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Abstract We consider the problem of decomposing a real-valued symmetric tensor
as the sum of outer products of real-valued vectors. Algebraic methods exist for com-
puting complex-valued decompositions of symmetric tensors, but here we focus on
real-valued decompositions, both unconstrained and nonnegative, for problems with
low-rank structure. We discuss when solutions exist and how to formulate the mathe-
matical program. Numerical results show the properties of the proposed formulations
(including one that ignores symmetry) on a set of test problems and illustrate that these
straightforward formulations can be effective even though the problem is nonconvex.
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1 Introduction

We consider the problem of decomposing a real-valued symmetric tensor as the sum
of outer products of real-valued vectors. Let A represent an m-way, n-dimension
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Fig. 1 Symmetric tensor factorization for m = 3

symmetric tensor. Given a real-valued vector x of length n, we let xm denote them-way,
n-dimensional symmetric outer product tensor such that (xm)i1i2···im = xi1xi2 · · · xim .
Comon et al. [15] showed that any real-valued symmetric tensorA can be decomposed
as

A =
p∑

k=1

λk xmk , (1)

with λk ∈ R and xk ∈ R
n for k = 1, . . . , p; see the illustration in Fig. 1. We assume

that the tensor is low-rank, i.e., p is small relative to the typical rank of a random
tensor. We survey the methods that have been proposed for related problems and
discuss several optimization formulations, including a surprisingly effective method
that ignores the symmetry.

We also consider the related problem of decomposing a real-valued nonnegative
symmetric tensor as the sum of outer products of real-valued nonnegative vectors. Let
A ≥ 0 represent an m-way, n-dimension nonnegative symmetric tensor. In this case,
the goal is a factorization of the form

A =
p∑

k=1

xmk with xk ≥ 0. (2)

If such a factorization exists, we say that A is completely positive [39]. If such a
factorization does not exist, then we propose to solve a “best fit” problem instead.

The paper is structured as follows. Section 2 provides notation and background
material. Related decompositions, including the best symmetric rank-1 approximation,
the symmetric Tucker decomposition, partially symmetric decompositions, and the
complex-valued canonical decompositions are discussed in Sect. 3. We describe two
optimization formulations for symmetric decomposition in Sect. 4, and amathematical
program for the nonnegative problem in Sect. 5. Numerical results, including the
methodology for generating challenging problems, is presented in Sect. 6. Finally,
Sect. 7 discusses our findings and future challenges.

2 Background

2.1 Notation and preliminaries

A tensor is a multidimensional array. The number of ways or modes is called the order
of a tensor. For example, a matrix is a tensor of order two. Tensors of order three or
greater are called higher-order tensors.
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Numerical optimization... 227

Let n1 × n2 × · · · × nm denote the size of an m-way tensor. We say that the tensor
is cubic if all the modes have the same size, i.e., n = n1 = n2 · · · = nm . In other
words, “cubic” is the tensor generalization of “square.” In this case, we refer to n as
the dimension of the tensor. We let R[m,n] denote the space of all cubic real-valued
tensors of order m and dimension n. As appropriate, we use multiindex notation to
compactly index tensors so that i = (i1, i2, . . . , im). Thus, ai denotes ai1i2···im .

The norm of a tensor A ∈ R
[m,n] is the square root of the sum of squares of its

elements, i.e.,

‖A‖ =
√√√√

n∑

i1=1

n∑

i2=1

· · ·
n∑

im=1

a2i .

Unless otherwise noted, all norms are the (elementwise) �2-norm.

2.2 Symmetric tensors

A tensor is symmetric if its entries do not change under permutation of the indices.
Formally, we let π(m) denote the set of permutations of length m. For instance,

π(3) = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} .

It is well known that |π(m)| = m!. We say a real-valuedm-way n-dimensional tensor
A is symmetric [15] if

aip(1)···i p(m)
= ai1···im for all i1, . . . , im ∈ { 1, . . . , n } and p ∈ π(m).

Such tensors are also sometimes referred to as supersymmetric. For a 3-way tensorA
of dimension n, symmetry means

ai jk = aik j = a jik = aki j = a jki = akji for all i, j, k ∈ { 1, . . . , n } .

We let S[m,n] ⊂ R
[m,n] denote the subspace of all symmetric tensors.

2.3 Symmetric outer product tensors

A tensor in S
[m,n] is called rank one if it has the form λxm where λ ∈ R and x ∈ R

n .
If m is odd or λ > 0, then the mth real root of λ always exists, so we can rewrite the
tensor as

λxm = ym where y =
(

m
√

λ
)
x. (3)

If m is even, however, the mth real root does not exist if λ < 0, so the scalar cannot
be absorbed as in (3).

123



228 T. G. Kolda

A

= u(2)
1

u(3)
1

u(1)
1

+ u(2)
2

u(3)
2

u(1)
2

+ ··· + u(2)
p

u(3)
p

u(1)
p

Fig. 2 CP tensor factorization for m = 3

2.4 Model parameters

For the symmetric decomposition, we let λ denote the vector of weights and X denote
the matrix of component vectors, i.e.,

λ = [
λ1 λ2 · · · λp

]T and X = [
x1 x2 · · · xp

]
.

The notation xik refers to the i th entry in the kth column, so recalling the multiindex
notation i = (i1, . . . , im), we have

(xmk )i = xi1k xi2k · · · ximk .

3 Related problems

3.1 Canonical polyadic tensor decomposition

Canonical polyadic (CP) tensor decomposition has been known since 1927 [25,26].
It is known under several names, two of the most prominent being CANDECOMP as
proposed by Carroll and Chang [14] and PARAFAC byHarshman [24]. Originally, the
term CP was proposed as a combination of these two names [29], but more recently
has been re-purposed to mean “canonical polyadic.” For details on CP, we refer the
reader to the survey [31]. Here, we describe the problem in the case of a cubic tensor
A ∈ R

[m,n]. Our goal is to discover a decomposition of the form

A =
p∑

k=1

u(1)
k ◦ u(2)

k ◦ · · · ◦ u(m)
k . (4)

The circle denotes the vector outer product so the i = (i1, i2, . . . , im) entry is

(
u(1) ◦ u(2) ◦ · · · ◦ u(m)

)

i
= u(1)

i1
u(2)
i2

· · · u(m)
im

.

