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Abstract In this paper, we consider the semi-continuous knapsack problem with gen-
eralized upper bound constraints on binary variables. We prove that generalized flow
cover inequalities are valid in this setting and, under mild assumptions, are facet-
defining inequalities for the entire problem. We then focus on simultaneous lifting of
pairs of variables. The associated lifting problem naturally induces multidimensional
lifting functions, and we prove that a simple relaxation in a restricted domain is a
superadditive function. Furthermore, we also prove that this approximation is, under
extra requirements, the optimal lifting function. We then analyze the separation prob-
lem in two phases. First, finding a seed inequality, and second, select the inequality
to be added. In the first step we evaluate both exact and heuristic methods. The sec-
ond step is necessary because the proposed lifting procedure is simultaneous; from
where our class of lifted inequalities might contain an exponential number of these.
We choose a strategy of maximizing the resulting violation. Finally, we test this class
of inequalities using instances arising from electrical planning problems. Our tests
show that the proposed class of inequalities is strong in the sense that the addition of
these inequalities closes, on average, 57.70 % of the root integrality gap and 97.70 %
of the relative gap while adding less than three cuts on average.
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1 Introduction

Binary knapsack programs are a common model for choosing between discrete alter-
natives. If the choice is continuous but limited; the resulting model is called a classical
single node flow set, as studied in [17,19]. If the choice is semi-continuous; we
must consider mixed-binary knapsack programs. This problem is known as the semi-
continuous knapsack problem (SCKP). If binary variables are subjected to independent
clique constraints we have what we call a semi-continuous knapsack problem with
generalized upper bound constraints (SCKPGUB). This kind of model is common for
representing (possibly non-linear) functions (with only one GUB constraint), or for
studying the combined non-linear output of several machines.

This is the case in production scheduling problems, such as in electricity generation
[6,9,18,26], where the cost function of each generating unit can be highly non-linear
and even discontinuous. Furthermore, if the original problem has integer variables;
these functions are usually approximated by a piece-wise linear function.

In this setting, sequential lifting is too limited in the sense that whenever we have
a constraint y ≤ x for x ∈ {0, 1} and y ∈ [0, 1], lifting must be carried out first on the
integer variable and then on the continuous variable. This precludes finding some facet-
defining inequalities for the complete problem; making simultaneous lifting essential
in this setting. For a basic reference on simultaneous lifting, see [13,27], and see [8,11,
15] for some experiments and results regarding sequential and simultaneous lifting.

In this paper, we use generalized flow cover (GFC) inequalities [21]; show that they
are valid in our setting and, under mild assumptions, they induce facets or high dimen-
sional faces of the original problem. We then propose a valid sequence-independent
multidimensional lifting scheme to obtain valid inequalities for SCKPGUB. We show
that the proposed lifting function is superadditive on a restricted set of feasible right-
hand sides, and show that this condition is sufficient to obtain sequence-independent
lifting. Finally, we also provide sufficient conditions for this lifting to be maximal.

The paper is organized as follows. Section 2 covers some known facts about semi-
continuous knapsack problems; including a class of valid inequalities and basic results
for the semi-continuous knapsack problem with GUB constraints. Section 3 deals with
multidimensional lifting for SCKPGUB; specifically on how to obtain valid sequence-
independent lifting functions for them. We also propose simple algorithms to solve
the separation problem both for the seed inequality and for the selection of maximally
violated lifted inequalities. In Sect. 4 we propose a heuristic separation algorithm
that provides good numerical results and shows that the lifting step is crucial. We
generate our test-instances from problems in electricity generation where some of the
parameters are randomly perturbed. Finally, we present our conclusions and explore
further research questions in Sect. 5.

2 Definitions and basic polyhedral results

In this section we introduce most of the notation used throughout the paper. This
includes the precise definition of the polytope with which we will work. We also
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present some previously known results and state some basic polyhedral results. Finally,
we prove that our seed inequality, under mild hypothesis, is also a facet.

2.1 The problem

We consider the semi-continuous knapsack problem with generalized upper bound
constraints given by

XG =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x, y) ∈ {{0, 1} × [0, 1]}M :
∑

k∈M (akxk + mk yk) ≤ b

yk ≤ xk ∀k ∈ M
∑

k∈Mg
xk ≤ 1 ∀g ∈ G

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (1)

where G is the set of GUB constraints, for each g ∈ G, ng ∈ N is the number
of elements in the GUB constraint indexed by g, n = ∑

g∈G ng, M = {(g, j) :
g ∈ G, j ∈ 1, . . . , ng}, and Mg = {(g′, j ′) ∈ M : g′ = g}. This implies that
each k ∈ M is an ordered pair (g, j); we will use both notations interchangeably.
Also, to simplify notation, when we have a vector μ ∈ R

r (for some r ∈ N) and
R ⊆ {1, . . . , r}, we will denote μ(R) := ∑

μi : i ∈ R. Note that akxk + mk yk is
a model for a semi-continuous variable with values in {0} ∪ [ak, ak + mk]. Although
ak and mk could in general be negative, we will focus on the case where both quan-
tities are non-negative, i.e., ak,mk ≥ 0, ∀k ∈ M . Note that unlike in the classical
knapsack case, this assumption is restrictive, but we choose it nonetheless because it
follows what happens in many applications. The first constraint is the semi-continuous
knapsack constraint, the second constraint ensures semi-continuity, and the third con-
straint imposes a generalized upper bound condition among disjoint sets of binary
variables.

2.2 Literature review

Several special subsets of this structure have been studied before. For example, the
classical binary knapsack problem (KP) was studied by Balas and Jeroslow [4] in a
theoretical study where canonical cuts on the unit hypercube were introduced. Based
on this work, in 1975, Wolsey [24] and Balas [3] presented facet-defining inequalities
for the KP by using the notion of cover for the first time. Hammer, Johnson and Peled
[12] also studied facets of regular 0–1 polytopes, which include knapsack problems.
This study also characterizes every non-trivial facet with 0–1 coefficients. In 1978,
Balas and Zemel [5] extended previous work by applying lifting procedures to valid
inequalities obtained from minimal covers. In 1980, Padberg [20] presented (1, k)-
configurations as a generalization of minimal cover inequalities. Johnson and Padberg
[14] studied the inclusion of GUB constraints in the KP (KPGUB); they also showed
how to transform a general instance of the problem into one with only non-negative
coefficients. In 1988, Wolsey [23] defined some valid inequalities for the KPGUB
and proved that they are facet-defining under certain conditions. Sherali and Lee [22]
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applied sequential and simultaneous lifting to valid inequalities for KPGUB deduced
from minimal covers.

Another special case is when ak = 0 and |Mg| = 1. This case is called single-
node flow sets (SNFS), and their study has been extended from the work of Gu et al.
[10] from lifting procedures applied to this set. In 2007, Louveaux and Wolsey [16]
provided a survey of strong valid inequalities for knapsack and single-node flow sets.

As can be seen, the application of lifting procedures is a fundamental part of cut
generation techniques for many specific sets. In 1977, Wolsey [25] presented the
first work in this area and used the concept of superadditivity. In 2000, Gu et al.
[11] generalized it and defined sequence-independent lifting of general mixed integer
programs. In 2004, Atamtürk [2] presented similar results.

