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Abstract We propose a bundle method for minimizing nonsmooth convex functions
that combines both the level and the proximal stabilizations. Most bundle algorithms
use a cutting-plane model of the objective function to formulate a subproblem whose
solution gives the next iterate. Proximal bundlemethods employ themodel in the objec-
tive function of the subproblem,while levelmethods put themodel in the subproblem’s
constraints. The proposed algorithm defines new iterates by solving a subproblem that
employs themodel in both the objective function and in the constraints. One advantage
when compared to the proximal approach is that the level set constraint provides a
certain Lagrange multiplier, which is used to update the proximal parameter in a novel
manner. We also show that in the case of inexact function and subgradient evaluations,
no additional procedure needs to be performed by our variant to deal with inexact-
ness (as opposed to the proximal bundle methods that require special modifications).
Numerical experiments on almost 1,000 instances of different types of problems are
presented. Our experiments show that the doubly stabilized bundle method inherits
useful features of the level and the proximal versions, and compares favorably to both
of them.
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1 Introduction

In this work, we are interested in solving problems of the form

f inf := inf
x∈X

f (x), (1)

where f : �n → � is a nonsmooth convex function and X ⊂ �n is a nonempty
convex and closed set, typically polyhedral. As is widely accepted, the most efficient
optimization techniques to solve such problems are the bundle methods, e.g., [18,
Chap. XIV], [4, Part II], and the analytic-center cutting-plane methods, e.g., [15,16].
All bundle methods make use of the following three ingredients:

(i) a convex model f̌k of f (usually, f̌k is a cutting-plane approximation satisfying
f̌k � f );

(ii) a stability center x̂k (some previous iterate, usually the “best” point generated
by the iterative process so far);

(iii) a certain algorithmic parameter updated at each iteration (proximal, level, or
trust-region, depending on the variant of the method).

The new iterate xk+1 of a bundle method depends on the above three ingredients,
whose organization defines differentmethods. Themain classes are the proximal, level,
and trust-region. We next discuss some details of the proximal and level variants, as
these are the two strategies relevant for our developments. The simplified conceptual
versions can be stated as follows.
Proximal bundle method e.g., [10,13,19,23],

xk+1 := argmin

{
f̌k(x) + 1

2τk
|x − x̂k |2 : x ∈ X

}
, (2)

where τk > 0 is the proximal parameter.
Level bundle method e.g., [5,9,20,22],

xk+1 := argmin

{
1

2
|x − x̂k |2 : f̌k(x) ≤ �k, x ∈ X

}
, (3)

where �k ∈ � is the level parameter.
As is well known, for the same model f̌k and the same stability center x̂k , one can

find the proximal and level parameters τk and �k such that the two versions above
generate the same next iterate xk+1 (i.e., for some choice of parameters, the solution
of the subproblems (2) and (3) is the same). In this (formal, theoretical) sense the two
approaches can be considered equivalent. Details of the implementation and practical
performance can be quite different, however. In particular, because the parameters are
updated by strategies specific to each of the methods, and the corresponding rules are
not related in any direct way.
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Doubly stabilized bundle method 127

It is worth to mention that updating the stability center x̂k in item (ii) above is
mandatory for (at least the most standard) versions of proximal bundle methods, but
it may not be necessary for level methods. In some variants of level methods one can
update x̂k at each iteration [12,22], or keep x̂k = x̂ fixed for all iterations [2] (in which
case x̂k does not have the role of the “best” point computed so far). See also [3,5,20]
for various rules to manage the stability center x̂k in level methods.

It should be stressed that the choice of the parameter τk in the proximal variant is
quite a delicate task. Although the simplest choice τk = τ > 0 (for all k) is enough to
prove theoretical convergence, it is well understood that for practical efficiency τk must
be properly updated along iterations. We refer to [19] and [23] for some strategies that
usually work well in practice. However, the former has some heuristic features, while
the latter (based on quasi-Newton formulas) is designed for unconstrained problems
and needs some safeguards to fit the general convergence theory. Also, it was noticed
during numerical experimentation in [25] that for constrained problems the rule of
[23] does not work as well as for the unconstrained.

Continuing the discussion of choosing parameters, a fixed level parameter �k is
not possible, of course, as this may give infeasible subproblems (3). But there exist
strategies that manage �k by simple explicit calculations (whether the problem is
unconstrained or constrained), and which are theoretically justified. As a somewhat
more costly but very efficient option, the level parameter �k can be adjusted by solving
a linear program (when the feasible setX is polyhedral, and is either bounded or there
is a known lower bound f low for the optimal value f inf ); see [12,22] and (17) below.

Overall, there seems to be a consensus that for solving unconstrained problems
proximal bundle methods are very good choices, although the updating rule for τk is
somewhat of an issue (at least from the viewpoint of combining theory and efficiency).
On the other hand, there is some evidence that for constrained problems level bundle
methods might be preferable. Also, strategies for updating the level parameter �k
are readily available. It is thus appealing to try to combine the attractive features of
both approaches in a single algorithm that performs for unconstrained (respectively,
constrained) problems as well as proximal bundle methods (respectively, level bundle
methods), or maybe even better in some cases. To this end, we propose what we call a
doubly stabilized bundle method, that combines both proximal and level stabilizations
in the same subproblem, namely:

xk+1 := argmin

{
f̌k(x) + 1

2τk
|x − x̂k |2 : f̌k(x) ≤ �k, x ∈ X

}
. (4)

We immediately comment that (4) can be reformulated as a quadratic program (ifX
is polyhedral), just like (2) or (3), with just one extra scalar bound constraint compared
to (2), or one extra scalar variable and scalar bound constraint compared to (3); see
(8) below. The dual for (4) is also very similar in structure to the duals of (2) or (3).
Thus, the subproblem (4) is no harder (or at least, cannot be much harder) to solve
than (2) or (3). Moreover, it turns out that the (unique) solution to problem (4) is also
a solution to at least one of the problems (2) or (3); see Lemma 1 below. This reveals
that the proposed method indeed combines the proximal and the level approaches,
“automatically” choosing between the two at every step.
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128 W. de Oliveira, M. Solodov

The advantages derived from (4) can be summarized as follows:

– the level parameter �k is easily updated, and can take into account a lower bound
for f inf if it is available;

– the level constraint f̌k(x) ≤ �k provides:
– a Lagrange multiplier useful to update the proximal parameter τk ;
– an additional useful stopping test, based on a certain optimality gap;

– the objective function f̌k(x) + 1
2τk

|x − x̂k |2 with proximal regularization allows

for searching for good points inside of the level set {x ∈ X : f̌k(x) ≤ �k}, and
not only on its boundary, as the level method does.

(It should be noted here that proximal bundle methods can also exploit known lower
bounds for f inf by adding certain associated linearizations [14]).

Among other things, our new variant aims at taking advantage of the simplicity
of managing the level parameter �k to produce a simple and efficient rule to update
the proximal parameter τk . In particular, this update depends on whether or not the
level constraint is active. In this sense, activity of this constraint (and the associated
Lagrange multiplier) can be seen as a tool indicating when and how to update τk .
Furthermore, depending on the feasible set X (for example if it is bounded), the
management of the level parameter can provide a lower bound for f inf , giving an
additional stopping test based on a certain optimality gap. It will be shown in Sect. 2
that the lower bound can be updated in a computationally cheap way.