Each summand is called a component. An illustration is shown in Fig. 2. One of the
most effective methods for this problem is alternating least squares (ALS). We solve
for each factor matrix
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Fig. 3 INDSCAL tensor factorization for m = 3

U( j) =
[
u( j)
1 u( j)

2 · · · u( j)
p

]
,

in turn by solving a linear least squares problem, cycling through all modes (i.e.,
j = 1, . . . ,m) repeatedly until convergence. See, e.g., [31, Figure 3.3] for details.

3.2 Canonical decomposition with partial symmetry

Partial symmetry has been considered since the work of Carroll and Chang [14]. At
the same time Carroll and Chang [14] introduced CANDECOMP, they also defined
INDSCAL which assumes two modes are symmetric. For simplicity of discussion,
we assume a cubic tensorA ∈ R

[m,n]. For m = 3 and the last two dimensions being
symmetric, this means

ai jk = aik j for all i, j, k ∈ { 1, . . . , n } ,

and the factorization should be of the form

A =
p∑

k=1

uk ◦ vk ◦ vk .

In other words, the last two vectors in each component are equal. An illustration is
provided in Fig. 3.

Carroll and Chang [14] proposed to use an alternating method that ignores symme-
try, with the idea that it will often converge to a symmetric solution (up to diagonal
scaling). Later work showed that not all KKT points satisfy this condition [18]. In
§4.7, we show how a generalization of this method can be surprisingly effective for
symmetric tensor decomposition and provide some motivation for why this might be
the case.

We also note that themethods proposed in thismanuscript can be extended to partial
symmetries.

3.3 Best symmetric rank-1 approximation

The best symmetric rank-1 approximation problem is

min
∥∥A − λxm

∥∥2 subject to λ ∈ R, x ∈ R
n . (5)
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Fig. 4 Best symmetric rank-1
decomposition for m = 3
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Fig. 5 Symmetric Tucker
decomposition for m = 3
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An illustration is shown in Fig. 4. This problemwas first considered inDeLathauwer et
al. [17], but their proposed symmetric higher-order power method was not convergent.
The power method has been improved so that it is convergent in subsequent work
[30,32,33,41].

This problem is directly related to the problem of computing tensor Z-eigenpairs.
A pair (λ, x) is a Z-eigenpair [34,38] of a tensor A ∈ S

[m,n] if

Axm−1 = λx and ‖x‖ = 1,

where Axm−1 denotes a vector in Rn such that

(
Axm−1

)

i1
=

∑

i2

· · ·
∑

im

aixi2 · · · xim for i1 ∈ { 1, . . . , n } .

The problems are related because any Karush-Kuhn-Tucker (KKT) point of (5) is a
Z-eigenpair ofA; see, e.g., [32].

Han [23] has considered an unconstrained optimization formulation of the problem
(5). Cui et al. [16] use Jacobian SDP relaxations in polynomial optimization to find
all real eigenvalues sequentially, from the largest to the smallest. Nie and Wang [36]
consider semidefinite relaxations.

3.4 Symmetric Tucker decomposition

A related problem is symmetric Tucker decomposition. Here the goal is to find an
orthogonal matrix U ∈ R

n×p and a symmetric tensor B ∈ S
[m,p] that solves

min
∥∥∥A − Â

∥∥∥
2
subject to âi =

p∑

j1=1

p∑

j2=1

· · ·
p∑

jm=1

b j1 j2··· jm ui1 j1ui2 j2 · · · uim jm .

An illustration is shown in Fig. 5. This topic has been considered in [13,27,40] and
is useful for compression and signal processing applications. Alas, the computational
techniques are quite different, so we do not consider them further in this work.
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Numerical optimization... 231

3.5 Complex-valued symmetric tensor decomposition

An alternative version of the problem allows a complex decomposition, i.e.,

A =
p∑

k=1

xmk with xk ∈ C
n for k = 1, . . . , p. (6)

Techniques from algebraic geometry have been proposed to solve (6) in [10–12,37].
More recently, Nie [35] devised has a combination of algebraic and numerical
approaches for solving this problem. Generally, these approaches do not scale to large
n, though Nie’s numerical method scales much better than previous approaches.

In the complex case, the typical rank (i.e., with probability one) is given by the
theorem below. To the best of our knowledge, for the real case, no analogous results
are known [15].

Theorem 1 (Alexander-Hirschowitz [4,15]) For m > 2, the typical symmetric rank
(over C) of an order-m symmetric tensor of dimension n is

⌈
1

n

(
n + k − 1

k

)⌉

except for (m, n) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)} where it should be increased by one.

4 Optimization formulations for symmetric tensor decomposition

4.1 Index multiplicities

A tensor A ∈ S
[m,n] has nm entries, but not all are distinct. Let the set of all possible

indices be denoted by

R = {(i1, . . . , im) | i1, . . . , im ∈ { 1, . . . , n }} .

Clearly, |R| = nm .
Following [9], we define an index class as a set of tensor indices such that the

corresponding tensor entries all share a value due to symmetry. For example, for
m = 3 and n = 2, the tensor indices (1, 1, 2) and (1, 2, 1) are in the same index class
since a112 = a121. For each index class, we specify an index representation which is
an index such that the entries are in nondecreasing order. For instance, (1, 1, 2) is the
index representation for the index class that includes a121. The set

I = {(i1, . . . , im) | i1, . . . , im ∈ { 1, . . . , n } and i1 ≤ i2 ≤ · · · ≤ im } ⊂ R

denotes all possible index representations.
Each index class also has a monomial representation [9]. For each i ∈ I there is a

corresponding monomial representation c such that
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232 T. G. Kolda

xi1xi2 · · · xim ,= xc11 xc22 · · · xcnn .

Specifically, c j represents that number of occurrences of index j in i for j = 1, . . . , n.
Clearly,

∑
j c j = m. Conversely, for a given c, we build an index i with c1 copies

of 1, c2 copies of 2, etc. This results in an m-long index representation. The set of
monomial representations is denoted by

C = {(c1, . . . , cn) | c1, . . . , cn ∈ { 0, . . . ,m } and c1 + · · · + cn = m } .

