maximal spectral radius in a finite number of iterations.

Thus, the spectral simplex method for the maximization problem consists of two
steps: 1) the initialization described above; 2) the formal procedure described in
Sect. 2.4. By Theorem 2, the algorithm terminates within finite time and the final
matrix provides a solution.

4 Minimizing the spectral radius

4.1 Statement of the problem

Aswementioned inSect. 2, the problems ofmaximizing and ofminimizing the spectral
radius are totally different. In particular, the spectral simplex method presented in the
previous section for maximization problem is not applicable to minimization one. In
this case, as the following example demonstrates, neither irreducibility of the familyA
nor strict positivity of the initial matrix A1 guarantees non-cycling.
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Example 4 We consider the familyA of 3×3 matrices with the following uncertainty
sets:

F1 =
{(1

2
, 1,

1

2

)
,
(1
2
,
1

2
, 1

)}
, F2 =

{(
0, 1, 0

)
,
(
1, 1, 1

)}
,

F2 =
{(
0, 0, 1

)
,
(
1, 1, 1

)}
.

The spectral simplexmethod forminimizing the spectral radius produces the following
chain of matrices:

⎛
⎝

1
2 1 1

2
1 1 1
1 1 1

⎞
⎠ →

⎛
⎝

1
2 1 1

2
0 1 0
1 1 1

⎞
⎠ →

⎛
⎝

1
2 1 1

2
0 1 0
0 0 1

⎞
⎠ �

⎛
⎝

1
2

1
2 1

0 1 0
0 0 1

⎞
⎠

This chain has a cycle (A3A4). The matrices A1 and A2 have simple leading eigen-
vectors, the other have multiple ones. For the matrix A3, we take v3 = (2, 1, 0)T , and
for A4, we take v4 = (2, 0, 1)T .

Thus, for minimizing the spectral radius, the spectral simplex method has to be
modified in a different way.

4.2 Auxiliary facts and observations

A leading eigenvector of a matrix A is calledminimal if it has the smallest by inclusion
support, i.e., there is no leading eigenvector with a strictly smaller support. Since the
set of all possible supports is finite, a minimal leading eigenvector always exists but
may not be unique. For a nonempty subset I ⊂ {1, . . . , d}, we write VI for the linear
span of the basis vectors ei i ∈ I. For example, if I = supp x, then x ∈ VI .

Let v be an arbitrary minimal leading eigenvector of A. Denote by I its support,
|I| = n ≤ d, and by Ã the corresponding n × n submatrix of A. The matrix Ã is
formed by elements of A on the intersections of columns and rows with indices from
the sect I. By ṽ we denote the restriction of the eigenvector v to the matrix Ã; the
restrictions of rows and columns of A to the matrix Ã are also marked with tilde. We
begin with two simple observations:

Observation 1 The vector ṽ is a simple leading eigenvector for Ã.

Otherwise, if there is an eigenvector ũ corresponding to the leading eigenvalue and
not co-linear to ṽ, then the vector ṽ− (

mini∈I, ũi>0
vi
ui

)
ũ, being a leading eigenvector

of Ã, has a smaller support. This contradicts to the minimality of v.

Observation 2 If A is a matrix at some iteration of the spectral simplex method for
minimization problem (3), and v is chosen as the leading eigenvector, then the next
iteration involves only rows from I = supp v, and the next matrix also has invariant
subspace VI .

Indeed, for every j /∈ I we have (a j , v) = 0, and the inequality (b j , v) < (a j , v)

is impossible.
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4.3 Description of the spectral simplex method for minimization problem

We start with an arbitrary initial matrix A1. Take an arbitrary minimal leading eigen-
vector v1 of A1 and denote by I its support. By Observation 1, ṽ is a simple leading
eigenvector of Ã1. Starting the spectral simplex method (described in Section 2) with
the vector v1, we involve only rows from I (Observation 2), and the next matrix A2
also has invariant subspace VI . If ρ( Ã2) = ρ( Ã1), then by Proposition 3, the matrix
Ã2 has a simple leading eigenvector ṽ2, which is extended by zeros to an eigenvec-
tor v2 of A2. We have ρ( Ã1) ≤ ρ(A2) ≤ ρ(A1) = ρ( Ã1) = ρ( Ã2). Therefore
ρ( Ã2) = ρ(A2), and hence v2 is a leading eigenvector of A2. The support of v2 is
contained in I, but does not necessarily coincide with it. In particular, v2 is not neces-
sarily minimal. Nevertheless, restricting A2 and v2 to the subspace VI we continue the
algorithm for the matrix Ã2 and for its leading eigenvector ṽ2. By the next iteration,
we arrive at a matrix A3 and show in the same way that if ρ( Ã3) = ρ( Ã2), then Ã3
has a simple leading eigenvector ṽ3, etc. Thus, until the algorithm reduces the value
of the spectral radius, we always have simple leading eigenvectors and work, in fact,
in the coordinate subspace VI . When the algorithm reduces the spectral radius of a
matrix Ãk , i.e., when ρ( Ãk+1) < ρ( Ãk), we come back to d×d matrices, consider the
matrix Ak+1, take an arbitrary minimal leading eigenvector vk+1 of that matrix, and
start the process all over again. The algorithm terminates when a current matrix AN is
minimal in each row, or, equivalently, ÃN is minimal in each row. By Proposition 1,
AN has the minimal spectral radius.