The idea to combine proximal and level bundle methods was first suggested in [8]
(giving some limited numerical experiment, without proof of convergence andwithout
handling inexact data). To the best of our knowledge, the only other bundle-type
method which employs some kind of double stabilization is [1], where the proximal
and trust-region features are present for piecewise quadratic models of f . However,
the motivation for this and the resulting algorithm are rather different from ours. For
example, the subproblems in [1] are that of minimizing a quadratic function subject
to quadratic constraints.

The rest of this paper is organized as follows. Section 2 introduces the doubly sta-
bilized bundle algorithm more formally. Section 3 is devoted to convergence analysis
of the method. Inexactness of the function and subgradient evaluations is addressed
in Sect. 4. Section 5 contains numerical experiments comparing the proposed algo-
rithm with: the proximal bundle methods using the updating rules for τk based on [19]
and [23]; and the level method given in [5]. A variety of different types of problems
are used to validate our proposal: the model unit-commitment problem in the energy
sector, two-stage stochastic linear programming, nonsmoothly-regularized maxima of
quadratic functions, and some standard nonsmooth optimization test problems. Finally,
Sect. 6 gives some concluding comments and remarks.

Our notation is standard. For any points x, y ∈ �n , 〈x, y〉 stands for the Euclidean
inner product, and | · | for the associated norm, i.e., |x | = √〈x, x〉. For a setX ⊂ �n ,
we denote by iX its indicator function, i.e., iX (x) = 0 if x ∈ X and iX (x) = +∞
otherwise. For a convex set X , riX stands for its relative interior, and NX (x) for
its normal cone at the point x , i.e., the set {y : 〈y, z − x〉 � 0 ∀ z ∈ X } if x ∈ X and
the empty set otherwise. Given a convex function f , we denote its subdifferential at
the point x by ∂ f (x) = {g : f (y) � f (x) + 〈g, y − x〉 ∀ y}.
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Doubly stabilized bundle method 129

2 A doubly stabilized bundle method

The method generates a sequence of feasible iterates {xk} ⊂ X . For each point xk
an oracle (black-box) is called to compute the function value f (xk) and one arbitrary
subgradient gk ∈ ∂ f (xk). With this information, the method creates the linearization

f̄k(x) := f (xk) + 〈gk, x − xk〉 � f (x), (5)

where the inequality holds by the definition of the subgradient of f . At iteration k, a
polyhedral cutting-plane model of f is available:

f̌k(x) := max
j∈Bk

f̄ j (x) � f (x), (6)

where the set Bk may index some of the linearizations f̄ j , j � k, of the form in (5),
but also affine functions obtained as certain convex combinations of such previous
linearizations (the so-called aggregate linearizations, defined below). Note that (5)
implies that the inequality in (6) holds for such a construction. Some additional (stan-
dard) conditions on the model f̌k will be imposed further below, when needed. Note
finally that in our notationBk simply enumerates the affine functions comprising f̌k ,
and thus Bk need not be a subset of {1, . . . , k} even though f̌k is, of course, built
with information computed on those previous iterations. In particular, the aggregate
linearization mentioned above may be indexed by some j /∈ {1, . . . , k} (this gives
some notational convenience; for example, we do not have to worry about assigning
to an aggregate linearization an index already taken by the “usual” previous cutting
plane).

Let x̂k be the current stability center (the best past iterate), and let v�
k be a nonnegative

scalar representing howmuchwe aim to reduce the value f (x̂k) at the current iteration.
Define the corresponding level parameter by

�k := f
(
x̂k

) − v�
k .

Then the level set associated with the model f̌k and the parameter �k is given by

Xk := {x ∈ X : f̌k(x) � �k}, (7)

which is polyhedral ifX is polyhedral.
We first observe that in the standard (via slack variable) reformulation of the doubly

stabilized subproblem (4) given by

min
(x,r)∈�n+1

{
r + 1

2τk
|x − x̂k |2 : f̌k(x) � r, f̌k(x) � �k, x ∈ X

}
,

the first constraint must be active at the solution ( f̌k(x) = r ), as otherwise the r term
in the objective can be reduced maintaining feasibility (with the same x part of the
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solution). This observation implies that the solution to the latter problem, and thus to
(4), can be alternatively obtained by solving the simpler

min
(x,r)∈�n+1

{
r + 1

2τk
|x − x̂k |2 : f̌k(x) � r, r � �k, x ∈ X

}
. (8)

We now state some properties of the minimizer xk+1 in (4), or equivalently of the
x part of the solution in (8).

Proposition 1 If Xk �= ∅ then problem (4) has the unique solution xk+1.
In addition, if X is polyhedral or riX ∩ {x ∈ �n : f̌k(x) � �k} �= ∅ then there

exist sk+1 ∈ ∂ f̌k(xk+1) and hk+1 ∈ NX (xk+1) = ∂iX (xk+1), and (scalar) Lagrange
multipliers μk � 1 and λk � 0 such that

xk+1 = x̂k − τkμk ĝk, with ĝk = sk+1 + 1

μk
hk+1,

μk = λk + 1 and λk( f̌k(xk+1) − �k) = 0. (9)

In addition, for all x ∈ X the aggregate linearization

f̄ ak (·) := f̌k(xk+1) + 〈ĝk, · − xk+1〉 satisfies f̄ ak (x) � f̌k(x) � f (x). (10)

Proof The existence anduniqueness of solution xk+1 to (4) follow from the assumption
that the problem is feasible and the fact that its objective function is strongly convex.

Next, under the stated assumptions, combining the results from [18] (specifically,
Thm. 1.1.1 on p. 293, Prop. 5.3.1 and Remark 5.3.2 on p. 139, Prop. 2.2.2 on p. 308),
the optimality conditions for (8) assert that there exist μk � 0 and λk � 0 such that

0 ∈ 1

τk

(
xk+1 − x̂k

) + μk∂ f̌k(xk+1) + NX (xk+1),

0 = 1 − μk + λk,

μk

(
f̌k(xk+1) − rk+1

)
= 0, λk(rk+1 − �k) = 0.

In particular, μk = 1 + λk ≥ 1 and thus rk+1 = f̌k(xk+1), and there exist sk+1 ∈
∂ f̌k(xk+1) and hk+1 ∈ NX (xk+1) such that

xk+1 = x̂k − τk(μksk+1 + hk+1) = x̂k − τkμk

(
sk+1 + 1

μk
hk+1

)
,

which completes the proof of all the relations in (9).
To show (10), note that for all x ∈ X it holds that

f̄ ak (x) = f̌k(xk+1) + 〈sk+1, x − xk+1〉 + 1

μk
〈hk+1, x − xk+1〉 � f̌k(x) � f (x),

where the first inequality follows from the facts that sk+1 ∈ ∂ f̌k(xk+1) and hk+1 ∈
NX (xk+1). ��
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Doubly stabilized bundle method 131

The next result shows that the solution xk+1 of the doubly stabilized problem (4)
solves at least one of the “singly” stabilized problems: the proximal (2) or the level (3).

Lemma 1 For τk > 0 and �k ∈ �, let xτ
k ∈ �n and x�

k ∈ �n be the (unique) solutions
of problems (2) and (3), respectively. Let xk+1 ∈ �n be the unique solution of problem
(4). Then it holds that

xk+1 =
{
xτ
k if μk = 1

x�
k if μk > 1,

where μk is the Lagrange multiplier defined in Proposition 1.

Proof Let μk = 1. Similarly to the proof of Proposition 1, writing the optimality
conditions for (4) with μk = 1 gives

0 ∈ 1

τk

(
xk+1 − x̂k

) + ∂ f̌k(xk+1) + NX (xk+1),

which shows that xk+1 satisfies the optimality condition for (2). Since the solutions
of the respective problems are unique, it holds that xk+1 = xτ

k .