From [9], we have that the number of distinct entries of A is given by

|I| = |C| =
(
m + n − 1

m

)
= nm

m! + O(nm−1).

It can be shown [9] that the multiplicity of the entry corresponding to a monomial
representation c is

σc =
(

m

c1, c2, · · · , cn

)
= m!

c1! c2! · · · cn ! . (7)

Table 1 shows an example of index and monomial representations for S[3,2], including
the multiplicities of each element.

Without loss of generality, we exploit the one-to-one correspondence between index
and monomial representations to change between them. For example,

‖A‖2 =
∑

i∈R
a2i =

∑

i∈I
σia

2
i =

∑

c∈C
σca

2
c ,

and

(xmk )i = xi1k xi2k · · · ximk = (xmk )c = xc11k x
c2
2k · · · xcnnk .

4.2 Two formulations

For given A ∈ S
[m,n] and p, our goal is to find λ and X such that (1) is satisfied in a

minimization sense.We consider two optimization formulations. The first formulation
is the standard least squares formulation, i.e.,

Table 1 Index and monomial
representations for S[3,2] Index (I) Monomimal (C) Multiplicity (σ )

(1,1,1) (3,0) 1

(1,1,2) (2,1) 3

(1,2,2) (1,2) 3

(2,2,2) (0,3) 1
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Numerical optimization... 233

f1(λ,X) =
∑

i∈R

(
ai −

p∑

k=1

λk (xmk )i

)2

=
∑

i∈I
σi

(
ai −

p∑

k=1

λk (xmk )i

)2

. (8)

Observe that this counts each unique entrymultiple times, according to its multiplicity.
The second formulation counts each unique entry only once, i.e.,

f2(λ,X) =
∑

i∈I

(
ai −

p∑

k=1

λk(xmk )i

)2

. (9)

Either formulation can be expressed generically as

fw(λ,X) =
∑

i∈I
wi

(
ai −

p∑

k=1

λk(xmk )i

)2

=
∑

i∈I
wiδ

2
i .

Choosing wi = σi yields f1 whereas wi = 1 yields f2. The value δi denotes the
difference between themodel and the tensor at entry i. Note that this formulation easily
adapts to the case of missing data, i.e., missing data should have weight of zero in the
optimization formulation [2,3].

4.3 Gradients

Using the generic formulation, the gradients are given by

∂ fw
∂λk

= −2
∑

i∈I
wi δi (xmk )i,

∂ fw
∂x jk

= −2λk
∑

c∈C
c j wc δc

(
xc11k · · · xc j−1

jk · · · xcnnk
)

.

(10)

For f1, we mention an alternate gradient expression because it is more efficient to
compute for larger values n and m. The derivation follows [1], and the gradients are
given by

∂ f1
∂λk

= −2Axmk + 2
p∑

�=1

λ�

(
xTk x�

)m
,

∂ f1
∂xk

= −2mλkAxm−1
k + 2mλk

p∑

�=1

λ�

(
xTk x�

)m−1
x�.

(11)

This formulation does not easily accommodate missing data since w is implicit.

4.4 Scaling ambiguity

Observe that either objective function suffers from scaling ambiguity. Suppose we
have two equivalent models defined by
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234 T. G. Kolda

p∑

k=1

λk x
m
k =

p∑

k=1

λ̂k x̂
m
k ,

related by a positive scaling vector ρ ∈ R
p
+ such that

λ̂k = ρm
k λk and x̂k = xk/ρk for k = 1, . . . , p.

To avoid this ambiguity, it is convenient to require ‖xk‖ = 1 for all k. We could
enforce this condition as an equality constraint, but instead we treat it as a exact
penalty, i.e.,

pγ (X) = γ

p∑

k=1

(
xTk xk − 1

)2
. (12)

It is straightforward to observe that the gradient is given by

∂pγ

∂xk
= 4γ

(
xTk xk − 1

)
xk .

In the experimental results, we see that choosing γ = 0.1 appears to be adequate for
enforcing the penalty.

4.5 Sparse component weights

We assume so far that p is known, but this is not always the case. One technique to get
around this problem is to guess a large value for p and then add a sparsity penalty on
λ, the weight vector. Specifically, we can use an approximate �1 penalty of the form
suggested by [42]:

pα,β(λ) = β

α

p∑

k=1

log(1 + exp(−αλk)) + log(1 + exp(αλk)) ≈ β‖λ‖1

In this case, the gradient is

∂pα,β

∂λk
= β

[
(1 + exp(−αλk))

−1 + (1 + exp(αλk))
−1

]
.

Note that the β term is not part of the approximation but rather the weight of the
penalization. In our experiments, the results are insensitive to the precise choices of
α and β.

4.6 Putting it all together

The final function to be optimized is

f̂ (λ,X) = fw(λ,X) + pγ (X) + pα,β(λ).
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The choice of w determines the choice of objective function. We can also set wi = 0
for any missing values. The choice of γ determines the weight of the penalty on
the norm of the columns of X. Since this constraint is easy to satisfy and mostly
convenience, the exact choice of γ is not critical. We later show experiments with
γ = 0 and γ = 0.1, to contrast the difference between no penalty and a small
penalty. (Increasing γ beyond 0.1 did not have any impact on the experiments.) The
parameter α determines the “steepness” of the approximate �1 penalty function, and
the choice of β determines the weight of the sparsity-encouraging penalty. In [42],
they start with a small value of α and gradually increase it. In our experiments, we use
fixed values α = 10. The β term is the weight given to the penalty, which is usually
determined heuristically; we use β = 0.1 in our experiments.

4.7 Ignoring symmetry

Another approach to symmetric decomposition is to ignore the symmetry altogether
and use a standard CP tensor decomposition method such as ALS [19,31]; surpris-
ingly, there are situations under which this non-symmetric method yields a symmetric
solution.