Thus, the spectral simplex method for minimization problem consists of several
blocks, each contains several iterations.

4.4 The algorithm

We have a product family A with uncertainty sets F1, . . . , Fd that are either finite or
polyhedral.

Initialization. We take an arbitrary initial matrix A1 ∈ A, take one of its minimal
leading eigenvectors v1 and go to the first block.

Main loop. The j th block, j ≥ 1, consists of iterations k = k j , . . . , k j+1 − 1. First,
at the iteration k j , we have a matrix A k j and take an arbitrary minimal leading eigen-
vector vk j of this matrix. Let I = supp vk j = {i1, . . . , in}. At all iterations of the j th

block, we deal with n × n submatrices Ãk corresponding to the coordinate subspace

VI = {(x1, . . . , xd) ∈ R
d | ∀i /∈ I xi = 0}.

By Observation 1, the initial matrix Ãk j has a simple leading eigenvector.

The kth iteration, k = k j , . . . , k j+1 − 1. We have a matrix Ak , its n × n submatix Ãk

that has a simple leading eigenvector ṽk . Until m ≤ n, starting with m = 1, we set
i = im and solve the problem
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{
(b̃i , ṽk) → min
bi ∈ Fi ,

(9)

where b̃i is the restriction of the row bi ∈ Fi to the coordinate subspace VI . If the
set Fi is finite, then this problem is solved by exhaustion, if Fi is polyhedral, then it
is solved as an LP problem, and the solution is taken among its vertices. Denote by α

the value of this problem.
If (ã(k)

i , ṽk) = α and m = n, then the matrix Ak is minimal in each row and
by Proposition 1, it has the minimal spectral radius in the family A. The algorithm
terminates with the solution Ak .

If (ã(k)
i , ṽk) = α and m ≤ n − 1, then we set i = im+1 and solve the problem (9).

If (ã(k)
i , ṽk) > α, then we set a(k+1)

i equal to the solution bi of the problem (9),

a(k+1)
p = a(k)

p for all p �= i and form the corresponding matrix Ak+1. Thus Ak+1 is

obtained from Ak by replacing the i th row a(k)
i with bi . By Observation 2, the matrix

Ak+1 has the same invariant subspace VI . Denote by Ãk+1 be the corresponding n×n
submatrix.

If ρ( Ãk+1) = ρ( Ãk), then we stay in the subspace VI and start the (k + 1)st
iteration of the j th block. By Proposition 3, the matrix Ãk+1 also has a simple leading
eigenvector.

If ρ( Ãk+1) < ρ( Ãk), then we set k j+1 = k + 1, take the matrix Ak j+1 and start the
( j + 1)st block.

End.

4.5 Termination within finite time

By Observations 1 and 2, the j th block of the spectral simplex method is performed
on the subspace VI for matrices Ãk j , . . . , Ãk j+s until ρ( Ãk j+s) < ρ( Ãk j+s−1) for
some s ∈ N. Then we set k j+1 = k j + s and pass to the ( j + 1)st block. Thus, at
all iterations of the j th block, the matrices Ãk have the same spectral radius ρ j and,
by Proposition 3, each of them has a simple leading eigenvector. All full matrices Ak

also have the same spectral radius equal to ρ j .

Theorem 3 In the spectral simplexmethod forminimization problem (3), for each j ≥
1, all the matrices of j th block Ãk j , . . . , Ãk j+1−1 have simple leading eigenvectors.
The entire algorithm does not cycle and terminates within finite time with the minimal
spectral radius.