If μk > 1 then λk > 0, and hence f̌k(xk+1) = �k by (9). Clearly, the solution x�
k

of (3) is also the unique solution of

min

{
�k + 1

2τk
|x − x̂k |2 : f̌k(x) � �k, x ∈ X

}
. (11)

Observe that the optimal value of (11) is bounded below by the optimal value of the
problem (4), due to the level constraint �k � f̌k(x). As the solution xk+1 of (4) is
feasible in (11) and achieves this lower bound (since �k = f̌k(xk+1)), it follows that
xk+1 solves (11). Since problems (11) and (4) have unique solutions, it holds that
xk+1 = x�

k . ��
According to Lemma 1, we shall call xk+1 a proximal iterate if μk = 1, and

otherwise (μk > 1), we shall call it a level iterate. Similarly, an iteration k will be
referred to as a proximal or a level iteration. It is thus clear that each iteration of the
doubly stabilized algorithm makes either a step of the associated proximal bundle
method, or of the level method. At every iteration, the algorithm makes this choice
automatically.

We now define the predicted decrease by the model f̌k by

vτ
k := f (x̂k) − f̌k(xk+1) � 0, (12)

where the inequality follows from xk+1 being the solution of (4) via

f (x̂k) � f̌k(x̂k) � f̌k(xk+1) + 1

2τk

∣∣xk+1 − x̂k
∣∣2 .
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As discussed in [11], to define the predicted decrease quantity there are alternatives
other than (12). We have chosen (12) because of its direct connection with the level
parameter �k , established in (15) below.

Once the iterate xk+1 is computed, the oracle provides the new function value
f (xk+1). As is usual in bundle methods, we shall change the stability center when the
new iterate gives sufficient descent with respect to the predicted one. Namely, when

f (xk+1) � f (x̂k) − m f v
τ
k , (13)

where m f ∈ (0, 1). Accordingly, each iteration results either

– in a descent step when (13) holds, in which case x̂k is moved to xk+1; or
– in a null step when (13) does not hold, and the stability center is maintained.

Wenext provide useful connections between the predicted decrease v�
k = f (x̂k)−�k

related to the level parameter �k , the predicted decrease vτ
k = f (x̂k) − f̌k(xk+1)

related to the solution of (4) and thus to the proximal parameter τk , and the aggregate
linearization error given by

êk := f (x̂k) − f̄ ak (x̂k). (14)

We also establish a key relation that would be the basis for the subsequent convergence
analysis.

Proposition 2 It holds that

êk � 0, êk + τkμk
∣∣ĝk∣∣2 = vτ

k � f (x̂k) − �k = v�
k , (15)

where μk is the Lagrange multiplier defined in Proposition 1. Moreover, if μk > 1
then vτ

k = v�
k .

Furthermore, for all x ∈ X it holds that

f (x̂k) + 〈
ĝk x − x̂k

〉 − êk � f (x). (16)

(In other words, ĝk is êk-subgradient of the essential objective ( f + iX ) at x̂k).

Proof The fact that êk � 0 follows directly from (10). To show (15), note that

êk = f (x̂k) − f̄ ak (x̂k)

= f (x̂k) −
(
f̌k(xk+1) + 〈

ĝk x̂k − xk+1
〉)

= vτ
k − 〈

ĝk x̂k − xk+1
〉

= vτ
k − τkμk |ĝk |2,

where the last equality follows from (9). In addition, since xk+1 is feasible in (4), we
have that f̌k(xk+1) � �k = f (x̂k) − v�

k , which implies v�
k � vτ

k . This completes the
proof of (15). (Recall also that if μk > 1 then λk > 0, in which case (9) implies
f̌k(xk+1) = �k , so that v�

k = vτ
k ).
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The relation (16) follows from the fact that ĝk is êk-subgradient of the essential
objective at x̂k , which is verified as follows. Using again (10), for all x ∈ X it holds
that

f (x) � f̄ ak (x)

= f̌k(xk+1) + 〈ĝk, x − xk+1〉
= f (x̂k) −

(
f (x̂k) − f̌k(xk+1)

)
+ 〈ĝk, x − x̂k〉 + 〈ĝk, x̂k − xk+1〉

= f (x̂k) − vτ
k + 〈ĝk, x − x̂k〉 + τkμk |ĝk |2,

and (16) follows taking into account (15). ��
The relation (16) motivates one of the alternative stopping tests for our algorithm,

which is in the spirit of standard bundle methods: stop the algorithm when both |ĝk |
and êk are small enough, i.e., an approximate optimality condition holds.

We now state the algorithm in full detail, and then comment on some of its ingre-
dients.

Algorithm 1: Doubly stabilized bundle algorithm

Step 0 (initialization) Choose parameters m�,m f ∈ (0, 1), and stopping tolerances
TolΔ,Tole,Tolg > 0. Given x1 ∈ X , set x̂1 ← x1. Compute f (x1) and g1 ∈ ∂ f (x1). If

a lower bound f low1 for f inf is available, set v�
1 ← (1 − m�)( f (x̂1) − f low1 ); otherwise, set

f low1 ← −∞ and choose v�
1 > 0. Choose τmin > 0, τ1 � τmin and set k = 1.

Step 1 (first stopping test) Set the optimality gap by Δk ← f (x̂k ) − f lowk .
If Δk � TolΔ, stop. Return x̂k and f (x̂k ).

Step 2 (trial point finding) Define the level parameter by �k ← f (x̂k ) − v�
k .

Step 2.1 (feasibility detection) If the level setXk defined by (7) is detected to be empty, set f
low
k ← �k ,

v�
k ← (1 − m�)( f (x̂k ) − f lowk ) and go back to Step 1.

Step 2.2 (next iterate) Solve (8) to obtain (xk+1, rk+1) and a Lagrange multiplier λk associated to
the level constraint r � �k . Set μk ← λk + 1, vτ

k ← f (x̂k ) − rk+1, ĝk ← (x̂k − xk+1)/τkμk and

êk ← vτ
k − τkμk |ĝk |2.

Step 3 (second stopping test) If êk � Tole and |ĝk | � Tolg, stop. Return x̂k and f (x̂k ).
Step 4 (oracle call) Compute f (xk+1) and gk+1 ∈ ∂ f (xk+1).
Step 5 (descent test) Choose f lowk+1 ∈ [ f lowk , f inf ].

If (13) holds, declare a descent step; otherwise a null step.
Step 5.1 (descent step) Set x̂k+1 ← xk+1, τk+1 ← τkμk and

v�
k+1 ← min{v�

k , (1 − m�)( f (x̂k+1) − f lowk+1)}.
Choose a model f̌k+1 satisfying f̌k+1(·) � f (·).

Step 5.2 (null step) Set x̂k+1 ← x̂k and choose τk+1 ∈ [τmin, τk ].
If μk > 1 (level iterate), set v�

k+1 ← m�v
�
k ; otherwise set v

�
k+1 ← v�

k .

Choose a model f̌k+1 satisfying max{ f̄k+1(·), f̄ ak (·)} � f̌k+1(·) ≤ f (·).
Step 6 (loop) Set k ← k + 1 and go back to Step 1.

Some comments are in order.