The above research can be seen as concerned with one-dimensional lifting, since all
of these studies consider the perturbation of only one constraint. Applications of mul-
tidimensional lifting are scarce, with work by Zeng [28] and Zeng and Richard [29,30]
as the most relevant. They defined a general framework to derive multidimensional
and superadditive lifting functions and applied it to the precedence-constrained knap-
sack problem and the single-node flow set. They showed that the traditional concept
of superadditivity used by Gu et al. [11] can be restricted depending on the problem
at hand. We provide a simple proof of this result in the context of SCKPGUB.

2.3 Polyhedral results

2.3.1 Basic results for SCKPGUB

We will henceforth assume that ā := max{ak : k ∈ M} < b. With this in place,
Proposition 1 follows:

Proposition 1 1. XG is full-dimensional.
2. Inequality yk ≥ 0 is facet-defining for XG,∀k ∈ M.
3. If ak + mk ≤ b, the inequality yk ≤ xk is facet-defining for XG,∀k ∈ M.
4. If ag := max

k∈M\Mg
{ak} + min

k∈Mg
{ak} < b, then

∑
k∈Mg

xk ≤ 1 is facet defining for

XG, for g ∈ G.

Proof The basic idea of the proof is to find the appropriate number of feasible affinely-
independent points satisfying each inequality at equality. For details see “Proof of
Proposition 1”. 	


2.3.2 Generalized flow cover inequalities for SCKP

Consider the set

X =

⎧
⎪⎨

⎪⎩

(x, y) ∈ {0, 1}n × [0, 1]n :
∑

j∈M (akxk + mk yk) ≤ b

yk ≤ xk ∀k ∈ M

⎫
⎪⎬

⎪⎭
. (2)
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Van Roy and Wolsey [21] studied (a generalization of) this polyhedron and proposed a
family of valid inequalities that they called generalized flow cover (GFC) inequalities.
In our setting, we restate this family of inequalities as follows:

Given X as defined in (2), we call a pair (C,CU ), with C ⊂ M and CU ⊂ C ,
satisfying Γ := a(C) + m(CU ) − b > 0 and m(CU ) > 0, a generalized cover. Then
the inequality

∑

j∈C
min

{

1,
ξ j

Γ

}

(x j − 1) +
∑

j∈CU

m j

Γ

(
y j − x j

) ≤ −1, (3)

where ξ j = a j for j ∈ C\CU and ξ j = a j + m j for j ∈ CU , is valid for X .
Theorem 1 gives sufficient conditions for (3) to be facet-defining for X .

Theorem 1 Let (C,CU ) be a generalized flow cover satisfying
∑

j∈CU :ξ j>Γ m j > Γ .
Then, inequality (3) is facet-defining for Xo := X ∩ {xi = 0,∀i /∈ C}.
Proof Van Roy and Wolsey [21] proved the validity of inequality (3). We prove that (3)
is facet-defining for Xo := X ∩ {xi = 0, i /∈ C} by constructing a set of 2s affinely
independent points in Xo satisfying it at equality. For details see “Proof of Theorem
1”. 	


Note that X is a face of XG where we choose at most one element from
every GUB constraint to be active. Given this, Theorem 1 ensures that whenever∑

j∈CU :ξ j>Γ m j > Γ , the resulting flow cover inequality is facet-defining for this
face of XG . Moreover, since X is also a relaxation of XG , (3) defines valid inequali-
ties for XG .

3 Multidimensional lifting for SCKPGUB

In this section we deal with the problem of lifting our seed inequality, defined in (3).
To achieve this, we first define what is a valid lifting function in a setting that allows
simultaneous and multidimensional lifting in general, and apply it to our particular set.
We also identify simple conditions under which optimal lifting coefficients are zero;
and introduce a superadditive approximation for maximal lifting functions. Since the
full separation of the seed inequality is NP-hard, we propose a heuristic algorithm
to find seed inequalities, and describe a simple algorithm to apply our sequence-
independent lifting function.

3.1 Valid lifting functions

In this section we study the following problem: given a polytope

P =
⎧
⎨

⎩

x ∈ R
n : Ax ≤ b,

0 ≤ x ≤ u,

xi ∈ Z, ∀i ∈ I

⎫
⎬

⎭
,
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where I ⊆ {1, . . . , n}; a set N ⊆ {1, . . . , n}, Nc = {1, . . . , n}\N ; and an inequality
ax ≤ bo valid for P , satisfying ai = 0, ∀i ∈ N ; we want to find α ∈ R

n satisfying
αi = 0, ∀i /∈ N such that ax + αx ≤ bo is a valid inequality (and hopefully tight) for
P , i.e.

ax + αx ≤ bo, ∀x ∈ P

Taking advantage of the condition that ai · αi = 0, ∀i ∈ {1, . . . , n}, we can think
that x ∈ R

n has two independent components x = (xNc , xN ) = (v,w) and that
P = {(v,w) ∈ R

n : A1v + A2w ≤ b̄, v ∈ V, w ∈ W }, where V,W describe the
corresponding box-constraints, integrality requirements, and inequalities involving
variables indexed by Nc and N respectively. Abusing notation, we can re-state our
problem as finding α such that

av + αw ≤ bo, ∀A1v ≤ b̄ − A2w, v ∈ V, w ∈ W.

Here, we can make a second observation; the interaction between v and w is only
through the common inequalities A1v ≤ b̄ − A2w; and there, the interaction is only
through values of A2w : w ∈ W for which there exists v ∈ V satisfying A1v+ A2w ≤
b̄. Moreover, the problem of ensuring the condition for all feasible points in P is an
optimization problem in a different space. Formally, we state this problem as follows:

hα(z)
︷ ︸︸ ︷

max αw

s.t. A2w = z
w ∈ W

≤

f (z)
︷ ︸︸ ︷
min bo − ax
s.t. A1v ≤ b̄ − z

v ∈ V
∀z ∈ Z ,

where Z = {z : ∃v ∈ V, w ∈ W, z = A2w, A1v + z ≤ b̄}. With these definitions,
our problem can be simply stated as finding α such that

hα(z) ≤ f (z), ∀z ∈ Z .

Note that in the literature, usually Z ⊆ R; however, in our set, Z ⊆ R × {0, 1}G , and
the elements in Z will have a continuous component z and a binary vector component
v ∈ {0, 1}G . In this sense, our lifting is multidimensional. Also, since at every step N
will have two variables, we will be doing simultaneous lifting.

