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Abstract Nested Benders decomposition is a widely used and accepted solution
methodology for multi-stage stochastic linear programming problems. Motivated by
large-scale applications in the context of hydro-thermal scheduling, in 1991, Pereira
and Pinto introduced a sampling-based variant of the Benders decomposition method,
known as stochastic dual dynamic programming (SDDP). In this paper, we embed the
SDDP algorithm into the scenario tree framework, essentially combining the nested
Benders decomposition method on trees with the sampling procedure of SDDP. This
allows for the incorporation of different types of uncertainties in multi-stage stochas-
tic optimization while still maintaining an efficient solution algorithm. We provide
an illustration of the applicability of our method towards a least-cost hydro-thermal
scheduling problem by examining an illustrative example combining both fuel cost
with inflow uncertainty and by studying the Panama power system incorporating both
electricity demand and inflow uncertainties.

Keywords Stochastic dual dynamic programming · Hydro-thermal power system ·
Nested Benders decomposition · Sampling · Scenario tree · Electricity demand and
inflow uncertainty

Mathematics Subject Classification 90C15 · 90C05 · 90C39 · 90C90

1 Introduction

Decompositionmethods are the state-of-the-art toolswhen solving large-scale stochas-
tic (linear) programming problems. The idea of Benders [2] of dynamically approx-
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344 S. Rebennack

imating value functions and feasible regions of relaxed problems is appealing and
inspired the development of various algorithms. When decomposing the problems
with respect to time periods, then these methodologies utilize dynamic programming
techniques. As such, they exhibit various curses-of-dimensionality, e.g., resulting from
the state space or the scenario space, cf. Powell [48]. In order to overcome these
curses—at least practically—sampling-based Benders decomposition methods have
been proposed by Pereira and Pinto [44].

If the stochastic process governing the uncertainty in the mathematical program-
ming problem is stage-wise independent, then the complexity arising from the number
of scenarios is present primarily in the generation of upper bounds, when applying
Benders decomposition algorithms towards a minimization problem. Sampling-based
methods overcome this curse-of-dimensionality by sampling a rather small number
of scenarios out of (potential) exponentially many. This way, an estimate of the upper
bound can be computed along with an estimate of the confidence interval. Further-
more, a curse resulting from the state space might be avoided as well by exploiting
information gained from the sampling procedure. As stage-wise independence is an
unrealistic assumption for many real world problems, extensions to incorporate linear
dependence on previous stage(s) have been developed. However, for minimization
problems, the lower bounds derived from sampling-based methodologies also rely on
the finiteness of the distributions of the uncertain data.

Working directly with scenario trees has the great advantage that no assumptions
on the distributions of the data and their correlation (inter-stage and inter-state) have to
be made. To obtain a tree of manageable size, so-called scenario reduction techniques
have been developed, see Sect. 3. However, it remains a difficult task to obtain a
reasonable representation of the random variables which is statistically valid and does
not exhibit exponential grows in the number of stages.

Sampling-based and scenario-based approaches applied to stochastic optimization
were separate entities for a long time. In this paper,wepropose to unify both approaches
to exploit their individual strengths and to overcome their individual weaknesses, see
Sect. 3.6.

The main contributions of this paper are twofold: (1) we develop nested Ben-
ders decomposition algorithms which incorporate both scenario trees and sampling
approaches for stage-wise independent and stage-wise dependent processes, and we
prove the correctness of the obtained algorithms; and (2) we apply the methodology
to hydro-thermal scheduling, incorporating both fuel price and/or electricity demand
uncertainty and inflow uncertainty.We demonstrate the usefulness of themethodology
with a case study for Panama’s power system. Furthermore, we provide a classification
of different types of uncertainties present at hydro-thermal scheduling problems.

The remainder of the paper is organized as follows. We summarize multi-stage
stochastic programming formulations and fundamentals in Sect. 2, present different
nested Benders decomposition algorithms in Sect. 3, and apply the developed method-
ology towards a least-cost hydro-thermal scheduling problem in Sect. 4. We conclude
with Sect. 5.
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Combining sampling-based and scenario-based NBD methods 345

We use the following convention throughout the paper. Roman letters x, y, u, v, g
and s as well as the Greek letter η and δ are decision variables; other Roman letters
are data. The Greek letters π and π represent duals. We omit indices if they are clear
in the context; transposition signs for vectors and matrices are consistently omitted as
well. The notation is summarized in Appendix 6.

2 Multi-stage stochastic linear programming problem (MSLP)

Let the triplet (Ω,A , P) denote a probability space with the universe of outcomesΩ ,
sigma-algebra A and probability measure P along with a real-valued random vector
ξ . The definition of the random vector and the probability space imply that ξ : Ω → R

and {ω : ξ(ω) ≤ r} ∈ A for all r ∈ R; ω ∈ Ω denotes a possible event. We assume
that the cumulative distribution function Fξ (x) for the random vector ξ is known, i.e.,
Fξ (x) = P(ξ ≤ x) which is the probability of the events {ω : ξ(ω) ≤ x}. Let ξt be
the random vector with the corresponding universe Ωt for stage t with t = 2, . . . , T ;
Ωt |ωt−1 is the conditional set of outcomes for stage t , given that event ωt−1 ∈ Ωt−1
occurred. Then ξ = (ξ2, . . . , ξT ).

We are interested in solving the following multi-stage stochastic linear program-
ming problem in the general form

z∗ := min c1x1 + Eξ

[
min c2(ω2)x2(ω2) + Eξ [· · ·

+Eξ [min cT (ωT )xT (ωT )] · · · ]] (1)

s.t. W1x1 = h1 (2)

T1(ω2)x1 + W2(ω2)x2(ω2) = h2(ω2) ∀ω2 ∈ Ω2 (3)

...

TT −1(ωT )xT −1(ωT −1) + WT (ωT )xT (ωT ) = hT (ωT )

∀ωT −1 ∈ ΩT −1, ωT ∈ ΩT |ωT −1 (4)

x1, xt (ωt ) ≥ 0 ∀t = 2, . . . , T, (5)

with vectors ct ∈ R
nt and ht ∈ R

mt , and mt × nt -matrices Tt and mt × nt -matrices
Wt ; xt is nt -dimensional decision variable. The data ct , ht , Wt and Tt are unknown
for t = 2, . . . , T . Constraints (3)–(5) are to be met almost surely.

The mathematical programming problem (1)–(5) seeks an optimal decision x1
which hedges against the uncertainty related to parameters affecting the xt variables
for stages t = 2, . . . , T . The paradigm is that the assignment of the xt variables (for
stages t = 2, . . . , T ) can be postponed until the uncertainty corresponding to stage t
has unfolded—in contrast to decision x1. Optimality of x is obtained at any minimum
of objective function (1), i.e., the sum of the cost associated with decision x1 and the
expected cost resulting from optimal adjustments xt to decision x1(t = 2, . . . , T ).
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346 S. Rebennack

2.1 Deterministic equivalent

Let the T -stage value function be

QT (xT −1, ωT ) := min cT (ωT )xT

s.t. WT (ωT )xT = hT (ωT ) − TT −1(ωT )xT −1

xT ≥ 0.

In the last stage, T , we require the value of the decision variable xT −1 of the previous
stage, and one realizationωT of the randomvector ξ , in order to obtain QT (xT −1, ωT ).

The expected t + 1-stage value function is then given by

Qt+1(xt ) := Eξ

[
Qt+1(xt , ωt+1)

]
t = 2, . . . , T − 1. (6)

For the t-stage value function (t = 2, . . . , T − 1), we obtain

Qt (xt−1, ωt ) := min ct (ωt )xt + Qt+1(xt )

s.t. Wt (ωt )xt = ht (ωt ) − Tt−1(ωt )xt−1

xt ≥ 0.

The (expected) t+1-stage value function is also called (expected) future value function,
or in the context of SDDP, cost-to-go function or future cost function.

This enables us to re-write the MSLP (1)–(5) as its deterministic equivalent

z∗ = min c1x1 + Q2(x1) (7)

s.t. W1x1 = h1 (8)

x1 ≥ 0. (9)

Depending on the nature of function Q2(x), problem (7)–(9) is either a convex
or a non-convex minimization problem, which greatly affects the choices of readily
available solution techniques and the effort required to obtain a provably optimal
solution to (7)–(9).

2.2 Extensive form

In case of a continuous random vector ξ , the solution of problem (1)–(5) requires the
evaluation of a (multidimensional) integral—a task that is computationally intractable
except for a few special cases which are of limited practical importance. The numerical
solution of such problems is thus usually attained through the discretization of the
probability distribution of ξ and the subsequent construction of a scenario tree. The
stochastic optimization problem may then be re-written as one single LP in the so-
called extensive form
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Combining sampling-based and scenario-based NBD methods 347

zE = min c1x1 +
∑S

s=1
ps

∑T

t=2
cst xst (10)

s.t. W1x1 = h1 (11)

Ts,t−1xs,t−1 + Wst xst = hst ∀s = 1, . . . , S, t = 2, . . . , T (12)

xst = xs̃t ∀s = 1, . . . , S ∧ s̃ ∈ Sst , t = 2, . . . , T (13)

x1, xst ≥ 0 ∀s = 1, . . . , S, t = 2, . . . , T, (14)

with scenarios s = 1, . . . , S realized with probability ps > 0. The set Sst is the
collection of all scenarios s̃ which are identical to scenario s in stage t with s̃, s =
1, . . . , S and t = 2, . . . , T . We use the convention xs,1 ≡ x1. Equations (13) are the
non-anticipativity constraints for the MSLP.

In case that the uncertainty is represented via a scenario fan, then Sst = ∅ for all
scenarios s and for all stages t = 2, . . . , T . The index “s” accompanying the data
ct , ht , Tt , Wt and the decision variables xt indicate their realization for, and depen-
dence on, scenario s.

If ξ is a discrete and finite random vector (i.e., the support of ξ is finite), then all S
possible realizations may be enumerated, implying that zE = z∗. In this case, problem
(10)–(14) is a deterministic equivalent to (1)–(5) in extensive form.

2.3 Special cases and properties

The effect of event ωt on each of the MSLP’s components determines a few special
cases:

Wt (ωt ) ≡ Wt ∀t = 2, . . . , T fixed recourse (15)

Tt (ωt ) ≡ Tt ∀t = 2, . . . , T fixed technology (16)

ht (ωt ) ≡ ht ∀t = 2, . . . , T fixed right-hand-side (RHS) (17)

ct (ωt ) ≡ ct ∀t = 2, . . . , T fixed objective function coefficients (18)

The shape of function Qt (·, ·) crucially influences the type of solution algorithms
applicable to solve the MSLP of type (1)–(5). The following theorem summarizes
useful properties:

Theorem 1 (Birge and Louveaux [5, Chap. 3,Theorem 2]) For a given ωt , the value
function Qt (xt , ωt ) is a piece-wise linear ...

a.) ...convex function in (ht , Tt ),
b.) ...concave function in ct ,
c.) ...convex function in xt .

Theorem 1 implies that Qt+1(xt+1) is a piece-wise linear, convex function in xt .
However, Qt (·, ·) is a nonlinear (in general, not piecewise linear) function in variations
of the recourse matrix.
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348 S. Rebennack

3 Benders decomposition: solution approaches towards MSLPs

The transformation of the stochastic optimization problem into an extensive form
may lead to a very large scale problem, because a huge number of scenarios may be
required to accurately represent the cumulative distribution function of ξ . Thus, many
different techniques have been proposed to obtain discretizations which (1) consis-
tently approximate the (possibly) infinite sample space and (2) lead to optimization
problems of manageable size.

Any scenario tree is a finite-dimensional approximation of theMSLP (1)–(5) which
may introduce inaccuracies. These approximate mathematical optimization problems
may posses optimal solutions (or policies) which might be “far away” from the opti-
mal policy of the original MSLP. Scenario trees which exhibit certain consistency
properties, e.g., increasing the number of scenarios leads to an asymptotic conver-
gence of an optimal solution of the approximated problem to an optimal solution of
the original problem, are studied by Olsen [40] and more recently by Pennanen [41].
Pennanen [42] presents a discretization procedure which leads to consistent approx-
imations. His procedure is based on low-discrepancy sequences, specifically tailored
to time series models for the random variables ξ ; the model presented in Sect. 3.4
fits into this framework. Another alternative to sampling based methods (which are
discussed in this paper) is proposed byMirkov and Pflug [36]. They discretize the dis-
tributions directly and work with distribution distances, i.e., conditional transportation
distances, allowing them to derive a bound from the optimal solution of the approx-
imated problem to the original problem, under some regularity conditions; see also
Heitsch et al. [27].