Proof Since vk j is the minimal leading eigenvector of the matrix Ak j , it follows

that Ãk j has a simple leading eigenvector (Observation 1). At further iterations of this

block, the spectral radius of the matrices Ãk, k = k j + 1, . . . , k j+1 − 1, stays the
same and is equal to ρ(Ak j ). Proposition 3 implies that all these matrices have simple
leading eigenvectors. Invoking now the same argument with positive ε-perturbations
as in the proof of Theorem 1, we see that, inside this block, the spectral simplex
method does not cycle, and therefore, performs a finite number s of iterations, after
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which we have ρ( Ãk j+s) < ρ( Ãk j+s−1) = ρ( Ãk j ) = ρ(Ak j ). Note that for all i /∈ I
the i th rows of matrices Ak j+s and Ak j coincide. Therefore, the passage from Ak j to
Ak j+s reduces the spectral radius on the subspace VI and keeps all other eigenvalues.
Hence, the matrix Ak j+s has either smaller spectral radius than Ak j , or equal spectral
radius, but with a smaller total multiplicity of the leading eigenvalue. To a matrix A,
we associate a pair �(A) = (λ, r), where λ = ρ(A) and r is the total multiplicity
of the eigenvalue λ. On the set of those pairs, we consider the lexicographic order:
�(A1) > �(A2) if and only if either λ1 > λ2 or λ1 = λ2 and r1 > r2. We proved that
�(Ak j+s) < �(Ak j ). The sequence �(Ak j ), j = 1, 2, . . . strictly decreases, hence,
the algorithm performs finitelymany blocks. As shown above, the number of iterations
inside each block is finite. Hence, the algorithm terminates within finite time, which
concludes the proof. ��

5 Numerical results

The spectral simplex method works surprisingly fast in all practical examples for
both maximization and minimization problems. We present statistics of the number of
iterations performed by the algorithm for randomly generated uncertainty sets. Table 1
presents the results of numerical experiments for positive setsFi , each contains n rows
of dimension d, i = 1, . . . , d. For the sake of simplicity, we take all the sets Fi of
equal cardinality. Each entry of any row fromFi is uniformly distributed on [0, 1]. The
rows of the table correspond to the dimensions d = 5, 10, 50, 100, 500; the columns
correspond to the number of elements n in each uncertainty set Fi . The table shows
the total number of iterations performed by the algorithm. For every pair (d, n) we
made 5 experiments and put the arithmetic mean of the number of iterations rounded
to the closest integer.

Let us recall that each iteration consists in replacing of one row of a matrix and
in computing of the leading eigenvector of the new matrix. The latter is the most
expensive routine, because all other operations are mere computing scalar products
and comparing numbers. Thus, the number of iterations is equal to the number of
computations of the Perron–Frobenius eigenvectors for d × d matrices. All those
eigenvectors are simple (Theorems 1 and 3).

Observe that in the case n = 2 (the Boolean cube), the number of iterations is about
a half of the dimension. So, almost half of the initial rows are already optimal, the
others are (in average) replaced once. For n = 5, each row (in average) is replaced

Table 1 The number of
iterations for maximizing the
spectral radius of positive d × d
matrices

The sets Fi are finite, each has n
elements

d/n 2 5 10 50 100

5 3 6 8 10 13

10 7 12 14 18 23

50 29 48 58 92 109

100 56 99 131 197 213

500 274 542 701 884 1034
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Table 2 The number of
iterations for minimizing the
spectral radius of sparse d × d
matrices

Each set Fi has n elements

d/n 2 5 10 50 100

5 4 8 13 17 27

10 9 19 27 31 51

50 37 56 79 131 199

100 73 127 178 297 343

500 404 742 1101 1384 1934

Table 3 The number of
iterations for maximizing the
spectral radius of nonnegative
d × d matrices

Each set Fi is a polyhedron
given by m linear inequalities

d/m 2 5 10 50 100

5 8 20 23 28 31

10 33 65 80 95 116

20 61 179 209 452 540

50 121 444 1102 3258 4324

once. The average number of changes for each row grows very slow: only for n = 100
we have two changes for one row.

For d = 10, n = 100, the set A contains 10010 = 1020 matrices. However,
only 23 of them are visited by the algorithm, and within the time t = 0.3s. in a
standard laptop the optimal matrix is found. For d = 100, n = 100, the setA contains
100100 = 10200 matrices. The algorithm performs 213 of them and arrives at the
solution within t = 40 s.

For the minimization problem, the numerical results are more or less the same, and
we do not demonstrate them here. The next Table 2 shows the results for the sparse
matrices. Each row contains either one or two nonzero elements in randomly chosen
positions, those elements have uniform distribution on [0, 1]. We see that the number
of iterations is bigger than for positive matrices, but not much. The ratio is between
3/2 and 2. For d = 50, n = 50, the algorithm performs 131 iterations and spends
t = 13s.

Table 3 presents the results for polyhedral sets Fi , each given by system (1) of m
linear inequalities (acually,m+d, if we take into account the inequalities x j ≥ 0, j =
1, . . . , d). Here the number of iterations is essentially bigger. This is natural, because
the number of vertices of polyhedra Fi grows fast withm. The case d = 20,m = 100
takes 540 iterations and t = 44s. The case d = 50, n = 50 takes 3258 iterations and
about 20 min of computer time.

