
Math. Program., Ser. B (2016) 157:421–449
DOI 10.1007/s10107-015-0881-6

FULL LENGTH PAPER

A game-theoretic approach to computation offloading
in mobile cloud computing

Valeria Cardellini · Vittoria De Nitto Personé · Valerio Di Valerio ·
Francisco Facchinei · Vincenzo Grassi · Francesco Lo Presti ·
Veronica Piccialli

Received: 31 July 2013 / Accepted: 19 February 2015 / Published online: 9 April 2015
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2015

Abstract We consider a three-tier architecture for mobile and pervasive computing
scenarios, consisting of a local tier of mobile nodes, a middle tier (cloudlets) of nearby
computing nodes, typically located at themobile nodes access points but characterized

The work of Facchinei was supported by the MIUR project PLATINO (Grant Agreement n.
PON01_01007). The work of Piccialli was partially supported by Italian MIUR project PRIN-COFIN n.
2012JXB3YF_004.

V. Cardellini · V. De Nitto Personé · V. Grassi · F. Lo Presti · V. Piccialli (B)
Department of Civil Engineering and Computer Science Engineering,
University of Roma “Tor Vergata”,
Rome, Italy
e-mail: piccialli@disp.uniroma2.it

V. Cardellini
e-mail: cardellini@disp.uniroma2.it

V. De Nitto Personé
e-mail: denitto@disp.uniroma2.it

V. Grassi
e-mail: vgrassi@disp.uniroma2.it

F. Lo Presti
e-mail: lopresti@disp.uniroma2.it

V. Di Valerio
Department of Computer Science,
University of Rome La Sapienza, Via Salaria 113,
00198 Rome, Italy
e-mail: divalerio@di.uniroma1.it

F. Facchinei
Department of Computer, Control, and Management Engineering,
University of Rome La Sapienza,
Via Ariosto 25, 00185 Rome, Italy
e-mail: francisco.facchinei@uniroma1.it

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-015-0881-6&domain=pdf

422 V. Cardellini et al.

by a limited amount of resources, and a remote tier of distant cloud servers, which have
practically infinite resources. This architecture has been proposed to get the benefits of
computation offloading from mobile nodes to external servers while limiting the use
of distant servers whose higher latency could negatively impact the user experience.
For this architecture, we consider a usage scenario where no central authority exists
and multiple non-cooperative mobile users share the limited computing resources of
a close-by cloudlet and can selfishly decide to send their computations to any of the
three tiers. We define a model to capture the users interaction and to investigate the
effects of computation offloading on the users’ perceived performance. We formulate
the problem as a generalized Nash equilibrium problem and show existence of an
equilibrium. We present a distributed algorithm for the computation of an equilibrium
which is tailored to the problem structure and is based on an in-depth analysis of
the underlying equilibrium problem. Through numerical examples, we illustrate its
behavior and the characteristics of the achieved equilibria.

Keywords Mobile cloud computing · Generalized Nash equilibrium problem ·
Distributed algorithm

Mathematics Subject Classification 90C33 · 90C30 · 68M20

1 Introduction

Mobile devices (e.g. smartphones and tablets) are more and more becoming the hub
aroundwhichmuch of the computing and communication demand of users is centered,
thus posing new, heavy challenges. Indeed, in spite of the continuous technological
improvements, the computation capabilities of mobile devices are still limited with
respect to their “fixed” counterparts (e.g. desktop computers and data center servers).

In addition, mobile nodes are battery powered; hence energy consumption is a
key issue to be accounted for. To overcome these potential limitations, it has been
suggested to offload code execution from the mobile node to external machines [38].
This strategy has many potential advantages: (i) reduced application execution time;
(ii) reduced battery consumption; and (iii) the possibility to execute applicationswhose
resource demand could exceed the capabilities of mobile nodes.

There are several proposals in the literature (see [2,42] for a comprehensive sur-
vey) which rely on cloud computing infrastructures for computation offloading in
mobile scenarios [4]. Cloud computing delivers the vision of computing as a utility
(such as water, electricity, gas, and telephony) and provides “a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released” [33]. However, the use of traditional cloud
infrastructures in a mobile environment can introduce significant network delays that
adversely affect the user experience and outweigh the potential benefits of this solution
[12,14,23]. To overcome this problem, it has been proposed to use close-by servers
(referred to as cloudlets), typically located at the wireless access points (APs) where
mobile nodes connect to, so that they are at just “one hop” distance from the mobile
node [39].

123

Computation offloading in mobile cloud computing 423

Fig. 1 Three-tier architecture for mobile cloud computing

AP-located cloudlets cannot reasonably be expected to provide the “unlimited”
amount of resources typically provided by a distant cloud server. Indeed, economic
reasons and physical constraints limit the amount of resources that can be allocated
to each cloudlet [39]. Hence, while a cloud server guarantees a good isolation among
different users that offload their computations to it (i.e., users do not compete for
the cloud resources), this does not hold in a cloudlet. As the load increases, resources
contention and sharing can cause delays and performance degradation thatmight result
in higher and higher response times, which in turn can offset the benefits of offloading
computation to the cloudlet. As a consequence, the analysis of whether and to what
extent it is convenient to offload computation in a cloudlet-based architecture requires
to take into consideration the dynamics of the interactions among the different users
and the possible presence of regulatory policies for the access to the shared cloudlet
resources.

Most of the papers that investigate the effectiveness of computation offloading
consider single user scenarios (e.g., [1,11,14,22,29,31,46]), thus implicitly assuming
a perfect isolation in case of concurrent users. We are aware of only few papers where
interactions among different mobile users on a resource-limited cloud are taken into
account [5,10,36,37,48], as discussed in the next section.

In this paper, we will consider the general case of an architecture intended to
support computation offloading for mobile nodes, where both a middle tier consisting
of nearby resource-limited cloudlets and a remote tier consisting of resourceful distant
cloud servers are available, as depicted in Fig. 1 (this architecture is referred to as a
hybrid mobile cloud architecture in [2]).

For such an architecture both a managed and an unmanaged usage scenario can be
envisioned. The former scenario typically corresponds to the case where a wireless
service provider (WSP) deploys its own cloudlet infrastructure at its own APs, to be
used by its mobile subscribers. Hence, the WSP can be expected to centrally regu-
late the access to the cloudlet, with the goal of offering a good service experience to
its subscribers and of fulfilling its own utility goals. The latter scenario corresponds
instead to the case where cloudlet-augmented WiFi hot spots are deployed by pub-
lic authorities or private entrepreneurs at facilities like airports, train stations, public

123

424 V. Cardellini et al.

buildings, cafes, etc., for the benefit of their citizens or customers. This (future) sce-
nario is an extension of the current one where free-access WiFi hot spots are deployed
just as an additional service for citizens, or as a way for attracting more customers, on
a simple best effort basis and without any attempt of regulating their use. Analogously
to this current scenario, in the unmanaged scenario we envision cloudlet-augmented
WiFi hot spots are offered on a best effort basis, as their management is not likely to
be part of the core business of the authorities that deployed them, and mobile users
autonomously decide whether or not to take advantage of their presence, according to
their own goals.

The managed scenario gives rise to a hard optimization problem for the handling of
the cloudlet resources for which only centralized heuristics have been proposed, see
[36,37,48]. On the other hand, the unmanaged scenario is more challenging and has
not been addressed in the literature. In this paper we focus on the latter unmanaged sce-
nario, with the goal of investigatingwhether and under what conditions it gives rise to a
convenient offloading strategy. To this end, we analyze the interaction among mobile
users in a game-theoretic setting, assuming that the users independently determine
their offloading strategies according to a rational behavior. Within this framework, the
contributions of this work are as follows:

– to the best of our knowledge, this is the first work where computation offloading
is analyzed for a general multi-user “three-tier” mobile cloud computing scenario,
with no central authority managing the access to the two external cloud tiers;

– by using queueing theory, we model such a scenario as a non-cooperative game
among selfish users, where the users interaction can be formulated as aGeneralized
Nash Equilibrium Problem (GNEP) [16].

– we introduce a distributed algorithm for the computation of an equilibrium which
is tailored to the model architecture. This algorithm, on the one hand is based
on an in-depth analysis of the underlying equilibrium problem and, on the other
hand, exploits and adapts some very recent game-theoretic advancements. The
overall result is a model where each user can determine his/her own computation
offloading strategy automatically on the basis of easily collected information;

– we report computational experiments demonstrating the effectiveness of the pro-
posed algorithm and illustrating the characteristics of the achieved solution.

The remainder of the paper is organized as follows. Section 2 presents relatedworks
and motivates the mobile computing scenario we consider. In Sect. 3, we describe this
scenario and state the problem we intend to tackle, while in Sect. 4 we propose the
game-theoretic model that is used in the rest of the paper. In Sect. 5 we analyze the
properties of the game, and show the existence of an equilibrium. InSect. 6weprovide a
distributed algorithm for the achievement of an equilibrium, and discuss issues related
to its implementation. Section 7 presents a set of experiments illustrating the behavior
of the solution method and assessing the characteristics of the achieved equilibria.
Finally, Sect. 8 outlines future work.