Once a scenario tree has been constructed (either by discretization of the sam-
ple space or by exhausting all possible scenarios for discrete distributions), scenario
reduction might be employed to obtain a tree which leads to a computationally feasi-
ble MSLP problem. The idea of scenario reduction is to thin out the tree by removing
scenarios and updating the probabilities of the remaining scenarios. A computational
framework for optimal scenario reduction techniques for problems of type (10)–(14)
was developed by Dupačová et al. [17]. With their method, one can find an approx-
imation to z∗. To select a good representation of scenarios in a scenario generation
framework is another strategy, cf. Heitsch and Römisch [26]. Other approaches com-
pute lower and upper bounds, cf. Kuhn [33].

In this section, we discuss various Benders decomposition based solution methods
for solving the MSLP (10)–(14) in its extensive form; i.e., we are given a scenario tree
representation of the uncertainty. We identify the assumptions—in terms of (1)–(5)—
needed for the methods to converge to a (optimal or approximately optimal) solution
of problem (10)–(14); however, we do not address the question on how close or good
the obtained solution is with respect to the original MSLP (1)–(5).

3.1 Assumptions

For the ease of presentation, wemake the following two assumptions for the remainder
of this section:
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Combining sampling-based and scenario-based NBD methods 349

A1: MSLP (10)–(14) is bounded and feasible;
A2: for any xs,t−1, the sub-problems defined through equations (12)–(14) are feasible

for stage t , (t = 2, . . . , T ); e.g., the problem has relatively complete recourse.

We comment on the need and implications for both assumptions in the next Sect. 3.2.

3.2 Nested Benders decomposition (NBD)

A popular exact optimizationmethod in the context of stochastic (linear) programming
is Benders decomposition, also known in the stochastic programming community as
L-Shaped Method or, when applied to the dual problem, the Dantzig–Wolfe Decom-
position. Pereira and Pinto [44] called this algorithm alsoDual Dynamic Programming
(DDP).

The basic idea of (nested) Benders decomposition is to build an outer linearization
that approximates the functions Qt (x)(t = 2, . . . , T ) via two types of cuts, the so-
called Benders cuts: feasibility and optimality cuts, cf. Benders [2,3]. The key concept
is that the feasible region of the dual of the sub-problems for stage t is independent
of any selection of the xs,t−1 variables. This allows for an exact representation of the
expected future value function with a finite number of cuts.

A pseudo-code of a NBD procedure is presented in Algorithm 3.1 (assumptions
of Sect. 3.1 need to hold). The set St denotes a collection of scenarios s for stage t
excluding “merged” scenarios for that stage, i.e., if s and s̃ ∈ St , then s̃ /∈ Sst ; set SSst
is the collection of all “successor scenarios” of scenario s in stage t , e.g., if s̃ ∈ S

S
st

then s̃ /∈ S
S
s,t+1. Probability pss̃t is the chance of realizing scenario s̃ in stage t + 1,

conditioned on scenario s in stage t ;
∑

s̃∈SSst
pss̃t = 1 for all t = 2, . . . , T and s ∈ St .

Algorithm 3.1 terminates in a finite number of iterations with an optimal solution
with respect to any given accuracy ε > 0:

Theorem 2 Algorithm 3.1 computes an optimal solution for problem (10)–(14) in
finitely many iterations.

The proof of convergence is based on the following two observations:

Correctness the optimality cuts generated are valid outer linearizations of the expected
future value functions, i.e., for all t , the optimality cuts at stage t underestimate
the expected t + 1-stage value functionQt+1(x); this implies that the computed z
defines a lower bound on zE.

Finiteness the boundedness of each sub-problem for each stage t (assumptions A1
and A2) implies that the dual has a finite number of extreme-points, eventually
leading to a finite number of optimality cuts. The proof needs to account for the
fact that the optimality cuts computed for stages t < T are not always tight, i.e.,
they do not always yield a support of the expected future value function.

A formal proof is presented, for instance, by Birge and Louveaux [5, Chap. 6, Theo-
rem 1].

Assumption A2 as stated in Sect. 3.1 implies that we do not need any feasibility
cuts for the Benders Algorithm 3.1. The inclusion of feasibility cuts can be done in a
straight forward manner, though different strategies exist how to proceed iteratively
with the Benders algorithm once an infeasible sub-problem has been detected, cf.
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350 S. Rebennack

Gassmann [18] andMorton [38]. Assumption A1 excludes the possibility of an overall
unboundedness of the problem; together with A2, this implies that all the t-stage
problems (t = 1, . . . , T ), including the first-stage problem (also called the Master
problem), have a finite optimal solution, e.g., are not unbounded.

Algorithm 3.1 Nested Benders Decomposition

1: // initialize
2: empty cut set Fst = ∅ for t = 1, . . . , T and s ∈ St
3: fix variable η ≡ 0 (for first forward simulation iteration only); η ≡ 0 for t = T
4: assign lower bound z := −∞ (for first forward simulation iteration only)
5: loop
6: // forward simulation: obtain upper bound z̄ and decisions x̂st
7: solve the approximate first-stage problem (s ∈ S1)

min c1x1 + ∑
s̃∈SSs1 pss̃1ηs̃ (19)

s.t. W1x1 = h1 (20)
ηs̃ ≥ E f s̃1x1 + e f s̃1 ∀s̃ ∈ S

S
s1, f ∈ Fs̃1 (21)

x1 ≥ 0 (22)

8: store x̂s1 := x∗
1 as an optimal solution to (19)–(22)

9: for each stage t = 2, . . . , T do
10: for each scenario s ∈ St do
11: solve the approximated t-stage problem for x̂s,t−1

min cst xst + ∑
s̃∈SSst

pss̃t ηs̃ (23)

s.t. Wst xst = hst − Ts,t−1 x̂s,t−1 (24)
ηs̃ ≥ E f s̃t xst + e f s̃t ∀s̃ ∈ S

S
st , f ∈ Fs̃t (25)

xst ≥ 0 (26)

12: store x̂st := x∗
st as an optimal solution to (23)–(26)

13: end for
14: end for
15: calculate upper bound z̄ on zE

z̄ = c1x∗
1 +

∑S

s=1
ps

∑T

t=2
cst x̂st

16: // check stopping criterion
17: if z̄ − z ≤ ε, then end loop and goto step 28
18: // backward recursion: obtain lower bound z and optimality cuts
19: for each stage t = T, T − 1, . . . , 2 do
20: for each scenario s ∈ St do
21: solve problem (23)–(26) for x̂s,t−1
22: store πs and π f ss̃ as an opt. dual sol. for constraints (24) and (25), respectively
23: end for
24: create optimality cut for stage t − 1 and for all š ∈ Ss,t−1:

Fš,t−1 ← Fš,t−1 ∪ {|Fš,t−1| + 1}
E|Fš,t−1|,s̃,t−1 := −πs Ts,t−1

e|Fš,t−1|,s̃,t−1 := πs hst +
∑

s̃∈SSst

∑

f ∈Fs̃t
π f ss̃ e f s̃t

25: end for
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Combining sampling-based and scenario-based NBD methods 351

26: solve problem (19)–(22): the optimal objective function value yields a lower bound z on zE

27: end loop
28: return x̂st defines optimal solution to (10)–(14) with zE ∈ [z̄ − ε, z̄]

Algorithm 3.1 is a multicut version of (nested) Benders decomposition, because
there are |SSst | cuts at each stage t and scenario s: one cut for each successor of s. Alter-
natively, all |SSst | cuts can be aggregated to one single cut. Birge and Louveaux [5,
Chap.5.1d] discuss the advantages and disadvantages of the two approaches: disag-
gregated versus aggregated cuts.

Note that Algorithm 3.1 computes safe lower bounds z and safe upper bounds z̄ on
zE.

A common misconception is that (nested) Benders decomposition requires a fixed
recourse (15) to converge. However, this is not required as both the feasible region
and the recourse functions are convex for a finite number of scenarios. Nevertheless,
the MSLP (1)–(5) with fixed recourse is easier to analyze with respect to stability, cf.
Wets [59].

3.3 Sampling-based nested Benders decomposition for stage-wise independent
random vectors

A special case is present when the random vector ξ is stage-wise independent. In this
case, the expected t + 1-stage value function (6) depends solely on xt−1; particularly,
it is independent of the realization ωt−1 of ξ . This leads to a so-called recombining
scenario tree, see Fig. 1a. Nevertheless, if there are K realizations per stage, then the
corresponding scenario tree has S = K T −1 scenarios; in the case of Fig. 1a, there are
N = 64 scenarios.

The idea of sampling-based nested Benders decomposition is to explore the stage-
wise independence of ξ by

(forward simulation) drawing N � S samples from the full tree to obtain new deci-
sions x̂nt and a confidence interval around an estimate ẑ of an upper bound for zE,
these samples are also called sample paths; and

(backward recursion) computing an outer linearization for functionQt (x̃) by solving
N · K linear programming problems, only. When working directly with the exten-
sive form of the corresponding tree (and ignoring the stage-wise independence),
one would need to solve K t−1 linear programming problems; t = 2, . . . , T . One

t = 1 t = 2 t = 3 t = 4

(a)
t = 1 t = 2 t = 3 t = 4

(b)

Fig. 1 Recombining scenario tree with T = 4 and K = 4. a Recombining tree, b N = 5 sample paths
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352 S. Rebennack

backward pass over the entire time horizon T requires K T −1
K−1 LP solves when ignor-

ing the stage-wise independence while the sampling-based method requires only
N (T −1)K +1 LP solves. In other words, the cuts are “shared” among all scenarios,
i.e., optimality cut set Fst is independent of scenario s.

In Fig. 1b, a choice of 5 different sample paths for the recombining tree of Fig. 1a is
shown.

The sampling-based nested Benders decomposition method is summarized in
pseudo-code form in Algorithm 3.2. z1−α/2 denotes the upper 1 − α/2 critical point
for a standard normal random variable.

Algorithm3.2 Sampling-basedNestedBendersDecomposition (Stage-wise Indepen-
dent Random Vectors)

1: // initialize
2: empty cut set Ft = ∅ for t = 1, . . . , T
3: fix variable η ≡ 0 (for first forward simulation iteration only); η ≡ 0 for t = T
4: assign lower bound z := −∞ (for first forward simulation iteration only)
5: loop
6: // forward simulation: obtain upper bound estimate ẑ, standard deviation σz and decisions x̂nt
7: solve the approximate first-stage problem

min c1x1 + η (27)
s.t. W1x1 = h1 (28)

η ≥ E f 1x1 + e f 1 ∀ f ∈ F1 (29)
x1 ≥ 0 (30)

8: store x̂n1 := x∗
1 as an optimal solution to (27)–(30), n = 1, . . . , N

9: randomly choose N samples among all S scenarios; associate each sample n with a scenario s, denoted
by ns

10: for each stage t = 2, . . . , T do
11: for each sample n = 1, . . . , N do
12: solve the approximated t-stage problem for x̂n,t−1

min cns ,t x + η (31)
s.t. Wns ,t x = hns ,t − Tns ,t−1 x̂n,t−1 (32)

η ≥ E f t x + e f t ∀ f ∈ Ft (33)
x ≥ 0 (34)

13: store x̂nt := x∗ as an optimal solution to (31)-(34)
14: end for
15: end for
16: calculate an estimate ẑ of the upper bound z̄ on zE as follows:

ẑ = c1x∗
1 + 1

N

∑N

n=1
zn (35)

with zn = ∑T
t=2 cns ,t x̂nt

17: calculate the standard deviation σz of the estimator ẑ via:

σ 2
z = 1

n−1

∑N

n=1
(ẑ − zn)2 (36)

18: // check stopping criterion

19: if z ∈
[
ẑ − z1−α/2

σz√
N

, ẑ + z1−α/2
σz√

N

]
, then end loop and goto step 32
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Combining sampling-based and scenario-based NBD methods 353

20: // backward recursion: obtain lower bound z and optimality cuts
21: for each stage t = T, T − 1, . . . , 2 do
22: for each sample n = 1, . . . , N do
23: for each realization k = 1, . . . , K do
24: solve the approximated t-stage problem for x̂n,t−1

min ckt x + η

s.t. Wkt x = hkt − Tk,t−1 x̂n,t−1 (37)
η ≥ E f t x + e f t ∀ f ∈ Ft (38)
x ≥ 0

25: store πk and π f k as an opt. dual sol. for constraints (37) and (38), respectively
26: end for
27: create optimality cut for stage t − 1:

Ft−1 ← Ft−1 ∪ {|Ft−1| + 1}
E|Ft−1|,t−1 := −∑K

k=1 pkπk Tk,t−1 (39)

e|Ft−1|,t−1 := ∑K
k=1 pk

(
πk hkt + ∑

f ∈Ft
π f k e f t

)
(40)

28: end for
29: end for
30: solve problem (27)-(30): the optimal objective function value yields a lower bound z on zE

31: end loop
32: return x∗

1 defines (approximately) optimal solution to first stage of (10)–(14) with ẑ ≈ zE

The next corollary states the correctness of Algorithm 3.2:

Corollary 1 The optimality cuts (39)-(40) are valid, i.e., they underestimate the
expected t + 1-stage value function (6).