(a) Observe that the lower bound f lowk is updated either when the level set Xk is
empty in Step 2.1, or in Step 5. In the second case, it is explicit that f lowk � f inf .
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134 W. de Oliveira, M. Solodov

In the first case, Xk = ∅ means that �k < f̌k(x) � f (x) for all x ∈ X . And
since the update sets f lowk ← �k , it again holds that f lowk � f inf . Therefore,
f lowk � f inf for all k, and if the algorithm stops at Step 1, we have that

TolΔ � f
(
x̂k

) − f lowk � f
(
x̂k

) − f inf ,

i.e., x̂k is a TolΔ-approximate solution to problem (1).
Note that when the level setXk is empty, the update rules in the pass through Step 2.1
and back through Step 1, decrease the optimality gap Δk by the factor of (1 − m�).
A simple update of the lower bound in Step 5 is f lowk+1 ← f lowk .
(b) To identify if the level set is empty, the most natural is probably to proceed as

usual with solving (4) and let the solver return with the infeasibility flag. Note
that this is not a wasteful computation, as it leads to adjusting the level parameter
as well as improving the lower bound f lowk . Alternatively, to detect infeasibility
we can solve the linear program (if X is a polyhedron)

min s s.t. f̄ j (x) − s � �k ∀ j ∈ Bk, x ∈ X , s � 0.

If its optimal value is positive then Xk = ∅.
(c) If one prefers to avoid infeasible level setsXk , then whenX is bounded or f lowk is

finite, it is enough to update f lowk in Step 5 as follows, solving the linear program:

set f lowk+1 ← min r s.t. f̄ j (x) � r ∀ j ∈ Bk f lowk � r x ∈ X r ∈ �. (17)

This strategy is especially effective when solving LP is not too expensive relative
to other tasks of the algorithm (in particular, the oracle computations).

(d) IfX is unbounded, the level setXk can be nonempty for all k, and f lowk will never
be updated (for example, for problem (1) with f (x) = e−x andX = [0,+∞)).
In that case, the algorithm will not stop at Step 1, unless the initial lower bound
f low1 is within the TolΔ-tolerance of f inf .

(e) Step 5 increases the proximal parameter τk only after descent steps resulting from
level iterations (μk > 1). On the other hand, τk can be decreased only after null
steps. A simple rule used in the numerical experiments of Sect. 5 is

τk+1 ← max
{
τmin, τkv

�
k/v

τ
k

}
,

which decreases the proximal parameter only after null steps resulting from prox-
imal iterations (vτ

k > v�
k is only possible when μk = 1, see Proposition 2). In this

manner, the level parameter �k and the multiplier μk indicate how to update the
proximal parameter τk . This is precisely the novel strategy to manage proximal
parameter, proposed in this work.

(f) If at Step 2 (for all k) the rule �k = f (x̂k) − v�
k is replaced by �k = +∞,

Algorithm 1 becomes a proximal bundle algorithm (all iterations are proximal
iterations).
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(g) The QP formulation of subproblem (8) is given by

min
(x,r)∈�n+1

{
r + 1

2τk

∣∣x − x̂k
∣∣2 : f̄ j (x) � r ∀ j ∈ Bk r � �k, x ∈ X

}
.

It can be seen that (ifX = �n) its dual has the number of variables equal to the
number of cutting-planes in the bundle.
To keep the size of this QP (or of its dual) manageable, the number of elements
in the bundle (the cardinality of the set Bk) should be kept bounded, without
impairing convergence. For this, the usual aggregation techniques of proximal
bundle can be employed here. After a serious step, the only requirement is that
themodel should be below the objective function (whichmeans that elements from
the bundle can be deleted arbitrarily); this is reflected in Step 5.1 of Algorithm 1.
During a sequence of consecutive nulls steps, the model f̌k can be composed of
as few as only two cutting planes, corresponding to the new linearization f̄k+1
and the aggregate linearization f̄ ak (or any number of cutting planes, as long as
these two are included). This is reflected in the choice of the model specified in
Step 5.2 of Algorithm 1. If the next model contains all the linearizations for which
the constraint f̄ j (x) � r of the above QP is active at its solution (xk+1, rk+1),
then there is no need to include the aggregate linearization f̄ ak .

3 Convergence analysis

Convergence analysis of the doubly stabilized bundle method has to account for all the
possible combinations of level and proximal steps, whether null or descent, and the
possibility of empty level sets. To that end, we consider the following three possible
cases:

– The level sets Xk are empty infinitely many times;
– The above does not happen, and infinitely many descent steps are generated;
– In the same situation, finitely many descent steps are generated.

In what follows, we assume that TolΔ = Tole = Tolg = 0 and that Algorithm 1
does not stop. (If the algorithm stops for zero tolerance in Step 1, then the last descent
step is, by comment (a) above, a solution to the problem. The same conclusion holds,
by (16), if the method stops for zero tolerances in Step 3.) As a by-product of our
convergence analysis, it would also follow that if the stopping rules parameters are
positive then themethod terminates in a finite number of iterations, with an appropriate
approximate solution.

Lemma 2 Suppose the level set Xk is empty infinitely many times.
Then Δk → 0, { f (x̂k)} → f inf , and every cluster point of the sequence {x̂k} (if

any exists) is a solution to problem (1); or the last x̂k is a solution if this sequence is
finite.
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Proof It follows by Step 2 that for all k after the first Xk = ∅ is encountered, we have
f lowk > −∞ and thus Δk < +∞. Also, by Steps 2 and 5, v�

k � (1 − m�)Δk . Thus,

f (x̂k) − �k = f (x̂k) −
(
f (x̂k) − v�

k

)
= v�

k � (1 − m�)Δk,

which shows that if Xk = ∅ at iteration k, then the update f lowk ← �k decreases the
optimality gapΔk by a factor of at least (1−m�). Hence, if this happens infinitelymany
times, we have that Δk → 0. Moreover, as no level set can be empty if f inf = −∞,
in the case under consideration f inf > −∞. We can then writeΔk = f (x̂k)− f lowk �
f (x̂k) − f inf , which implies the assertion as Δk → 0. ��
From now on, we consider the case when Xk �= ∅ for all k large enough. Clearly,

without loss of generality, we can simply assume that Xk �= ∅ for all k.
Analysis in the case of infinitely many descent steps essentially follows the theory

for proximal bundle methods; in particular the argument in [6] can be readily applied.

Lemma 3 Suppose Algorithm 1 generates infinitely many descent steps.
Then { f (x̂k)} → f inf and every cluster point of the sequence {x̂k} (if any exist) is

a solution to problem (1).
In addition, if the solution set of (1) is nonempty and the sequence {τkμk} is bounded

above (for example, this is the case when there are finitely many level iterations) then
the sequence {x̂k} converges to a solution of (1).
Proof Let {x̂k( j)} be the subsequence of {x̂k} such that k( j) corresponds to the j th
descent step. Define i( j) = k( j + 1) − 1. Recalling (13), (15) and Proposition 2, we
then have an iterative sequence satisfying, for all j � 1, the relations

x̂k( j+1) = x̂k( j)−τi( j)μi( j)ĝi( j), ĝi( j) ∈ ∂ei( j) ( f + iX )
(
x̂k( j)

)
, τi( j)μi( j) ≥τmin,

f
(
x̂k( j)

) − f
(
x̂k( j+1)

)
� m f

(
ei( j) + τi( j)μi( j)

∣∣ĝi( j)∣∣2
)

.

We are thus in the setting of the ε-subgradient method with an additional descent
condition along the iterations. The announced convergence properties follow from
[6].