123

Computation offloading in mobile cloud computing 425

2 Related work

Several architectural proposals aimed at supporting the implementation of computa-
tion offloading (or “cyber foraging” [38]) inmobile cloud computing (MCC) scenarios
have appeared in the recent past. Some comprehensive surveys have been recently pub-
lished [2,20,42,43], but other papers have appeared and continue to appear on this
subject [1,10,22,29,35,37,48]. The proposed architectures for MCC mainly differ
in: (1) the granularity of workload offloaded to external (cloud) nodes, spanning for
example entire virtual machines, application components or single application func-
tions; (2) the methodologies adopted to determine what parts of the application can
be potentially offloaded, including manual or automatic partitioning methodologies;
(3) and whether application partitioning is determined statically before the application
starts its execution, or dynamically at runtime, with the possibility of changing the
partitioning during the application execution.

The exploitation of external nodes “close” to mobile devices has been suggested
to alleviate the latency problem caused by the interaction with distant cloud servers
located in the Internet. Close nodes could be peer mobile nodes [25,30,45] or the
wireless access points (APs) where mobile devices connect to, suitably augmented
with some computational and storage capacity [23,39]. An implementation of this
kind of augmented AP has been recently launched by Nokia Solutions and Networks
in partnershipwith IBMand Intel.1 Other industrial solutions are being deployed under
the term of Fog computing [9].

Mostly related to the work presented in this paper are the methodologies aimed at
determining which offloadable tasks of a mobile application should be actually shifted
from the mobile device to external nodes with the goal of improving the application
performance and the user experience. We can broadly classify the existing proposals
according to a single user versus a multiple users scenario. In the single user scenario,
a single mobile node is considered, without taking into account possible interference
with other mobile nodes. On the other hand, in the multiple users scenario the offload-
ing decisions take into account that multiple users compete for computational external
resources that may be scarce.

Most of the offloadingmethodologies proposed up to now (e.g. [1,11,14,22,27,46])
focus on the single user scenario and address the issue by representing the application
as a weighted graph/tree and applying a graph partitioning algorithm, whose complex-
ity depends on the granularity of the offloading. The optimal solution is determined
through an Integer Linear Programming (ILP) formulation while fulfilling some given
objectives (e.g. application delay, energy saving, communication cost). However, since
graph partitioning is an NP-complete problem, heuristics have been proposed to find
efficiently approximate solutions so as to be able to deal also with large graphs. Solu-
tions based on graph partitioning have been also investigated in pre-cloud mobile
scenarios, e.g. [34].

Only fewworks have addressed the multiple users scenario [5,10,36,37,44,47,48].
Barbarossa et al. [5] propose a centralized scheduling algorithm to jointly optimize

1 http://nsn.com/portfolio/liquid-net/intelligent-broadband-management/liquid-applications.

123

http://nsn.com/portfolio/liquid-net/intelligent-broadband-management/liquid-applications

426 V. Cardellini et al.

the allocation of radio and computation resources among multiple users with latency
constraints. However, they consider a batch processing of the computation which
is not realistic in the cloudlet environment. Yang et al. [48] study the partitioning
problem for mobile data stream applications and consider multiple users that share the
wireless network bandwidth as well as computational cloud resources with the goal of
maximizing the throughput of the data stream application. The problem is addressed
by means of a genetic algorithm that runs on the cloud side.

Two papers propose [10,47] game-theoretic approaches for a two-tier architecture.
Chen [10] focuses on decentralized computation offloading; differently from our paper
where the resource contention among the multiple users occurs on the additional
tier constituted by the cloudlet, the author considers the competition on the wireless
access, thus focusing more on the communication aspects of mobile cloud computing.
Wang et al. [47] devise a two-stage formulation. In the first stage, each mobile device
determines the portion of computation to offload to a remote cloud with the goal to
minimize its power consumption as well as the task response time. In the second
stage, the provider of the remote cloud data center performs resource allocation for
the offloaded tasks with the goal to maximize its own profit. In this paper, we do not
consider resource allocation issues on the remote cloud servers, that are assumed to
have an almost infinite capacity. Differently from us, all the above works consider a
two-tier architecture, composed only of mobile devices and a distant cloud.

Similarly to our envisaged scenario, Rahimi et al. [36,37] consider a three-tier
architecture for MCC with multiple users, where local cloud resources are limited;
in [37] they also take into consideration user mobility information. They formulate
the tiered cloud resource allocation as an optimization problem and solve it through
a greedy heuristic based on a simulated annealing approach. Their heuristic runs
on a centralized entity that has to be contacted by the mobile nodes. Finally, Song
et al. [44] propose an online task scheduling algorithm that aims to minimize the
energy consumption of mobile devices with network traffic constraint. To this end,
the authors envision a collaborative approach among mobile devices which can share
computation results of similar tasks with each other; tasks can be thus allocated either
on the originating device, on other collaborative device, or on a remote cloud.

Differently from these works that either consider a centralized decision-maker or
cooperative mobile devices in a three-tier architecture, we consider a scenario where,
as motivated in the introduction, multiple users decide selfishly whether and where to
offload their computations, and we analyze their non-cooperative behavior in a game
theoretic setting.

3 System model

We consider a mobile computing scenario as depicted in Fig. 1, where a set of mobile
nodes share a wireless access point (AP) to connect to the Internet. Mobile nodes can
use this connection to possibly offload (part of) their computational load to a nearby
cloudlet or to a conventional remote cloud center. Different applications are executed
on the mobile nodes, each consisting of one or more tasks.

123

Computation offloading in mobile cloud computing 427

Fig. 2 System model

In the following, without lack of generality, we will refer to a task as the unit of
computation. At the coarsest level, a task can correspond to an entire application,
while at the finest level it can correspond to a function, e.g., an image compression,
or even a simpler operation. It is worth observing that, in general, not all application
components can be offloaded, as some component always need to be executed locally,
e.g., a task associated to an application user interface. The nearby cloudlet and the
distant cloud are characterized by the same execution environment. In other words, it
is functionally equivalent to offload a task to the cloudlet or to the cloud. Apart from
this, a cloudlet differs substantially from a conventional cloud in that it is characterized
by a limited amount of resources, while the conventional cloud is assumed to have a
seemingly unlimited capacity.

As motivated in the introduction, we focus on an “unmanaged” scenario, where
users autonomously decidewhether or not to take advantage of nearby cloudlets, rather
than some remote cloud. Each time an offloadable task is to be executed, a decision
is selfishly taken by each user on whether it is more convenient to execute the task
locally, on the one-hop cloudlet, or on the more resourceful and distant cloud server.
If the mobile node decides to offload the task, the code and/or data are transferred
for remote execution. Upon completion, a message with the computation results is
returned to the mobile device.

We model our system as a queueing network, see Fig. 2. Queueing theory has been
widely used in the analysis of resource contention in computing and communication
systems [28], and is a natural candidate to capture the main features of our system.

The mobile device and the cloudlet are represented as queueing nodes to capture
the resources contention on these two systems. The cloudlet is modeled as a set of
n servers since we expect a cloudlet to be a “data center in a box” and therefore
to comprise possibly multiple servers machines, with multiple processors/cores [39],
with a front-end dispatcher that uniformly splits the arrival stream among the servers
(this latter architecture has been proved to be an effective and popular solution for load
sharing in multiserver systems and is largely used by commercial products, e.g. see
[3]). The cloud, on the other hand, given its virtually infinite capacity can be regarded
as an infinite server, with no contention among different users. Finally, we model both

123

428 V. Cardellini et al.

the wireless access network and the Internet as simple delay centers to capture the
average network delay experienced by the user when a task is remotely executed.

User u generates tasks at rate λu, u = 1, . . . , N . We denote by 1
μu,m

, 1
μu,clet

and
1

μu,cloud
the expected execution time of user u tasks on the mobile device, the cloudlet

and the cloud, respectively. We denote by 1
μu,wl

and 1
μu,wn

the expected time to transfer
data/code for remote execution over the wireless access network and the Internet,
respectively.Weassume the latter twoquantities include the time for the returnmessage
to be delivered to the mobile node (in other words, they represent the round trip times).

Similarly to [10,32,44], our applicationmodel does not consider possible dependen-
cies among tasks belonging to the same application. The papers [1,11,14,22,27,46]
model these dependencies as a graph and analyze how to partition the application tasks
on the mobile and cloud resources. Our higher level model allows us to capture the
tasks contention on the shared resources, which is our focus, and to overcome at the
same time the difficulties caused by the combinatorial aspects in the above mentioned
papers.

4 Generalized Nash equilibrium formulation

In this section we formulate the mobile computation offloading problem as a General-
ized Nash Equilibrium Problem [16,18]. The goal of each user (actually of the mobile
node) is to determine whether and where to offload a task based on the impact this has
on his/her usage experience, expressed through suitable Quality of Service (QoS)mea-
sures. We call this decision the user strategy and model it by associating to each user
u a triple xu = {xu,m, xu,clet , xu,cloud}, ∑

i∈I xu,i = 1, where I = {m, clet, cloud},
which represents the percentage of user tasks that is executed locally (xu,m), offloaded
to the cloudlet (xu,clet), or to the cloud (xu,cloud).