A proof of Corollary 1 follows from Theorem 2 after observing that all possible
K realizations are used to calculate the optimality cut; alternatively, cf. Pereira and
Pinto [44]. Corollary 1 implies that z is a safe lower bound on zE, while z̄ is an
approximated upper bound only.

The stopping criterion of Algorithm 3.2 uses a type of confidence interval around z̄
(upper bound on zE)with half-width z1−α/2

σz√
N
. However, by the central limit theorem,

a true confidence interval is only obtained under the following two assumptions:

C1: the zn are independent and identically distributed random variables for n =
1, . . . , N , and

C2: N → +∞.

Arguably, neither of the two assumptions hold for Algorithm 3.2. Alternative stopping
criteria were proposed, e.g., by Shapiro [54] or Homem-de-Mello et al. [28].

Philpott and Guan [47] prove that Algorithm 3.2 almost surely converges to an
optimal solution:

Theorem 3 (Philpott and Guan [47, Theorem 4]) Assuming fixed recourse (15), fixed
objective function coefficients (18) and an independent sampling procedure (for step
9), Algorithm 3.2 converges with probability 1 to an optimal policy of (10)–(14) in a
finite number of iterations.

A similar result is obtained by Shapiro [54] where the assumption of a finite distri-
bution for ξ is waived. Shapiro shows that Algorithm 3.2 almost surely converges to
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an optimal policy of the Sample Average Approximation problem, i.e., the t +1-stage
value function is computed for N random samples taken from the true distribution and
the expected t + 1-stage value function is given by their average values.

Algorithm 3.2 is Pereira and Pinto’s DDP algorithm applied to the stochastic opti-
mization problem with stage-wise independent random variables, also called SDDP.

3.4 Sampling-based nested Benders decomposition for stage-wise dependent
random vectors

The stage-wise dependence of the random vector ξ reveals a complication which
is hidden in the notation of the random vector ξ of the t + 1-stage value function
as defined in (6): Qt+1(x) depends on the realization(s) of the previous stage(s);
i.e., the expectation in (6) is taken with respect random vector ξt+1 conditioned on
ωt , ωt−1, . . . , ω2.

We consider a special case, with the following assumptions:

S1: the random vector ξ has the memoryless property; i.e., ξt depends only on ωt−1,
S2: the distribution of vector ξt |ωt−1 is given by the function dt (ωt−1,�)with noise

term � (independent of ωt−1) and constant derivative:

∂dt (ωt−1, ·)
∂ωt−1

= ϕt−1 ∀t = 2, . . . , T,

where ϕt−1 is a quadratic matrix and ω1 is certain. Implicitly, we assume that
dt (ωt−1, ·) is a continuous function in ωt−1, i.e., ξt |ωt−1 is a continuous random vec-
tor. As we limit the solution to MSLP in extensive form, we assume that we are given
K possible realizations corresponding to ξt |ωt−1 for each stage t . Each realization
occurs with probability pk (k = 1, . . . , K ); pk may also depend on t .

An example of a process satisfying both assumptions S1 and S2 is a linear autore-
gressive model of lag 1, see Sect. 4.3.1.

Assumption S1 allows us to ease the discussions because we can limit the presen-
tation to one state variable, see below. All proceeding results derived for lag 1 models
naturally generalize to the case for general order autoregressive models; cf. Infanger
and Morton [32, Sect. 5]. Assumption S2 is more restrictive and cannot be waived
easily; it boils down to the effects of the sampling methods on the dual feasibility. We
come back to this discuss at the end of this section.

With assumption S1, the expected t + 1-stage value function gets extended by a
new (so-called) state variable ωt

Qt+1(xt , ωt ) := Eξt+1|ωt

[
Qt+1(xt , ωt+1)

]
t = 2, . . . , T − 1. (41)

The linearity assumption S2 implies

Theorem 4 For fixed recourse (15), the expected t + 1-stage value function
Qt+1(xt , ωt ) is a piece-wise linear ...

a.) ...convex function in xt ,
b.) ...convex function in ωt in case of fixed objective function coefficients (18),
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c.) ...concave function in ωt in case of fixed technology (16) and fixed RHS (17),
d.) ...convex function jointly in xt and ωt in case of fixed objective function coefficients

(18) and fixed technology (16).

Theproof ofTheorem4 follows from the linearity ofdt (ωt−1, ·) inωt−1 by adjusting
the proof of Theorem 1 accordingly.

Property d.) of the t + 1-stage value function Qt+1(xt , ωt ) is particular important
for NBD algorithms, as the optimality cuts require convexity (piece-wise linearity is
required for finite convergence of the classical NBD). A tailored NBD algorithm is
summarized in Algorithm 3.3.

Algorithm 3.3 Sampling-based Nested Benders Decomposition (Stage-wise Depen-
dent Random Vectors)

1: // initialize
2: empty cut set Ft = ∅ for t = 1, . . . , T
3: fix variable η ≡ 0 (for first forward simulation iteration only); η ≡ 0 for t = T
4: assign lower bound z := −∞ (for first forward simulation iteration only)
5: loop
6: // forward simulation: obtain upper bound estimate ẑ, standard deviation σz , decisions x̂nt and

samples hnt
7: solve the approximate first-stage problem

min c1x1 + η (42)
s.t. W1x1 = h1 (43)

η ≥ E f 1x1 + Eh
f 1h1 + e f 1 ∀ f ∈ F1 (44)

x1 ≥ 0 (45)

8: store x̂n1 := x∗
1 as an optimal solution to (42)-(45), n = 1, . . . , N

9: randomly choose N samples from ξ ; denote hnt the realizations for sample n and stage t
10: for each stage t = 2, . . . , T do
11: for each sample n = 1, . . . , N do
12: solve the approximated t-stage problem for x̂n,t−1 and hnt

min ct x + η (46)
s.t. Wt x = hnt − Tt−1 x̂n,t−1 (47)

η ≥ E f t x + Eh
f t hnt + e f t ∀ f ∈ Ft (48)

x ≥ 0 (49)

13: store x̂nt := x∗ as an optimal solution to (46)- (49) along with hnt
14: end for
15: end for
16: calculate an estimate ẑ of the upper bound z̄ on zE via (35) with zn = ∑T

t=2 cns ,t x̂nt
17: calculate the standard deviation σz of the estimator ẑ via (36)
18: // check stopping criterion

19: if z ∈
[
ẑ − z1−α/2

σz√
N

, ẑ + z1−α/2
σz√

N

]
, then end loop and goto step 33

20: // backward recursion: obtain lower bound z and optimality cuts
21: for each stage t = T, T − 1, . . . , 2 do
22: for each sample n = 1, . . . , N do
23: obtain the K realizations from ξt |ωt−1 (using hn,t−1) ; denoted by hknt
24: for each realization k = 1, . . . , K do
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25: solve the approximated t-stage problem for x̂n,t−1 and hknt

zk := min ct x + η

s.t. Wt x = hknt − Tt−1 x̂n,t−1 (50)
η ≥ E f t x + Eh

f t hknt + e f t ∀ f ∈ Ft (51)
x ≥ 0

26: store πk and π f k as an opt. dual sol. for constraints (50) and (51), respectively
27: end for
28: create optimality cut for stage t − 1:

Ft−1 ← Ft−1 ∪ {|Ft−1| + 1}
E|Ft−1|,t−1 := −

(∑K
k=1 pkπk

)
Tt−1 (52)

Eh
|Ft−1|,t−1 :=

(∑K
k=1 pk

(∑
f ∈Ft

π f k Eh
f t + πk

))
ϕt (53)

e|Ft−1|,t−1 := ∑K
k=1 pk zk − E|Ft−1|,t−1 x̂n,t−1 − Eh

|Ft−1|,t−1hn,t−1 (54)

29: end for
30: end for
31: solve problem (42)-(45): the optimal objective function value yields a lower bound z on zE

32: end loop
33: return x∗

1 defines (approximately) optimal solution to first stage of (10)–(14) with ẑ ≈ zE

The correctness of Algorithm 3.3 is established in the following

Corollary 2 The optimality cuts (52)–(54) are valid, i.e., they underestimate the
expected t + 1-stage value function (41).

Proof The approximated t-stage value function is given by (for realizations hkt of the
RHS; we omit index “n” here)

Q̃t (xt−1, ωt−1) := min
K∑

k=1

pk (ct xk + ηk) (55)

s.t. Wt xk = hkt − Tt−1xt−1 k = 1, . . . , K (56)

ηk ≥ E f t xk + Eh
f t hkt + e f t ∀ f ∈ Ft , k = 1, . . . , K

(57)

xk ≥ 0, k = 1, . . . , K (58)

We need to show that

Q̃t (xt−1, ωt−1) ≤ Qt (xt−1, ωt−1)

for all feasible xt−1 and for all ωt−1 ∈ Ωt−1.
The dual of (55)–(58) can be written as (we scale the dual variables by 1/pk)

zD
t (xt−1, ωt−1) := max

K∑

k=1

pk

⎛

⎝yk (hkt − Tt−1xt−1) +
∑

f ∈Ft

y f k

(
Eh

f t hkt + e f t

)
⎞

⎠

(59)
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s.t. yk Wt −
∑

f ∈Ft
y f k E f t ≤ ct k = 1, . . . , K (60)

∑

f ∈Ft
y f k = 1 k = 1, . . . , K (61)

y f k ≥ 0 ∀ f ∈ Ft , k = 1, . . . , K (62)

By duality theory, the dual (59)–(62) has an optimal solution (recall that we assume
relative complete recourse) with zD

t (xt−1, ωt−1) = Q̃t (xt−1, ωt−1). As the feasible
region of the primal is bounded (assumption A1), so is the feasible region of the dual.
Thus, the feasible region of the dual can be characterized by finitely many extreme
points. An optimum of the dual (59)–(62) is then obtained at an extreme point, given
by πk together with π f k . Let there be a particular value for xt−1 denoted by x̂t−1 and
the corresponding value of the RHS for event ωt−1, given by ĥt−1, then

zD
t (x̂t−1, ĥt−1)

=
K∑

k=1

pk

⎛

⎝πk

(
ĥkt − Tt−1xt−1

)
+

∑

f ∈Ft

π f k

(
Eh

f t ĥkt + e f t

)
⎞

⎠

=
K∑

k=1

pk

⎛

⎝

⎛

⎝
∑

f ∈Ft

π f k Eh
f t + πk

⎞

⎠ dt (ĥt−1,�)k − πk Tt−1 x̂t−1 +
∑

f ∈Ft

π f ke f t

⎞

⎠

=
⎛

⎝
K∑

k=1

pk

⎛

⎝
∑

f ∈Ft

π f k Eh
f t + πk

⎞

⎠

⎞

⎠ ϕt ĥt−1 −
(

K∑

k=1

pkπk

)

Tt−1 x̂t−1 + c(�)

with constant value c(�), independent of ĥt−1 and x̂t−1; it can be calculated through

c(�) = zD
t (x̂t−1, ĥt−1) −

⎛

⎝
K∑

k=1

pk

⎛

⎝
∑

f ∈Ft

π f k Eh
f t + πk

⎞

⎠

⎞

⎠ ϕt ĥt−1

+
(

K∑

k=1

pkπk

)

Tt−1 x̂t−1.

This implies

Q̃t (x̂t−1, ĥt−1) = E f,t−1 x̂t−1 + Eh
f,t−1ĥt−1 + e f,t−1

with E f,t−1, Eh
f,t−1 and e f,t−1 defined appropriately (e.g., as in (52)-(54)), for the

corresponding index f .
Because the feasible region of the dual (59)–(62) is neither affect by xt−1 nor by

ωt−1, πk together with π f k remains an extreme point of the feasible region of the dual,
though optimality might be lost. For an arbitrary xt−1 and ωt−1, this implies that

Q̃t (xt−1, ωt−1) ≥ E f,t−1xt−1 + Eh
f,t−1ht−1(ωt−1) + e f,t−1 t = 2, . . . , T .
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As in the last stage T , QT +1(xT , ωT ) ≡ 0; it follows that QT (xT −1, ωT −1) =
Q̃T (xT −1, ωT −1). The argument follows then by (backwards) induction over the sta-
ges. ��

The calculated z defines a lower bound on zE because there are K realizations of
the RHS, conditioned on the stage and the previous realization. Note that ϕt = 0 leads
to a model of lag 0 which reduces Algorithm 3.3 to Algorithm 3.2.

Algorithm 3.3 is an SDDP algorithm with linear sampling.
Let us re-visit the requirement S2 and the challenges faced when introducing non-

linear relationships and sampling procedures affecting parameters other than the RHS.
Assumption S2 implies the convexity of the expected t + 1-stage value function
Qt+1(xt , ωt ) for fixed recourse, fixed objective function coefficients, and fixed tech-
nology; property d.) of Theorem 4. Thus, only the randomness of the RHS parameter
ht can be treated by a (linear) sampling procedure.