To apply these ideas iteratively, in this section, we re-write (3) as

∑

i∈C
γ j x j +

∑

j∈CU

m j

Γ

(
y j − x j

) ≤ γ (C) − 1, (4)

where γ j = min{1,
ξ j
Γ

}. As noted before, given a generalized flow cover C,CU in XG

satisfying |C ∩ {k : k ∈ Mg}| ≤ 1,∀g ∈ G; (4) is valid for XG and, if m(C+
U ) > Γ ,

whereC+
U = {k ∈ CU : ak+mk > Γ }, (4) is a facet-defining inequality for XG∩{xi =
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0,∀i /∈ C}. Following Gu et al. [11], we consider the problem of sequentially lifting
pairs of variables (xk, yk), k /∈ C to obtain

∑

i∈C
γ j x j +

∑

j∈CU

m j

Γ

(
y j − x j

) +
∑

k /∈C
(αk xk + βk yk) ≤ γ (C) − 1. (5)

For simplicity we index pairs {ki }n−|C|
i=1 = {(gi , ji )}n−|C|

i=1 = M\C and assume that the
first i −1 pairs of variables have been lifted. With this, the i-th lifting function reduces
to

hki (z, v) = max αki xki + βki yki
s.t. aki xki + mki yki = z

xki = vgi

0 ≤ yki ≤ xki
xki ∈ {0, 1}, (6)

and fki (z, v) reduces to

fki (z, v) = min
∑

i∈C
γ j

(
1 − x j

) −
∑

j∈CU

m j

Γ

(
y j − x j

)

−
∑

k∈Ki

(αk xk + βk yk) − 1

s.t.
∑

k∈C∪Ki

(akxk + mk yk) ≤ b − z

∑

k∈Mg(C∪Ki )

xk ≤ 1 − vg, ∀g ∈ G

0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C ∪ Ki , (7)

where Ki = {k1, . . . , ki−1}, z ∈ [0, b], and v has the dimension of the right-hand
sides of XG for GUB constraints; and define vg′ = δg′,gi for g ∈ G; where δa,b = 1
if a = b, and zero otherwise, i.e., v = egi . Our objective is to find αki , βki that
ensure that hki (z, uv) ≤ fki (z, uv) for all (z, u) ∈ {(0, 0)} ∪ {([aki , aki + mki ], 1)}
and v = egi . This implies that we are not interested in hki , fki for all possible (z, v) ∈
R × {0, 1}G∪M , but only in the true domain of feasible points of XG .

Although the lifting is multidimensional, there are only two degrees of freedom at
each step in the functions, namely z and u ∈ {0, 1}. The analysis of hki is easy because
for the case where mki > 0 the optimal value of hki (z, v) is

hki (z, v) =
{

0 u = 0, z = 0
α̃ + β̃z u = 1, aki ≤ z ≤ aki + mki

where α̃ = αki − aki
mki

βki and β̃ = 1
mki

βki .
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For the case where mki = 0, the optimal value of the function is

hki (z, v) =
{

0 u = 0, z = 0
α̃ u = 1, z = aki

where α̃ = αki and β̃ = βki = 0. We call α̃ and β̃ normalized lifting coefficients.
To study fki , we start with a simple case in the following proposition:

Proposition 2 Let D = {(g, j) ∈ M\C : ∃(g, j ′) ∈ C, ξg j ′ ≥ Γ, agj + mgj ≤
ξg j ′ − Γ }. Then, for all k ∈ D, the maximal lifting coefficients (αk, βk) are (0, 0).

Proof Since fki ≤ fki+1 ; we obtain the best possible lifting coefficients for these
variables when we lift them first. We will prove that even in this best case these coef-
ficients are zero. So, we assume that the first elements to lift from the seed inequality
are from D. Let k be an element in D. It is known that fk(z, v) ≥ 0 is a monotonic,
non-decreasing function, and that f (0, 0) = 0. This implies that it is enough to find
a feasible point for z = ak + mk with an objective value equal to zero to prove
our result. Let ko ∈ C satisfying ξko > Γ and ak + mk ≤ ξko − Γ . Then, setting
(x, y) = (1C − eko , 1C − eko), we obtain fk(z, v) ≤ 0 for z ∈ [ak, ak +mk], v = egk .

	

Note that Theorem 1 ensures that there is nothing to be gained from lifting x and/or

y in C ; whereas Proposition 2 ensures the same for variables in D. The following
proposition will allow us to assume that it is enough to consider the case when D = ∅
and where m(CL) = 0, where CL := C\CU .

Proposition 3 If k ∈ M\(C ∪ D), then for every optimal solution of the problem
fk(z, v), it is always possible to find an optimal solution x∗, y∗ satisfying y∗

k = 0 for
k ∈ CL and x∗

k = y∗
k = 0 for k ∈ D.

Proof Let y∗, x∗ be an optimal solution to fk(z, v). Note that if x∗, y∗ is valid for (7),
then for any j ∈ M , changing any x∗

j , y
∗
j to zero maintain feasibility. Thus, we only

need to prove that by making this change for j ∈ D and y∗
j , j ∈ CL , the objective

function will not deteriorate.
For j ∈ D, the optimal lifting coefficients (α j , β j ) = (0, 0). Then, any valid

lifting coefficient pairs α j x∗
j + β j y∗

j ≤ 0. Replacing x∗
j , y

∗
j with (0, 0) will then not

deteriorate the objective function; thus proving that there exists an optimal solution
with these variables set to zero.

For j ∈ CL the argument is similar: if k = 1, note that the objective function has
a zero coefficient for y j , from where β j ≤ 0. Using the fact that the lifting functions
will be decreasing and that the coefficients in the objective function accompanying
y j , for all j ∈ CL , are non-positive; we conclude that we can always find an optimal
solution with y∗

j = 0 for j ∈ CL . 	

These two propositions allow us to work with the assumption that D = ∅ and

that m(CL) = 0. This is because Proposition 2 ensures that the best possible lifting
coefficients are zero; while Proposition 3 ensures that, if D �= ∅, there exists an optimal
solution for fki with xi , yi = 0 for all i ∈ D.
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3.2 A lower bound for lifting functions

Given v ∈ {0, 1}G , and defining Cv = {(g, j) ∈ C : vg = 1}, we can re-write the first
lifting function f (z1, v) as

f1(z, v) = γ (C) − 1 − max
∑

k∈C\Cv

(
γk xk + mk

Γ
(yk − xk)

)

s.t.
∑

k∈C\Cv

(ξk xk + mk(yk − xk)) ≤ b − z

0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C\Cv. (8)

In general, f1(z, v) is a complex function, and a simpler functional form f̃ is needed
satisfying f̃ ≤ f1. We propose the following relaxation of f1: first note that b =
ξ(C) − Γ ; replace x by 1 − x and y by x − y; and we obtain the following equivalent
form for f1:

f1(z, v) = γ (Cv) − 1 + min
∑

k∈C\Cv

(
γk xk + mk

Γ
yk

)

s.t.
∑

k∈C\Cv

(ξk xk + mk yk) ≥ z + Γ − ξ(Cv)

0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C\Cv.

Now we define C+ = {k ∈ C : ξk > Γ }, s = ∑
k∈(C\C+)\Cv

(ξk xk + mk yk) +
∑

k∈C+\Cv
mk yk , discard the inequality yk ≤ xk and the integrality condition of xk

for k ∈ (
C\C+) \Cv to obtain the following relaxation:

f̃ (z, v) = γ (Cv) − 1 + min
∑

k∈C+\Cv

xk + s

Γ

s.t.
∑

k∈C+\Cv

ξk xk + s ≥ z + Γ − ξ(Cv)

0 ≤ s, xk ∈ {0, 1}, ∀k ∈ C+\Cv. (9)

Note that, under mild conditions,1 f1(z, v) is equivalent to f̃ .
Now, we will prove that f̃ has a closed form, and then we will prove that it is also

superadditive in an appropriated domain.