Given that power consumption and application performance are the most impor-
tant quality factors in a mobile scenario, see e.g. [1,11,14,22], we consider them as
the QoS measures driving each user strategy. In particular, we assume that the user
wants to optimize the observed performance while limiting the power consumption.
Without lack of generality, we consider as the user performance measure the expected
number of user tasks in the system, i.e. the expected number of tasks launched but not
yet completed. From the mobile user point of view, this corresponds to the average
execution time of the number of tasks launched in a time unit. We observe that this
is a quite general approach, which accounts for different levels of detail/granularity.
As an example, consider the case of an application which is executed once per second
and whose execution requires ten modules to be run. We can consider as a task either
the application or the invoked modules and with the proposed performance measure
we obtain exactly the same expression.

Let us denote by Ru,m, Ru,clet and Ru,cloud the mean response time when a task
is executed locally, offloaded to the cloudlet or to the cloud, respectively. In order
to use robust-yet simple-analytical expressions for these measures, we model the
response time of the mobile device and of each of cloudlet server as the response time
of a M/G/1/P S, which amounts to assimilate the task arrival process to a Poisson

123

Computation offloading in mobile cloud computing 429

process. The response time of a M/G/1/P S queue [28] is R = 1/μ
1−ρ

where λ is the
queue arrival rate, 1/μ the average service time and ρ = λ/μ the queue utilization.
By considering our system model assumptions, we readily have:

Ru,m =
1

μu,m

1 − xu,mλu

μu,m

, Ru,clet = 1

μu,wl
+

1

μu,clet

1 − 1

n

∑
v

xv,cletλv

μv,clet

(1)

Ru,cloud = 1

μu,wl
+ 1

μu,wn
+ 1

μu,cloud
. (2)

Ru,m directly follows from the fact that the number of tasks per unit of time which
need to be executed by the mobile node is xu,mλu . Ru,clet comprises two terms: the
first term is the local wireless delay; the second term is the cloudlet response time.
The latter is affected by the cloudlet servers load which is the aggregate cloudlet load
divided by the number of servers n, that is, 1n

∑
v xv,cletλv . Finally, Ru,cloud is the sum

of the wireless access network delay, the wide area network delay and the cloud delay.
Fewwords on the use of the Poisson assumption are in order. For themobile devices,

we note that when the adopted granularity level makes a task coincide with an entire
application, then a Poisson process well captures the arrival of independent applica-
tions. For finer granularity levels, possible dependencies among tasks belonging to the
same application could actuallymake the arrival process diverge from the Poisson one.
Nevertheless, the Poisson approximation allows us to use an analytic formulation for
the response time that captures the effect of resource contention; indeed, the Poisson
assumption is an approximation that has been adopted in the literature onmobile cloud
computing [8,21,32,47] to model a user task arrival. Finally, for the cloudlet, the use
of Poisson arrivals is justified because the overall arrival process is the superposition
of relatively sparse arrival processes from (possible many) independent users and is
also a common assumption in the Web context, see e.g. [3].

Finally, we denote by Pu,m and Pu,t the power consumed by the mobile device
when the task is executed locally and the power required to transmit code/data for
remote execution, respectively.

The user objective is to minimize λu Ru(xu, x−u) (which by Little’s first law
represents the number of tasks in the system) within a given energy budget. Here
Ru(xu, x−u) denotes user u mean task response time and x−u denotes the strategies
of all users except user u. User u mean task response time is defined as follows:

Ru(xu, x−u) = xu,m Ru,m + xu,clet Ru,clet + xu,cloud Ru,cloud . (3)

Note that the user mean response time depends not only on the user u strategy xu ,
but also on the strategies of the other users. This dependency is due to the users
indirectly affecting each otherwhen they offload tasks to the cloudlet, since the cloudlet

mean response time is function of the cloudlet load
∑

v

xv,cletλv

μv,clet
to which each user

contributes.

123

430 V. Cardellini et al.

Each user u, in order to compute the optimal strategy, needs to solve the following
optimization problem:

min λu Ru(xu, x−u) (4)

subject to : 1
n

∑
v

xv,cletλv

μv,clet
≤ Umax (5)

xu,mλu

μu,m
Pu,m + (xu,clet + xu,cloud)λu

μu,wl
Pu,t ≤ Pu,max (6)

xu,clet + xu,cloud ≤ χ (7)
∑

i∈I xu,i = 1 (8)

xu.m, xu,clet , xu,cloud ≥ 0. (9)

Constraint (5) models the cloudlet utilization which we assume should not exceed
a given threshold Umax (in practice, this corresponds to giving an upper bound to the
cloudlet response time). Observe that this constraint involves the decision variables
of all the users. Constraint (6) ensures that the user energy consumption is lower than
a threshold Pu,max . Constraint (7) takes into account that, in general, only a fraction
χ, 0 < χ ≤ 1, of the tasks can be offloaded. Finally, the simple and natural constraints
(8) and (9) ensure that the considered fractions are greater than or equal to zero and
that their sum is one.

In this setting, the users decisions are mutually dependent and the proposed model
is a GNEP. GNEPs differ from classical Nash Equilibrium Problems (NEP) in that,
while in a NEP only the players’ objective functions depend on the other players
strategies, in a GNEP both the objective functions and the strategy sets depend on
the other players strategies. In our problem, the dependence of each player strategy
set on the other players strategies is represented by the constraint (5), which includes
all the users decision variables xu,clet . More specifically, since the players all share a
common (linear) constraint, this game is known as jointly convex game [15].

5 Properties of the GNEP formulation

In this section we show that the game (4)–(9) can actually be solved by finding a
solution to a suitable Variational Inequality (to be defined later on), for which we
can then derive a distributed algorithm. First, in Sect. 5.1, crucial to our approach, we
establish that the function associated to theVariational Inequality is, under appropriate,
reasonable conditions, monotone. Then, in Sect. 5.2 we transform the original GNEP
in an equivalent extended game, the equilibrium point of which can be computed in a
distributed way [41], as detailed in Sect. 6.

123

Computation offloading in mobile cloud computing 431

5.1 Existence and monotonicity properties of the GNEP

We recall that each user u = 1, . . . , N controls three variables: xu = (xu,m, xu,clet ,

xu,cloud). For sake of simplicity, we set:

αu = λu

μu,m
, βu = λu

μu,wl
, δu = λu

μu,clet
, γu = λu

(
1

μu,wl
+ 1

μu,wn
+ 1

μu,cloud

)

.

Using this notation we can rewrite problem (4)–(9) as

min λu Ru(xu, x−u) (10)

subject to
1

n

∑

v

δvxv,clet ≤ Umax (11)

αu Pu,m xu,m + βu Pu,t (xu,clet + xu,cloud) ≤ Pu,max (12)

xu,clet + xu,cloud ≤ χ (13)

xu,m + xu,clet + xu,cloud = 1 (14)

xu.m, xu,clet , xu,cloud ≥ 0, (15)

where

λu Ru(xu, x−u) = αu xu,m

1 − αu xu,m
+ βu xu,clet + γu xu,cloud + δu xu,clet

1 − 1
n

∑
v δvxv,clet

.

In order to analyze the game we make the following basic assumption:

Assumption A Umax as well as all αu and δu, u = 1, . . . , N , are positive and smaller
than 1.

We note that assuming αu < 1 actually corresponds to assuming that all the com-
putational load generated by a user can in principle be sustained by his/her mobile
device. The assumption for δu follows from this one, as a cloudlet has a higher com-
putational capacity than a mobile device, while the assumption for Umax is standard.
Under these assumptions, it is easy to check that each user’s problem is convex for
given values of the other users’ variables. By the results in [15], we know that we
can recover a solution of this jointly convex game (known as variational solution or
normalized solution) by solving a suitable Variational Inequality: VI (K , F)2 [17]. In
order to define this VI which permits to compute a solution of our GNEP we therefore
have to specify the set K and the function F . We do this next, following [15]. To define
K we first define the sets

K̃u := {xu ∈ R
3+ : ∑

i∈I xu,i = 1, xu,clet + xu,cloud ≤ χ,

αu Pu,m xu,m + βu Pu,t (xu,clet + xu,cloud) ≤ Pu,max},

2 The VI (K , F), where K ⊆ R
n is a closed convex set and F : K → R

n is a continuous function, is the
problem of finding a point x̄ ∈ K , such that F(x̄)T (x − x̄) ≥ 0, for all x ∈ K .

123

432 V. Cardellini et al.

which are nothing else but the feasible set of user u with the joint constraint neglected.
The “contribution” of the joint constraint is taken into account by the set

Ω :=
{

x ∈ R
3N : 1

n

∑

u

δu xu,clet ≤ Umax

}

.

The set K in the definition of our VI is then given by K :=
(
Π N

u=1 K̃u

)
∩ Ω . It

remains now to define the function F . This is just the vector obtained by “stacking”
the partial gradients of each user, where the gradients are taken only with respect to
the users’ own variables:

∇xu λu Ru =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

αu
(
1 − αu xu,m

)2

βu + δu
1 − 1

n

∑
v 	=u δvxv,clet

(1 − 1
n

∑
v δvxv,clet)2

γu

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α1
(
1 − α1x1,m

)2

β1 + δ1
1 − 1

n

∑
v 	=1 δvxv,clet

(1 − 1
n

∑
v δvxv,clet)2

γ1
...