There are several ways to illustrate the challenges faced, when extending the
approach beyond serial dependence in the RHS. The first insight is given by the
correctness proof for the cuts (Corollary 2). The idea of the proof is that the dual
feasible region of the approximated t-stage problem is not affected by the randomness
of RHS parameter ht . Thus, the extreme points of the dual remain unaffected and do
not “see” the randomness of ht . Together with the linearity of the sampling procedure,
it follows that (1) the derive optimality cuts are valid and (2) a finite number of cuts
suffice. General sampling procedures for parameters ct , Tt−1 and Wt may affect the
feasible region of the dual; thus, special dependency structures are required which do
not affect the dual feasible region.

A second way is the “add-a-state-variable” view; cf. Maceira and Damázio [34], de
Matos and Finardi [11] and de Queiroza and Morton [12, Sect. 5]. Here, the idea is to
apply a re-formulation to obtain t-stage problems which are interstage independent,
by introducing additional state variables which capture the history of the stochastic
process. The relationship capturing the randomness of the parameters then explic-
itly enter the formulation via constraint(s); non-linear relationships might destroy the
polyhedral structure. Valid (optimality) cuts are then derived by taking the dual and
the argument above applies.

3.5 Combining sampling-based and scenario-based NBD methods

Given is theMSLP (10)–(14) in its extensive form. The uncertainty for scenario s (and
stage t) is parameterized by cst , hst , Ts,t−1 and Wst ; a possible realization of random
vector ξ .

We consider the case when random vector ξ can be separated into two different,
independent random vectors ξ T and ξ S ; i.e., each component of cst , hst , Ts,t−1 and
Wst is a realization of one of the two random vectors ξ T or ξ S . The set St corresponds
to the scenario tree part, i.e., associated with random vectors ξ T , and denotes the
collection of all corresponding scenarios s for stage t . In the following, we distinguish
two cases: ξ S being stage-wise independent (Sect. 3.5.1) and stage-wise dependent
(Sect. 3.5.2).
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We want to briefly mention here that the two proposed algorithms below can be
seen as a generalization of the work by Philpott and de Matos [46] where a Markov
chain was combined with SDDP, by assuming that a Markov state is the scenario tree
realization and the transition matrices define the probabilities. We refer to Sect. 4.4
for a more detailed discussion.

3.5.1 Nested Benders decomposition and sampling-based nested Benders
decomposition for stage-wise independent random variables

We assume random vector ξ S is stage-wise independent while random vector ξ T has a
scenario tree structure. Let there be K1 realizations associated with random vector ξ S

for each stage (t > 1); random vector ξ T has K2 realizations (per stage). Combining
both uncertainties leads to a tree with S = (K1K2)

T −1 scenarios. For instance, in
Fig. 2, the second stage of the combined tree has 8 nodes and the third stage 64 =
(4 ·2)3−1; for each of the 8 realizations of the second stage, there are 8 realizations for
stage 3.

The idea is to treat random vector ξ T exactly (via NBD) while we take a sampling
approach for ξ S . Both stochastic processes share the same set of stages as shown in
Fig. 2. Figure 2a shows again a recombining scenario tree with 4 stages and K1 = 4
realizations per stage. We apply the sampling approach towards the recombining tree.
A scenario tree with K2 = 2 realizations per stage is shown in Fig. 2b. At each stage t
and for each node in the recombining tree, there are K t−1

2 realizations corresponding
to the scenario tree.

We obtain one Benders cut for each s; each sample n taken from the recombining
scenario tree leads to a Benders cut as well. Note that we do not loose the ability to
share cuts in the recombining tree, i.e., the n cuts associated with ξ S can be shared
for each scenario s ∈ St but not among the different scenarios s. With other words,
this algorithmic framework preserves cut sharing within each scenario of the scenario
tree part. This is an important distinction to existing variants of the SDDP method,
see Sect. 4.4.

The procedure is summarized in Algorithm 3.4. Scenarios s, s̃ and š correspond
to the scenarios of random vector ξ T (S̃ = K T −1

2 ); s̄ are the scenarios corresponding
to the random vector ξ S only (S̄ = K T −1

1 ). The realizations corresponding to the
uncertain parameters on both trees are given by cns̄ ,s̃,t , Wns̄ ,s̃,t , hns̄ ,s̃,t , Tns̄ ,s̃,t−1.

t =1 t = 2 t = 3 t = 4

(a)
t = 1 t = 2 t = 3 t = 4

(b)

Fig. 2 Combining two types of uncertainties into one algorithmic framework (T = 4): recombining
scenario tree (K1 = 4) representing ξ S and scenario tree (K2 = 2) representing ξT . a Recombining tree:
ξ S ; 4 possible sample paths are dashed in gray, b scenario tree: ξT
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Algorithm 3.4 Nested Benders Decomposition and Sampling-based Nested Benders
Decomposition (Stage-wise Independent Random Vectors ξ S)

1: // initialize
2: empty cut set Fst = ∅ for t = 1, . . . , T and s ∈ St
3: fix variable η ≡ 0 (for first forward simulation iteration only); η ≡ 0 for t = T
4: assign lower bound z := −∞ (for first forward simulation iteration only)
5: loop
6: // forward simulation: obtain upper bound estimate ẑ, standard deviation σz and decisions x̂nst
7: solve the approximate first-stage problem (s ∈ S1)

min c1x1 + ∑
s̃∈SSs1 pss̃1ηs̃ (63)

s.t. W1x1 = h1 (64)
ηs̃ ≥ E f s̃1x1 + e f s̃1 ∀s̃ ∈ S

S
s1, f ∈ Fs̃1 (65)

x1 ≥ 0 (66)

8: store x̂ns1 := x∗
1 as an optimal solution to (63)-(66), n = 1, . . . , N

9: randomly choose N samples among all S̄ scenarios; associate each sample n with a scenario s̄, denoted
by ns̄

10: for each sample n = 1, . . . , N do
11: for each stage t = 2, . . . , T do
12: for each scenario s ∈ St do
13: solve the approximated t-stage problem for x̂n,s,t−1

min cns̄ ,s,t x + ∑
s̃∈SSst

pss̃t ηs̃ (67)

s.t. Wns̄ ,s,t x = hns̄ ,s,t − Tns̄ ,s,t−1 x̂ns̄ ,s,t−1 (68)
ηs̃ ≥ E f s̃t x + e f s̃t ∀s̃ ∈ S

S
st , f ∈ Fs̃t (69)

x ≥ 0 (70)

14: store x̂nst := x∗ as an optimal solution to (67)-(70)
15: end for
16: end for
17: end for
18: calculate an estimate ẑ of the upper bound z̄ on zE via (35) with zn = ∑S̃

s=1 ps
∑T

t=2 cns̄ ,s,t x̂nst
19: calculate the standard deviation σz of the estimator ẑ via (36)
20: // check stopping criterion
21: Check the convergence criteria, if accepted, then end loop and goto step 36
22: // backward recursion: obtain lower bound z and optimality cuts
23: for each stage t = T, T − 1, . . . , 2 do
24: for each sample n = 1, . . . , N do
25: for each scenario s ∈ St do
26: for each realization k = 1, . . . , K1 do
27: solve the approximated t-stage problem for x̂n,s,t−1

min ckst x + ∑
s̃∈SSst

pss̃t ηs̃

s.t. Wkst x = hkst − Tk,s,t−1 x̂n,s,t−1 (71)
ηs̃ ≥ E f s̃t x + e f s̃t s̃ ∈ S

S
st , ∀ f ∈ Fs̃t (72)

x ≥ 0

28: store πk and π f ks̃ as an opt. dual sol. for constraints (71) and (72), respectively
29: end for
30: create optimality cut for stage t − 1 and for all š ∈ Ss,t−1:

Fš,t−1 ← Fš,t−1 ∪ {|Fš,t−1| + 1}
E|Fš,t−1|,š,t−1 := −∑K1

k=1 pkπk Tk,s,t−1 (73)

e|Fš,t−1|,š,t−1 := ∑K1
k=1 pk

(
πk hkst + ∑

s̃∈SSst

∑
f ∈Fs̃t

π f ks̃ e f s̃t

)
(74)
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31: end for
32: end for
33: end for
34: solve problem (63)-(66): the optimal objective function value yields a lower bound z on zE

35: end loop
36: return x∗

1 defines (approximately) optimal solution to first stage of (10)–(14) with ẑ ≈ zE

Correctness of the Benders cuts is established by

Corollary 3 The optimality cuts (73)–(74) are valid, i.e., they underestimate the
expected t + 1-stage value function.

Proof The approximated t-stage value function for scenario s, stage t and realizations
ckst , hkst , Tk,s,t−1 and Wkst is given by; we omit index “n” here

Q̃st (xt−1, ωt−1) := min
K1∑

k=1

pkckst xk +
∑

s̃∈SSst

pss̃tηs̃

s.t. Wkst xk = hkst − Tk,s,t−1xt−1 k = 1, . . . , K1

ηs̃ ≥ E f s̃t xk + e f s̃t ∀s̃ ∈ S
S
st , f ∈ Fs̃t , k = 1, . . . , K1

xk ≥ 0, k = 1, . . . , K1

The objective function of the dual (the variables are scaled) can be written as

max
K1∑

k=1

pk

⎛

⎝yk
(
hkst − Tk,s,t−1xt−1

) +
∑

s̃∈SSst

∑

f ∈Fs̃t

y f ks̃ e f s̃t

⎞

⎠ (75)

The remainder of the proof follows the ideas of the proof of Corollary 2. ��

3.5.2 Nested Benders decomposition and sampling-based nested Benders
decomposition for stage-wise dependent random variables

Here, we assume stage-wise dependence of random vector ξ S ; ξ T underlies a scenario
tree structure. As in Sect. 3.4, we assume the dependence of ξ S

t on the events of stage
t −1 only (assumption S1) in a linear fashion (assumption S2). This allows us to write
the expected t + 1-stage value function for scenario s as

Qs,t+1(xt , ωt ) := Eξ S
t+1|ωt

[
Qs,t+1(xt , ωt+1)

]
t = 2, . . . , T − 1 (76)

where we exploit the independence of ξ S and ξ T .
In order to preserve convexity of the expected t + 1-stage value function (76), only

the RHS values are allowed to be stochastic, governed by ξ S , cf. Theorem 4 and the
discussions at the end of Sect. 3.4. However, the scenario tree part can still affect all
components. For the ease of notation, we split the realizations corresponding to the
uncertain parameters to cst , Wst , Ts,t−1 (corresponding to ξ T

t ) and hs̄t (corresponding
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to ξ S
t ). Further, let hnt be a realization for one scenario s̄ among the S̄ scenarios of ξ S

t .
The resulting Benders Decomposition algorithm variant is outlines in Algorithm 3.5.

Algorithm 3.5 Nested Benders Decomposition and Sampling-based Nested Benders
Decomposition (Stage-wise Dependent Random Vectors ξ S)

1: // initialize
2: empty cut set Fst = ∅ for t = 1, . . . , T and s ∈ St
3: fix variable η ≡ 0 (for first forward simulation iteration only); η ≡ 0 for t = T
4: assign lower bound z := −∞ (for first forward simulation iteration only)
5: loop
6: // forward simulation: obtain upper bound estimate ẑ, standard deviation σz , decisions x̂nst and

samples hnt
7: solve the approximate first-stage problem (s ∈ S1)

min c1x1 + ∑
s̃∈SSs1 pss̃1ηs̃ (77)

s.t. W1x1 = h1 (78)
ηs̃ ≥ E f s̃1x1 + Eh

f s̃1h1 + e f s̃1 ∀s̃ ∈ S
S
s1, f ∈ Fs̃1 (79)

x1 ≥ 0 (80)

8: store x̂ns1 := x∗
1 as an optimal solution to (77)-(80), n = 1, . . . , N

9: randomly choose N samples from ξ S ; denote hnt the realizations for sample n and stage t
10: for each sample n = 1, . . . , N do
11: for each stage t = 2, . . . , T do
12: for each scenario s ∈ St do
13: solve the approximated t-stage problem for x̂n,s,t−1 and hnt

min cs,t x + ∑
s̃∈SSst

pss̃t ηs̃ (81)

s.t. Ws,t x = hnt − Ts,t−1 x̂n,s,t−1 (82)
ηs̃ ≥ E f s̃t x + Eh

f s̃t hnt + e f s̃t ∀s̃ ∈ S
S
st , f ∈ Fs̃t (83)

x ≥ 0 (84)