Under mild conditions, the CP decomposition (4) is unique up to permutation
and scaling of the components, i.e., essentially unique. Sidiropoulos and Bro [43,
Theorem 3] have a general a posteriori result on the essential uniqueness of the
CP decompositions for tensors. If we specialize this result to the symmetric case by
assuming U( j) = X for j = 1, . . . ,m, the result says that a sufficient condition for
the uniqueness of (4) is

2p + (m − 1) ≤ m k-rank(X). (13)

Here, the k-rank of the matrix X is the largest number k such that every subset of k
columns of X is linearly independent. Table 2 shows sufficient k-rank’s for various
values of m and p. For instance, if m = 3 and p = 25, then k-rank(X) ≥ 18 is
sufficient for uniqueness. The table does not directly depend on n; however, recall that
X is an n × p matrix, so k-rank(X) ≤ min{n, p}.

The importance of essential uniqueness is that the global solution of the uncon-
strained problem (4) is the same as for the symmetric problem (1) so long as X
satisfies (13). If we normalize the factors in (4) and, without loss of generality, ignore
the permutation ambiguity, then uniqueness implies, for k = 1, . . . , p,

Table 2 Minimal k-rank(X)

sufficient for uniqueness of
symmetric outer product
factorization

Order (m) Components (p)

2 3 4 5 10 25 50 100

3 2 3 4 4 8 18 34 68

4 2 3 3 4 6 14 26 51

5 2 2 3 3 5 11 21 41

6 2 2 3 3 5 10 18 35
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λk = ±‖u(k)
1 ‖ · · · ‖u(k)

m ‖ and xk = ±u(1)
k /‖u(k)

1 ‖ = · · · = ±u(m)
k /‖u(k)

m ‖

A bit of care must be taken to convert from a solution that ignores symmetry since it
could be the case, e.g., that u(1)

k = −u(2)
k . Algorithm 1 gives a simple procedure to

“symmetrize” a tensor so that the signs align. It also averages the final sign-aligned
factor matrices in case they are not exactly equal.

The benefit of ignoring symmetry is that we can use existing software for the CP
decomposition. The disadvantage is that it requires m times as much storage, i.e.,
it must store the matrices U(1) thru U(m) rather than just X. Moreover, there is no
guarantee that the optimization algorithm will find the global minimum.

Algorithm 1 Symmetrize Kruskal tensor

Input: CP decomposition defined by U(1), . . . ,U(m)

Output: Symmetric CP decomposition defined by λ and X
1: for k = 1, . . . , p do
2: λk ← 1
3: for j = 1, . . . ,m do

4: η ← ‖u( j)
k ‖2

5: λk ← ηλk and u( j)
k ← u( j)

k /η � Normalize

6: if j > 1 and 〈u(1)
k , u( j)

k 〉 < 0 then

7: λk ← −λk and u( j)
k ← −u( j)

k � Flip u( j)
k to align with u(1)

k
8: end if
9: end for
10: end for
11: X ← ∑

j U
( j)/m.

5 Optimization formulation for nonnegative symmetric factorization

The notion of completely positive tensors has been introduced by Qi et al. [39]. It is
a natural extension of completely positive matrices. A nonnegative tensorA ∈ S

[m,n]
is called completely positive if it has a decomposition of the form in (2).

The formulation is analogous to the unconstrained case, except that there is no λ (or
equivalently, we constrain λ = 1) and we add nonnegativity constraints. For given
A ∈ S

[m,n], our goal is to find X such that (2) is satisfied. We again assume p is
known. The mathematical program is given by

min f+(X) =
∑

i∈I
wi

(
ai −

p∑

k=1

(xmk )i

)2

=
∑

i∈I
wiδ

2
i s.t. X ≥ 0.

Choosing wi = σi yields the analogue of f1 whereas wi = 1 yields the analogue f2.
The value δi is the difference between the model and the tensor at entry i.

Using the generic formulation and following (10) without λk , the gradients are
given by

∂ f+
∂x jk

= −2
∑

c∈C
c j wc δc

(
xc11k · · · xc j−1

jk · · · xcnnk
)

.
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Numerical optimization... 237

Our formulation finds the best nonnegative factorization. Fan and Zhou [20] consider
the problem of verifying that a tensor is completely positive.

6 Numerical results

For our numerical results, we assume the tensor has underlying low-rank structure,
as is typical in comparisons of numerical methods for tensor factorization (see, e.g.,
[44]). Hence, we assume there is some underlying λ∗ ∈ R

p and X∗ ∈ R
n×p to be

recovered, where p is lower than the typical rank. The noise-free data tensor is given by

A∗ =
p∑

k=1

λ∗
k(x

∗
k)

m . (14)

The data tensorA may also be contaminated by noise as controlled by the parameter
η ≥ 0, i.e.,

A = A∗ + η
‖A∗‖
‖N‖ N where ni ∼ N (0, 1). (15)

Here N is a noise tensor such that each element is drawn from a normal distribution,
i.e., ni ∼ N (0, 1). The parameters m, n, p control the size of the problem. If the
vectors in X∗ are collinear, then the problem is generally more difficult [28,44].

For the f1 objective function in (8), we calculate the gradients as specified in (11).
For small problems thismaynot be as fast as (10), but for larger problems itmakes a sig-
nificant difference in speed, as shown in the results. For f2,we precompute the index set
I as well as the corresponding monomial representations C and multiplicities σ . This
means that these values need not be computed each time the objective function and gra-
dient are evaluated. The time for this preprocessing is included in the reported runtimes.

All tests were conducted on a laptop with an Intel Dual Core i7-3667U CPU and 8
GB of RAM, using MATLAB R2013a. For the optimization, unless otherwise noted,
all tests are based on SNOPT, Version 7.2–9 [21,22], using the MATLABMEX inter-
face. SNOPT default parameters were used except for the following: Major iteration
limit=10,000, New superbasics limit/Superbasics limit=999, Major optimality tol-
erance=1e-8. All tensor computations use the Tensor Toolbox forMATLAB, Version
2.5 [6–8] as well as additional codes for symmetric tensors (e.g., to calculate the index
sets) that will be included in the next release.

6.1 Numerical results on a collection of test problems

We consider the impact of the problem formulation resulting from the choice of objec-
tive function and column normalization penalty. The objective function can weighted,
based on the standard least squares formulation denoted by f1 in (8), or unweighted,
which counts each unique entry only once denoted by f2 in (9). The column normal-
ization penalty is either γ = 0 (no penalty) or γ = 0.1. Higher values of γ did not
change the results.