For the last assertion, recall that τk can increase only on descent steps resulting
from level iterations (in the case of μk > 1). Thus, if the number of such iterations
is finite, the sequence {μkτk} is bounded above. Then, [6, Prop. 2.2] with tk therein
replaced by μkτk can be invoked to obtain the stated assertion. ��

Now we consider the last case, when x̂k is eventually fixed and the last descent step
is followed by an infinite number of null steps (note also that in this case the level sets
Xk are nonempty).

Lemma 4 Suppose there exists an index k1 � 1 such that the descent test (13) is not
satisfied for all k � k1.

Then there is an infinite number of level iterations, and the last descent iterate x̂k1
is a solution to problem (1).
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Proof Note that the sequence {v�
k} is nonincreasing. Let K be the set of indices k

such that μk > 1 (level iterations), and so according to Step 5.2 of Algorithm 1,
v�
k+1 = m�v

�
k . We then have that the values in {v�

k} only reduce on indices in K and
do not change otherwise.

Suppose first that K is a finite set. Then, by Proposition 2, there exists an index
k2 ≥ k1 such that μk = 1, λk = 0 and v�

k = v�
k2

> 0 for all k ≥ k2. Thus, by (15),

vτ
k ≥ v�

k2 > 0 for all k ≥ k2. (18)

Moreover, by Lemma 1, all such iterations are proximal iterations. Hence, all iterations
of Algorithm 1 indexed by k ≥ k2 can be considered as those of the classical proximal
bundle method applied to the same problem. It then follows from [18] [Chap. XV,
Thm. 3.2.4] that vτ

k → 0, in contradiction with (18).
Hence, K must have infinitely many indices. But then the values of v�

k are reduced
by the factor ofm� infinitelymany times, so that {v�

k} → 0 as k → ∞. Since for k ∈ K
it holds that vτ

k = v�
k (c.f. Proposition 2), we conclude that {vτ

k } → 0 as K � k → ∞.
As τk � τmin > 0 and μk � 1, it follows from (15) that

êk → 0 and |ĝk | → 0 as K � k → ∞. (19)

As ĝk is êk-subgradient of the essential objective ( f + iX ) at x̂k1 , (19) implies that
x̂k1 is a solution to (1). This completes the proof. ��

Summarizing Lemmas 2–4, we state the following convergence properties of Algo-
rithm 1.

Theorem 1 If for the sequence generated by Algorithm 1 it holds that x̂k = x̂k1 for
all k ≥ k1, then x̂k1 is a solution to (1). Otherwise, { f (x̂k)} → f inf as k → ∞, and
every cluster point of {x̂k} (if any exist) is a solution to problem (1). In addition, if the
solution set of (1) is nonempty, and an infinite number of descent steps is generated
among which the number of level iterations is finite, then the sequence {x̂k} converges
to a solution of (1).

An interesting question is whether the level bundle methods’ lower worst-case
complexity (when compared to the proximal versions) extends to the doubly stabilized
algorithm. At this time, we conjecture this is probably not the case, as there does not
seem to be away to estimate the number of proximal iterations between level iterations.

We finish this section by considering a more general strategy of managing the level
parameter, which we found useful in our numerical experiments. Note that Step 5.2
of Algorithm 1 reduces the predicted decrease v�

k by a factor of m� on null level
iterations (μk > 1), and keeps it unchanged on null proximal ones. Decreasing v�

k
implies increasing the level parameter �k (Step 2 in Algorithm 1). The idea is that
it may be sometimes useful to keep �k fixed for some null level iterations, because
this can lead to infeasible level sets which, in turn, leads to updating the lower bound
f lowk thus decreasing the optimality gap Δk . The idea itself can be implemented in a
number of different ways. For example, by decreasing v�

k after some fixed number of
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consecutive null steps. Note, however, that the argument in Lemma 4 would not apply
(because not all null level iterations reduce v�

k , which is an important ingredient in the
proof). Thus the implementation should be such that convergence can still be justified
by other tools.

3.1 Managing the level parameter

Consider an additional parameter μmax ≥ 1 as input for the algorithm, and replace the
update rule for v�

k in Step 5.2 of Algorithm 1 by the following:

Ifμk > μmax, set v
�
k+1 ← m�v

�
k ; otherwise set v�

k+1 ← v�
k . (20)

Note that μmax = 1 recovers the original formulation of Algorithm 1. The parame-
ter v�

k remains fixed for null level iterations that result in a multiplier μk not large
enough; when it is sufficiently large, v�

k is decreased and the level parameter �k is
increased. The motivation for keeping v�

k fixed on some iterations is outlined above.
The reason for updating v�

k when μk > μmax > 1 has to do with using [5, Thm. 3.7]
to show convergence in the corresponding case. Additionally, an intuition as to why
it is reasonable that the update of v�

k depends on μk can be derived from Lemma 7
below. The arguments in the proof of Lemma 7 (it is not important that it considers
the more general case with inexact data) show that if v�

k is fixed over a sequence of
null steps then μk is increasing (tends to +∞ if the sequence is continued infinitely).
Thus, ifμmax is large enough, the rule (20) is likely to keep v�

k fixed, but only for some
iterations so that the parameter is eventually updated.

As the modified rule (20) plays a role only on null steps, to verify convergence of
this version of the algorithm we only have to consider the case when all the level sets
are nonempty and there is a finite number of descent steps, i.e., all iterations from some
point on are null steps. Apart from the condition μmax > 1, we need the following
stronger (but not at all restrictive from the practical viewpoint) condition on managing
the bundle during null steps. Let p(k) be the last proximal iteration performed up to
iteration k. Choose f̌k+1 to satisfy

max
{
f̄k+1(·), f̄ ak (·), f̄ p(k)+1(·), f̄ ap(k)(·)

}
� f̌k+1(·) � f (·). (21)

In particular, if k is a null proximal iteration, then p(k) = k and the above rule is
the same as for usual proximal bundle methods [6,13]. However, (21) differs from
standard rules in the case of null level steps: during null level iterations information
about the last proximal iteration is kept in the bundle.

If there are infinitelymany null proximal iterations, the algorithm can be interpreted
as a proximal bundle method in the case of a finite number of descent steps followed
by null steps, with level iterates seen as merely enriching the cutting-plane model. In
particular, the key conditions (4.7)–(4.9) in [6] are satisfied. Convergence then follows
from [18, Chap. XV, Thm. 3.2.4]; see also [6,11].
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On the other hand, if there are only finitely many proximal iterations, the algorithm
becomes essentially a level bundle method in the case of a finite number of descent
steps followed by null steps. In this case, [5, Thm. 3.7] provides the assertion on
convergence [we note that for this it is important that μmax > 1, because λk in [5] is
required to be bounded by some λmax > 0, and we have μk = λk + 1 in (9)].

4 Handling inexact data

In various real-world applications, the objective function and/or its subgradient can
be too costly (sometimes, impossible) to compute. This is particularly true when f is
given by some optimization problem, e.g., f (x) = maxu∈U ϕ(u, x), as in numerical
experiments in Sect. 5.2 for example. In such situations, approximate values must be
used.