Table 4 shows the results for minimization problem for polyhedral uncertainty sets.
We see that the numbers of iterations are similar to those for maximization problem
in Table 3.

Remark 3 To conclude, we see that in practical examples the spectral simplex method
works very efficiently, even in relatively high dimensions. We do not have any satis-
factory theoretical bound for the number of iterations. Moreover, we suspect that such
bounds are actually exponential in the dimension d, and there may be “nasty” exam-
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Table 4 The number of
iterations for minimizing the
spectral radius of nonnegative
d × d matrices

Each set Fi is a polyhedron
given by m linear inequalities

d/m 2 5 10 50 100

5 8 12 22 31 39

10 29 66 73 99 114

20 45 137 276 487 515

50 129 727 1130 3075 3924

ples with the Boolean cube (n = 2), when the algorithm performs about 2 d iterations,
like in the Klee-Minty example in linear programming [22]. We hope, nevertheless,
that such situation are rare in practice and that the spectral simplex method works
efficiently in the vast majority of practical applications, as the (usual) simplex method
in solving LP problems. We leave two open questions concerning the complexity of
the problem. For the sake of simplicity, we consider the case of maximization problem
for positive matrices when all the sets Fi are two-element (the Boolean cube, n = 2),
so A contains 2 d positive matrices.

Question1. Is there apolynomial-timealgorithmsolving theproblemρ(A) → max,
A ∈ A, where A is a Boolean cube of positive rational matrices?

Question 2.What is the complexity of the spectral simplex method for the problem
from Question 1?

6 Generalizations. Non-polyhedral uncertainty sets

If all Fi are arbitrary compact sets, not necessarily finite or polyhedral, then most of
properties established in Sect. 2 remain true. A matrix A has the maximal/minimal
spectral radius in the family A if and only if it is maximal/minimal in each row. This
is proved in Theorem 4 below. The maximal and minimal values of the spectral radius
are attained at extreme points of the set P = co (A), i.e., at matrices composed with
rows from extreme points of the sets co (Fi ) (Corollary 1). Therefore, the algorithms
of spectral simplex method for both maximization (Sect. 3) and minimization (Sect. 4)
problems are still applicable. Similarly to the case of finite or of polyhedral uncertainty
sets, at each iteration, when we have a matrix Ak ∈ A and its leading eigenvector vk ,
the algorithm chooses an extreme point ai of the set co(Fi ) to maximize the scalar
product (ai , vk). Although, in this case, the algorithm finds only an approximate
solution and does not necessarily terminate within finite time, since the set of extreme
points is infinite. Nevertheless, in some cases of non-polyhedral uncertainty sets, the
solutions, i.e., the matrices maximal/minimal in each row can be spotted by effective
criteria. For instance, if all Fi are Euclidean balls, then the solution is unique and can
be easily computed (Theorem 5).

6.1 General compact uncertainty sets

Theorem 4 Let F1, . . . ,Fd be arbitrary compact row uncertainty sets and A be the
corresponding product family of matrices. Suppose A is irreducible; then
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(i) there is a matrix A ∈ A maximal in each row. If for some i, the set Fi is a
polytope, then the i th row of A can be chosen from the set of its vertices.

(ii) If some matrix A ∈ A is maximal in each row with respect to its leading eigen-
vector v, then v > 0 and ρ(A) = maxB∈A ρ(B) = maxB∈co(A) ρ(B).

(iii) Assertions (i) and (ii) are true for minimum instead of maximum. In this case the
family A may be reducible and the assertion v > 0 is replaced everywhere by
v ≥ 0.

Proof Assumefirst that all the setsFi consist of strictly positive rows.By compactness,
themaximal spectral radius is achieved at somematrix A ∈ A. Since A is positive, it has
a simple positive leading eigenvector v. By Lemma 2, if for some j , we have (a j , v) <

maxb j∈F j (b j , v), then the row a j can be replaced with the increase of the spectral
radius, which is a contradiction. Thus, (ai , v) = maxbi∈Fi (bi , v). Consider now an
arbitrary irreducible product familyA. Its positive ε-perturbationAε = A+ εE has a
matrix Aε ∈ Aε which is maximal in each row. Its normalized leading eigenvector vε

tends to a leading eigenvector v (probably, not unique) of the matrix A = limε→0 Aε

as ε → 0. Hence, the matrix A is maximal in each row with respect to v. Since
maxbi∈Fi (bi , v) = maxbi∈co(Fi )(bi , v), we see that A is maximal for the family P =
co(A) as well. In particular, if some uncertainty set Fi is a polytope, we may replace
it by the set of its vertices, and get the same matrix A. This completes the proof of (i).
The proof of (ii) follows now from Lemma 4. The proof of (iii) is literally the same,
replacing all maxima by minima, Lemmas 2 and 4 by Lemma 3. ��
Corollary 1 For any product family A, both the maximal and minimal spectral radii
are achieved at extreme points of co (A).