αN

(1−αN xN ,m)
2

βN + δN
1 − 1

n

∑
v 	=N δvxv,clet

(1 − 1
n

∑
v δvxv,clet)2

γN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Existence of a solution to a general GNEP is usually not easy to show. However, in
our case we are dealing with a jointly convex GNEP with compact feasible set and it
is well-known [15], but can also easily be seen directly, that a solution to the GNEP
(10)–(15) exists.

Proposition 1 Supposing that Assumption A holds, the GNEP (10)–(15) has at least
one solution.

Proof As already observed, under Assumption A any solution of the VI (K , F) is
a solution of the GNEP (10)–(15), see [15]. But F is continuous on K and K is
obviously compact. Therefore by [17, Corollary2.2.5] VI (K , F) has a solution and,
as a consequence, also the original GNEP (10)–(15) has a solution.
�
Note that in general the GNEP (10)–(15) could have infinite solutions; our aim is
to compute a variational solution by a distributed algorithm (see comments later on
the significance of this particular solution). To this end a key role is played by the

123

Computation offloading in mobile cloud computing 433

monotonicity of F .3 The easiest way to check the monotonicity of a differentiable F
is to check that the Jacobian of F, J F , is positive semidefinite on K [17].

The Jacobian of F has the following structure:

J F(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1 0 0 0 0 0 . . . 0 0 0
0 B1 0 0 B12 0 . . . 0 B1N 0
0 0 0 0 0 0 . . . 0 0 0

...
...

0 0 0 0 0 0 . . . AN 0 0
0 BN1 0 0 BN2 0 . . . 0 BN 0
0 0 0 0 0 0 . . . 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(16)

where

Au = 2α2
u

(
1 − αu xu,m

)3 , Bu = 2

n
δ2u

1 − 1
n

∑
v 	=u δvxv,clet

(
1 − 1

n

∑
t δt xt,clet

)3 ,

Buv = 1
n δvδu

1 − 1
n

∑
t δt xt,clet + 2

n δu xu,clet
(
1 − 1

n

∑
t δt xt,clet

)3 .

(17)

Theorem 1 Assume that
δmax ≤ n

Nχ
(1 − Umax), (18)

where δmax = maxu=1,...,N δu, then F is monotone.

Proof Reordering the variables, J F(x) can be rewritten in the following form:

J F(x) =
⎛

⎝
A 0 0
0 B 0
0 0 0

⎞

⎠ , A = diag (Au)N
u=1 , B =

⎛

⎜
⎜
⎜
⎝

B1 B12 . . . B1N

B21 B2 . . . B2N
...

...

BN1 BN2 . . . BN

⎞

⎟
⎟
⎟
⎠

.

Since A is positive definite by Assumption A, checking the monotonicity reduces to
checking that the matrix B is positive semidefinite. In order to check the semidefinite-
ness of B we check the semidefiniteness of its symmetric part Bs := 1

2 (BT + B).

Set

D := 1 − 1

n

∑

t

δt xt,clet ,

the diagonal elements Bs
u can be rewritten as

Bs
u = δ2u

nD2

(

2 + 2
δu xu,clet

nD

)

3 We recall that F is monotone on K if (F(y) − F(x))T (y − x) ≥ 0, ∀y, x ∈ K .

123

434 V. Cardellini et al.

while the off-diagonal elements are

Bs
uv = Bs

vu = δvδu

nD2

(

1 + δvxv,clet + δu xu,clet

nD

)

.

Let δ denote the vector δ := (
δ1 . . . δN

)T . It is easily seen that the matrix Bs can be
rewritten as

1

nD2

⎛

⎜
⎜
⎝δδT ◦

⎛

⎜
⎜
⎝I + E + 2

nD

⎛

⎜
⎜
⎝

δ1x1,clet
δ1x1,clet +δ2x2,clet

2 . . .
δ1x1,clet +δN xN ,clet

2
. . .

δN xN ,clet +δ1x1,clet
2

δN xN ,clet +δ2x2,clet
2 . . . δN xN ,clet

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ (19)

where the symbol ◦ denotes the Hadamard product of two matrices, i.e. the matrix
having as elements (A ◦ B)i j = Ai j Bi j , and E is the matrix with all entries equal to 1.

Set xδ
clet := (

δ1x1,clet . . . δN xN ,clet
)T , and let e ∈ R

N be the vector of all ones,
then, noting that

⎛

⎜
⎝

δ1x1,clet
δ1x1,clet +δ2x2,clet

2 . . .
δ1x1,clet +δN xN ,clet

2
. . .

δN xN ,clet +δ1x1,clet
2

δN xN ,clet +δ2x2,clet
2 . . . δN xN ,clet

⎞

⎟
⎠ = 1

2

(
xδ

clet e
T + e(xδ

clet)
T
)

,

the matrix Bs is given by

Bs = 1

nD2

(

δδT ◦
(

I + E + 1

nD
(xδ

clet e
T + e(xδ

clet)
T)

))

. (20)

The Schur product theorem (see [24, Theorem 7.5.3]) states that the Hadamard prod-
uct of two positive semidefinite matrices is positive semidefinite. Therefore, since the
matrix δδT is obviously positive semidefinite, in order to show the positive semidefi-
niteness of Bs it is enough to show that the matrix

(

I + E + 1

nD
(xδ

clet e
T + e(xδ

clet)
T)

)

be positive semidefinite.Neglecting the contribution of the positive semidefinitematrix
E , this reduces to proving that the minimum eigenvalue of the matrix 1

nD (xδ
clet e

T +
e(xδ

clet)
T) is greater or equal to −1. It is known, see [6, Fact 4.9.16], that the matrix

xδ
clet e

T + e(xδ
clet)

T has a characteristic polynomial given by

ηN−2
(
η2 − 2(eT xδ

clet)η + (eT xδ
clet)

2 − N‖xδ
clet‖2

)
. (21)

From this we see that the matrix xδ
clet e

T + e(xδ
clet)

T has (N − 2) zero eigenvalue, a
non negative eigenvalue and a non positive eigenvalue. These two latter eigenvalues

123

Computation offloading in mobile cloud computing 435

are given respectively by

η+ = eT xδ
clet + √

N‖xδ
clet‖, η− = eT xδ

clet − √
N‖xδ

clet‖.

We then get that a sufficient condition for the positive semidefiniteness of Bs is

1

nD

(√
N‖xδ

clet‖ − eT xδ
clet

)
≤ 1. (22)

But recalling that eT xδ
clet ≥ ‖xδ

clet‖ since xδ
clet ≥ 0, that on the feasible region ‖xδ

clet‖
is at most

√
Nδmaxχ (see (13)) and that D ≥ 1 − Umax by (11), we see that

1

nD

(√
N‖xδ

clet‖ − eT xδ
clet

)
≤ 1

nD

(
δmaxχ

√
N (

√
N − 1)

)
≤ δmax

1 − Umax

Nχ

n
.

(23)
Therefore, (22) is certainly satisfied if (18) holds.
�
Remark 1 The previous theorem hinges on condition (18) which guarantees the key
property of F being monotone. It is then important to get a good understanding of
its meaning. However, before looking at this issue, we stress that condition (18) is
just a sufficient condition for the monotonicity of F . Indeed, a look at the proof of
Theorem 1 shows that condition (18) derives from a series of majorizations based on
worst case scenarios; therefore, in practice we can expect monotonicity of F even
when (18) is not “violated too much”. This is confirmed by the numerical results in
Sect. 7, that show that condition (18) is not critical from the practical point of view.
Condition (18) essentially says that monotonicity of F is guaranteed if the cloudlet
is not overloaded. In fact, condition (18) requires that the maximum traffic intensity
δmax of the users (on the cloudlets) be lower than a certain threshold value. For a given
number N of users, this threshold increases when the number n of cloudlet servers
increases or when either or both Umax and χ decrease. Therefore monotonicity can
always be achieved by deploying more cloudlets or by imposing in the protocol, i.e.
in the constraints (11) and (13), suitably small values of Umax and χ .

5.2 The extended game

Centralized algorithms for the computation of an equilibrium could now be easily
derived by solving the VI (K , F) defined above. In fact, assuming monotonicity of
F , there are plenty of centralized algorithms available, see [17]. However, in order to
develop a distributed algorithm,we can not act directly on the originalGNEP (10)–(15)
or on its equivalent VI reformulation. Roughly speaking, the reason is that distributed
algorithms require that the feasible sets (of the game or of the VI) are the Cartesian
product of lower dimensional sets, a condition that in our case is not satisfied due to
the shared constraint (5). However, as we show next, we are able to reformulate the
GNEP (10)–(15) into another game with no coupling constraints through a simple,
but non trivial transformation which, essentially, was first hinted at in [18]. It will turn
out this new game inherits the monotonicity properties of the original game so that,

123

436 V. Cardellini et al.

as we will see in the next section, under the conditions of Theorem 1, we will be able
to develop distributed algorithms for the computation of a variational solution of the
GNEP (10)–(15).