Various inexact bundle methods that use approximate function and subgradient
evaluations have been studied in [10,11,17,21,26]. The natural setting is to assume
that, given any x ∈ �n , the oracle provides some approximate values fx ∈ � and
gx ∈ �n of the objective function and its subgradient, respectively, such that

{
fx = f (x) − ηx and
f (·) � fx + 〈gx , · − x〉 − η

g
x ,

(22)

where ηx ∈ � and η
g
x � 0 are some unknown but uniformly bounded errors. Specifi-

cally, there exist η � 0 and ηg � 0 such that

|ηx | � η and η
g
x � ηg for all x ∈ X . (23)

Remark 1 Assumptions (22) and (23) are also present in [21] and [27]. They are
weaker than the assumptions employed by the level bundlemethods given in [9], which
require ηg = 0, and further the bound η to be known, controllable, and asymptotically
vanishing in a suitable sense. Thus, the ingredients of our analysis concerning level
iterations are certainly applicable to the setting of [9], and lead to new results under
the weaker oracle assumptions. On the other hand, using stronger assumptions [9] is
able to compute exact solutions, rather than inexact as in our case.

In [27], nonlinearly constrained problems are considered, which require the use of
non-static merit functions (specifically, of improvement functions as in [25]). Thus,
even considering level iterations only, [27] is very different from our case. Also, [27]
requires boundedness of the feasible set X for convergence analysis, and in fact for
convergence itself (there are examples which show that the method therein can fail for
unbounded X ).

With given oracle information, the inexact linearization of f at iteration k is defined
accordingly by

f̄k(x) := fxk + 〈
gxk x − xk

〉
(� f (x) + ηg),
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and the inexact model f̌k is then defined as in (6). However, because of the inexactness,
we now have the weaker property f̌k(·) � f (·) + ηg . The predicted decrease must
now employ only the available (inexact) information; the counterpart of (12) is thus
given by

vτ
k := fx̂k − f̌k(xk+1),

and the level parameter is

�k := fx̂k − v�
k for a given v�

k > 0.

Solving the doubly stabilized bundle subproblem (4) for the inexact model f̌k , the
direction of change ĝk and the aggregate linearization f̄ ak are defined exactly as before,
i.e., by (9) and (10), respectively. The aggregate linearization error is now given by

êk := fx̂k − f̄ ak (x̂k).

The first observation is that, unlike in the exact case [recall (15)], the aggregate lin-
earization error êk can be negative due to inaccuracy in the data. However, given the
oracle assumptions (22), the following lower bound holds:

êk � f (x̂k) − η − f̄ ak (x̂k) � f (x̂k) − η − (
f (x̂k) + ηg

) = −(η + ηg). (24)

Most inexact proximal bundle methods work the following way. In the proximal
setting the predicted decrease has the form vτ

k = êk + τk |ĝk |2 (recall Proposition 2,
where the proximal method corresponds to μk = 1). Then vτ

k < 0 means that êk is
too negative (the oracle error is excessive). In such a case, the descent test

fxk+1 � fx̂k − m f v
τ
k , (25)

mimicking (13), is not meaningful. The methods in [10,11,21] deal with this situation
using the following simple idea. To make vτ

k positive (when ĝk �= 0), the strategy
is then to increase the proximal parameter τk and solve again the QP with the same
model f̌k to get another candidate xk+1. This procedure, called noise attenuation [21],
ensures that:

(i) the predicted decrease vτ
k is always nonnegative before testing for descent;

(ii) if the noise is persistently excessive (an infinite number of noise attenuation steps
is required) then the associated parameter is driven to infinity, which ensures in
turn that ĝk tends to zero.

With exact oracles, the predicted decrease vτ
k can be seen as an optimality measure: if

the proximal parameter τk > 0 is bounded away from zero, (15) ensures that

vτ
k = 0 ⇐⇒ êk = 0 and ĝk = 0.
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The above is no longer true for inexact oracles. For the proximal version (corresponding
to μk = 1 above), one has the following (much weaker) relation:

vτ
k ≤ 0 �⇒ τk |ĝk |2 ≤ −êk

(≤ η + ηg
)
.

It then holds that

|ĝk |2 ≤ (η + ηg)

τk
.

And this is where the property (ii) above comes into play. To ensure that ĝk goes to
zero in the case of excessive oracle errors, [21] drives τk to infinity. In principle, a
similar strategy can be implemented in Algorithm 1. However, this clearly has some
disadvantages. To start with, the QP has to be solved again with the samemodel f̌k and
(sharply) increased prox-parameter, to obtain another candidate xk+1. And this may
need to be donemore than once consecutively. Also, it may eventually turn out that this
increase of the prox-parameter is harmful, or at least unnecessary in some sense (note
that there are only heuristic rules for this update). It turns out that the doubly stabilized
method does not require such procedures to ensure that ĝk always tends to zero.
Instead of “manually” increasing τk , the algorithm controls the steps automatically
and properly via the multipliers μk (as is revealed by the analysis in Lemma 7 below).
This is an interesting, and clearly desirable property. Another interesting feature of
the doubly stabilized method is that the predicted decrease vτ

k is always positive, i.e.,
property (i) above holds true. To that end, first note that if v�

k becomes nonpositive at
some iteration k due to the updates in Steps 2 and 5 of Algorithm 1, then so does the
inexact optimality gap Δk in Step 1 and the algorithm stops immediately (and it can
be seen that an appropriate approximate solution is obtained). We can thus consider
that v�

k > 0 for all k. Then the same argument as that in Proposition 2 shows that

vτ
k = êk + τkμk |ĝk |2 � fx̂k − �k = v�

k > 0 ∀ k. (26)

Therefore, a descent test like (25) is alwaysmeaningful, unlike for the proximal bundle
approach with inexact data. In conclusion, our doubly stabilized method does not
require the noise attenuation modification to handle inexact data: the property (i) is
automatic, while the assertion of (ii) is obtained as a consequence of the algorithm’s
behavior (the iterates it generates) rather than driving some parameter to extreme
values by “brute-force”.

In what follows, we consider Algorithm 1 with the change of notation in that f̌k
refers to the inexact model with the data satisfying (22) and (23). Accordingly, f (x̂k)
in Algorithm 1 is replaced by fx̂k , etc. The quantities vτ

k , �k and êk are as defined in
this section above. Finally, for the current inexact setting the bundle management rule
given in (21) becomes

max
{
f̄k+1(·), f̄ ak (·), f̄ p(k)+1(·), f̄ ap(k)(·)

}
� f̌k+1(·) � f (·) + ηg, (27)
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where p(k) once again stands for the last proximal iteration performed up to iteration
k.

As standard in inexact proximal bundle methods, the linearization error êk is
declared not too negative when the inequality

êk � −meτkμk |ĝk |2 (28)

holds for some parameter me ∈ (0, 1). This inequality, together with a parameter
μmax ≥ 1, is employed to update v�

k in Step 5.2 of Algorithm 1 as follows:

Ifμk > μmax and (28) holds, set v�
k+1 ← m�v

�
k ; otherwise set v�

k+1 ← v�
k . (29)

Since our method does not use noise attenuation, we cannot invoke the results from
[21] and [11] for the case of infinitely many proximal iterations. For the case of finitely
many proximal iterations, we cannot invoke previous results on inexact level bundle
methods either; see comments in Remark 1. Therefore, convergence analysis largerly
independent of previous literature is in order (although, naturally, a few ingredients
would be familiar). First note that if the oracle errors do not vanish in the limit, of
course only approximate solutions to (1) can be expected in general. This is natural,
and similar to [10,11,21,26].