Proposition 4 By renaming C+\Cv = {1, . . . , rv} while ensuring that ξvh ≥ ξvh+1,
defining �v

h = ξ(Cv) + ∑
i<h ξvi , and defining H(z) = 0 if z ≤ 0 and H(z) = 1 if

z > 0, we have

f̃ (z, v) = γ (Cv) − 1 + s∗

Γ
+

rv∑

h=1

H
(
z − s∗ − �v

h + Γ
)
, (10)

1 A sufficient condition is that mk ≥ Γ for the two smallest ξk coefficients in C .
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where

s∗ =
(
z − �v

rv+1
+ Γ

)
H

(
z − �v

rv+1
+ Γ

)

+
rv∑

h=1

(
z − �v

h

) (
H(z − �v

h) − H(Γ + �v
h − z)

)
.

Moreover, the optimal solution for x is given by x∗
h = H(z − s∗ − �v

h + Γ ),

∀h = 1, . . . , rv .

Proof Using the definition of f̃ (z, v) given in (9), if we consider z ≥ �v
rv+1 − Γ ;

the solution of the continuous relaxation is also integer-feasible (with x∗
i = 1 for all

i ∈ C+\Cv); from where we have that s∗ = z − �v
rv+1 + Γ and z − s∗ − �v

h + Γ =
�v

rv+1 − �v
h > 0; thus proving our result for this case.

If we now consider z < �v
rv+1 −Γ and restrict ourselves to solutions where s = 0;

the resulting problem has an optimal solution given by

xh = H(z + Γ − �v
i ), ∀h = 1, . . . , rv,

whence (10) is directly obtained.
To compute f̃ (z, v), consider first a simpler optimization problem:

q(z) = min
s≥0

{
g(z, s) := s

b
+ aH(z − s)

}
≥ 0.

Note that if s ≥ ab, then g(z, s) ≥ g(z, 0) = aH(z), thus proving that we can restrict
ourselves to s ∈ [0, ab]. We now compute q(z) by identifying three cases:

Case 1 If z ≤ 0, we have

s

b
+ aH(z − s)

∣
∣
∣
s=0

= 0 <
s

b
+ aH(z − s)

∣
∣
∣
0<s≤ba

⇒ q(z) = 0, s∗ = 0

Case 2 If z > ba, we have

s

b
+ aH(z − s)

∣
∣
∣
s=0

= a <
s

b
+ aH(z − s)

∣
∣
∣
0<s≤ba

⇒ q(z) = a, s∗ = 0

because z − s > 0.

Case 3 If 0 < z ≤ ba, we can select s∗ = z and we have

s

b
+ aH(z − s)

∣
∣
∣
s=0

= a ≥ s

b
+ aH(z − s)

∣
∣
∣
s=s∗

⇒ q(z) = z

b
, s∗ = z.

We can now write

f̃ (z, v) = γ (Cv) − 1 + min
s≥0

{
s

Γ
+

rv∑

h=1

H
(
z − s − �v

h + Γ
)
}

, (11)
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Note that

f̃ (z, v) ≥ γ (Cv) − 1 + rv
min
h=1

{

min
s≥0

{ s

Γ
+ H(z − s − �v

h + Γ )
}}

. (12)

Using the optimal solution and values computed for q(z); we see that the optimal
solution {s∗

h }rvh=1 for the lower bound (12) is either the all-zero vector, or it is the
case that exactly one component, say h∗, is non-zero and is in the range ]0, Γ ]. In
the first case, setting s = 0 in (11), we attain the lower bound, and thus solve the
problem. In the second case, we have 0 ≤ s∗ = z − �v

h∗ ≤ Γ . Since ξh > Γ , for
h �= h∗, H(z − �v

h + Γ ) = H(z − s∗
h∗ − �v

h + Γ ), thus proving that setting s = s∗
h

in (11) is a feasible solution that attains the lower bound. 	


Theorem 2 The function f̃ (z, v) is superadditive for (z, v) ∈ [0,+∞) × {0, 1}G.

Proof Note that f̃ (z, 0) is exactly the superadditive function defined in [10]. Namely,

f̃ (z, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 z ≤ −Γ

(z − �i ) /Γ + i − 1 �i − Γ ≤ z ≤ �i , ∀i = 1, . . . , r − 1
i − 1 �i ≤ z ≤ �i+1 − Γ, ∀i = 1, . . . , r
(z − �r ) /Γ + r − 1 �r − Γ ≤ z ≤ b

We propose a different proof for this more general case.
We start with f̃ (z1, 0) + f̃ (z2, 0) ≤ f̃ (z1 + z2, 0):
Let {xoh }rvh=1, s

o be the optimal solution of f̃ (z1 +z2, 0), defined as in Proposition 4,
and {x1

h}rvh=1, s
1 be the optimal solution of f̃ (z1, 0). By construction, xo ≥ x1, and

assume that h∗
o, h

∗
1 ∈ {0, . . . , rv} are the last active elements in xo, x1 respectively.

We prove this by analyzing two cases:

Case a ξ · x1 + s1 = Γ + z1:

Define x2
h = xoh+h∗

1
for h ≤ h∗

o − h∗
1, x

2
h = 0 for h > h∗

o − h∗
1 and 0 ≤ s2 =

Γ + so − s1. By construction and Proposition 4, we have f̃ (z1 + z2, 0) = f̃ (z1, 0) +
I · x2 + s2/Γ −1, where I is the vector of all ones of the appropriate dimension. Thus,
it is enough to prove that (x2, s2) is feasible for (9). However, by hypothesis, we have
Γ + z2 ≤ ξ(xo − x1) + (so − s1) + Γ ≤ ξ x2 + s2, thus proving our result.

Case b ξ · x1 + s1 > Γ + z1:

In this case, by optimality, s1 = 0 and ξ x1 = �0
h∗

1+1. Define x2
h = xoh+h∗

1−1 for

h ≤ 1 + h∗
o − h∗

1, x
2
h = 0 for h ≥ 2 + h∗

o − h∗
1 and s2 = so. By construction, we

have f̃ (z1 + z2, 0) = f̃ (z1, 0) + I · x2 + s2/Γ − 1. Thus, is enough to prove that
(x2, s2) is feasible for (9). However by hypothesis, we have z1 ≥ �0

h∗
1
− Γ , whence

Γ + z2 ≤ ξ xo + so − z1 ≤ ξ(xo − x1)+ ξh∗
1
+ s2 ≤ ξ x2 + s2, thus proving our result.

This concludes Case 1.
The cases f̃ (z1 + z2, ei ) and f̃ (z1 + z2, ei + e j ) are analogous. 	
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Corollary 1 If, for each pair of variables (xk, yk), where k = (g, j), we choose
lifting coefficients (αk, βk) such that hk(z, u) ≤ f̃ (z, ueg) for (z, u) ∈ {([ak, ak +
mk], 1), (0, 0)}; then the lifting process is sequence-independent.