14: store x̂nst := x∗ as an optimal solution to (81)-(84)
15: end for
16: end for
17: end for
18: calculate an estimate ẑ of the upper bound z̄ on zE via (35) with zn = ∑S̃

s=1 ps
∑T

t=2 cns̄ ,s,t x̂nst
19: calculate the standard deviation σz of the estimator ẑ via (36)
20: // check stopping criterion
21: Check the convergence criteria, if accepted, then end loop and goto step 37
22: // backward recursion: obtain lower bound z and optimality cuts
23: for each stage t = T, T − 1, . . . , 2 do
24: for each sample n = 1, . . . , N do
25: obtain the K1 realization from ξ S

t |ωt−1 (using hn,t−1); denoted by hknt
26: for each scenario s ∈ St do
27: for each realization k = 1, . . . , K1 do
28: solve the approximated t-stage problem for x̂n,s,t−1 and hknt

zk := min cst x + ∑
s̃∈SSst

pss̃t ηs̃ (85)

s.t. Wst x = hknt − Ts,t−1 x̂n,s,t−1 (86)
ηs̃ ≥ E f s̃t x + Eh

f s̃t hknt + e f s̃t ∀s̃ ∈ S
S
st , f ∈ Fs̃t (87)

x ≥ 0 (88)
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29: store πk and π f ks̃ as an opt. dual sol. for constraints (86) and (87), respectively
30: end for
31: create optimality cut for stage t − 1 and for all š ∈ Ss,t−1:

Fš,t−1 ← Fš,t−1 ∪ {|Fš,t−1| + 1}
E|Fš,t−1|,š,t−1 := −

(∑K1
k=1 pkπk

)
Ts,t−1 (89)

Eh
|Fš,t−1|,š,t−1 :=

(∑K1
k=1 pk

(∑
s̃∈SSst

∑
f ∈Ft

π f ks̃ Eh
f s̃t + πk

))
ϕt (90)

e|Fš,t−1|,š,t−1 := ∑K1
k=1 pk zk − E|Fš,t−1|,š,t−1 x̂n,s,t−1 − Eh

|Fš,t−1|,š,t−1hn,t−1 (91)

32: end for
33: end for
34: end for
35: solve problem (77)-(80): the optimal objective function value yields a lower bound z
36: end loop
37: return x∗

1 defines (approximately) optimal solution to first stage of (10)–(14) with ẑ ≈ zE

Algorithm 3.5 is correct:

Corollary 4 The optimality cuts (89)–(91) are valid, i.e., they underestimate the
expected t + 1-stage value function (76).

Proof The approximated t-stage value function corresponding to (76) for scenario s
(corresponding to ξ T

t ), stage t and realizations cst , Ts,t−1, Wst for ξ T
t , and hkt for

ξ S
t |ωt−1 is given by; we omit index “n” here

Q̃st (xt−1, ωt−1) := min
K1∑

k=1

pkcst xk +
∑

s̃∈SSst

pss̃tηs̃ (92)

s.t. Wst xk = hkt − Ts,t−1xt−1 k = 1, . . . , K1

ηs̃ ≥ E f s̃t xk + Eh
f s̃t hkt + e f s̃t ∀s̃ ∈ S

S
st , (93)

f ∈ Fs̃t , k = 1, . . . , K1 (94)

xk ≥ 0, k = 1, . . . , K1 (95)

Let the optimal objective function value of a dual to (92)–(95) be zD
st and let πk and

π f ks̃ be an optimal dual solution (scaled, index s for the dual solution is omitted) for
realizations x̂t−1 and ĥt−1, then

zD
st (x̂t−1, ĥt−1)

=
⎛

⎝
K1∑

k=1

pk

⎛

⎝
∑

s̃∈SSst

∑

f ∈Ft

π f ks̃ Eh
f s̃t + πk

⎞

⎠

⎞

⎠ ϕt ĥt−1

−
(

K1∑

k=1

pkπk

)

Ts,t−1 x̂t−1 + c(�)

with constant c(�).
The ideas of the proof of Corollary 2 close this proof. ��
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3.6 Discussion and method comparison

Combining tree and sampling approaches can exploit the individual approaches’ main
strength

tree representation of uncertainties of complex underlying processes
sampling break of curse-of-dimensionality resulting from number of scenarios and in

the state space

and overcome their main individual weakness

tree curse-of-dimensionality resulting from number of scenarios

sampling stochasticity is limited to stage-wise independent random variables or stage-
wise dependent random variables following linear models (cf. Sect. 3.4).

However, it is crucial that the scenario tree does not contain too many scenarios. This
can be achieved, for instance, if the two stochastic processes represented in ξ S and ξ T

live on different scales, as shown in Fig. 3. The number of realizations K1 can differ
per stage, Fig. 3a. Similarly, the number of realizations K2 per stage and node can be
different in the tree structure, Fig. 3b. Nevertheless, the curse-of-dimensionality is not
completely broken; it is still present for the processes modeled with the scenario tree
approach, though a coarse tree may suffice for a specific application.

The five different NBD algorithms are summarized and compared in Table 1. The
three different assumptions for the distribution of the stochasticities are hierarchical:
“linear dependence” of lag 0 leads to a stage-wise independence process, see Sect. 3.4.
Thus, algorithms capable of dealing with linear dependence of the randomness of the
input data can also cope with stage-wise independence processes. Similarly, linearly
dependent random vectors can be represented in a tree as well. The row “# of LP’s
per Iteration” contains the number of LP’s to be solved in one backward and forward
pass of the Benders decomposition algorithm variants. The number of state variables
is given per stage and scenario, if applicable.

As mentioned, sampling-based approaches assume a linear model to represent the
stochasticity in order to preserve the convexity of the expected future value function.
Scenario tree approaches do not require this assumption. As such, the combination of
both approaches can be seen as a convexification of the expected future value function.

t =1 t = 2 t = 3 t = 4

(a)

t = 1 t = 2 t = 3 t = 4

(b)

Fig. 3 The recombining scenario tree and the scenario tree can live on different scales; K1 and K2 may
vary per stage (t > 1). a Recombining tree: ξ S , b scenario tree: ξT
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The idea canbe applied to other approacheswhich are restricted to uncertainties present
in the RHS.

We call both algorithms 3.4 and 3.5 SDDPT: SDDP & Tree.

4 Hydro-thermal scheduling

Least-cost hydro-thermal scheduling consists of determining an optimal operating pol-
icy for the use of hydro and thermal resources to minimize total expected costs while
satisfying demand. We assume that we are given a hydro-thermal power system which
must centrally dispatch the generation. The resulting problem has still its justification
also in the context of deregulated electricity markets, as it is the core of many opti-
mization problems such as the profit maximization problem by Mo et al. [37] or the
optimal expansion problem byGorenstin et al. [22]. Furthermore, many hydro-thermal
systems are still centrally dispatched, e.g., in Central and South American countries.
SDDPwas originally designed as solutionmethod for treating stochastic water inflows
in the context of least-cost hydro-thermal scheduling, cf. Pereira and Pinto [44].

In the context of the hydro-thermal scheduling problem, the central issues regarding
uncertainty and its effects on the decisions to be taken may vary depending on the
time horizon and characteristics of the system under consideration. Predominantly
hydro systems are more concerned with inflow uncertainty, since that directly affects
the system’s capacity of sustained energy production. Thermal systems, on the other
hand, are usually focused on guaranteeing reliability at times of peak demand, thus
making unit outages an important issue.

The remainder of this section is organized as follows. We present four differ-
ent classes of uncertainties (Sect. 4.1), review the literature (Sect. 4.2), apply the
SDDPT algorithm to a hydro-thermal scheduling problem incorporating both fuel
price/electricity demand and hydro inflow uncertainty (Sect. 4.3), and compare the
new approach with existing Markov chain models (Sect. 4.4). Finally, we present an
illustrative example (Sect. 4.5) and a case study for Panama (Sect. 4.6).

4.1 Classification of uncertainties

Inspired by Zimmermann [62], we classify the uncertainties for our real world opti-
mization problem with respect to its context. In general, uncertainties related to the
hydro-thermal scheduling problem may be broadly classified into four groups, see
Table 2. For each one of these groups, the way to mathematically represent these
uncertainties has an immediate impact on the methodologies to efficiently solve the
resulting problems.

The first group includes sources of uncertainty to which a time series model may be
accurately fitted and expected to provide reasonable forecasts—uncertainty in inflows
is an example that lies in this category. The second group relates to random variables
whose evolution in time is better represented by Markov chains. That is sometimes
the case of electricity spot prices. The third group may include, for example, the avail-
ability of each generating unit. In this case, the best approach is usually to perform
a probabilistic evaluation based on Monte Carlo sampling. Finally, the fourth group
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deals with sources of uncertainty that are more closely related to structural, politi-
cal or macro-economical conditions and can only be characterized in the form of a
scenario tree, particularly when one is interested in long-term projections rather than
short-term forecasts. Growth in electricity demand or the evolution of fuel prices are
the most prominent examples in this group, and are exactly the motivation for our
work.

4.2 Literature review

Scenario tree approaches to represent stochastic water inflows have been proposed in
literature. However, in order to capture the inflowuncertainty, a large scenario treemay
be required, leading to very large scale deterministic equivalent programs; cf. Shrestha
et al. [56]. In contrast, sampling-based methods have received wide attention in the
literature. The various curses-of-dimensionality present in stochastic dynamic pro-
gramming (SDP) approaches [60] inspired the development of decompositionmethods
[38,43] and SDDP approaches [44].

SDDP is now an established method which includes, for example, the operational
modeling of hydro and thermal plants, hydrological uncertainty, (linearized) trans-
mission networks [23] (e.g., Kirchhoff laws, losses, security constraints), natural gas
supply, demand and transportation network [4], load variation per load level and per
bus with monthly or weekly stages, and CO2 emission allowance constraints [52].
SDDP-type algorithms have been used in practice for more than a decade [35].

Several important algorithms have been developed which are related to the SDDP
methodology: Abridged Nested Decomposition [14,15], Cutting-Plane and Partial-
Sampling [9], Generalized Dual Dynamic Programming [57], and Constructive Dual
Dynamic Programming [49–51]. Several extensions of SDDP have been proposed, for
instance by Diniz and dos Santos [13] and dos Santos and Diniz [16] who incorporate
the information of several future stages into one stage.

The deregulation of the electricity market added another stochastic component
to the hydro-thermal scheduling problem: electricity spot prices. This lead to the
development of the so-called Hybrid SDP/SDDP methods [19–21], where pot price
forecasts are treated via Markov chains in a discrete manner (in the SDP framework)
while the reservoir levels andwater inflows aremodeled by continuous approximations
(in the SDDP framework); see also Sect. 4.4.

Recently, there is a stream of research on the incorporation of risk aversion into the
SDDPmethodology, predominantly using the Conditional Value-at-Risk (CVaR)mea-
sure [53]. The possibility to formulate CVaR risk constraints in a linear programming
framework is an important property for its inclusion into SDDP algorithm. Because
CVaR constraints the cost (or profit) associated with the N sampled scenarios simul-
taneously, special tricks have to be developed to embed the CVaR constraints into
a Dynamic Programming based framework. Therefore, primal [30] and dual penal-
ization [54] techniques have been proposed. Shapiro et al. [55] present risk averse
approaches for different risk measures, including CVaR, and apply it to the Brazil-
ian power system. In this context, Philpott and de Matos [46] combine the SDDP
framework with a Markov chain; see discussion in Sect. 4.4.
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Combining sampling-based and scenario-based NBD methods 369

Given the recent global economic crisis and huge swings in oil prices, it became
evident that relying on point estimates for key variables such as demand in future
time stages and fuel costs for thermal plants may result in biased and risky decisions.
Pereira et al. [45] proposed the modeling of the electricity demand uncertainty as
a linear autoregressive process. This is theoretically possible and amenable to the
application of the SDDP algorithm since electricity demand appears on the RHS of
the constraint matrix (cf. Sect. 4.3.2) and, hence, the future cost function is a convex
function in electricity demand. In practice, however, a linear autoregressive model
seems not to be a good predictor for electricity demand since these are mean-reverting
processes and are not able to capture the possibility that future electricity demand
may follow structural regimes which are completely different from that of the present.
As the fuel price appears in the objective function, an autoregressive process model
leads to a future cost function having a saddle shape (cf. Theorem 4), destroying the
necessary convexity of the problem which allows it to be solved with SDDP. Hence,
a Markov chain approach seems to be the natural way and was proposed by Pereira
et al. [45], leading to fuel price clusters with transition probabilities. Again, such a
model is difficult to calibrate and it seems not to capture the fuel price development
completely. We will discuss in Sect. 4.4 how our approach differs. More complex
models, such as the one by Batlle and Barquín [1], seem to more appropriately capture
the fuel price uncertainty; the output of such models can be captured with a scenario
tree.

In the literature, there is a wide range of publications suggesting scenario tree
approaches for the stochastic load process and the stochastic fuel prices; see Nowak
and Römisch [39]. There are different efficient methodologies for the generation of
scenarios trees; refer to Høyland and Wallace [29], Casey and Sen [6], Batlle and
Barquín [1] and Zhou et al. [61], while the reduction of the size of the tree is com-
putationally very important as discussed by Gröwe-Kuska et al. [24] and Heitsch and
Römisch [25], see also Sect. 3.