4.1 Convergence analysis for the inexact case

We can proceed as in Proposition 1 to show that f̄ ak (x) � f̌k(x) for all x ∈ X . Since
by the inexact oracle definition (22) we have that f̄ j (·) � f (·) + ηg for all j ∈ Bk ,
we conclude that for all x ∈ X it holds that

f (x) + ηg � f̌k(x) � f̄ ak (x) = f̌k(xk+1) + 〈
ĝk x − xk+1

〉
(30)

= fx̂k −
(
fx̂k − f̌k(xk+1)

)
+ 〈

ĝk x − x̂k
〉 + 〈

ĝk x̂k − xk+1
〉

= fx̂k − vτ
k + 〈

ĝk x − x̂k
〉 + τkμk |ĝk |2

= fx̂k − êk + 〈
ĝk x − x̂k

〉
(31)

� fx̂k − vτ
k + 〈

ĝk x − x̂k
〉
. (32)

Note also that as in the exact case, if f̌k(xk+1) = �k (which holds if μk > 1), then
in (26) we have that v�

k = vτ
k .

As in Sect. 3, we consider separately the same three possible cases.

Lemma 5 Suppose the level set Xk is empty infinitely many times.
Then Δk → 0,

lim
k→∞ fx̂k � f inf + ηg, (33)

and every cluster point of the sequence {x̂k} (if any exist) is a (η + ηg)-approximate
solution to problem (1), or the last x̂k is a (η+ηg)-approximate solution if this sequence
is finite.
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Proof Recall that in the case under consideration f inf > −∞. The same argument
as that of Lemma 2 shows that Δk → 0. Also, on the iterations in question we have
that �k < f̌k(x) for all x ∈ X , and thus the update in Step 2 and (30) ensure that
f lowk � f inf + ηg . As { fx̂k } is decreasing and bounded below (since f inf > −∞), we
conclude that

lim
k→∞ fx̂k − f inf − ηg � lim

k→∞

(
fx̂k − f lowk

)
= lim

k→∞ Δk = 0,

which gives (33).
Now let x̃ be any cluster point of {x̂k}, and let {x̂k j } be a subsequence converging

to x̃ as j → ∞. Then

f inf + ηg � lim
j→∞ fx̂k j = lim

j→∞

(
f
(
x̂k j

) − ηx̂k j

)
� f (x̃) − η, (34)

which establishes the last assertion. ��
Consider now the case whereXk �= ∅ for all k large enough, and there is an infinite

number of descent steps [for which (25) holds].

Lemma 6 Suppose Algorithm 1 generates infinitely many descent steps.
Then (33) holds and every cluster point of the sequence {x̂k} (if any exist) is a

(η + ηg)-approximate solution to problem (1).

Proof Let {x̂k( j)} be the subsequence of {x̂k} such that k( j) corresponds to the j th
descent step, and define i( j) = k( j+1)−1. It follows from (25) that { fx̂k( j)} is decreas-
ing and either { fx̂k( j)} → −∞, in which case (22), (23) imply that { f (x̂k( j))} → −∞
and the conclusions are obvious, or the limit of { fx̂k( j)} is finite. In the second case
(25) implies that

lim
j→∞ vτ

i( j) = 0.

Let x ∈ X be arbitrary. Using (32) and the fact that x̂k( j) = x̂i( j), we then obtain
that

∣∣x̂k( j+1) − x
∣∣2 = ∣∣x̂k( j) − x

∣∣2 + (
τi( j)μi( j)

)2 |ĝi( j)|2
+ 2τi( j)μi( j)

〈
ĝi( j)x − x̂k( j)

〉
�

∣∣x̂k( j) − x
∣∣2 + (

τi( j)μi( j)
)2 |ĝi( j)|2

+ 2τi( j)μi( j)

(
f (x) + ηg − fx̂k( j) + vτ

i( j)

)
.

Suppose that (33) does not hold. Then there exist t > 0 and x̃ ∈ X such that
fx̂k( j) � f (x̃) + ηg + t for all j . Taking j large enough so that vτ

i( j) � t/2, and
choosing x = x̃ in the chain of inequalities above, we obtain that
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∣∣x̂k( j+1) − x̃
∣∣2 �

∣∣x̂k( j) − x̃
∣∣2 − τi( j)μi( j)t

�
∣∣x̂k(1) − x̃

∣∣2 − t
j∑

q=1

τi(q)μi(q)

�
∣∣x̂k(1) − x̃

∣∣2 − j tτmin,

where we used the fact that τkμk ≥ τk ≥ τmin. The above gives a contradiction when
j → ∞. We conclude that (33) holds. The last assertion then follows by the same
argument as in Lemma 5. ��

We now consider the case of finitely many descent steps, with the level set Xk

nonempty (for all k large enough).

Lemma 7 Suppose that forAlgorithm 1, with the additional bundle management rule
(27) and Step 5 employing (29) with μmax � 1, there exists an index k1 � 1 such that
the descent test (25) is not satisfied for all k � k1.

Then the last descent iterate x̂k1 is a (η +ηg)-approximate solution to problem (1).

Proof The sequence {v�
k} is monotone and when its elements decrease, they decrease

by a fixed fraction me ∈ (0, 1). Thus either v�
k → 0 or v�

k = v� > 0 for all k large
enough.

Consider first the case of v�
k → 0. Then by rule (29) there exists an infinite index

set K such thatμk > μmax and the inequality (28) is valid for k ∈ K . For such indices,
it then holds that

0 � (1 − me)τmin|ĝk |2 � (1 − me)τkμk |ĝk |2 � êk + τkμk |ĝk |2 = vτ
k = v�

k , (35)

where the last equality follows from Proposition 2, because μk > μmax � 1 for all
k ∈ K . It follows from (35) that

τkμk |ĝk |2 → 0, ĝk → 0, êk → 0 as K � k → ∞.

Now passing onto the limit in (31) as K � k → ∞, with x ∈ X fixed but arbitrary
and x̂k = x̂k1 fixed, implies the assertion.

We now consider the second case: v�
k = v� > 0 for all k � k2.

Suppose first that there exists an infinite subsequence of null proximal steps
(μk = 1), indexed by {k( j)}. “Ignoring” the possible null level steps in between, we
can consider the sequence {xk( j)} as that generated by the proximal bundle method,
where the model satisfies, by the rule (27), the key conditions

max
{
f̄k( j)(·), f̄ ak( j)−1(·)

}
� f̌i (·) � f (·) + ηg, for k( j) � i � k( j + 1) − 1.

Of specific importance here is the relation for i = k( j + 1) − 1, which shows that
on consecutive null proximal steps the model satisfies the conditions which, together
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with {τk( j)} being nonincreasing, guarantee the following property of the (inexact)
proximal bundle method:

0 � lim sup
j→∞

(
fxk( j) − f̌k( j)−1(xk( j))

)
. (36)

(See [11, Theorem 6.4] and/or [21, Lemma 3.3 and Section 4.1].) On the other hand,
as the descent condition (25) does not hold,

fxk( j) − f̌k( j)−1(xk( j)) > fx̂k1 − m f v
τ
k( j)−1 − f̌k( j)−1(xk( j))

= (1 − m f )v
τ
k( j)−1

� (1 − m f )v
� > 0,

which gives a contradiction with (36).
Therefore, in the case under consideration, there can only be a finite number of null

proximal steps. Hence, all iterations indexed by k � k3 are of the null level type, and
it holds that μk > 1, λk > 0, x̂k = x̂, v�

k = v� > 0 and �k = � for all k � k3.
Note that

� � f̌k(xk+1) � f̄ ak−1(xk+1) = f̌k−1(xk) + 〈
ĝk−1xk+1 − xk

〉
.