To achieve the decoupling of the users’ feasible sets, we consider an extended game,
with one extra “player”. In this extended game the first N users control xu and have
the problem

min
xu∈K̃u

λu Ru(xu, x−u) + ρ

(
δu

n
xu,clet

)

while the (N + 1) − th player controls the variable ρ ∈ R and solves the problem

max
ρ≥0

ρ

(
1

n

∑

u

δu xu,clet − Umax

)

.

We call this game the extended game. Note that this extended game is a standard
Nash equilibrium problem since there is no coupling in the constraints. The first N
users are the “original” users. Their problems have been modified in two ways: (a) the
joint constraint has been eliminated and (b) in the objective function a term has been
added to make up for this omission. The (N + 1)-th user is a sort of cloudlet manager
and controls the variable ρ which can be seen as the cloudlet “price”. Note that the
additional term in the objective function of the other users is then nothing else but the
“cost” of using the cloudlet. More precisely, it can be shown that ρ will just turn out
to be the Lagrange multiplier of the shared constraint (11). It is a classical result [17,
Proposition 1.4.2] that our game is equivalent to the VI (Fe, Ke), where

Fe(x, ρ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

F(x) +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
ρ(δ1/n)

0
...

0
ρ(δN /n)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−1

n

∑

u

δu xu,clet + Umax

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Ke = (Π N
u=1 K̃) × R+.

The following result is key to our developments and relates GNEP (10)–(15) to
the extended game. Note that in the theorem below, when we say that the game is
monotone, we obviously mean that its VI reformulation is so, in other words, that the
function Fe is monotone.

Theorem 2 A point x̄ is a variational solution of the original game (10)–(15) if and
only if a ρ̄ exists such that (x̄, ρ̄) is a Nash equilibrium of the extended game. Fur-
thermore, if the original game is monotone, then also the extended game is monotone.

123

Computation offloading in mobile cloud computing 437

Proof The first assertion is just a verification which can be carried out comparing the
Karush–Kuhn–Tucker conditions of the VI (K , F) and of the extended game. Note
that since all constraints involved in both problems are affine, the Karush–Kuhn–
Tucker conditions surely hold at a solution. The second assertion of the theorem can
be checked writing down the Jacobian of Fe:

J Fe(x, ρ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
δ1/n
0

J F(x)
...

0
δN /n
0

0 −δ1/n 0 · · · 0 −δN /n 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

This is a block skew-symmetric matrix, and J Fe(x, ρ) is monotone if and only if
J F(x) is monotone.
�

The bottom line of this section is: we can compute a (variational) solution of the
GNEP (10)–(15) by finding a solution of the standard extended game. This latter game
is monotone if and only if the original GNEP is monotone and, in particular, if the
conditions of Theorem 1 are met. On the basis of these results, in the next section we
will show how to apply some very recent algorithmic developments in order to design
distributed algorithms for the solution of the extended game.

6 Distributed solution

In this section we consider the problem of computing an equilibrium of the GNEP
(10)–(15) by a distributed algorithm. To achieve our goal we will combine, along
lines first put forward in [40], classical results about proximal regularization, see e.g.
[17, Chapter 12], with some very recent, advanced distributed methods proposed in
[19] and [41]. In doing so, we take great care to make appropriate choices so that the
resulting solution method is not only mathematically sound, but also well suited to
the characteristics of our model, in terms of information exchange and computational
burden of the users, so as to be amenable to practical use.

Our approach to the solution of (10)–(15) is to solve the VI (Fe, Ke) in a distributed
way. To this end, one key requirement is that Fe be strongly monotone.4 However, it
can easily be observed that, because of the 0 in the lower-right corner of J Fe (see the
proof of Theorem 2) Fe can never be strongly monotone, even if F is so. To circum-
vent this difficulty, we regularize the VI (Fe, Ke) and use a proximal-point method

4 We recall that Fe is strongly monotone on Ke if (Fe(y) − Fe(x))T (y − x) ≥ m‖y − x‖2, ∀y, x ∈ Ke
for some fixed, positive m. Note that every strongly monotone function is monotone but the vice versa does
not necessarily hold. If Fe is continuously differentiable it is known that Fe is strongly monotone on Ke if
and only if J Fe(x, ρ) − m I is positive semidefinite for all points in Ke .

123

438 V. Cardellini et al.

[17, Chapter 12]. This results in the following scheme, where α is an arbitrary positive
constant.

Algorithm 1: Proximal-point algorithm for the solution of VI (Fe, Ke)

(S.0) : Choose (x0, ρ0) ∈ Ke and set k = 0.

(S.1) : If (xk, ρk) is a solution of VI (Ke, Fe) stop.

(S.2) : Compute the new iteration (xk+1, ρk+1) as the unique solution of
the strongly monotone VI (Ke, Fe + α(· − (xk, ρk))).

(S.3) : Set k ← k + 1 and go to Step 1.

It is known [17, Chapter 12] that the above scheme converges to a solution of
the VI (Ke, Fe), i.e. to a (variational) solution of the GNEP (10)–(15). The key
point in developing a (totally asynchronous) distributed solution method is therefore
the development of a (totally asynchronous) distributed solution method for the VI
(Ke, Fe + α(· − (xk, ρk))). To this end we may consider the distributed Algorithm 2.
Note that the algorithm we present is synchronous. We do so for simplicity of presen-
tation only. Totally asynchronous (in the sense of [7]) versions can easily be envisaged
and all the derivations we make in this section readily extend to the asynchronous
case.

Algorithm2:Parallel distributedalgorithmfor the solutionofVI (Ke, Fe+
α(· − (xk, ρk)))

(S.0) : Choose (x0, ρ0) ∈ Ke and set i = 0.

(S.1) : If (xi , ρi) is a solution of VI (Ke, Fe + α(· − (xk, ρk))) stop.

(S.2) : For u = 1, . . . , N set xi+1
u to be the unique solution of the strongly

convex optimization problem

min
xu

λu Ru(xu, xi−u) + ρi δu

n
xu,clet + α‖xu − xk

u‖2

subject to xu ∈ K̃u

(S.3) : Take

ρi+1 = max{0, ρk + 1

2α

(
1

n

∑

u

δu(xi
u,clet) − Umax

)

}.

Set i ← i + 1 and go to Step 1.

The overall scheme resulting by the combination of the outer Algorithm 1 and
of the inner Algorithm 2 is depicted in Fig. 3, where the information flows are also
represented.

In the next Theorem we formally show convergence of the overall scheme combin-
ing Algorithm 1 and 2.

Theorem 3 Consider the solution Algorithm 1, where all subproblems in Step S.2
are solved using Algorithm 2. There exists a positive ᾱ > 0 such that, for every α > ᾱ

123

Computation offloading in mobile cloud computing 439

Fig. 3 Distributed algorithm

and for every k, the distributed inner Algorithm 2 converges to the unique solution of
VI (Ke, Fe +α(·− (xk, ρk))) and Algorithm 1 converges to a solution of VI (Ke, Fe).
In particular, we can take

ᾱ = 3N

n

δmax

(1 − Umax)3
(24)

Proof By the discussion immediately after Algorithm 1, we only need to show that
for every α ≥ ᾱ and for every k, the distributed inner Algorithm 2 converges to the
unique solution of VI (Ke, Fe +α(· − (xk, ρk))) and we also need to justify the value
of ᾱ in (24). By [19, Theorem 3] or [41, Theorem 13] we only need to show that a
certain matrix Υ is P (meaning that all principal minors are positive). The matrix Υ

is an N +1 square matrix related to the regularized VI (Ke, Fe +α(·− (xk, ρk))) and
we describe next how it is constructed. Consider the Jacobian of Fe +α(·− (xk, ρk)),
which is given by

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A1 0 0 0 0 0 . . . 0 0 0 0
0 B1 0 0 B12 0 . . . 0 B1N 0 δ1/n
0 0 0 0 0 0 . . . 0 0 0 0

...
...

0 0 0 0 0 0 . . . AN 0 0 0
0 BN1 0 0 BN2 0 . . . 0 BN 0 δN /n
0 0 0 0 0 0 . . . 0 0 0 0
0 −δ1/n 0 · · · 0 −δN /n 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ α I(N+1)×(N+1), (25)

where the matrices Au, Bu , and Buv (whose dependence on x has been omitted for
simplicity) are defined in (17). From this matrix we can now build Υ (according to
what indicated in [19] or [41]) in the following way:

123

440 V. Cardellini et al.

Υ :=

⎡

⎢
⎢
⎢
⎣

s1 −t12 · · · −t1(N+1)
−t21 s2 · · · −t2(N+1)

...
. . .

...

−t(N+1)1 −t(N+1)2 · · · sN+1

⎤

⎥
⎥
⎥
⎦

+ α I,

where the constants si and ti j , i, j = 1, . . . , N + 1, are related to the blocks in (25)
and, more precisely, are given by

si := min
(x,ρ)∈Ke

λmin

⎛

⎝
Au 0 0
0 Bu 0
0 0 0

⎞

⎠=0, i =1, . . . , N , sN+1 := min
(x,ρ)∈Ke

λmin(0)=0,

where λmin(A) denotes the minimum eigenvalue of the matrix A, while

ti j :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(x,ρ)∈Ke

∥
∥
∥
∥
∥
∥

0 0 0
0 Bi j 0
0 0 0

∥
∥
∥
∥
∥
∥

= max(x,ρ)∈Ke Bi j if i, j = 1, . . . , N

max(x,ρ)∈Ke

∥
∥
∥
∥
∥
∥

0
δi/n
0

∥
∥
∥
∥
∥
∥

= δi/n if j = N + 1

max(x,ρ)∈Ke

∥
∥
∥
∥
∥
∥

0
−δi/n

0

∥
∥
∥
∥
∥
∥

= δi/n if i = N + 1.