Proof We only need to prove validity at any intermediate step r , and call Lr the set
of variables (not in C) lifted at step r . That is, we need to prove that

max
∑

k∈C

(
γk xk + mk

Γ
(yk − xk)

)
+

r∑

k∈Lr
(αr xr + βr yr )

s.t.
∑

k∈C∪Lr

(
ξ j x j + m j

(
y j − x j

)) ≤ b
∑

k∈Mr
g

xk ≤ 1 ∀g ∈ G

0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C ∪ Lr ,

(13)

where Mr
g = {(g′, j) ∈ C ∪ Lr : g′ = g} is less than or equal to γ (C) − 1. Note

that by hypothesis, αk xk + βk yk = h(ξk xk + mk(yk − xk), xk) ≤ f̃ (ξk xk + mk(yk −
xk), xkeg(k)),∀k ∈ Lr . Using this, Eq. (13) can be re-written as

max
∑

k∈C

(
γk xk + mk

Γ
(yk − xk)

)

+
r∑

k∈Lr
f̃ (ξk xk + mk(yk − xk), xkg(k))

s.t.
∑

k∈C∪Lr

(
ξ j x j + m j

(
y j − x j

)) ≤ b

∑

k∈Mr
g

xk ≤ 1 ∀g ∈ G

0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C ∪ Lr ,

(14)

where g((g′, j ′)) = g′ for k = (g′ j ′). By defining zg =∑
k∈Lr (ξk xk + mk (yk − xk)) ,

δg = ∑
k∈Lr∩Mg

xk , and Mg = {(g′, j ′) ∈ M : g′ = g}, we bound (14) above by the
following expression:

max
∑

k∈C

(
γk xk + mk

Γ
(yk − xk)

)

+
r∑

g∈G
f̃
(
zg, δgeg

)

s.t.
∑

k∈C

(
ξ j x j + m j

(
y j − x j

)) +
∑

g∈G
zg ≤ b

∑

k∈Mg∩C
xk ≤ 1 − δg ∀g ∈ G

0 ≤ zg ≤ bδg, δg ∈ {0, 1} ∀g ∈ G
0 ≤ yk ≤ xk, xk ∈ {0, 1} ∀k ∈ C.

(15)
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Note that by the definition of C , we have |C ∩ Mg| ∈ {0, 1},∀g ∈ G. We set Go =
{g ∈ G : |C ∩ Mg| = 0}, define zo = ∑

g∈Go zg , and identify C with G\Go. With
this, Eq. (15) is equivalent to

max
∑

g∈G\Go

(
γgxg + mg

(
yg − xg

))

+ f̃ (zo, 0) + f̃ (zg, δgeg)

s.t. zo +
∑

g∈G\Go

(
ξgxg + mg

(
yg − xg

)) + zg ≤ b

xg ≤ 1 − δg ∀g ∈ G\Go

0 ≤ zg ≤ bδg, δg ∈ {0, 1} ∀g ∈ G\Go

0 ≤ yg ≤ xg, xg ∈ {0, 1} ∀g ∈ G\Go

0 ≤ zo ≤ b.

(16)

Using that δ ∈ {0, 1}G\Go
and the definition of f̃ (z, δ); we can bound (16) as

max γ (δ) − 1 − f̃ (
∑

g∈{o}∪G\Go

zg, δ)

+ f̃ (zo, 0) +
∑

g∈G\Go

f̃ (zg, δg)

s.t.
∑

g∈{o}∪G\Go

zg ≤ b

0 ≤ zg ≤ bδg, δg ∈ {0, 1} ∀g ∈ {o} ∪ G\Go.

(17)

Finally, by using the superadditivity of f̃ , we bound (17) by

max
{
γ (δ) − 1 : δ ∈ {0, 1}G\Go

}
= Γ (C) − 1. (18)

which proves our result. 	


3.3 Algorithmic separation

The foregoing results show that we can use f̃ (z, v) to find valid lifting coefficients for
GFC inequalities for SCKPGUB; and thus obtain strong inequalities for XG .

In this subsection we deal with the separation problem of such lifted inequalities.
More precisely, given x∗ as a fractional solution in the linear programming (LP)
relaxation of (1), we try to find a violated lifted constraint. We address this problem
in two stages: we first show how to lift a candidate inequality, and then propose a
heuristic to identify a candidate seed inequality. Finally, we only keep strictly violated
inequalities.

3.3.1 Lifting GUB-constrained flow cover inequalities

It is important to note that for each pair of lifted variables yk, xk, k ∈ M\C ; there
are several maximal pairs of coefficients αk, βk satisfying hk(z, xk) ≤ f̃ (z, xkeg(k)).

123



68 A. Angulo et al.

Algorithm 1 Finding the lower envelope of f̃ (·, v)
Require: Breakpoints of f̃ (·, v) and B = {zi }mi=1 where zi ≤ zi+1 and |B| ≥ 2. Interval [a, b], actual

range for z (we assume z1 ≤ a ≤ b ≤ zn ).
Ensure: H = {α̃ j , β̃ j }, pairs of (normalized) maximal lifting coefficients.
1: B[a,b] ← {a} ∪ {zi ∈ B : a < zi < b} ∪ {b} (ordered set)
2: n ← |B[a,b]|, H ← ∅, kl ← 1, kr ←− 2
3: if n = 1 then
4: H ← {( f̃ (a, v), 0)}
5: return H
6: else
7: loop
8: zl ← B[a,b][kl ], fl ← f̃ (zl , v), zr ← B[a,b][kr ], fr ← f̃ (zr , v)

9: β̃ ← fr− fl
zr−zl

,α̃ ← fl − β̃zl
10: if kr + 1 ≤ n then
11: z2r ← B[a,b][kr + 1], f2r ← f̃ (z2r , v)

12: if α̃ + β̃z2r ≤ f2r then
13: kl ← kr , kr ← kr + 1, H ← H ∪ {(α̃, β̃)}
14: else
15: kr ← kr + 1
16: else
17: H ← H ∪ {(α̃, β̃)}
18: return H

This implies that the number of possible lifted inequalities derived by this method can
be exponential. Fortunately, Algorithm 1 provides a complete description of all pairs
of maximal lifting coefficients; and its complexity is O(|C |). Moreover, we perform
this process once, before performing any lifting step. Figure 1 shows an example for
f̃ (z, v) and its lower envelope (for a given range [a, b]), which also shows how some
key variables of the algorithm change from iteration to iteration.

It follows that a proper method to choose the (set of) inequalities to be used is crucial
and it should depend on the fractional values of the current fractional point x∗, y∗. If we
want to maximize the resulting violation of the lifted inequality, a possible criterion is
to choose (α∗, β∗) ∈ argmax{x∗

kα+ y∗
k β : (α, β) ∈ H}, whereH is the set of maximal

lifting coefficients. In our implementation, we choose α∗, β∗ as defined before, as long
as x∗

kα
∗ + y∗

kβ
∗ > 0; otherwise, we take (α∗, β∗) ∈ argmax{α + β : (α, β) ∈ H}.