4.3 SDDPT towards hydro-thermal scheduling

Given are I hydro plants (index i) and J thermal plants (index j). The electricity
demand Dt [MWh] for each stage t = 1, . . . , T can be either satisfied through elec-
tricity generated by turbined water uit [m3] of any hydro plant i or through thermal
power generation g jt [MWh]. For simplicity, we assume that the generated energy
from hydro plant i is given through the linear relation ρi uit , where ρi [MWh/m3] is
the constant production coefficient for hydro plant i . A shortage in electricity supply
of δt [MWh] is allowed, in principle, but leads to a high penalty cost via the coefficient
ϒ [$/MWh]—this is practically important but also motivated to ensure feasibility of
the problem (cf. assumption A1).

The thermal power generation involves the variable production cost C jt in $ per
MWh produced and the thermal plants’ generation is subject to lower bounds G jt

[MWh] and upper bounds G jt [MWh]. The hydro plants have no variable operation
cost but the hydro power generation is subject to minimal Uit [m3] and maximal
turbined water Uit [m3].
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370 S. Rebennack

Without loss of generality, we can assume that each hydro plant i has a hydro
reservoir which is subject to a lower bound V it [m3] and an upper bound V it [m3].
Given the set of immediate upstream hydro plants Ui for plant i , then, for each stage,
there is a water balance equation, stating that the water level vi,t+1[m3] at the end of
stage t for reservoir i has to equal the water level vi t at the beginning of stage t minus
the turbined water uit and the spilled water sit [m3] plus the water inflow Ait [m3]
and the water released from the immediate upstream plants. Furthermore, there is a
minimum spillage Sit [m3] and amaximum spillage Sit [m3] per time stage t and hydro
reservoir i .

The objective is to minimize the (expected) variable cost over the planning horizon,
while meeting the electricity demand for each stage.

4.3.1 Stochastic water inflows

The uncertain inflows are typically modeled as a linear autoregressive model via a
continuous Markov process, taking into consideration the correlation with the inflows
of the previous stage(s). For notational convenience, we assume a lag 1 model; i.e.,
the inflows in stage t depend only on the previous inflows in stage t − 1. The inflow
model for stage t and reservoir i is then given by

Ait = ςi t

(
φ1i · Ai,t−1 − μi,t−1

ςi,t−1
+ φ2i · ζi t

)
+ μi t (96)

with inflow mean μi t [m3], standard deviation ςi t [m3], model parameters φ1i [-] and
φ2i [m3], and random variables outcome ζi t [–] sampled from an appropriate distribu-
tion; typically a standard normal distribution. These random variables are correlated
with respect to i but independent between stages t . However, the inflows into each
reservoir do not directly depend on the (past) inflows of all other reservoirs. Thus,
using the notation of Sect. 3.4, matrix ϕt is a diagonal matrix with diagonal entries
ςi tφ1i/ςi,t−1. In conclusion, model (96) satisfies assumptions S1 and S2.

Following the spirit of Sect. 3.4, we approximate the true, continuous inflow distri-
butions via K1 inflow realizations Akt , k = 1, . . . , K1, each having equal probability
pk = 1/K1. These inflow realizations are also called backward openings in the con-
text of SDDP. Recall that this leads to a tree with K T −1

1 scenarios (representing only
the inflow uncertainty). In order to “simulate” the stochastic inflow, a sample of N
so-called forward inflows Ant , n = 1, . . . , N , is chosen from the scenario tree; i.e., N
out of K T −1

1 scenarios are sampled.

4.3.2 Fuel cost and electricity demand uncertainty via scenario tree

Let us assume that we want to include uncertainties into the hydro-thermal scheduling
problem, which are best captured via a scenario tree. Candidates for such uncertainties
are fuel price uncertainty and electricity demand uncertainty; i.e., the data Ct j and/or
Dt are now stochastic.

We need to assume that the hydro inflow and the uncertainty treated via a tree are
independent, i.e., random vector ξ S and ξ T are statistically independent, cf. Sect. 3.5.
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Combining sampling-based and scenario-based NBD methods 371

This is justified in the context of our hydro-thermal application as the hydro inflows
should have no influence on the fuel prices and the electricity demand (and vice versa).
Without loss of generality, in this section, we discuss the uncertainty with respect to
the fuel prices only.

Using the notation of Sect. 3.5.2, let St be the set of different scenarios for the
stochastic fuel price and C jst be its realization with s ∈ St .

4.3.3 One-stage dispatch problem

For stage t and fuel cost scenario s, past inflow samples An,t−1, inflow scenarios Aknt ,
(initial) water reservoir levels Vnst (A and V are vectors in the reservoirs i ∈ I) and
fuel cost C jst , the approximated t-stage problem (85)-(88) is the so-called one-stage
dispatch problem (omitting indices k, s and t on the decision variables s, u, v, δ and η)

zkst (Vnst , An,t−1) := min
J∑

j=1

C jst g j + ϒδ +
∑

s̃∈SSst

pss̃tηs̃ (97)

s.t.
∑J

j=1
g j +

∑I

i=1
ρi ui = Dt − δ (98)

vi,t+1 = Vinst − ui − si +
∑

h∈Ui
(uh + sh) + Aiknt ∀i = 1, . . . , I (99)

ηs̃ ≥
∑I

i=1
E f i s̃tvi,t+1 +

∑I

i=1
Eh

f i s̃t Aiknt + e f s̃t ∀s̃ ∈ S
S
st , f ∈ Fs̃t

(100)

G jt ≤ g j ≤ G jt , Uit ≤ ui ≤ Uit ,

V i,t+1 ≤ vi,t+1 ≤ V i,t+1, Sit ≤ si ≤ Sit , δ ≥ 0,

∀i = 1, . . . , I, j = 1, . . . , J. (101)

Constraints (98) model the electricity demand. The water balance equations for each
reservoir are given by constraints (99). The optimality cuts for the expected t +1-stage
value function are stated in (100). Finally, the bounds on the decision variables are
represented in (101). For notational consistency, we have used η rather than α or β

which are typically used in the context of least-cost hydro-thermal scheduling and
profit maximization models in the context of hydro-thermal scheduling, respectively.

The parameters as defined in (89)-(91) for the optimality cuts (100) are obtained
by

E f i s̃t =
∑K1

k=1
pkπi,k,n,s,t+1

Eh
f i s̃t =

∑K1

k=1
pk

(∑

s∈SSs̃,t+1

∑

f ∈Ft+1
π f,i,k,s,t+1Eh

f,i,s,t+1 + πi,k,n,s,t+1

)
ϕt+1

e f s̃t =
∑K1

k=1
pk zk,s,t+1(Vn,s,t+1, Ant )−

∑I

i=1

(
E f,i,s̃,t+1Vn,s,t+1+Eh

f,i,s̃,t+1Ant

)

where each “successor” s of scenario s̃ in stage t +1 (i.e., s ∈ S
S
s̃,t+1) and each sample

n leads to one cut f ; πikns̃t and π f ikns̃t are an optimal dual solution corresponding to
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constraints (99) and (100), respectively. Notice that Ts,t−1 in (97)–(101) is scenario
independent and consists of the negative identity matrix for variables v and the zero
matrix corresponding to the other decision variables. Therefore, decision variables
s, u, δ and η do not (directly) participate in the optimality cuts (100).

This enables us to apply the SDDPT Algorithm 3.5 towards our least-cost hydro-
thermal scheduling problem, incorporating both inflowuncertainty and fuel cost uncer-
tainty.

4.4 Scenario tree versus Markov chain

Pereira et al. [45] proposed a Markov chain to cope with fuel price uncertainty. This
Markov chain has a state space size of K and is time-homogeneous. Hence, the tran-
sition probability distribution does not depend on the stages and can be represented
by a right stochastic matrix. This leads to K price clusters for each stage t with stage
independent transition probability. The incorporation within SDDP works as follows.
Each forward inflow n gets assigned exactly one such price cluster (hence, N ≥ K )
and the approximated t + 1-stage value function in (97) is substituted by the expected
value of the t + 1-stage value function for each price cluster; e.g., variables η get an
additional index κ—cuts cannot be shared among the price clusters. This leads to the
very nice property that the number of LPs to be solved remains the same as in the
standard SDDP. However, the main drawback of this method is that it is practically
very tricky to define the initial values for the cost clusters and to derive meaningful
transition probabilities. Furthermore, it is questionable if the fuel prices really evolve
according to a time-homogeneous Markov chain.

In contrast, the scenario tree approach provides a natural way to forecast fuel prices
and/or electricity demand. Government agencies such as the US Energy Information
Administration (EIA) or the International Energy Agency (IEA) regularly publish fuel
price and electricity demand forecasts on a scenario basis. TheWorld Energy Outlook
by the IEA, for instance, based its forecasts in 2007 on three different scenarios: a
reference scenario, an alternative policy scenario and a high growth scenario. Those
data are readily available and can be transformed into a scenario tree straightforwardly.
This practical advantage comes with the cost that the number of LPs to be solved
increases with the size of the tree; cf. Sect. 3.6. Hence, one wants to ensure to use a
tree of size as small as practically feasible.

As mentioned in Sect. 4.2, the hybrid SDP/SDDP method [19] also combines two
sources of uncertainty: stochastic inflows and electricity spot prices. In this framework,
however, electricity spotmarket prices are clustered and each (forward) inflow scenario
is assigned to one such cluster. Transition probabilities between clusters capture the
uncertainty of the prices. Thus, electricity spot market prices are treated as a Markov
chain. Similar clustering techniques where adopted in the context of risk management
[31] as well as fuel contracts [7,8].

An explicit combination of SDDP framework with a Markov chain was proposed
by Philpott and de Matos [46]. The authors take advantage of the special structure
imposed by the Markov chain to allow for cut sharing within each Markov state but
not between the states. The approachesmentioned above share this feature and Philpott
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and de Matos [46] is the first work to explicitly present this Markov chain framework
with the ability to share cuts within each state.

All these Markov chain approaches are similar to the SDDPT approach in that
cuts are shared within, but not between, each state or scenario tree node, respectively.
Technically, they differ in (1) a Markov chain approach combined with an inflow
model allows to capture dependencies between the inflows and the other stochastic
process (e.g., sport market prices) in contrast to the proposed model in this paper
where the two underlying stochastic processes are assumed to be independent; (2) in
the Markov chain approach, inflow scenarios are assigned to a state (or cluster) while
in SDDPT all inflow scenarios are considered for each scenario tree node; and (3) a
Markov chain typically possess the same number of states per stage, while a scenario
tree grows exponentially. In addition, associating the inflows as part of the information
of the states in the Markov process does not allow inflow models with lag > 1 as this
violates theMarkovian property; the SDDPT approach can be combined with an affine
(inflow) model of any lag.

4.5 Illustrative example

To demonstrate the utility of the proposed decomposition algorithm, we use it to
determine a cost-minimizing operations schedule for a small hydro-thermal power
system.We chose to model a small system so that the extensive form of the MSLP can
be solved as a monolith with CPLEX. The mathematical programming formulations
and the SDDPT algorithm are implemented in GAMS 24.1.3 using CPLEX with
GUSS. The computations are executed on a 64 bit machine with an Intel(R) Core(TM)
i7 CPU @ 2.93 GHz, 48 GB RAM running Ubuntu 12.04.4.

The system under study is comprised of three thermal plants and one hydro plant.
We model the system over six stages while considering the uncertainty in fuel costs
and in inflows. Fuel-cost uncertainty is modeled via four scenarios. The demand for
electricity is fixed at 100 MWh per stage (Dt = 100, t = 1, . . . , 6) and the time
that electricity is rationed the producer is penalized by 1000 $/MWh (ϒ = 1000).
Thermal plants need not produce at any minimal level (G jt = 0, t = 1, . . . , 6), but

must not exceed their given capacities (G1t = 30, G2t = 40, G3t = 20 MWh/stage,
t = 1, . . . , 6). The thermal generation cost are uncertain and are represented by a
scenario tree, cf. Fig. 4. Each scenario has the same probability.

The hydro plant has a power production coefficient of 1MWh/m3(ρ1 = 1) and
turbining capacity of 10 m3(U 1t = 0, U 1t = 10, t = 1, . . . , 6). The associated reser-
voir has a minimal reservoir limit of 8 m3 and a capacity of 25 m3(V 1t = 8, V 1t =
25, t = 1, . . . , 6). The initial reservoir level and the end of horizon reservoir level
are 10m3(v11 = v17 ≡ 10). The inflows into the single reservoir are assumed to be
uncertain and stage-wise independent. The following discrete values (with equal prob-
ability) are assumed: 10, 2, 15, 13, 8, 6, 11, 4, 7, 17 m3. The inflows are deterministic
in the first stage at value 10 m3.