It is clear that the matrix Υ is a Z matrix (meaning that all off-diagonal elements are
non positive), and therefore if we write Υ ≥ Υ̃ (where ≥ indicates component-wise
≥) and Υ̃ is a Z and P matrix, then also Υ is a P matrix (this is an easy consequence
of [13, Theorem 3.11.10]). By the above discussion we can write

Υ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

α − max
(x,ρ)∈Ke

B12 · · · −δ1/n

− max
(x,ρ)∈Ke

B21 α · · · −δ2/n

...
. . .

...

−δ1/n −δ2/n · · · α

⎤

⎥
⎥
⎥
⎥
⎥
⎦

≥

⎡

⎢
⎢
⎢
⎢
⎣

α − 3
n

δmax
(1−Umax)3

· · · − 3
n

δmax
(1−Umax)3

− 3
n

δmax
(1−Umax)3

α · · · − 3
n

δmax
(1−Umax)3

...
. . .

...

− 3
n

δmax
(1−Umax)3

− 3
n

δmax
(1−Umax)3

· · · α

⎤

⎥
⎥
⎥
⎥
⎦

:= Υ̃

The matrix Υ̃ is clearly a Z -matrix. In order to check that it is also P , we can,
equivalently check, see [13, Lemma 5.3.14], that the spectral radius of the matrix

123

Computation offloading in mobile cloud computing 441

⎡

⎢
⎢
⎢
⎢
⎣

0 1
α
3
n

δmax
(1−Umax)3

· · · 1
α
3
n

δmax
(1−Umax)3

1
α
3
n

δmax
(1−Umax)3

0 · · · 1
α
3
n

δmax
(1−Umax)3

...
. . .

...
1
α
3
n

δmax
(1−Umax)3

1
α
3
n

δmax
(1−Umax)3

· · · 0

⎤

⎥
⎥
⎥
⎥
⎦

is less than 1. But if α ≥ ᾱ this easily follows from Geršgorin circle theorem, see for
example [24, Theorem 6.1.1].
�
We note that the fact that if α is large enough the matrix Υ is P , actually even positive
definite, can be proved relatively easily. Part of the complication of the proof above
is given by the fact that we wanted to give an explicit expression for ᾱ showing the
qualitative behavior of this threshold value. Once again this parameter behaves in an
expected way and its dependency on the system parameters goes in the direction: the
more congested the system is, the higher ᾱ can be expected to be. We also remark
that the expression of ᾱ in the above theorem is obtained through a really crude
majorization of the terms Buv and δu/n; better, if more complicated, estimates can
certainly be obtained, but we do not pursue this issue further.

Below we discuss in more detail some important issues.

– Both Algorithm 1 and 2 stop in Step 1 when a solution of VI (Ke, Fe) and VI
(Ke, Fe + α(· − (xk, ρk))) respectively have been reached. In practice, in all
cases, one can stop when a inexact solution has been found, provided the degree
of inexactness decreases as the the algorithms progress. We do not discuss this
technical issue here, but refer the reader to [19,41] instead. In any case this point
does not pose any serious practical problem. For example, usually very few inner
iterations are needed to reach a very accurate solution of VI (Ke, Fe + α(· −
(xk, ρk))), since as the outer iterations progress and (xk, ρk) converges, we are
solving a sequence of outer problems that are more and more similar. This is
confirmed in our numerical experiments in Sect. 7.

– The problems solved by each user at Step 2 can be rather easily interpreted. The
objective function includes two additional terms with respect to the original game.

The first term, ρ
(

δu
n xu,clet

)
, is a cost associated to the use of the cloudlet with a

price of ρ. In other words we penalize the shared constraint (11) and “put it in the
objective function” in order to decouple the feasible sets of the users. The second
term, α‖xu − xk

u‖2, is a classical regularization term that is needed to guarantee
strong convexity of the objective function.

– The problems solved by each user at Step 2 are three variables strongly convex
problems with linear constraints and can be solved extremely efficiently and very
fast by any commercial optimization software.

– The updating of the “price” ρ requires the cloudlet to monitor the system load
(the term 1

n

∑
u δu xi

u,clet). The system load along with the price ρ are then sent by
the cloudlet to the users which require this information to solve their optimization
problem. We observe that the system load can be easily measured at the cloudlet

123

442 V. Cardellini et al.

side, and the cloudlet can be easily instrumented to transmit this information to
the users exploiting its resources, so the distributed algorithm is amenable to a
real-world implementation.

– We remark once more that our algorithm computes a variational solution of the
GNEP (10)–(15), that is, one of the possibly infinite number of equilibria of the
game. The variational solution is characterized by the fact that the multipliers of
the shared constraint (11) are the same for all users (see [15]). This solution is
particularly appealing from a practical point of view since it can be interpreted
as a fairness condition for it implies that the “cost” of use of the cloudlet (the
multiplier) is the same for all users.

7 Experimental results

In this section we investigate through numerical experiments the behavior of the pro-
posed computation offloading strategy. First, in Sect. 7.1, we compute the system
equilibria under different scenarios and study how the users’ tasks are dispatched
among the mobile device, the cloudlet, and the remote cloud infrastructure. Then, in
Sect. 7.2 we compare the proposed non-cooperative strategy solution with the social
optimum. Our aim is to understand how the performance degrades due to the selfish
behavior of the users.

For the analysis, we implemented in MATLAB the distributed algorithm in Sect. 6,
setting the parameter α to 0.1. The algorithm stops when the norm of the difference
of two consecutive iterations is less than 10−4.

7.1 Non-cooperative strategy analysis

We consider a homogeneous scenario where the users profile is characterized by the
same set of parameters. If not stated otherwise, as basic setting we consider n = 2
cloudlet servers, λu = 0.25 task/s, 1/μu,m = 0.5 s, μu,clet = 5μu,m, μu,cloud =
10μu,m, 1/μu,wl = 0.1 s, 1/μu,wn = 0.4 s and Umax = 0.7. The execution time
parameters are consistent with those experimentally measured in [11,26,29].

We also set χ = 1, i.e. all tasks can be offloaded to the cloud. Moreover, unless
otherwise noted, we do not consider the power consumption constraint, i.e. we set
Pu,max = ∞.

In Fig. 4, we show the results of four set of experiments to investigate the behavior
of the non-cooperative strategy as number of users, number of cloudlet servers, task
execution time, and maximum power consumption increase. Note that, since we con-
sider a homogeneous scenario, the user’s strategies coincide. Hence, we only need to
show the strategy of one user.

In the first set of experiments, we study the computation offloading strategy as
the number of users (N) increases from 20 to 70. From Fig. 4a we can observe that
until the cloudlet is not overloaded, the users take fully advantage of its computational
resources to execute their tasks (xu,clet = 1).As the number of users grows, the cloudlet
utilization increases. Eventually, when the utilization hits the threshold Umax , which
occurs when N = 56, the cloudlet cannot serve all the tasks; as N increases further,

123

Computation offloading in mobile cloud computing 443

20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Number of users

P
ro

ba
bi

lit
y

xu,m

xu,clet

xu,cloud

(a)

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of cloudlet servers

P
ro

ba
bi

lit
y

xu,m

xu,clet

xu,cloud

(b)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Task execution time (s)

P
ro

ba
bi

lit
y

xu,m
xu,clet
xu,cloud

(c)

0.114 0.116 0.118 0.12 0.122 0.124
0

0.2

0.4

0.6

0.8

1

Pu,max

P
ro

ba
bi

lit
y xu,m

xu,clet

xu,cloud

(d)

Fig. 4 User strategies for different system parameters

a larger percentage of tasks is executed on the mobile nodes themselves. It is worth
observing that, nevertheless, the tasks are not dispatched to the remote cloud due
to the high delays which offset the faster computational speed. Figure 5a shows the
number of user tasks in the system (i.e. the objective function value) for the first set of
experiments. As we can expect, it increases with the number of users in the cloudlet,
because the resource contention increases and a percentage of the tasks must be even
executed on the slow mobile devices.

In the second set of experiments, we study the behavior of the proposed strategy as
the number of cloudlet servers increases from n = 2 to n = 10. We set the number of
users to N = 15 and increase the task execution time, setting it to 1/μu,m = 2.2 s (so
that the local execution on the mobile device is not suitable). The results are shown in
Fig. 4b. As expected, increasing the computational power of the cloudlet allows for a
larger percentage of tasks to be executed on it, which results, as shown in Fig. 5b, in
a reduction of the number of user tasks in the system, also due to the faster network
connection to the cloudlet.