We test the choices for several test problems as follows. We consider four sizes:
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– m = 3, n = 4, p = 2;
– m = 4, n = 3, p = 5;
– m = 4, n = 25, p = 3; and
– m = 6, n = 6, p = 4.

In the first case, sincem is odd, we have the option to exclude λ from the optimization,
but we include it here for consistency in this set of experiments. For each size, we also
consider three noise levels: η ∈ { 0, 0.01, 0.1 }.

A random instance is created as follows. We generate a true solution defined by
λ∗ ∈ R

p and X∗ ∈ R
n×p. The weight vector has entries selected uniformly from

{−1, 1}, i.e.,

λ∗ ∈ R
p such that λ∗

k ∈ U{−1, 1}.

The factor matrix is computed by first generating a matrix with random values from
the normal distribution, i.e.,

X̂∗ ∈ R
n×p such that x̂∗

ik ∈ N (0, 1),

and then normalizing each column to length one, i.e., x∗
k = x̂∗

k/‖x̂∗
k‖ = 1.

Finally, given λ∗ and X∗, we can compute the tensor A∗ from (14) and add noise
at the level specified by η per (15). For each problem size and noise level, we generate
ten instances.

For each problem size, we generate five random starting points by choosing entries
ofX fromaGaussian distribution (no columnnormalization) and entries ofλ uniformly
at random from { −1, 1 }. The same five starting points are used for all problems of
that size.

For each problem formulation corresponding to a choice for objective function and
for normalization penalty, we do fifty runs, i.e., ten instances with five random starts
each. The same instances and starting points are used across all formulations. The
output of each run is a weight vector λ and a matrix X. Table 3a compares the relative
error which measures the proportion of the observed data that is explained by the
model, i.e.,

relative error =
∥∥∥∥∥A −

p∑

k=1

λk x
m
k

∥∥∥∥∥/‖A‖.

In the case of no noise, the ideal relative error is zero; otherwise, we hope for some-
thing near the noise level, i.e., η. In our experiments, we say a run or instance
is successful if the relative error is ≤0.1. For each formulation, three values are
reported. The first value is the number of successful runs. Since we are using five
starting points per instance, the second value is the number of instances such that
at least one starting point is successful. Finally, the last value is the median rela-
tive error across all fifty runs. Summary totals are provide in the last line for the
600 runs and 150 instances. Clearly, γ = 0.1 is superior to γ = 0 in terms of
number of successful runs and instances. The comparison of unweighted ( f2) and
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Table 3 Results of different formulations for a set of test problems

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/9e-07 50/ 10/1e-06 35/10/7e-07 42/ 10/4e-07

0.01 43/10/8e-03 46/ 10/8e-03 32/ 9/8e-03 39/ 10/8e-03
0.10 48/10/8e-02 48/ 10/8e-02 39/10/8e-02 41/ 10/8e-02

4 3 5 0.00 34/ 9/5e-02 38/ 10/6e-03 27/10/9e-02 37/ 10/4e-02
0.01 31/ 9/5e-02 39/ 9/6e-03 29/10/7e-02 39/ 10/9e-03
0.10 36/10/6e-02 39/ 9/4e-02 38/10/5e-02 40/ 10/4e-02

4 25 3 0.00 6/ 5/7e-01 40/ 10/2e-05 4/ 4/6e-01 16/ 9/6e-01
0.01 10/ 7/7e-01 44/ 10/1e-02 10/ 8/6e-01 19/ 10/6e-01
0.10 11/ 7/7e-01 44/ 10/1e-01 11/ 6/6e-01 26/ 10/1e-01

6 6 4 0.00 23/10/4e-01 39/ 10/2e-05 7/ 5/5e-01 18/ 9/4e-01
0.01 15/ 9/5e-01 40/ 10/1e-02 9/ 8/5e-01 25/ 10/1e-01
0.10 1/ 1/5e-01 5/ 1/1e-01 7/ 7/5e-01 18/ 10/3e-01

Total 306/97/1e-01 472/109/1e-02 248/97/3e-01 360/118/9e-02

(a)Relative error: runs ≤ 0.1, instances ≤ 0.1, and median.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/ 1.00 50/10/ 1.00 35/10/ 1.00 42/10/ 1.00

0.01 43/10/ 0.99 46/10/ 1.00 32/ 9/ 0.99 39/10/ 1.00
0.10 34/ 7/ 0.97 34/ 7/ 0.97 30/ 8/ 0.93 32/ 8/ 0.93

4 3 5 0.00 3/ 2/ 0.43 5/ 3/ 0.64 0/ 0/ 0.42 6/ 4/ 0.60
0.01 0/ 0/ 0.43 1/ 1/ 0.54 0/ 0/ 0.37 2/ 2/ 0.52
0.10 0/ 0/ 0.25 0/ 0/ 0.45 0/ 0/ 0.32 1/ 1/ 0.51

4 25 3 0.00 7/ 6/ 0.55 40/10/ 1.00 9/ 7/ 0.66 16/ 9/ 0.67
0.01 10/ 7/ 0.53 44/10/ 1.00 11/ 8/ 0.67 19/10/ 0.67
0.10 13/ 7/ 0.51 44/10/ 1.00 16/ 9/ 0.67 26/10/ 1.00

6 6 4 0.00 21/10/ 0.72 38/10/ 1.00 6/ 4/ 0.72 15/ 8/ 0.75
0.01 15/ 9/ 0.73 40/10/ 1.00 9/ 8/ 0.67 25/10/ 0.87
0.10 18/ 8/ 0.72 32/10/ 0.98 7/ 7/ 0.73 18/10/ 0.74

Total 212/76/7e-01 374/91/1e+00 155/70/6e-01 241/92/7e-01

(b) Solution score: runs ≥ 0.9, instances ≥ 0.9, and median.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 0.10 ± 0.02 0.13 ± 0.03 0.71 ± 0.99 0.69 ± 0.63