3.3.2 Finding generalized flow cover inequalities in proper faces of XG

Finding maximally violated cover inequalities is already NP-hard [10]. Although it
is possible to formulate the separation problem of generalized flow cover inequalities
as an IP; we propose a simple heuristic described in Algorithm 2, this heuristic is a
simple extension of other classical heuristics [11] to find maximally violated cover
inequalities.

In this heuristic, for each GUB constraint g ∈ G, we compute the net contribution
of the current fractional solution x∗, y∗ to the knapsack constraint a · x∗ +m · y∗ ≤ b.
We call this net contribution zg . If the current GUB constraint is inactive (zg = 0) we
discard it from C . Otherwise, we identify the segment (called k̄g ∈ Mg), whose
boundary is closest to zg , and add it to C . If the closest boundary is the upper
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z

f̃(z, v)

z1 z2 z3 z4 z5 z6 z7

1

2

3

a b

α̃1 + β̃1z

α̃2 + β̃2z

α̃3 + β̃3z

B[a,b] ←{a z3 z4 z5 z6 b}
It {kl,kr} H
0 { a,z3} ∅
1 { a,z4} {(α̃1, β̃1)}
2 {z4,z5} {(α̃1, β̃1)}
3 {z4,z6} {(α̃1, β̃1), (α̃2, β̃2)}
4 {z6,b } {(α̃1, β̃1), (α̃2, β̃2), (α̃3, β̃3)}

Fig. 1 Example f̃ (z, v), and a lower envelope for given a, b

limit of the segment we also add that segment to CU . This process can be seen
as a greedy construction heuristic. The final step is a local search procedure [1]
whose objective is to maximize the likelihood that the resulting inequality will be
violated. In our implementation 1-OPT evaluate whether adding or deleting any ele-
ment from C and/or CU improves the value of

∑
k∈C γk(x∗

k − 1) while maintaining
the condition that (C,CU ) is a GFC. If so, we perform the change; otherwise we
evaluate the next element. We repeat this process until no further improvements are
found.

Algorithm 2 Heuristic to find a GFC
Require: Fractional point (x∗, y∗).
Ensure: (C,CU ), generalized flow cover.
1: C ← ∅,CU ← ∅
2: for g = 1 to G do
3: z∗g ← ∑

k∈Mg

(
ak x

∗
k + mk y

∗
k

)

4: if z∗g > 0 then

5: Select k̄g from argmin{k ∈ Mg : min{(ak − z∗g)+, (z∗g − ak − mk )+}}
6: C ← C ∪ {k̄g}
7: if |z∗g − ak̄g | > |z∗g − ak̄g − mk̄g

| then
8: CU ← CU ∪ {k̄g}
9: Apply 1-OPT trying to maximize

∑
k∈C γk

(
x∗
k − 1

)

10: return (C,CU )
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4 Numerical experiments

In this section we provide partial evidence on the effect of using the resulting set
of lifted inequalities. We test the effect of using only the seed inequality and other
simple heuristic methods. We also show the effect of the heuristic separation of the
seed inequality. For this, we first describe a wide range of instances; then the set of
experiments; and also an analysis of closed gap2 with respect to the size of the problem.

4.1 Instances

To evaluate the performance of the inequalities presented in this paper, we consider
a set of 3000 random instances inspired by the unit commitment problem. We also
assume that the GUB structure and semi-continuous variables are already identified.
In these instances, |G| ∈ {5, 10, 20, 40, 80} and the number of elements in each
GUB constraint were randomly chosen as |Mg| ∼ {U[2, 8],U[7, 13],U[17, 23]}.
a j ∼ U[10, 150],m j ∼ U[20, 300],∀ j ∈ M, b ∼ U[0.25, 0.95]bmax, where bmax =
is the maximum value of the left-hand side of the knapsack constraint. We chose the
cost coefficients as cxk ∼ 2500ak − U[370, 1000] − U[15, 50]ak, cyk ∼ 2500mk −
U[15, 50]mk,∀k ∈ M ; which represent typical cost functions in unit commitment
instances. To evaluate the effect of having mk = 0; half of the instances contain GUB
constraints where mk = 0 for 40 % of the elements in each GUB constraint.

4.2 Quality measures

We use performance profiles (see [7]) on two quality measures: closed root gap (CG)
and closed relative gap (CRG), which we define as

CG = 100 × zLPn − zLPo
zMIP − zLPo

, CRG = 100 × zLPn
zMIP

,

where zMIP is the optimal objective value of the mixed integer problem; zLPo is the
optimal objective value of the original linear relaxation; and zLPn is that of the final
LP relaxation. Note that for all our instances, zLPo < zMIP, and zMIP > 0. Thus, when
computing CG, we never divide by zero. CRG is an approximation of the reported gap
when using any commercial mixed-integer programming (MIP) solver (which might
be more relevant for practitioners). CG is the actual improvement in the lower bound
due to the given method (which is a proxy for the extent to which we improve the
polyhedral representation of the given set for the given objective function).

We do not report running times because the separation process is quick in all
instances and the number of calls of the separation heuristic is always less than fourteen.
We do not evaluate branch and bound performance because our instances are exactly
those of a single XG problem and are always easy to solve; whereas unit commitment

2 i.e. the gap between the linear programming optimal value (with cuts and without the cuts) and the integer
programming optimal solution value.
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problems can have between 24 and 336 sub-structures of this sort in addition to other
side constraints. This is why we chose to leave this study for a future work.

4.3 The experiments

4.3.1 The general cutting scheme

In each case, we apply the cutting scheme described in Algorithm 3.

Algorithm 3 General cutting scheme

Require: LP0, initial LP relaxation of XG .
Ensure: Z , cut generation scheme optimal values.
1: k ← 0, Z ← ∅
2: loop
3: Solve current relaxation LPk .
4: Obtain optimal value z∗k and candidate solution (x∗

k , y∗
k ).

5: Z ← Z ∪ {z∗k }
6: if x∗

k ∈ {0, 1}M then
7: return Z
8: From (x∗

k , y∗
k ) and using Algorithm 2, find base GFC inequality satisfying Γ ≥ 0.1 (it must be not

violated).
9: Lift seed inequality, as expressed in (5), while maximizing resulting violation vk .
10: if Γ vk ≥ 0.1 then
11: k ← k + 1
12: Add lifted seed inequality to LPk .
13: else
14: return Z

This scheme can be seen as a basic cutting loop at the root node. We will evaluate
the following variations of this scheme:

IP: Separation of GFC seed inequality by solving an integer program that maxi-
mizes the violation of the resulting GFC inequality (if any) without lifting.
IP+Lift: The same as before, except that we lift the resulting inequality as described
in (5).
Heu: We execute Algorithm 2 without performing step 9 and use the resulting
inequality (i.e., no lifting step is carried out).
Heu+1-opt: We execute Algorithm 2 and use the resulting inequality (i.e., no
lifting step is performed).
Heu+1-opt+Lift: We execute Algorithm 3.
Heu+Lift: We execute Algorithm 2 without performing step 9 and lift the resulting
inequality as described in (5).