Each of the K1 inflow scenarios per stage is combined with the uncertainty in the
thermal generation cost. The total number of scenarios S, combining both inflow and
generation cost uncertainty, is thus S = |ST | · K T −1

1 = 4 · K 5
1 . Figure 5 illustrates the

resulting tree for K1 = 3 and S = 972 scenarios.
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(5, 10, 15)

(6, 12, 30)

(4, 9, 24)

(6, 12, 30)

(4, 9, 24)

(6, 12, 30)

(4, 9, 24)

(8, 15, 45)

(5, 11, 29)

(5, 10, 26)

(3, 8, 22)

(8, 15, 45)

(5, 11, 29)

(5, 10, 26)

(3, 8, 22)

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Fig. 4 Scenario tree for thermal generation cost; legend: (C1st , C2st , C3st ) in ($/MWh)

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

3

9 27

81 243

Fig. 5 Complete scenario tree combining both inflow uncertainty (K1 = 3) and thermal generation cost
as in Fig. 4. The gray rectangles represent the nodes of the scenario tree of Fig. 4

Table 3 summarizes the results found from modeling the hydro-thermal system
for a different number of inflow realizations, K1, and the corresponding number of
scenarios, S.

The remaining columns show the size of the resultingMSLP (11)–(14) in extensive
form (number of constraints “rows,” number of decision variables “columns,” and
non-zero entries in the constraint matrix “non-zeros”), the optimal objective function
value “zE”, and both the generation and total solution time (in seconds), when solved
with CPLEX.

The computational results for SDDPTare summarized inTable 4. SDDPT is stopped
as soon the computed lower bound, z, equals the optimal solution (with an absolute
tolerance of 10−5).

This is an artificial stopping criterion that illustrates the number of iterations (“iter”)
the algorithm requires for different configurations and the resulting computational
times (in seconds). In each case, the algorithm is executed 25 times using a different
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Table 3 MSLP in extensive form for illustrative example

K1 S Rows Columns Non-zeros zE Generation time Total time

3 972 2751 9626 17, 875 15,836.15226 0.1 0.1

4 4096 10,579 37,024 68,757 12,561.60116 0.5 0.6

5 12,500 30,623 107,178 199,043 12,876.60000 4.3 4.4

6 31,104 73,611 257,636 478,465 14,546.92901 23.4 23.8

7 67,228 155,263 543,418 1,009,203 13,233.80526 114.5 115.4

8 131,072 297,251 1,040,376 1,932,125 15,691.66748 667.5 669.7

9 236,196 528,159 1,848,554 3,433,027 16,188.16500 2801.9 2806.7

10 400,000 884,443 3,095,548 5,748,873 13,958.59000 12,869.5 12,877.3

Fig. 6 Evolution of lower bound (“y-axis”) for K1 = 7 and N = 5 over the number of iterations (“x-axis”).
The figure shows 25 different runs, utilizing a different random sequence of the inflow samples

sequence of random draws to model the inflow uncertainty. The table shows the mini-
mum (“min”), maximum (“max”) and average (“∅”) values over the 25 runs. After the
algorithm terminates, we solve the T -stage problem over all different inflow scenarios
with the computed cuts to confirm that the optimal solution to the MSLP has been
obtained, i.e., there are K T −1

1 to evaluate. Again, this is artificial but is used to evaluate
the algorithm. In all cases, including the nine runs in which the iteration limit of 1000
is reached, our algorithm computes an optimal policy.

We observe that the performance of the SDDPT algorithm depends strongly on the
number of samples, N , relative to the number of scenarios K1.While a larger N tends to
require fewer iterations, for a fixed number of iterations, a larger N is computationally
more expensive. This leads to a trade-off between N and the computational time. For
K1 ≥ 8, the computational times of SDDPT are lower for all configurations than the
computational times of the monolith. Figure 6 shows how the lower bounds for the
example evolves typically.
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4.6 Case study for Panama

We present and discuss the results of the application of electricity demand uncertainty
by studying the cases of Panama’s power system. The consideration of electricity
demand and fuel price uncertainty is especially important not only to Panama, but also
to a number of countries in Central America due to three main factors:

– Significant share of hydro resources and existence of reservoirs The fact that a
considerable part of the system’s installed capacity comes from hydro plants and
the existence of reservoirs which are capable of seasonal regulation stresses the
necessity of taking into account the uncertainties related to electricity demand
and fuel prices. By having a more detailed representation of the evolution of
these parameters; i.e., instead of relying on single point estimates for electricity
demand and fuel prices throughout the horizon, one is capable of having a more
accurate calculation of the opportunity cost of water, which ultimately determines
the system’s operating policy.

– High dependence on international markets Resources such as oil, coal and natural
gas are not usually abundant in these countries and, consequently, they experience
a severe dependence on international markets, being exposed to both availability
and price issues. By factoring into the problem the possibility that there might
be a stronger need for these fuels in the future or that they might be a lot more
expensive then, the obtained solution may be hedged against extreme events that
would otherwise compromise security of supply or lead to unbearable costs.

– Supply adequacy issues There are countries in which the whole system is designed
and dimensioned according to a pre-defined reliability criterion which may be, for
example, a maximum percentage risk of running into a situation where part of the
load has to be shed. In such cases, the need for the installation of new generation
capacity is assessed by means of successive simulations of the system for a given
set of inflow scenarios (and usually fixed electricity demand and fuel prices): more
capacity is added as long as the results indicate a risk of deficit greater than 5%. In
such cases, a simulation of exactly the same supply configuration associated with
an increase in fuel prices would lead to deficit risks greater than those previously
calculated.

We study the effects of electricity demand uncertainty on the first stage decisions;
we know the electricity demand for the first stage with certainty. However, all future
electricity demands per stage are not known and have to be forecasted. For mid-term
optimization models, the first stage decisions are the information of interest. In hydro-
thermal scheduling,mid-termoptimization problems provide information for thewater
reservoir management; i.e., water reservoir levels are priced via the expected value
function cuts, see Wallace and Fleten [58]. We use those cuts in our studies to obtain
solutions for the first stage. This allows us to study the electricity demand effects on
an annual basis for different first stage decisions.

In our computational results, we consider 7 different electricity demand scenarios.
The electricity demand for January is the same for each scenario while the electricity
demands for all othermonths are given by the cumulative percentage change relative to
the reference scenario at ±1.75%,±1.00% and ±0.50% ; i.e., in stage t, 1 < t ≤ T ,
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Fig. 7 Electricity demand scenarios for Panama

an x% change for the electricity demand Dt of the reference scenario leads to the new
electricity demand of (1+ x)t−1Dt . The different electricity demand scenarios for the
case of Panama are shown in Fig. 7. We observe that resulting scenario tree is a fan
with a total of 7 scenarios.

The time horizon of choice is 1 year with monthly stages where the first month
is January and the last month considered is December. To achieve accurate compu-
tational results and to reduce noise, we use N = 100 forward inflow scenarios and
K1 = 50 backward openings for the SDDPT algorithm. We assume stage-wise inde-
pendent inflows. We stop the algorithm after 100 iterations. The implementation and
the computational environment is the same as in Sect. 4.5.

For the end of the planning horizon, we define a target of reaching the same water
reservoir levels as at the beginning of the model, which can be somewhat justified by
the seasonal pattern of thewater inflows. The future water values for the last stage is set
to zero, consistent with the algorithms developed in Sect. 3. The resulting end effects
are expected to very marginally influence the first stage decisions (i.e., the dispatch
decisions for January) and the water values at the first stage.

The case study presented focuses on the modeling of electricity demand uncer-
tainty together with uncertainties in the inflow. The motivation of these examples is to
demonstrate the potential and usefulness of the developed algorithms in an academic
set-up. Thus, the case study represents a rather small hydro system, compared to the
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Table 5 Thermal plants considered for the Panama system

Min. generation
(MW)

15 15 15 40 20 12 12 0 10 0 0 0 6 12

Capacity (MW) 40 40 40 158 42.8 44 96 30 53.5 7 12 18 77 125

Fuel type 1 1 1 2 3 3 1 4 1 5 6 7 1 1

Cost ($/MWh) 104.1 109.6 115.0 122.0 230.3 152.4 74.5 96.2 71.3 160.7 313.4 171.2 79.5 70.6

Fuel type 1: Bunker, 2: Diesel M., 3: Diesel L., 4: ACP1, 5: ACP2, 6: ACP3, 7: ACP4

Fortuna
Min. Storage [hm3]: 4.67
Max. Storage [hm3]: 172.30
Ø Production [ MW

m3/sec. ]: 6.67
Capacity [MW]: 300.00

Canjilone
Min. Storage [hm3]: 34.63
Max. Storage [hm3]: 38.94
Ø Production [ MW

m3/sec. ]: 1.02
Capacity [MW]: 120.00

Estrella
Min. Storage [hm3]: 0.06
Max. Storage [hm3]: 0.21
Ø Production [ MW

m3/sec. ]: 3.05
Capacity [MW]: 47.20

Los Valle
Min. Storage [hm3]: –
Max. Storage [hm3]: –
Ø Production [ MW

m3/sec. ]: 2.36
Capacity [MW]: 54.76

Bayano
Min. Storage [hm3]: 1784.71
Max. Storage [hm3]: 4965.23
Ø Production [ MW

m3/sec. ]: 0.42
Capacity [MW]: 260.00

Fig. 8 Hydro-electric system of Panama

Norwegian or the Brazilian systems. In this context, wewant tomention two important
aspects: (1) The presented hydro-thermal scheduling models are a simplification of
reality. For instance, non-linear reservoir head effects or energy transmission capac-
ities are not included in the model. (2) Though the case study focuses on electricity
demand and inflow uncertainty, the inflow uncertainty remains the main driver for
the optimal policies for hydro-dominated power systems. Thus, for real systems, one
might first enhance the aspects related to inflow modeling, for instance, by taking
weekly decisions and better forecasting methods than linear autoregressive models of
type (96), before focusing on the treatment of additional uncertainties.

In 2009, Panama’s electricity power system consisted of 14 thermal plants, 4 plants
with hydro-reservoirs as well as 1 run-of-the-river plant. The thermal plants’ data are
given in Table 5. The generation cost per MWh ranged from $70.6 to $313.4 for all
months; we assume a constant fuel price and an annual discount rate of 10%. For the
first month considered, the fixed thermal generation is 82.4 GWh with a generation
cost of $10.3 million and the thermal capacity is 426.4 GWh. Over a one year horizon,
the fixed generation cost accumulates to $115.3 million. A schematic diagram of the
hydro system of Panama is shown in Fig. 8. The installed hydro-electric capacity for
January was 529.4 GWh. The electricity demand for January is assumed to be known
at 537.3 GWh. Further, we assume an electricity demand presenting seasonal effects
with a difference of 2.1% between January and December. This pattern can be seen
in Fig. 7.
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Table 6 Computational results for the electricity system of Panama with different electricity demand
scenarios

Scenario –1.75% −1.00% –0.50% Mean +0.50% +1.00% +1.75% Average Stochastic

Demand 5866.5 6110.6 6280.2 6455.6 6636.9 6824.3 7117.5 – –

Δ −9.33% −5.56% −2.94% – 2.58% 5.47% 10.25% – –

Thermal 253.6 253.6 263.7 275.9 299.5 389.7 363.7 – 299.5

Δ −8.08% −8.08% −4.42% – 8.55% −41.25% −31.82% – 8.55%

Hydro 283.7 283.7 273.6 261.4 237.7 147.6 173.5 – 237.7

Δ 8.53% 8.53% 4.67% – −9.07% −43.53% 33.63% – −9.07%

Cost z 104,537 123,724 139,046 157,827 176,786 190,071 240,997 161,855 162,768

Cost ẑ 100,124 118,173 132,169 150,358 168,769 193,364 233,796 156,679 157,000

Time (s) 22,271 22,810 23,183 23,243 23,450 25,233 23,953 – –

EVS z 104,806 123,860 139,053 – 176,925 194,155 243,891 162,931 –

EVS ẑ 100,523 118,457 132,232 – 168,854 192,348 235,617 156,913 –

The generated electricity is given in GWh and the cost are given in $1000

Consider now Table 6. Computational results are shown for 7 different electricity
demand scenarios and a stochastic scenario corresponding to Fig. 7. Thus, the sto-
chastic case associated with the demand uncertainty has 7 different scenarios having
the same realization in the first stage corresponding to January; all 7 scenarios occur
with the same probability. The second row gives the yearly electricity demand. The
row “Thermal” gives the thermal generation for the first stage, while the row labeled
“Hydro” indicates the hydro-electric generation in GWh for the first stage. The cost
are reported both for the lower bound “Cost z” after 100 iterations as well as for the
approximate upper bound “Cost ẑ” after evaluating the solution for 10,00 random sam-
ples, i.e., we solve the hydro-thermal scheduling problem using the computed Benders
cuts for 10,000 samples (out of the K T −1

1 ≈ 4.9 · 1018 samples from the tree corre-
sponding to the inflow uncertainty) and report the average observed cost. The fixed
generation cost are excluded. Next, the computational times in seconds are recorded,
though the decomposition algorithms are implemented in a modeling language where
computational speed is not the main focus. “EVS” stands for Expected Value Solution
and the corresponding rows indicate the corresponding yearly generation cost. The
rows “Δ” provide the percentage change with respect to the scenario having average
(or mean) demand.