0.01 0.31 ± 0.74 0.21 ± 0.27 0.92 ± 1.09 1.03 ± 1.19
0.10 0.12 ± 0.08 0.17 ± 0.28 0.92 ± 1.47 1.02 ± 1.48

4 3 5 0.00 1.19 ± 1.81 0.75 ± 0.87 4.67 ± 3.29 6.28 ± 5.44
0.01 0.96 ± 1.25 0.77 ± 0.72 5.60 ± 3.88 7.07 ± 5.16
0.10 1.43 ± 1.48 0.98 ± 0.78 6.35 ± 4.60 6.05 ± 4.85

4 25 3 0.00 41.38 ± 20.20 54.90 ± 13.09 3.80 ± 2.03 5.02 ± 1.45
0.01 44.96 ± 25.17 55.69 ± 21.31 4.42 ± 2.34 5.47 ± 1.99
0.10 44.32 ± 24.24 56.11 ± 13.29 5.01 ± 2.65 8.95 ± 3.42

6 6 4 0.00 1.79 ± 1.31 1.64 ± 0.48 4.91 ± 2.76 6.55 ± 2.29
0.01 1.52 ± 0.89 1.57 ± 0.41 7.20 ± 5.17 8.09 ± 2.88
0.10 1.57 ± 0.74 1.76 ± 0.73 6.16 ± 2.88 8.56 ± 4.08

(c) Run time: mean and standard deviation.
For each size and noise combination, the number of runs is fifty and the number of instances is ten (five
random starts per instance)
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weighted ( f1) is less clear cut—the unweighted formulation is successful for many
more runs overall, but the weighted formulation is successful for more instances
overall.

Table 3b compares the solution scores which is a measure of how accurately λ and
X are as compared to λ∗ and X∗. Without loss of generality, we assume both X and
X∗ have normalized columns. (If ‖xk‖2 �= 1, then we rescale λk = λk

m
√‖xk‖ and

xk = xk/‖xk‖.) There is a permutation ambiguity, but we permute the computed
solution so as to maximize the following score:

solution score = 1

p

p∑

k=1

(
1 − |λk − λ∗

k |
max{|λk |, |λ∗

k |}
) ∣∣∣xTk x∗

k

∣∣∣ .

A solution score of 1 indicates a perfect match, and we say a run or instance is
successful if its solution score is ≥0.9. As with the relative error, we report three
values. The first value is the number of runs out of fifty that are successful, the second
value is the number of instances out of ten that are successful (i.e., at least one starting
point was successful), and the third value is the median solution score. We also report
totals for each formulation across the 600 runs and 150 instances. Consistent with
Table 3a, using γ = 0.1 is more successful than γ = 0. The unweighted is once
again successful for more runs, but the two methods are nearly tied in terms of number
of instances.

Observe in Table 3b that the second size (m = 4, n = 3, p = 5) has very low
solution scores despite having good performance in terms of relative error. This is
because the solution may not be unique, i.e., the k-rank of X∗ is no more than three,
but the minimum k-rank that is sufficient for uniqueness is four per Table 2. If the
solution is not unique, then multiple solutions exist and there is no reason to expect
that the particular solution we find will be that one. For example, a particular instance
for m = 4, n = 3, p = 5 with η = 0 is defined by

λ∗ =

⎡

⎢⎢⎢⎢⎢⎣

1
1
1

−1
−1

⎤

⎥⎥⎥⎥⎥⎦
and X∗ =

⎡

⎢⎣
−0.3859 −0.9285 0.4922 −0.1094 0.4107
0.8403 −0.1678 −0.6975 0.8395 0.0308
0.3807 0.3313 −0.5208 −0.5322 0.9112

⎤

⎥⎦ .

The alternate model given by

λ =

⎡

⎢⎢⎢⎢⎢⎣

1
1
1

−1
−1

⎤

⎥⎥⎥⎥⎥⎦
and X =

⎡

⎣
−0.7872 0.5136 −0.7809 −0.1081 0.4157
−0.1928 −0.9150 −0.0704 0.8249 0.0387
0.2039 −0.5355 0.3678 −0.5477 0.9065

⎤

⎦

has a relative error< 10−6. The last two columns generally agree, but the first three do
not and the solution score is only 0.65. It may be interesting to know that in the matrix
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Table 4 Constraint violation runs ≤ 0.01 and mean

Size Noise Unweighted f2 Weighted f1

m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1

3 4 2 0.00 0/6.73e+00 50/1.17e-06 1/3.54e+02 50/1.87e-06

0.01 1/3.76e+01 50/9.11e-05 1/2.04e+02 49/9.47e-04

0.10 0/4.32e+01 50/9.32e-07 0/3.16e+02 48/6.36e-04

4 3 5 0.00 0/7.99e+01 46/7.34e-03 0/9.24e+01 40/9.76e-03

0.01 0/6.56e+01 46/2.40e-03 0/ 6.47e+01 39/1.09e-02

0.10 0/2.76e+02 44/3.20e-03 0/1.05e+02 39/1.71e-02

4 25 3 0.00 0/1.70e+03 50/2.63e-06 0/8.36e+02 49/3.65e-02

0.01 0/1.76e+03 50/4.35e-06 0/6.52e+02 50/1.17e-06

0.10 0/1.53e+03 50/2.99e-06 0/1.13e+03 49/6.29e-02

6 6 4 0.00 1/2.44e+01 50/6.04e-05 0/6.13e+00 50/5.46e-05

0.01 1/2.45e+01 50/1.74e-05 0/2.11e+01 50/3.29e-04

0.10 0/3.12e+01 50/3.34e-05 0/4.42e+01 49/4.75e-04

case (m = 2), we would never compare the computed solution without imposing
additional constraints such as orthogonality.

Table 3c compares the total runtimes for each method. As with any nonconvex
optimization problem, there is significant variation from run to run, but we can gain a
sense of the general expense for eachmethod.As a reminder, we computed the gradient
in the weighted case as shown in (11). If we compute it instead using (10), the runtimes
for the weighted and unweighted methods are roughly the same. For sizem = 4, n =
25, p = 3, the computation in (11) yields a 5-15X speed improvement because n is
large; otherwise for smaller n, the computation in (10) will generally be faster.