123

444 V. Cardellini et al.

20 30 40 50 60 70
0.04

0.06

0.08

0.1

0.12

Number of users

λ uR
u(x

u,x
−u

)

(a)

2 4 6 8 100.155

0.16

0.165

0.17

0.175

0.18

Number of cloudlet servers

λ uR
u(x

u,x
−u

)

(b)

Fig. 5 Number of user tasks in the system

In the third set of experiments, we study the computation offloading strategy as the
task execution time on the mobile node, 1/μu,m , ranges from 0.1 s up to 2.2 s (μu,clet

and μu,cloud are scaled accordingly). We fix the number of users N = 15 as in the
previous experiments and set the number of cloudlet servers to n = 2. The results are
shown in Fig. 4c. As we can see, at low-medium load the users take fully advantage
of the cloudlet resources (xu,clet = 1), except when the task execution time is very
small (1/μu,m = 0.1s), in which case it is more convenient to execute the task locally
on the mobile device. In particular, xu,clet remains equal to 1 until 1/μu,m ≤ 1.3s,
corresponding to a cloudlet utilization of about 0.49. From this point onwards, an ever
growing number of tasks is offloaded to the remote cloud, because in these experiments
the cloudlet is overloaded by the larger task execution time. Hence, when the cloudlet
is overloaded, it is more convenient to dispatch some tasks to the remote cloud rather
than to the mobile device, because the delay introduced by the wireless network and
the Internet is compensated by the faster execution on the remote cloud.

We now analyze the impact of the constraint on the power consumption, which has
been neglected in the previous experiments where we set Pu,max = ∞. Following
[31], we set Pu,m = 0.9W, Pu,t = 1.3W, and we study how the offloading strategy
changes as Pu,max increases from 0.112 to 0.125W.We also increase the transfer time
over the wireless network, setting 1/μu,wl = 0.5s (for example, we can suppose that
the access network is congested), while keeping 1/μu,m = 0.5 s, so that the power
consumption to transmit the task weighs more than the power consumed to execute the
task locally. The results are shown in Fig. 4d. As we can see, when Pu,max ∼= 0.124W,
the users’ strategy is to offload to the cloudlet more than 20% of the tasks. Indeed,
the high transmission time is compensated by the cloudlet faster response time and
the power constraint is still satisfied. However, as the power constraint becomes more
stringent, the user strategy is to reduce progressively the number of offloaded tasks,
because offloading consumes too much energy due to the high transfer time over the
wireless network.

We now turn our attention to the convergence speed of the proposed distributed
algorithm. In our experiments we set (x0, ρ0) = (xk, ρk) each time Algorithm 2 is
executed (step S.0). Furthermore, the values of x and ρ in the first outer loop are taken

123

Computation offloading in mobile cloud computing 445

0 0.5 1 1.5 2
0

50

100

150

200

Task execution time (s)

N
um

be
r o

f i
te

ra
tio

ns
Outer Iterations
Inner Iterations

(a)

2 4 6 8 10
0

50

100

150

200

250

Number of cloudlet servers

N
um

be
r o

f i
te

ra
tio

ns

Outer Iterations
Inner iterations

(b)

Fig. 6 Inner and outer number of iterations of the distributed algorithm

Fig. 7 Intermediate algorithm
solution strategies

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Outer loop iterations

P
ro

ba
bi

lit
y

xu,m

xu,clet

xu,cloud

equal to {xu,m, xu,clet , xu,cloud} = {1, 0, 0} ∀u and 0 respectively. Figure 6 shows the
number of iterations needed to compute the equilibrium policies. For space limits, we
show only the results for the second and third sets of experiments; however, similar
conclusions hold for the other experiments. If we compare Fig. 6a, b with Fig. 4c, b, we
can see that whenever the cloudlet is overloaded and the strategy requires to distribute
the tasks between the remote cloud or the mobile device, the number of required inner
iterations, i.e. the number of times step S.2 ofAlgorithm2 is executed, grows up to 200.
However, the number of iterations can be decreased up to one third by using as initial
state of Algorithm 1 the previously computed equilibrium. This could be a promising
solution to speed up the algorithm convergence in a real environment, where we could
expect that the users gradually join and leave the system. Furthermore, intermediate
solutions that progressively approximate the new system equilibrium can also be used
as they are computed, rather than waiting the algorithm to stop. For example, Fig. 7
shows the intermediate outer loop solutions, i.e. the xk

u values (this figure refers to
the same setting of the first set of experiments when the number of cloudlet users is
equal to 60). As we can see, from 10 outer iterations onwards, we already have a good
approximation of the system equilibrium.

Finally, observe that in our experiments we never had problems due to assumption
(18) in Theorem 1 not being satisfied. Indeed, our experiments showed that such

123

446 V. Cardellini et al.

20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Number of users

P
ro

ba
bi

lit
y

xu,m
xu,clet
xu,cloud

(a) Social optimum solution

20 30 40 50 60 70
0.04

0.06

0.08

0.1

0.12

Number of users

λ uR
u(x

u,x
−u

)

Non−cooperative
Cooperative

(b) Number of tasks in the system for
the two strategies

Fig. 8 Comparison of the proposed non-cooperative strategy with the social optimum

assumption is not critical from a practical point of view, as the system appears to
converge to an equilibrium even when it is not satisfied (for example, this is the case
of the experiment in Fig. 4a where assumption (18) does not hold for N > 24).
Nevertheless, the parameter α should be carefully tuned depending on the cloudlet
load to ensure the algorithm convergence. As indicated by Theorem 3, the higher the
expected cloudlet load, the larger α should be in order to ensure convergence. In our
experiments, we used α = 0.1 to accomodate the higher loads (even though a smaller
α would have ensured faster convergence at lower loads).

7.2 Comparison with the social optimum

We now compare the proposed non-cooperative strategy with the social optimum
solution to investigate the performance degradation caused by the selfish users behav-
iour. The social problem is the problem of maximizing the sum of all users objective
functions (the social utility), i.e.

∑N
v=1 λv Rv , subject to the union of all the user

constraints. Under Assumption A the corresponding problem is a convex optimiza-
tion problem with linear constraints. We study the social optimum solution with the
same set of parameters used in the first set of experiments as the number of users
varies.

Figure 8a shows the social optimum solution. As we can see, differently from the
non-cooperative solution, the users switch earlier their computation to the mobile
devices (N = 40 against N = 56) because they are not acting selfishly. Indeed,
we can expect that the behaviour of a selfish user is to offload as much as pos-
sible its computation to the cloud, regardless of what the others do. However, by
doing so the users performance degrade as the overall load increases, as shown in
Fig. 8b. This is the so called “price of anarchy”. Note also that, under light load,
the two solutions coincide, because the cloudlet capacity can accommodate all the
tasks.

123

Computation offloading in mobile cloud computing 447

8 Conclusions

We have considered the problem of computation offloading in a mobile cloud com-
puting scenario, motivated by the increasing interest in this architectural paradigm. In
particular, as suggested by recent literature on this topic, we have considered a three-
tier architecture wheremobile nodes have the choice of offloading their computation to
a nearby resource-constrained cloudlet or to a distant tier of resourceful cloud servers.
While previous works have either dealt with single-user scenarios without considering
the overall system or at most with centralized global approaches to tackle the inter-
actions among different mobile users on a resource-limited cloud, in this paper we
have focused on a non-cooperative usage scenario where individual users try to take
advantage selfishly of the available resources.

We have adopted a game theoretic approach to investigate the dynamics of user
interactions, modeling the offloading strategy of mobile users as a Generalized Nash
Equilibrium Problem. We have shown existence of an equilibrium and have provided
a distributed algorithm to compute an equilibrium strategy for each user. Through a
set of numerical experiments we have illustrated the properties of the equilibrium that
can be achieved and compared the resulting solutions with the social optimum. The
proposed distributed algorithm has a solid theoretical foundation and is appealing for
a real-world implementation, since it requires only a limited amount of information
that can be easily obtained.

As noted in Sect. 5, our solution refers to the case where cloudlets and remote cloud
nodes can be used to improve the user experience for a computational load that could
in principle be sustained by his/her mobile device. We do not consider the case where
the user generated load exceeds the mobile device capacity, and leave dealing with
this scenario for future work.

Besides this, other topics may be explored in future research, including a multi-
class model of the tasks launched by each user, as well as a monetary cost model to use
the cloud servers. Furthermore, while we have proved the existence of a solution for
the variational inequality, a further step with some practical relevance is the selection
of the given variational solution if more than one exists. Besides working on these
methodological extensions, we also plan to implement the distributed algorithm in a
system prototype, to validate the results in a real environment.