We observe the typical behavior of the lower bound of the SDDP algorithm in
Fig. 9a, where most improvement is realized in the first 15 iterations; cf. Fig. 9b. Using
100 forward inflow scenarios and 100 Benders iterations, leads to 10,000 Benders cuts
for the first stage for each of the demand scenarios and 70,000 Benders cuts for the
stochastic case. Nevertheless, having 50 possible realizations of the inflows per stage
(except the first stage) leads to a very large scenario tree where we expect that the
computed lower bounds are not optimal (in contrast to the illustrative example in
Sect. 4.5).

The results in Table 6 reveal that the first stage decisions (i.e., the decisions corre-
sponding to January) are very sensitive to changes in electricity demand; recall that the
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Fig. 9 Evolution of lower bound using SDDP over 100 iterations, including the fixed thermal generation
cost of $115.3 million. a Absolute value of lower bounds, b change in % compared to lower bound at
iteration 20

electricity demand of the first stage is the same in each scenario. This is explained by
the very idea of hydro-thermal electricity systems, in which onewants to hedge against
dry seasons where the installed thermal capacity might not be sufficient to meet the
electricity demand (or very expensive thermal generation units might be needed). Rel-
atively full hydro-reservoirs can prevent electricity shortages during those seasons.
However, this comes with the “risk” that some water might have to be spilled if a
wet season occurs. This explains the trends in the higher (lower) thermal electricity
generation for electricity demand increases (decreases).

At an electricity demand increase, the thermal electricity generation does not
increase with the same rate as it decreases at an electricity demand decrease; the
same holds true for the annual cost. The first reason is given by the hedging against
dry seasons; i.e., the increase in future electricity demand leads to a proportionally
higher increase of the hydro electricity than a decrease for the case of electricity
demand decreases. The second reason is that a decrease in electricity demand may
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allow to use some hydro-electric power in the first stage to avoid the production using
the most expensive thermal plants. The third reason explaining the relative similarity
in electricity production of the case of −1.00% and −1.75% is the fact that all the
“cheap” thermal plants have already been used in the first stage generation.

Let us now have a look at the solutions for the “average” case and the “stochastic”
case. The “average” case reports on the cost observed for the (unrealistic) assumptions
of a perfect foresightwith respect to the electricity demand scenarios and that only the 7
considered scenarios occur, eachwith equal probability. Thus, the resulting annual cost
of the average case represents the case of perfect information of the electricity demand.
The lower bound of this cost is given by $161.855 million. The difference between the
cost when having perfect information and the cost of the stochastic approach amounts
to approx. $912,600 (when comparing lower bounds) and approx. $312,000 (when
comparing approx. upper bounds), representing what is called the expected value of
perfect information. The solution for the stochastic case is obtained by incorporating
the cuts computed for each of the 7 demand scenarios; the solutions for EVS are
obtained in the same way.

As shown in Table 6, the thermal and hydro electric generation decisions for the
first stage differ significantly for the “mean” and “stochastic” case. The reason is once
again that the extreme cases of electricity demand increases may lead to electricity
shortages in future stages which are penalized heavily. Hence, the higher reservoir
levels in the stochastic case compared to the “average” case are a hedging against
future electricity shortages.

Using the expected electricity demand’s first stage solution in any of the electricity
demand scenarios leads to the so-called EVS. Recognize that we use this term with
respect to the “two-stage uncertainty” in the electricity demand embedded in a multi-
stage stochastic optimization context. Hence, this is can be seen as an adaptation of
this recognized terminology (cf. Birge and Louveaux [5]). The increase in annual
operation costs by ignoring the random variations in the electricity demand compared
to the stochastic approach is called the value of the stochastic solution (VSS). For our
data, we have that the VSS is approx. $163,000 (when comparing lower bounds) and
approx. $87,000 (when comparing approx. upper bounds).

5 Conclusions

The SDDP algorithm allows for a detailed representation of the system’s
characteristics—in particular, it becomes possible to represent hydro plants
individually—while considering uncertainty in inflow scenarios and remaining com-
putationally tractable. For these reasons theSDDPalgorithm is typically used infinding
the solution to the least-cost hydro-thermal scheduling problem. The SDDPmethodol-
ogy relies on the approximation of the expected future value function by a set of linear
inequalities (Benders cuts), which can be iteratively constructed until a convergence
criterion is achieved.

In this work, we proposed an extension of the SDDP methodology which permits
us to incorporate additional sources of randomness whose evolution in time is more
accurately represented in the formof scenario trees, such as electricity demand and fuel
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prices. The proposed approach amounts to parallelizable runs of the SDDP algorithm,
each corresponding to the data associated with a branch of the scenario tree of a
given stage. Whenever two or more branches of the scenario tree are joined at a
node, the corresponding expected future value functions are also merged, following
the probability of occurrence associated with each branch. Therefore, at these nodes
a single expected future value function is obtained and the algorithm continues in the
same manner until it reaches the scenario tree root node.

The impact of taking into account electricity demand and fuel price uncertaintymay
reach beyond the operational scheduling problem and extend into supply adequacy
and load supplying capability issues. The importance of taking into account electricity
demand uncertainties was explored by using the real power systems of Panama as a
case study.

The incorporation of fuel price uncertainty might be especially useful when maxi-
mizing profits in a deregulated energymarket. Typically, risk constraints are taken into
account in such models, “penalizing” a certain risk exposure. The hybrid SDP/ SDDP
algorithms for hydro-thermal profit maximization models can adopt our methodology
in a straight forward way. We see potential of our approach for fuel price uncertainty
in such an environment.
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6 Appendix: Nomenclature

The nomenclature throughout this article is summarized in Tables 7, 8 and 9.

Table 7 Indices, sets and random variables

Symbol Size Description

General models (Sects. 2, 3)

A Sigma-algebra of probability space (Ω,A , P)

dt (ωt−1, �) Distribution of random vector ξt |ωt−1

f ∈ Ft Benders optimality cut set for stage t ; may depend on scenario s

Fξ (x) Cumulative distribution function for the random vector ξ

k K Index of realizations per stage

s, s̃, š, s̄ S Scenario index

St Collection of scenarios s for stage t excluding “merged” scenarios for that stage

Sst Collection of all scenarios s̃ which are identical to scenario s in stage t

S
S
st Collection of all “successor scenarios” of scenario s in stage t

t T Stage index

n N Sample path index
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Table 7 continued

Symbol Size Description

ω ∈ Ω Collection of all possible random events; may depend on stage t

ωt Events associated with random vector ξ S for stage t

Ωt |ωt−1 Conditional set of outcomes for stage t , given that event ωt−1 ∈ Ωt−1 occurred

P Probability measure P of probability space (Ω,A , P)

� Noise term for distribution of ξt |ωt−1

ξ ∈ Ξ Real-valued random vector; may depend on stage t

ξ S K1 Real-valued random vector which is stage-wise independent or stage-wise
dependent, independent of ξT ; may depend on t

ξT K2 Real-valued random vector representing a tree, independent of ξ S

Hydro-thermal scheduling specific notation (Sect. 4)

i I Hydro plant/reservoir index

j J Thermal plant index

h ∈ Ui Collection of all immediate upstream hydro plants for hydro plant i

Table 8 Decision variables, functions and values obtained through optimization

Symbol Description

General models (Sects. 2, 3)

η Unrestricted decision variable for Benders optimality cuts; may depend on
scenario s

x Non-negative decision variable; may depend on event ωt , scenario s, or
realization k

yk Unrestricted decision variable in the dual of the approximated, expected
t-stage value function

y f k Non-negative decision variable in the dual of the approximated, expected
t-stage value function

Qt (xt−1, ωt ) t-stage value function dependent on decision xt−1 and on event ωt

Qt+1(xt ) Expected t + 1-stage value function dependent on decision (state variable)
xt

Qt+1(xt , ωt ) Expected t + 1-stage value function dependent on decision xt and event ωt

Q̃t+1(xt , ωt ) Approximated, expected t + 1-stage value function dependent on decision
xt and event ωt ; may depend on scenario s

zD
t (xt−1, ωt−1) t-stage value function of the dual problem associated with Q̃t+1(xt , ωt ),

dependence on decision xt−1 and event ωt−1; may depend on scenario s

z∗ Optimal objective function value of MSLP (1)–(5)

zE Optimal objective function value of MSLP in extensive form (10)–(14)

z, z̄ Lower, upper bound on zE

ẑ Estimate for zE

zn Defined as
∑T

t=2 cns ,t x̂nt

c(�) Constant term for zD
t (xt−1, ωt−1), depends on noise term �

E f t Benders cut coefficient for decision variables x for cut f and stage t ; may
depend on scenario s̃
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Table 8 continued

Symbol Description

Eh
f t Benders cut coefficient for RHS h for cut f and stage t

e f t Benders cut constant for cut f and stage t ; may depend on scenario s̃

ĥt Trial value for RHS ht for stage t ; may depend on realization k

π Optimal dual solution associated with functional constraints (other than
Benders cuts); depends on scenario s or realization k

π f Optimal dual solution associated with Benders cut f ; depends on scenario
s and s̃ or realization k

σz Standard deviation of the estimator ẑ

x̂t Trial value for decision variable xt for stage t ; may depend on scenario s or
sample path n

Hydro-thermal scheduling specific notation (Sect. 4)

δ Load shedding; may depend on stage t [MWh]

g j Electricity generation of thermal plant j ; may depend on stage t (MWh)

si Spilled water for hydro reservoir i ; may depend on stage t (m3)

ui Turbined water for hydro plant i ; may depend on stage t (m3)

zkst (Vnst , An,t−1) Minimal expected operation cost for stage t and all following stages,
realization k and scenario s, for given water reservoir levels Vnst and
“past” inflow An,t−1 [$]

E f i s̃t Benders cut coefficient for decision variables vi,t+1 for cut f , hydro
reservoir i , scenario s̃ and stage t

Eh
f i s̃t Benders cut coefficient for water inflow Aiknt for cut f , hydro reservoir i ,

scenario s̃ and t

e f s̃t Benders cut constant for cut f , scenario s̃ and stage t

πikns̃t Optimal dual solution associated with constraints (99)

π f ikns̃t Optimal dual solution associated with constraints (100)

Table 9 Data (no entry in the column “Dimension” means one-dimensional data)

Symbol Unit Dimension Description

General models (Sects. 2, 3)

ct nt Objective function coefficient (e.g., cost) for stage t ; may depend on event
ωt , sample path n and/or scenario s

ε Problems are solved ε-optimality; ε > 0

ht mt Right-hand-side vector for stage t ; may depend on event ωt , realization k,
sample path n, and/or scenario(s) s

pk Probability that realization k occurs

ps Probability that scenario s occurs

pss̃t Probability of scenario s̃ in stage t + 1, conditioned on scenario s in stage t

ϕt−1 no × no derivative of function dt (ωt−1,�)

Tt mt × nt Technology matrix for stage t ; may depend on event ωt , sample path n
and/or scenario s
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Table 9 continued

Symbol Unit Dimension Description

Wt mt × nt Recourse matrix for stage t ; may depend on event ωt ,
sample path n and/or scenario s

z1−α/2 Upper 1 − α/2 critical point for a standard normal
random variable

Hydro-thermal scheduling specific notation (Sect. 4)

Ait m3 Water inflow for hydro reservoir i during stage t ; may
depend on realization k and sample path n

C jt $/MWh Cost for power production at thermal plant j during
stage t ; may depend on scenario s

Dt MWh Electricity demand during stage t

φ1i Model parameter for the linear autoregressive inflow
model (96)

φ2i m3 Model parameter for the linear autoregressive inflow
model (96)

G jt , G jt MWh Minimum, maximum generation for thermal plant j
during stage t

μi t m3 Inflow mean for stage t for the linear autoregressive
inflow model (96)

ρi MWh/m3 Power production coefficient for hydro plant i

Sit , Sit m3 Minimum, maximum spillage for hydro plant i during
stage t

ςi t m3 Standard deviation of inflow for stage t for the linear
autoregressive inflow model (96)

Uit , Uit m3 Minimum, maximum turbining for hydro plant i during
stage t

ϒ $/MWh Penalty for load shedding

V it , V it m3 Minimum, maximum reservoir level for hydro plant i at
the end of stage t

ζi t Random variable draw for the linear autoregressive
inflow model (96)
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