Finally, we briefly consider the impact on γ with respect to the constraint violation
from (12), i.e.,

constraint violation =
p∑

k=1

(
xTk xk − 1

)2
.

In Table 4, we report the number of runswhere the constraint violation is≤0.01 and the
mean value. Recall that the addition of the constraint violation ismainly a convenience,
but it does improve the formulation by eliminating a manifold of equivalent solutions.

Table 5 shows results for more difficult test problems where X∗ has collinear nor-
malized columns,i.e., (x∗

k)
Tx∗

� = 0.9 for all k �= � with k, � ∈ {1, . . . , p}. The
procedure for generating the collinear columns is described by Tomasi and Bro [44].
The setup is the same as in the previous subsection except for the change in how we
generate X∗ and the omission of size m = 4, n = 3, p = 5 (since the procedure
we are using does not allow p > n). The results in Table 5 are are analogous to
those in Table 3. We omit the runtimes since they are similar. Although fewer runs are
successful, the number of instances solved is similar.
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Table 5 Results of different formulations for “collinear test problems

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/9e-07 50/10/1e-06 35/10/7e-07 42/10/4e-07

0.01 43/10/8e-03 46/10/8e-03 32/ 9/8e-03 39/10/8e-03
0.10 48/10/8e-02 48/10/8e-02 39/10/8e-02 41/10/8e-02

4 25 3 0.00 8/ 7/7e-01 40/10/2e-05 4/ 4/6e-01 16/ 9/6e-01
0.01 9/ 6/7e-01 44/10/1e-02 10/ 8/6e-01 19/10/6e-01
0.10 11/ 6/7e-01 44/10/1e-01 11/ 6/6e-01 26/10/1e-01

6 6 4 0.00 11/ 6/3e-01 26/ 9/2e-02 2/ 2/3e-01 6/ 5/2e-01
0.01 17/10/2e-01 30/ 9/1e-02 4/ 3/3e-01 16/10/2e-01
0.10 3/ 2/2e-01 8/ 2/1e-01 11/ 8/2e-01 19/10/1e-01

(a)Relative error: runs ≤ 0.1, instances ≤ 0.1, and median.

Size Noise Unweighted f2 Weighted f1
m n p η γ = 0 γ = 0.1 γ = 0 γ = 0.1
3 4 2 0.00 48/10/9e-07 50/10/1e-06 35/10/7e-07 42/10/4e-07

0.01 43/10/8e-03 46/10/8e-03 32/ 9/8e-03 39/10/8e-03
0.10 48/10/8e-02 48/10/8e-02 39/10/8e-02 41/10/8e-02

4 25 3 0.00 8/ 7/7e-01 40/10/2e-05 4/ 4/6e-01 16/ 9/6e-01
0.01 9/ 6/7e-01 44/10/1e-02 10/ 8/6e-01 19/10/6e-01
0.10 11/ 6/7e-01 44/10/1e-01 11/ 6/6e-01 26/10/1e-01

6 6 4 0.00 11/ 6/3e-01 26/ 9/2e-02 2/ 2/3e-01 6/ 5/2e-01
0.01 17/10/2e-01 30/ 9/1e-02 4/ 3/3e-01 16/10/2e-01
0.10 3/ 2/2e-01 8/ 2/1e-01 11/ 8/2e-01 19/10/1e-01

(b) Solution score: runs ≥ 0.9, instances ≥ 0.9, and median.

For each size and noise combination, the number of runs is fifty and the number of instances is ten (five
random starts per instance)

From these results, we have a sense that the symmetric factorization problem can be
solved using standard optimization techniques. Because the problems are nonconvex,
multiple starting points are needed to improve the odds of finding a global minimizer.
Our results also indicate that it is helpful to add a penalty to remove the scaling
ambiguity; otherwise, with no penalty, the Jacobian at the solution is singular which
seems to have a negative impact on the solution quality.

6.2 Ignoring symmetry

As noted previously, Carroll and Chang [14] ignored symmetry with the idea that it
may not be required. Ideally, the solution that is computed by a standard method, like
CP-ALS [19,31] or CP-OPT [1], will be symmetric up to scaling.

Using the same problems from Table 3, we apply CP-ALS (as implemented in the
Tensor Toolbox), followed by Algorithm 1 to symmetrize the solution. Three of the
four sizes generically satisfy the sufficient uniqueness condition in (13).

– For m = 3 and p = 2, we require k-rank(X∗) ≥ 2. Since X∗ is an n × p
matrix with n = 4 whose columns are randomly generated, k-rank(X∗) = 2
with probability 1.
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Table 6 Results of CP-ALS plus symmetrization on test problems from Table 3

Size Noise CP-ALS + Symmetrization
m n p η Relative Error Soln. Score Runtime
3 4 2 0.00 44/ 10/2e-04/2e-04 44/10/ 1.00 0.07 ± 0.05

0.01 42/ 10/8e-03/8e-03 40/10/ 0.99 0.06 ± 0.04
0.10 47/ 10/8e-02/8e-02 40/ 9/ 0.97 0.04 ± 0.04

4 3 5 0.00 39/ 10/3e-02/3e-02 3/ 3/ 0.63 0.23 ± 0.08
0.01 36/ 10/4e-02/2e-02 1/ 1/ 0.57 0.22 ± 0.10
0.10 37/ 10/4e-02/4e-02 0/ 0/ 0.59 0.21 ± 0.09

4 25 3 0.00 37/ 9/9e-07/1e-06 37/ 9/ 1.00 0.07 ± 0.04
0.01 44/ 10/1e-02/1e-02 44/10/ 1.00 0.07 ± 0.03
0.10 46/ 10/1e-01/1e-01 46/10/ 1.00 0.07 ± 0.03

6 6 4 0.00 29/ 9/3e-04/3e-04 26/ 8/ 1.00 0.13 ± 0.11
0.01 18/ 8/5e-01/5e-01 18/ 8/ 0.73 0.08 ± 0.06
0.10 23/ 10/4e-01/4e-01 23/10/ 0.74 0.09 ± 0.07

Total 442/116/5e-02/4e-02 322/88/1e+00

Relative error runs ≤ 0.1, instances ≤ 0.1, median symmetrized, and median unsymmetrized
Solution score runs ≥ 0.9, instances ≥ 0.9, and median Runtime mean and standard deviation

– For m = 4 and p = 5, we require k-rank(X∗) ≥ 4. Since X∗ is an n × p matrix
with n = 3, it cannot satisfy the condition because k-rank(X∗) ≤ rank(X∗) ≤
min { n, p } = 3. Hence, the solutions may not be unique, and an example of a
non-unique solution is provided in the previous subsection.