References

1. Abebe, E., Ryan, C.: Adaptive application offloading using distributed abstract class graphs in mobile
environments. J. Syst. Softw. 85(12), 2755–2769 (2012)

2. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A., Buyya, R.: Cloud-based augmentation for mobile
devices: motivation, taxonomies, and open challenges. IEEE Commun. Surv. Tutor. 16(1), 337–368
(2014)

3. Altman, E., Ayesta, U., Prabhu, B.: Load balancing in processor sharing systems. In: Proceedings of
3rd International Conference on Performance Evaluation Methodologies and Tools, ValueTools ’08
(2008)

4. Bahl, P., Han, R.Y., Li, L.E., Satyanarayanan, M.: Advancing the state of mobile cloud computing. In:
Proceedings of 3rd ACM Workshop on Mobile Cloud Computing and Services, MCS ’12, pp. 21–28
(2012)

123

448 V. Cardellini et al.

5. Barbarossa, S., Sardellitti, S., Di Lorenzo, P.: Joint allocation of computation and communication
resources in multiuser mobile cloud computing. In: Proceedings of IEEE 14th Workshop on Signal
Processing Advances in Wireless Communications, SPAWC ’13, pp. 26–30 (2013)

6. Bernstein, D.S.: MatrixMathematics: Theory, Facts, and Formulas with Application to Linear Systems
Theory. Princeton University Press, Princeton (2005)

7. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-
Hall Inc, Upper Saddle River (1989)

8. Bohez, S., Verbelen, T., Simoens, P., Dhoedt, B.: Discrete-event simulation for efficient and stable
resource allocation in collaborative mobile cloudlets. In: Simulation Modelling Practice and Theory
(to appear) (2014)

9. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In:
Proceedings of 1st Workshop on Mobile Cloud Computing, MCC ’12, pp. 13–16. ACM (2012)

10. Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE Trans. Par-
allel Distrib. Syst. (2014) (to appear)

11. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execution between mobile
device and cloud. In: Proceedings of Euro Systems 2011, pp. 301–314 (2011)

12. Clinch, S., Harkes, J., Friday, A., Davies, N., Satyanarayanan, M.: How close is close enough? Under-
standing the role of cloudlets in supporting display appropriation by mobile users. In: Proceedings of
2012 IEEE International Conference on Pervasive Computing and Communications, PerCom ’12, pp.
122–127 (2012)

13. Cottle, R.W., Pang, J.-S., Stone, R.E.: The linear complementarity problem, vol. 60. Siam (2009)
14. Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.: MAUI:

making smartphones last longer with code offload. In: Proceedings of 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, pp. 49–62. ACM (2010)

15. Facchinei, F., Fischer, A., Piccialli, V.: On generalized Nash games and variational inequalities. Oper.
Res. Lett. 35(2), 159–164 (2007)

16. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 175(1), 177–211
(2010)

17. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems,
vol. 1, 2. Springer, Berlin (2003)

18. Facchinei, F., Pang, J.-S.: Nash equilibria: the variational approach. In: Palomar, D.P., Eldar, Y.C. (eds.)
Convex Optimization in Signal Processing and Communications, pp. 443–493. Cambridge Books,
Cambridge (2009)

19. Facchinei, F., Pang, J.-S., Scutari, G., Lampariello, L.: VI-constrained hemivariational inequalities:
distributed algorithms and power control in ad-hoc networks. Math. Program. 145(1–2), 59–96 (2014)

20. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future Gener. Comput.
Syst. 29(1), 84–106 (2013)

21. Fesehaye, D., Gao, Y., Nahrstedt, K., Wang, G.: Impact of cloudlets on interactive mobile cloud
applications. In: Proceedings of IEEE 16th International Enterprise Distributed Object Computing
Conference, EDOC ’12, pp. 123–132 (2012)

22. Giurgiu, I., Riva, O., Alonso, G.: Dynamic software deployment from clouds to mobile devices. In:
Proceedings of Middleware 2012, pp. 394–414. Springer, Berlin (2012)

23. Ha, K., Pillai, P., Lewis, G.A., Simanta, S., Clinch, S., Davies, N., Satyanarayanan, M.: The impact of
mobile multimedia applications on data center consolidation. In: Proceedings of IEEE International
Conference on Cloud Engineering, IC2E ’13, pp. 166–176 (2013)

24. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)
25. Huerta-Canepa, G., Lee, D.: A virtual cloud computing provider for mobile devices. In: Proceedings

of 1st ACMWorkshop on Mobile Cloud Computing and Services, MCS ’10 (2010)
26. Imai, S.,Varela, C.A.: Light-weight adaptive task offloading from smartphones to nearby computational

resources. In: Proceedings of 2011 ACM Symposium on Research in Applied Computation (2011)
27. Jia, M., Cao, J., Yang, L.: Heuristic offloading of concurrent tasks for computation-intensive appli-

cations in mobile cloud computing. In: Proceedings of IEEE INFOCOM Workshops, pp. 352–357
(2014)

28. Kleinrock, L.: Queueing Systems, Volume 1: Theory. Wiley-Interscience, New York (1975)
29. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: ThinkAir: dynamic resource allocation and

parallel execution in the cloud for mobile code offloading. In: Proceedings of IEEE INFOCOM 2012,
pp. 945–953 (2012)

123

Computation offloading in mobile cloud computing 449

30. Kosta, S., Perta, V., Stefa, J., Hui, H., Mei, A.: Clone2Clone (C2C): peer-to-peer networking of smart-
phones on the cloud. In: Proceedings of 5th USENIX Workshop on Hot topics in Cloud Computing
(2013)

31. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computation save energy?
IEEE Comput. 43(4), 51–56 (2010)

32. Lin, X., Wang, Y., Pedram, M..: An optimal control policy in a mobile cloud computing system based
on stochastic data. In: Proceedings of IEEE 2nd International Conference on Cloud Networking, pp.
117–122 (2013)

33. Mell, P., Grance, T.: The NIST definition of cloud computing. In: NIST Special Publication 800–145
(2011)

34. Ou, S., Yang, K., Zhang, J.: An effective offloading middleware for pervasive services on mobile
devices. Pervasive Mob. Comput. 3(4), 362–385 (2007)

35. Rachuri,K.K., Efstratiou,C., Leontiadis, I.,Mascolo,C., Rentfrow, P.J.: Smartphone sensing offloading
for efficiently supporting social sensing applications. Pervasive Mob. Comput. 10, 3–21 (2014)

36. Rahimi, R., Venkatasubramanian, N., Mehrotra, S., Vasilakos, A.: MAPCloud: mobile applications on
an elastic and scalable 2-tier cloud architecture. In: Proceedings of IEEE 5th International Conference
on Utility and Cloud Computing, UCC ’12, pp. 83–90 (2012)

37. Rahimi, R., Venkatasubramanian, N., Vasilakos, A.: MuSIC: on mobility-aware optimal service allo-
cation in mobile cloud computing. In: Proceedings of IEEE 6th International Conference on Cloud
Computing, Cloud ’13, pp. 75–82 (2013)

38. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Pers. Commun. 8(4), 10–17
(2001)

39. Satyanarayanan, M., Bahl, P., Cáceres, R., Davies, N.: The case for VM-based cloudlets in mobile
computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

40. Scutari, G., Palomar, D.P., Facchinei, F., Pang, J.-S.: Monotone games for cognitive radio systems. In:
Johansson, R., Rantzer, A. (eds.) Distributed Decision Making and Control, Lecture Notes in Control
and Information Sciences, vol. 417, pp. 83–112. Springer, London (2012)

41. Scutari, G., Facchinei, F., Pang, J., Palomar, D.P.: Real and complex monotone communication games.
IEEE Trans. Inf. Theory 60(7), 4197–4231 (2014)

42. Sharifi, M., Kafaie, S., Kashefi, O.: A survey and taxonomy of cyber foraging of mobile devices. IEEE
Commun. Surv. Tutor. 14(4), 1232–1243 (2012)

43. Shiraz, M., Gani, A., Khokhar, R., Buyya, R.: A review on distributed application processing frame-
works in smart mobile devices for mobile cloud computing. IEEE Commun. Surv. Tutor. 15(3), 1294–
1313 (2013)

44. Song, J., Cui, Y., Li, M., Qiu, J., Buyya, R.: Energy-traffic tradeoff cooperative offloading for mobile
cloud computing. In: Proceedings of IEEE/ACM International Symposium on Quality of Service,
IWQoS ’14 (2014)

45. Vallina-Rodriguez, N., Crowcroft, J.: ErdOS: achieving energy savings in mobile OS. In: Proceedings
of 6th International Workshop on Mobility in the Evolving Internet Architecture, MobiArch ’11, pp.
37–42 (2011)

46. Verbelen, T., Stevens, T., De Turck, F., Dhoedt, B.: Graph partitioning algorithms for optimizing
software deployment in mobile cloud computing. Future Gener. Comput. Syst., 29(2), 451–459 (2013)

47. Wang, Y., Lin, X., Pedram, M.: A nested two stage game-based optimization framework in mobile
cloud computing system. In: Proceedings of IEEE 7th International Symposium on Service Oriented
System Engineering, SOSE ’13, pp. 494–502 (2013)

48. Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., Chan, A.: A framework for partitioning and execution
of data stream applications in mobile cloud computing. Sigmetrics Perform. Eval. Rev. 40(4), 23–32
(2013)

123

	A game-theoretic approach to computation offloading in mobile cloud computing
	Abstract
	1 Introduction
	2 Related work
	3 System model
	4 Generalized Nash equilibrium formulation
	5 Properties of the GNEP formulation
	5.1 Existence and monotonicity properties of the GNEP
	5.2 The extended game

	6 Distributed solution
	7 Experimental results
	7.1 Non-cooperative strategy analysis
	7.2 Comparison with the social optimum

	8 Conclusions
	References