The proof is in “Appendix”. This corollary implies, in particular, that the answers
to problems (2) and (3) are not changed if we replace all uncertainty sets Fi by their
convex hulls co(Fi ). If particular, the case of polyhedral sets is equivalent to the case
of finite sets.

6.2 All uncertainty sets are Euclidean balls

Let each uncertainty set Fi be a Euclidean ball of radius ri centered at a point ci ≥ 0,
i = 1, . . . , d. We do not make any assumption on the numbers ri and on the centers
ci except for nonnegativity of all ci . Thus, the family A = A(c, r) consists of all
matrices A such that ‖ai − ci‖ ≤ ri , i = 1, . . . , d. Note that matrices of A are
not necessarily nonnegative. The problem is to find the maximal spectral radius of
matrices from A. This problem can also be formulated as follows:

Maximize the spectral radius of a nonnegative matrix given approximately: the i th
row is given with a precision ri in the Euclidean norm, i = 1, . . . , d.

To begin with, we note that the problem can be restricted to nonnegative matrices
of the familyA. Indeed, if one replaces all entries of a matrix A ∈ A by their modules,
then its spectral radius will not decrease and all the inequalities ‖ai − ci‖ ≤ ri remain
valid (because ci ≥ 0), hence A remains in A.

Since each ball Fi possesses a nonempty interior, it contains a strictly positive
point. Therefore, A is irreducible, and we can invoke Theorem 4: to maximize the
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spectral radius we need to find Ā ∈ A, for which (āi , v) = maxai∈Fi (ai , v) for all
i = 1, . . . , d, where v > 0 is the leading eigenvector of Ā. Thus, the matrix Ā is
maximal in each row, and we need to characterize such matrices in case of Euclidean
balls Fi .

SinceFi is a ball of radius ri , the maximality in each row is equivalent to that āi =
ci + riv, i = 1, . . . , d (we normalize v as ‖v‖ = 1). Let r = (r1, . . . , rd)T and C be
the matrix with rows c1, . . . , cd . We have Ā = C + rvT . Multiplying by v from the
right we obtain λv = Āv = Cv + r (v, v) = Cv + r . Thus, λv = Cv + r , and so

(
λI − C

)
v = r. (10)

Expressing v and substituting it to the equality ‖v‖ = 1, we arrive at the equation
f (λ) = 1, where

f (λ) =
∥∥∥ (

λ I − C
)−1 r

∥∥∥. (11)

Theorem 5 If all the uncertainty sets Fi are Euclidean balls, then the maximal spec-
tral radius λ of the family A is a unique solution of the equation f (λ) = 1.

Proof The only thing remains to prove is the existence and uniqueness of the solution.
The function f (λ) decreases monotonically on the interval λ ∈ (

ρ(C),+∞)
, this is

seen after the expansion into a power series: (λI −C)−1r = ∑∞
k=0 λ−k−1Ck r . Since

f (λ) → +∞ as λ → ρ(C) and f (λ) → 0 as λ → +∞, it follows that f attains
each positive value at one point. Hence the equation f (λ) = 1 has a unique solution.

��
The equation f (λ) = 1 can efficiently be solved in several ways. For instance, by

bisection or by Newton’s method. Another approach is to take squares of both parts of
Eq. (11) and come to an algebraic equation for λ (a polynomial of degree 2d, whose
unique positive root is λ).

7 Applications

7.1 Optimizing the spectral radius of a graph

The spectral radius of a graph is the spectral radius of its adjacency matrix A. The
problem of maximizing/mimimizing the spectral radius under some restrictions on the
graph (connectedness, a given number of vertices and edges, a given largest degree of a
vertex, etc.) attractmuch attention in the literature (see [3,5,8,15,20] and the references
therein). Since adjacency matrices are nonnegative, one can apply the spectral simplex
method, provided the set of graphs possesses a product structure, either by rows or by
columns. We give two examples of such problems.

Problem 1. Let us have a set of vertices V = {g1, . . . , gd}, and for any vertex gi
a finite family of subsets Vi of the set V be given. Maximize/minimize the spectral
radius of a graph such that for every i the set of incoming edges (more precisely, the
set the corresponding adjacent vertices) for the vertex gi belongs to Vi , i = 1, . . . , d.
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Problem 2. We are given a set of vertices g1, . . . , gd and a set of nonnegative
integers n1, . . . , nd . The problem is to find graphs with the largest and the smallest
spectral radius among all directed graphs such that the number of incoming edges for
any vertex gi is equal to ni , i = 1, . . . , d.