– For m = 4 and p = 3, we require k-rank(X∗) ≥ 3. Since X∗ is an n × p matrix
with n = 25 whose columns are randomly generated, k-rank(X∗) = 3 with
probability 1.

– For m = 6 and p = 6, we require k-rank(X∗) ≥ 3. Since X∗ is an n × p
matrix with n = 4 whose columns are randomly generated, k-rank(X∗) = 4
with probability 1.

Table 6 shows the results, which are analogous to those in Table 3. CP-ALS with
symmetrization is highly competitive. In terms of the relative error, its total number of
442 successful runs is near the high of 472 for the symmetric optimization methods;
likewise, it has 116 successful instances versus 118 for symmetric optimization. Its
scores are not as impressive in terms of the solution score, though this is mainly a
problem for the size m = 4, n = 3, p = 5, as expected due to lack of symmetry.
The major advantage of CP-ALS is runtime, where it is typically ten times faster
or more. Despite the fact that CP-ALS may not find a symmetric solution, using a
standard CP solution procedure followed by symmetrization is indeed an effective
approach in many situations.

6.3 Sparsity penalty for rank determination

In Example 5.5(i) of, Nie [35] considers an method for determining the rank of a
tensor. The example tensor is of order m = 4 and defined by

λ∗ =
[
676
196

]
and X∗ =

⎡

⎣
0 3/

√
14

1/
√
26 2/

√
14

−5/
√
26 −1/

√
14

⎤

⎦ =
⎡

⎣
0.00 0.80
0.20 0.53

−0.98 −0.27

⎤

⎦ .
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Table 7 Impact of sparsity penalty for problems of size m = 4, n = 3, and p = 2 with a solution that
has p = 3

Noise Solution score ≥ 0.9 Median Runtime

Instances Runs Relative error (Mean ± SD)

η = 0.00 10 50 3.4e-04 0.60 ± 0.20

η = 0.01 9 45 6.9e-03 0.54 ± 0.19

η = 0.10 4 19 6.4e-02 0.47 ± 0.13

Using our optimization approach with f1 and γ = 0.1, we impose the approximate
�1 penalty of the form suggested by [42], using α = 10 and β = 0.1 to arrive at the
following result:

λ=

⎡

⎢⎢⎢⎢⎢⎢⎣

675.998
195.965
0.001
0.001
0.001
0.001

⎤

⎥⎥⎥⎥⎥⎥⎦
and X=

⎡

⎣
−0.00 0.80 −0.80 0.80 −0.79 −0.02
−0.20 0.53 −0.53 0.54 −0.55 −0.26
0.98 −0.27 0.27 −0.25 0.27 0.97

⎤

⎦ .

Wecalculate the similarity score as described previously, selecting the two components
that yield the best match for a score of 0.999865. The calculation takes approximately
2 sec. Using α = 1000 causes numerical blow-up, but α = 100 or α = 1 work
nearly as well as α = 10, i.e., the solution score is 0.9998 (with β = 0.1). Likewise,
varying β has little impact on the solution quality (with α = 10).

Using the same penalty parameters (α = 10 and β = 0.1), we construct ten
instances of problems of size m = 4, n = 3, and p = 2 for each noise level
η ∈ {0, 0.01, 0.1}. We use a solution with three components but once again apply
the sparsity penalty, using the same parameters as above. We use five random starts
per instance. The results as shown in Table 7. The second column shows the number
of instances (out of 10) where the solution score was ≥ 0.9, and the third column is
the total number of runs that are successful (out of 50) for which this condition was
satisfied. The fourth column shows that median relative error, and the last column
shows the mean and standard deviation of the runtime. In the noise-free case, the
correct solution is found in every run. For η = 0.01, the correct solution is obtained
for 9 out of 10 instances. For η = 0.1, the problem is only solved to the desired
accuracy in 4 out of 10 instances.

7 Conclusions and future challenges

Alas, the penalty approach is a heuristic; forthcoming work [5] will use statistical
validation to select the rank.
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7.1 Nonnegative factorization

Lastly,we consider the problemof nonnegative factorization.Weuse the same problem
setup as in §6.1 with the exception that we set all entries λ∗ equal to one and choose
entries ofX∗ to be uniform on [0, 1], i.e., x∗

i j ∈ U[0, 1]. The optimization formulation
excludes λ, so there is no penalty on the columns norms ofX (γ = 0). We add bound
constraints that all entries of X are nonnegative. We compare only the weighted and
unweighted formulations. Table 8 shows the results, which are analogous to Table 3.
There is little difference between the two formulations, except runtimes as discussed
previously.

We consider straightforward optimization formulations for real-valued symmetric
and nonnegative symmetric tensor decompositions. These methods can be used as a
baselines for comparison as new methods are developed. In particular, these methods
should be useful for larger problems with inherent low-rank structure. For instance,
the sizem = 4 and n = 25 is larger in terms of dimension thanmost other symmetric
tensor decomposition problems in the literature, though other works consider larger
values of p [35]. Furthermore, we consider noise-contaminated problems, which may
be problematic for algebraic methods.

Although the symmetric and nonnegative symmetric tensor decomposition prob-
lems are nonconvex, these numerical optimization approaches are effective at
recovering the known solution in our experiments, especially when we use multiple
random starting points. These optimization formulations can be adapted to the case of
partial symmetries. Moreover, we show that if the solution is essentially unique (and
the optimization method finds a global minima), then symmetry need not be directly
enforced by the optimization method. In this case, efficient tools for the nonsymmetric
CP problem may be employed directly.

We expect many further improvements, including different optimization formula-
tions that exploit structure and consideration of other optimization methods.
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