4.3.2 Effectiveness of the separation heuristic

Figure 2a, b shows the performance profiles of CG and for CRG in 600 instances with
five GUB constraints where we can solve the IP-separation of the base GFC inequality.
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Fig. 2 Top CG performance profile; bottom CRG performance profile; for instances with |G| = 5

Figure 3a, b shows the performance profiles of CG and CRG for all 3000 instances.3

Table 1 lists a summary of these results.
From these results it is clear that measured by either CRG or CG, Heu+1-opt per-

forms very close to the IP separation of the base heuristic on the set of small instances
while maintaining its edge over the basic heuristic for all instances. This, In addition

3 For Figs. 2a, and 3b each point (x, y) of the plotted curves means that for the worst x% of the instances,
the given method closes at most y% of absolute root integrality gap (left). For Figs. 2 and 3 each point
Footnote 3 continued
(x, y) of the plotted curves means that for the worst x% of the instances, the given method concludes with
a lower bound of y% or less of the actual integer optimal solution value (right).
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Fig. 3 Top CG performance profile; bottom CRG performance profile; for all instances

to the excessive running time cost of an exact separation routine, justifies the use of
the proposed method for evaluation purposes; however, any practical implementation
should address this matter in much greater detail.

4.3.3 Robustness of the results

The robustness of the results given the size of the instances is an important considera-
tion. For this, we categorize our instances according to the number of GUB constraints
(|G|) and the number of elements in each GUB constraint (|Mg|), and calculate the
average CG and CRG for Heu+1-opt+Lift. Figure 4 is a graphical representation of
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Table 1 Summary results of experiments of the average CG, CRG, and number of cuts, for small and all
instances for all algorithm variations

Average CG Average CRG Average Ncuts

All |G| = 5 All |G| = 5 All |G| = 5

−Lift +Lift −Lift +Lift −Lift +Lift −Lift +Lift −Lift +Lift −Lift +Lift

Heu 15.81 29.63 21.70 35.70 95.01 95.53 82.78 84.56 0.31 1.31 0.31 1.16

Heu+1opt 39.47 57.70 53.73 73.46 96.58 97.70 88.38 92.36 1.64 2.08 1.81 2.14

IP – – 55.81 74.13 – – 89.13 93.11 – – 3.17 3.36

|Mg
| =

5

|Mg
| =

10

|Mg
| =

20

82.0%

68.1%

60.5%

52.1%

44.5%

73.3%

64.4%

54.8%

51.2%

44.2%

65.6%

61.8%

57.1%

51.5%

35.9%

|G| = 5

|G| = 10

|G| = 20

|G| = 40

|G| = 80

|Mg
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|Mg
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10

|Mg
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95.6%

98.3%

99.3%

99.7%

99.9%

93.6%

97.6%

99.2%

99.7%

99.9%

87.9%

96.4%

98.9%

99.7%

99.9%

|G| = 5

|G| = 10

|G| = 20

|G| = 40

|G| = 80

Fig. 4 Left average CG for categorized instances; right average CRG for categorized instances

the variation in the average CR and CRG values given these two criteria. Although
we expected that CG performance deteriorates as we increase the number of GUB
constraints and the number of elements in each GUB; it is surprising that this ten-
dency is reversed for CRG. This might be due to the special cost structure used in
these instances. However, if this result holds at a larger scale as well, the fact that the
final relative integrality gap decreases can be beneficial.

4.3.4 The effect of lifting

As noted in Sect. 3, our seed inequality is already valid for XG . From this, a natural
question is how much do we gain by performing the lifting process? Table 1 clearly
represents this aspect. If we measure CG, the effect is a 15–20 % larger closed root
gap, and 0.5–4 % more CRG. Moreover, in all variations of our cutting scheme where
lifting was carried out, there were only two instances where we could not find a cut.
For variations without lifting, we could not find cuts for 2167 instances using Heu and
174 instances when using Heu+1-opt. This shows a strong lifting effect.

4.3.5 Number of added cuts

A common problem with cutting schemes is that they may require too many cutting
rounds to achieve the desired quality. Surprisingly, in our experiments, we added an
average of 2.14 cuts to all instances; in 92.2 % of instances, we added up to three cuts;
for 99.33 % of instances, we added up to six cuts. In the worst case, we added 14 cuts.
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5 Final comments

In this paper, we studied sequence-independent multidimensional lifting of generalized
flow cover inequalities to obtain strong inequalities for the so-called semi-continuous
knapsack problem with GUB constraints. We also proved that under mild assump-
tions, the starting inequality is facet-defining on a face of our polyhedron. Moreover,
with simple assumptions, we showed that the sequence-independent lifting function is
indeed the optimal (maximal) lifting function which, together with the previous result,
enabled us to obtain high-dimensional facets. Unlike one-dimensional lifting, in our
setting, the superadditive lifting function defines a large class of valid inequalities.
This introduces the problem of selecting the inequality to be added. In our study, we
chose the inequality to be added by maximizing the resulting violation. We used a
set of 3000 randomly generated instances of different sizes to conduct our experi-
ments. These experiments show that although the separation problem is NP-hard,
using simple heuristics and superadditive lifting function, it is possible to close, on
average, 57.70 % of the root integrality gap and 97.70 % of the relative gap.

There remain several open issues, some of them are:

– Can we take advantage of GUB-partitioned binary variables in other polyhedral
sets to find tight valid inequalities?

– In our setting, can we extend our analysis to the case where ak might be negative?
– Is it possible to efficiently detect the basic GUB and the semi-continuous structure

in general problems?
– Even if we are given the GUB constraints; can we use the proposed methodology

in general problems?
– Other relevant questions relate to the selection of the seed inequality, and whether

we should simultaneously use several seed inequalities that can better complement
each other when we add them to the current LP relaxation.

– Can we prove that some class of seed inequalities are always dominated by others?
– More precisely, should we take only a minimal GFC, or is it better to add small

elements to the cover?
– Are our results too specific for instances derived from the unit commitment prob-

lem?

We think that all these questions are relevant to the practical use of the proposed
inequalities, and we hope to tackle them in the near future.

Acknowledgments We thank the reviewers for their thorough review and highly appreciate the comments
and suggestions, which significantly contributed to improving the quality of the publication.

Appendix: Extended proofs

Proof of Proposition 1

1. ∀ j ∈ M , define e j as the index vector of dimension n with a unique one in position
j . Let 0n be the zero vector of size n. Let a be the maximum contribution of any
binary variable to the knapsack constraint, i.e. a = max j∈M a j and 0 < ε < b−a.
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Then, ∀k ∈ M , construct pk = (ek, 0n) and qk = (ek, εek). Define s = (0n, 0n).
The points pk, qk for k ∈ M , and s belong to XG because of Eq. (1) and ā < b.
These points are affinely independent because ∀k ∈ M, pk − s (n points) and
qk− s (n points) are linearly independent. Since we have described 2n+1 affinely
independent points in XG ; we have shown that XG is full-dimensional. 	