For the first problem all uncertainty sets Fi are finite, for the second one they are
polyhedral and given by the systems of inequalities: Fi = {

x ∈ R
d

∣∣ ∑d
k=1 xk ≤

ni , 0 ≤ xk ≤ 1, k = 1, . . . , d
}
. The minimal and maximal spectral radii are both

attained at extreme points of the uncertainty sets (Corollary 1), i.e., precisely when
the the i th row has ni ones and all other entries are zeros.

7.2 Leontief input–output model

The Leontief model in mathematical economics expresses inter-industry relationships
in linear algebraic terms. Suppose the economyhas d sectors; the i th sector produces xi
units of some single homogeneous good, and to produce one unit it consumes ai j
units from sector j . In addition, each sector must leave bi units of its output to con-
sumers (the final demand). Thus, for every i = 1, . . . , d we have the following linear
equality

xi = bi +
d∑
j=1

a i j x j ,

Wewrite A for the d×d matrix with coefficients ai j (the consumption matrix or input–
output matrix), x = (x1, . . . , xd) for the vector of total output, and b = (b1, . . . , bd)
for the vector of final demand. Thus, we have the following equation in matrix form

x = A x + b. (12)

The economy is productive if for every vector b ≥ 0 this equation has a solution
x ≥ 0. In other words, the economy is able to provide any final demand. According
to the Leontief theorem [12], the economy is productive if and only if ρ(A) < 1.
Indeed, if λ = ρ(A) ≥ 1, then Eq. (12) does not have a solution if b = v is the leading
eigenvector of A. Otherwise, we substitute b = v into (12) and conclude that x ≥ v.
Hence, x ≥ Av+v = (λ+1)v ≥ 2v. After k steps we obtain x ≥ kv, which becomes
impossible as k → ∞. On the other hand, if λ < 1, then the vector x = ∑∞

k=0 A
k b

is a nonnegative solution of (12).
Assume now that for every i , we have several types of technologies to organize

production in i th sector, each type has its own row of coefficients ai = (ai1, . . . , aid).
Denote by Fi this set of rows ai . The problem is to select a type of technology for
each i to obtain a productive economy. Thus, given uncertainty setsFi , i = 1, . . . , d,
we need to obtain a consumption matrix A form the corresponding product family A
such that ρ(A) < 1, or to prove its non-existence. This problem is solved by finding
minA∈A ρ(A) using the spectral simplex method. Let us remark that here the ability
of the spectral simplex method to work with sparse matrices becomes crucial, because
the consumption matrices usually have many zero entries.
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7.3 Positive linear switching systems

In general, our results cannot be extended directly to arbitrary matrices, without the
nonnegativity assumption. However, for some classes of matrices this can be done.
For instance, for the class of Metzler matrices. A matrix is called Metzler if all its
off-diagonal elements are nonnegative. Thus, a matrix A is Metzler if α I + A ≥ 0,
whenever α > 0 is large enough. A leading eigenvalue λ of a Metzer matrix is its
biggest real eigenvalue. If thematrixα I+A is nonnegative, thenλ+α ≥ 0 is its leading
(i.e., Perron–Frobenius) eigenvalue, with the same leading eigenvector. For product
family of Metzler matrices, every uncertainty set Fi consists of rows nonnegative in
all coordinates, except, maybe, for the i th one. The problem of maxiizing/minimizing
the spectral radius becomes maximizing/minimizing the largest real eigenvalue. The
spectral simplex method for both problems stays literally the same. In particular,
Theorems 1–4 are true for Metzler matrices (replacing spectral radii by biggest real
eigenvalues).

One of the main applications of Metzler matrices is stability of linear switching
systems (LSS). For a given compact set of matricesA, the LSS is a linear differential
equation ẋ(t) = A(t)x(t) with an initial condition x(0) = x0 ∈ R

d , where A(t) ∈ A
for almost all t . An LSS is called stable if for any measurable function A : R+ → A
and for any x0 we have x(t) → 0 as t → +∞. There is an extensive literature on LSS
stability (see the bibliography in [13,14]). A necessary condition for stability is that
all matrices from A are Hurwitz, i.e., all their eigenvalues have negative real parts.
A sufficient condition is the existence of a convex Lyapunov function, i.e., positive
homogeneous function on R

d (actually, a norm) f (x) that decreases in t along any
trajectory x(t) of the system. If B = {x ∈ R

d | f (x) ≤ 1} is a unit ball of that norm,
then for every x on the boundary of B there is τ > 0 such that x + τ Ax ∈ intB.
This property characterizes Lyapunov functions. LSS is called positive if all matrices
fromA are Metzler. In this case any trajectory x(t) starting in the positive orthant Rd+
stays in R

d+ for all t ∈ [0,+∞). We consider only irreducible LSS when the family
A is irreducible. We are going to see that the problem of stability of positive LSS,
being notoriously hard in general (see, for instance, [7]), has a simple solution if the
family A has a product structure.

Theorem 6 Suppose a family of Metzler matricesA has a product structure; then the
corresponding LSS is stable if and only if the biggest real eigenvalue of matrices from
A is negative. In this case, the system has a Lyapunov function f (x) = maxi

|xi |
vi
,

where v is the eigenvector corresponding to the biggest real eigenvalue.

Proof If the biggest real eigenvalue is nonnegative, then the corresponding matrix is
not Hutwitz, and hence, LSS is not stable. Conversely, if the biggest real eigenvalue λ

is negative and is attained for a matrix Ā ∈ A, then by Theorem 4, the corresponding
eigenvector v is positive, and Ā is maximal in each row. Therefore, for any A ∈ A,
we have Av ≤ Āv = λv < 0. Hence, v + Av < v for all A ∈ A, and therefore
the convex set B = {x ∈ R

d+ | x ≤ v} possesses the property of a unit ball of a
Lyapunov function. The corresponding Lyapunov function is f (x) = maxi

|xi |
vi
, and

LSS is stable. ��
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Thus, a positive LSS with the product structure always has a stationary “worst
possible” trajectory that corresponds to the constant function A(t) ≡ Ā, where Ā ∈ A
is the matrix with the biggest real eigenvalue. In case all uncertainty sets of A are
finite or polyhedral, this matrix Ā can be found by the spectral simplex method, which
solves the stability problem.

7.4 Difference equations with nonnegative coefficients

We consider a finite difference equation on the sequence {xk}k∈Z:

xk =
d∑
j=1

q j xk− j , k ≥ d + 1, (13)

where q = (q1, . . . , qd) is a given vector of coefficients. It is well-known that all
solutions {xk}k∈N form an d-dimensional linear space, and any particular solution is
uniquely defined by the initial conditions, i.e., by the values x1, . . . , xd .

The largest possible rate of asymptotic growth of the sequence {xk} is |λ|k k μ ,
where λ is the maximal by modulo root of the characteristic polynomial Pq(t) =
td − ∑d

j=1 q j td− j and μ is the multiplicity of that root (e.g. [18,21]).
Now assume that the vector of coefficients q is not fixed, and at any step k of the

recurrence we can chose independently any qk from a given uncertainty setQ ⊂ R
d .

The question is what is the largest rate of asymptotic growth lim supk→∞ |xk | 1/k of
the sequence {xk}? What strategy of choosing the vectors qk ∈ Q provides the largest
growth?

We treat the case, when all vectors from Q are nonnegative. In this case, as it was
shown in [19, Proposition 1], the optimal strategy is always stationary. The largest
growth is attained if we chose every time the same vector q ∈ Q for which the largest
root λ of the polynomial Pq is maximal. This polynomial is actually the characteristic
polynomial of the matrix of difference equation:

A =

⎛
⎜⎜⎜⎜⎜⎝

q1 q2 q3 . . . qd−1 qd
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

,

and hence, λ is its Perron–Frobenius eigenvalue. When the vector q runs over the set
Q, the matrix A forms a product family A with the only nontrivial uncertainty set
F1 = Q, all other sets Fi are one-element. Thus, to find the largest rate of growth
one needs to solve the problem ρ(A) → max, A ∈ A. To apply the spectral simplex
method we observe that if qd �= 0, then the matrix A is irreducible. Hence, if we
start the algorithm with the row q(1) ∈ Q that has a nonzero last entry, then, by
Theorem 1, the matrices at all iterations have simple leading eigenvectors and the
algorithm does not cycle and finds a solution q(N ) ∈ Q. Furthermore, the leading
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eigenvector of A is v = (λd−1, . . . , λ, 1), whereλ is the leading eigenvalue. Therefore,
(a1, v) = (q, v) = ∑d

j=1 q j λ
d− j .

Changing variable τ = 1/λ andwriting Sq(τ ) = ∑d
j=1 q j τ

j , we see that (a1, v) =
λd Sq(λ) and the equation Pq(λ) = 0 for the leading eigenvalue, becomes Sq(1/λ) = 1.
Thus, we come to the following problem

Problem.We are given a compact set Q ⊂ R
d+. Find a vector q ∈ Q for which the

root τ > 0 of the equation Sq(τ ) = 1 is minimal.
Solution. The spectral simplex method gives the following algorithm of solution.

We start with arbitrary q(1) ∈ Q that has a positive leading coefficient q(1)
d . At the kth

iteration (k ≥ 1), we have a vector q(k) ∈ Q. We solve the equation Sq(k) (τ ) = 1 and

findmaxq∈Q Sq(τ ). If this is 1, then q(k) is a solution, otherwise, ifmaxq∈Q Sq(τ ) > 1,
then we chose q(k+1) ∈ Q as a point of maximum and start the (k + 1)st iteration.