2. To prove that yk ≥ 0 is facet-defining, we use the same definitions as before,
but eliminate element qk from the set of valid points. Since we have described
2n affinely independent points in XG satisfying these inequalities at equality; we
have shown that these inequalities are facet-defining. 	


3. To prove that yk ≤ xk is facet-defining; we use the same definitions as in Propo-
sition 1, but eliminate element pk from the set of valid points and redefine q j as
(e j , e j ) for all j ∈ M . Again, since we have described 2n affinely independent
points in XG and these points satisfy our inequality at equality; we have shown
that these inequalities are facet-defining. 	


4. Note that ag is the maximum contribution to the knapsack constraint when we
choose any binary variable and the minimum contribution in Mg at the same time.
This allows us to prove that for each g ∈ G,

∑
k∈Mg

xk ≤ 1 is facet-defining, by

constructing the points pk and qk , for each k ∈ M as follows:

pk =
{

(ek + eko, 0n) ∀k /∈ Mg

(ek, 0n) ∀k ∈ Mg

and

qk =
{

(ek + eko, εek) ∀k /∈ Mg

(ek, εek) ∀k ∈ Mg,

where ko ∈ argmink∈Mg
{ak} and 0 < ε < b − ag . Since we have described

2n affinely independent points in XG and these points satisfy the inequality at
equality; we have shown that these inequalities are facet-defining. 	


Proof of Theorem 1

The validity of inequality (3) was shown by Van Roy and Wolsey [21]. We prove that (3)
is facet-defining for Xo := X ∩ {xi = 0, i /∈ C} by constructing a set of 2s affinely
independent points in Xo satisfying it at equality, where s = |C |. For this, define
CL = C\CU ,C+

k = { j ∈ Ck : ξ j > Γ }, and C̄+
k = Ck\C+

k for k = L ,U , and recall
that Γ = ξ(C) − b > 0 and our hypothesis is m(C+

U ) > Γ . Let to ∈ argmin j∈C+
U
{ξ j }

and assume that 1
0 = ∞. Note that C+

U �= ∅, and thus to exists. Let e j be the index
vector of dimension s with a unique one in position j , for all j ∈ C . Let 0s be the zero
vector of size s, 1s be the one vector of size s, 1u+ := ∑

j∈C+
U
e j , 1ū+ := ∑

j∈C̄+
U
e j ,

and 1u = 1u+ + 1ū+ . Then, construct p j as

p j =

⎧
⎪⎪⎨

⎪⎪⎩

(1s − e j , 1u) if j ∈ C+
L

(1s − e j , 1u − yoj1u+) if j ∈ C̄+
L

(1s − e j , 1u − e j ) if j ∈ C+
U

(1s − e j , 1u − e j − yoj1u+) if j ∈ C̄+
U
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where yoj = Γ −ξ j

m(C+
U )

. Now, construct q j as

q j =
⎧
⎨

⎩

pto + (0s, δe j ) if j ∈ CL

(1s, 1u − y+ε1u+ + ε j e j ) if j ∈ C+
U

(1s, 1u − y−ε1u+ − ε j e j ) if j ∈ C̄+
U

where

0 < δ < min

{

1, min
j∈CL

{
ξto − Γ

m j

}}

,

0 < ε < min
j∈CU

{m j } min{Γ,m(C+
U ) − Γ }/m(C+

U ),

y±ε = Γ ±ε

m(C+
U )

, and ε j = ε
m j

for j ∈ CU . Given the above definitions, it is easy to

prove that points p j and q j belong to Xo. Therefore, it is only necessary to evaluate
the knapsack constraint of Eq. (1). Verifying the validity of the other constraints is
straightforward. Let LHSKN be the left-hand side of the knapsack constraint of Eq. (1).

Case 1 p j with j ∈ C+
L

LHSKN = ξ(C) − a j = b + Γ − a j < b

Case 2 p j with j ∈ C̄+
L

LHSKN = ξ(C) − a j − yojm(C+
U ) = b + Γ − a j − Γ − a j

m(C+
U )

m(C+
U ) = b

Case 3 p j with j ∈ C+
U

LHSKN = ξ(C) − ξ j = b + Γ − ξ j < b

Case 4 p j with j ∈ C̄+
U

LHSKN = ξ(C) − ξ j − yojm(C+
U ) = b + Γ − ξ j − Γ − ξ j

m(C+
U )

m(C+
U ) = b

Case 5 q j with j ∈ CL

LHSKN =ξ(C) − ξto + δm j = b + Γ − ξto + δm j < b + Γ − ξto + ξto −Γ =b

Case 6 q j with j ∈ C+
U

LHSKN = ξ(C) − y+εm(C+
U ) + ε jm j = b + ε jm j − ε = b
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Case 7 q j with j ∈ C̄+
U

LHSKN = ξ(C) − y−εm(C+
U ) − ε jm j = b − ε jm j + ε = b

By proceeding in the same manner but now evaluating p j and q j in Eq. (3), we can
show that these points satisfy this inequality at equality. Remember that the left-hand
side of (3) is

∑
j∈C min{1,

ξ j
Γ

} (
x j − 1

) + ∑
j∈CU

m j
Γ

(
y j − x j

)
, and its right-hand

side is −1.

Case 1 p j with j ∈ C+
L

Case 3 p j with j ∈ C+
U

Case 5 q j with j ∈ CL

LHS = − min{1,
ξ j

Γ
} = −1

Case 2 p j with j ∈ C̄+
L

Case 4 p j with j ∈ C̄+
U

LHS = − min
{

1,
ξ j
Γ

}
− yoj

m(C+
U )

Γ
= − ξ j

Γ
−

(
1 − ξ j

Γ

)
= −1

Case 6 q j with j ∈ C+
U

LHS = −y+ε

m(C+
U )

Γ
+ ε j

m j

Γ
= −Γ − ε + ε

Γ
= −1

Case 7 q j with j ∈ C̄+
U

LHS = −y−ε

m(C+
U )

Γ
− ε j

m j

Γ
= −Γ + ε − ε

Γ
= −1

Moreover, these points are affinely independent because ∀ j ∈ C\{to}, p j − pto ,
and q j − pto are linearly independent. To show this, observe the structure of these
points:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p j − pto, j ∈ C+
L

p j − pto, j ∈ C̄+
L

p j − pto, j ∈ C̄+
U

p j − pto, j ∈ C+
U \{to}

q j − pto, j ∈ C+
L

q j − pto, j ∈ C̄+
L

q j − pto, j ∈ C̄+
U

q j − pto, j ∈ C+
U \{to}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eto − e j eto
eto − e j eto − yoj1u+

eto − e j eto − e j − yoj1u+

eto − e j eto
0s δe j

0s δe j

eto eto − ε j e j − y−ε1u+

eto eto + ε j e j − y+ε1u+

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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where, if elements xto and yto are placed in the last position in the columns, it is
possible to obtain a upper-triangular matrix (using the first 2s − 1 columns) whose
diagonal elements are non-zero. Since 2s affinely independent points in Xo have been
described and these points satisfy inequality (3) at equality, it has been shown that
these inequalities are facet-defining for conv{Xo}. 	
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