If the setQ is either finite or polyhedral, then, by Theorem 1, this algorithm termi-
nates within finite time.
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Appendix

Lemma 5 Let A and X be d × d matrices and rank(X) = 1, then the coefficients of
the characteristic polynomial of the matrix As = A+ sX, s ∈ R, are affine functions
of s.

Proof Consider the factorization X = abT , where a, b ∈ R
d , and pass to a basis inRd

with the first basis vector a. In this basis, X has only one nonzero row (the first one).
Since the determinant of a matrix depends linearly on its first row, the characteristic
polynomial p(τ ) = det(τ I − A − sX) depends linearly on s. ��
Proof of Proposition 4 Denote λ0 = ρ(A), λ1 = ρ(B) and assume, to the contrary,
that λ1 hasmultiplicitym ≥ 2. For an arbitrary s ∈ [0, 1], we consider thematrix As =
(1− s)A+ sB and its characteristic polynomial ps(τ ) = det (τ I − As). In particular,
p0 and p1 are the characteristic polynomials of A0 = A and A1 = B respectively. By
Lemma 5, we have

ps = (1 − s) p0 + s p1. (14)

Since λ1 is a root of multiplicity m for the polynomial p1, we have p1(τ ) = (τ −
λ1)

mq(τ ), where q(τ ) is a polynomial with q(λ1) �= 0. Ifm is even, then there is δ > 0
such that p1(τ ) ≥ 0 whenever |τ − λ1| < δ. On the other hand, since λ1 > λ0 and
p0(τ ) is positive in the interval (λ0,+∞), a small enough value of δ > 0 guarantees
that p0(τ ) > ε > 0 whenever |τ − λ1| < δ. Hence, ps(τ ) > 0 at those τ , for any
s ∈ (0, 1). Since As ≥ 0, its spectral radius ρ(As) is the largest real root of the
polynomial ps . Therefore, |ρ(As) − λ1| ≥ δ for all s ∈ (0, 1), which contradicts the
continuity of the spectral radius as s tends to one, because ρ(A1) = λ1. Now, if λ1
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has an odd multiplicity m ≥ 3, then the matrix B is reducible as follows from the
Perron–Frobenius theorem: there is a proper permutation of the canonical basis after
which B reduces to the following upper-triangular block form:

B =

⎛
⎜⎜⎜⎜⎝

B(1) ∗ . . . ∗
0 B(2) ∗ ...
...

. . . ∗
0 . . . 0 B(r)

⎞
⎟⎟⎟⎟⎠

, (15)

where r ≥ m, each matrix B(i) is irreducible, exactly m of these matrices have simple
leading eigenvalue λ1, while the rest (r −m) blocks having their leading eigenvalues
smaller than λ1 (see, for instance, [10, chapter8]). Let i1 and i2 (i1 < i2) be the two
smallest indices for which ρ(B(i1)) = ρ(B(i2)) = λ.

The principal submatrix B ′ of B comprising the blocks B(1), . . . , B(i2) represents
a rank-one correction of the submatrix A′ extracted from the same rows/columns of
A that constitute B ′ in B, as far as rank (B ′ − A′) ≤ rank (B − A) ≤ 1. Since
ρ(A′) ≤ ρ(A) < λ1, we get the rank-one correction B ′ of matrix A′ that has the
largest eigenvalue λ1 > ρ(A) of multiplicity 2. This is impossible as has been proved
above, for the case of oven multiplicity. ��

Proof of Corollary 1 If A is irreducible, then by Theorem 4, the maximal spectral
radius is achieved at some matrix A ∈ A with a positive leading eigenvector v.
For each i , the linear functional f (x) = (x, v) on the set Fi attains its maximum
at some extreme point x = a′

i of the set Fi . Let A′ be the matrix composed with
rows a′

1, . . . , a
′
d . Clearly, A

′ is an extreme point of A. Moreover, A′v ≥ Av, and
by Lemma 1, ρ(A′) ≥ ρ(A), which by the maximality of A implies that ρ(A′) =
max
B∈A

ρ(B). If A is reducible, we make the permutation of the basis, after which all

matrices fromA get block upper triangular form. As we showed above, the irreducible
block with the maximal spectral radius can be composed from rows which are extreme
points of the corresponding uncertainty sets. Taking all other rows arbitrarily form the
sets of extreme points of the corresponding uncertainty sets, we get a matrix A′ which
is an extreme point of A and has the maximal spectral radius.

The proof for the minimal spectral radius is realized in the same way, but shorter:
we do not assume irreducibility and omit the condition v > 0. ��
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