By Proposition 1, as λk−1 > 0 it holds that f̌k−1(xk) = �. Hence, 0 � 〈ĝk−1, xk+1 −
xk〉, and since x̂ − xk = τk−1μk−1ĝk−1, it holds that

0 �
〈
x̂ − xk, xk+1 − xk

〉
.

It then follows that

∣∣xk+1 − x̂
∣∣2 �

∣∣xk − x̂
∣∣2 + |xk+1 − xk |2 . (37)

Note that

� � f̌k(xk+1) � f̄k(xk+1) = fxk + 〈
gxk xk+1 − xk

〉
.

Using the Cauchy–Schwarz inequality, we obtain that

|gxk ||xk+1 − xk | � fxk − �. (38)

Since this is a null step, it holds that

fxk > fx̂ − m f v
τ
k−1,

and since it is a level step, vτ
k−1 = v�

k−1 = v� > 0. Using further the definition
� = fx̂ − v�, we conclude that

fxk − � � (1 − m f )v
� > 0.
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In view of (38) and the last inequality above, it holds that gxk �= 0 and we obtain that

|xk+1 − xk | � fxk − �∣∣gxk ∣∣ � (1 − m f )v
�∣∣gxk ∣∣ .

Using now (37), it follows that

∣∣xk+1 − x̂
∣∣2 �

∣∣xk − x̂
∣∣2 +

(
(1 − m f )v

�

|gxk |

)2

. (39)

If the sequence {xk} were to be bounded, there would exist a constant C > 0 such
that |gxk | � C for all k [by boundedness of the ε-subdifferential on bounded sets
and (22), (23)]. But then (39) would mean that the monotone sequence {|xk − x̂ |2} is
increasing at every iteration by a fixed positive quantity ((1 − m f )v

�/C)2, and thus
{xk} cannot be bounded. Hence, {xk} is unbounded. Since {|xk − x̂ |2} is monotone by
(39), it follows that |xk − x̂ | → +∞ as k → ∞.

We next show that lim supk→∞ μk = +∞. Suppose the contrary, i.e., that there
exists μ̄ > 0 such that μk � μ̄ for all k. As {τk} is nonincreasing for k � k3 and
vτ
k = v�

k = v�, using (24) we have that

τk3μ̄v� � τkμkv
τ
k = τkμk êk + (τkμk)

2|ĝk |2
� −τk3μ̄(η + ηg) + ∣∣xk+1 − x̂

∣∣2 ,

in contradicton with |xk − x̂ | → +∞. Hence, lim supk→∞ μk = +∞.
In the case under consideration, by rule (29) of Algorithm 1, êk < −meτkμk |ĝk |2

for all k � k3. In particular, lim supk→∞ êk � 0. Also, using again (24), from êk <

−meτkμk |ĝk |2 it follows that
(η + ηg)

τminμk
> me|ĝk |.

As lim supk→∞ μk = +∞, this implies that lim infk→∞ |ĝk | = 0. Now fixing an
arbitrary x ∈ X , and passing onto the limit in (31) along a subsequence for which the
last relation above holds (taking also into account that in the case under consideration
êk � 0), concludes the proof. ��

Combining all the cases considered above, we conclude the following.

Theorem 2 If Algorithm 1 [with the additional rules (29) and (27)] generates a
sequence such that x̂k = x̂k1 for all k ≥ k1, then x̂k1 is a (η + ηg)-approximate
solution to (1). Otherwise, (33) holds and every cluster point of the sequence {x̂k} (if
any exist) is a (η + ηg)-approximate solution to problem (1).

The analysis above also shows that in all the cases either Δk → 0 or there exists a
subsequence K ⊂ {1, 2, . . .} such that lim supK�k→∞ êk � 0 and limK�k→∞ |ĝk | =
0. This means that, for positive tolerances, some stopping rule in Algorithm 1 is
eventually satisfied (at which time an appropriate approximate solution is obtained).
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5 Numerical results

In this section we report computational experiments on different types of prob-
lems: two-stage stochastic linear programming, nonsmoothly-regularized maxima of
quadratic functions, the model unit-commitment problem in the energy sector, and
some standard nonsmooth test problems (about 1000 instances overall). We compare
the following four solvers:

– PBM-1—proximal bundle method using a rule to update τk based on [19];
– PBM-2—proximal bundle method using a rule to update τk based on [23];
– LBM—level bundle method of [5];
– DSBM—doubly stabilized bundle method (the algorithm described in this article).

The runs were performed on a computer with Intel(R) Core(TM), i3-3110M CPU
@ 2.40, 4G (RAM), under Windows 8, 64Bits. The QPs (and also LPs) were solved
by the MOSEK 7 toolbox for MATLAB (http://www.mosek.com/). The MATLAB
version is R2012a.

Our analysis of the outcomes reports success or failure (i.e., whether a stopping
test was eventually satisfied or the maximal number of iterations was reached), the
number of oracle calls (here, the same as number of iterations), and CPU time to
termination. We also compare the quality of solutions obtained at termination. To get
some further insight, we report the numbers of descent steps for all the solvers, the
number of empty level sets encountered for LBM and DSBM, and for DSBM which
has various possibilities—the number of level iterations and which stopping criterion
triggered termination.

We start with describing some details of implementations, tuning, and stopping
rules of the algorithms in question.

5.1 Implementations, tuning the parameters, and stopping criteria

Many parameters need to be set for the solvers: the constant for the descent test
m f ∈ (0, 1) in (13) (used in all four solvers), the constant m� ∈ (0, 1) for adjusting
the level parameter (for LBM and DSBM), and some further parameters for updating
τk in the proximal solvers PBM-1, PBM-2 and DSBM.

Some specific parameters of each solver are listed below.

5.1.1 The level bundle algorithm LBM

The algorithm is as described in [5]. The initial predicted decrease is given by v�
1 =

f (x1)− f̌1(x̃), where x̃ is the solution of the QP (2) with k = 1 and τ1 given. When a
lower bound f lowk for the optimal value f inf is found, the subsequent iterations solve
the LP (17) to update f lowk to f lowk+1.

As in the rule (20), the LBM method of [5] employs the parameter μmax > 0. For
this solver, we need to set mainly the parameters m�, μmax and τ1 (the latter defines
v�
1 as explained above).

123

http://www.mosek.com/


148 W. de Oliveira, M. Solodov

5.1.2 The proximal bundle solvers PBM-1 and PBM-2

The rule to update the prox-parameter τk is as follows: let a > 1 and τmin > 0 be two
given parameters, and τ kaux be an auxiliary prox-parameter at iteration k (different for
PBM-1 and PBM-2).

– If null step, set τk+1 ← min{τk,max{τ kaux, τk/a, τmin}}
– If descent step:

– if more than five consecutive descent steps, set τ kaux ← aτ kaux
– set τk+1 ← min{τ kaux, 10τk}.

In PBM-1 [19], one sets

τ kaux ← 2τk

(
1 + f (x̂k) − f (xk+1)

vτ
k

)
.

In PBM-2 [23], one sets

τ kaux ← τk

(
1 + 〈gk+1 − gk, xk+1 − xk〉

|gk+1 − gk |2
)

,

under some safeguards [23, Section 4.2].
The essential parameters to tune in the updates above are a, τ1 and τmin. Parameters

taken as 10 and 2 in the setting of τk could also be tuned, but we use here their standard
values.

5.1.3 The doubly stabilized DSBM solver

This is Algorithm 1 employing rule (20) in Step 5. The initial predicted decrease is
given by v�

1 = f (x1) − f̌1(x̃), where x̃ is the solution of the QP (2) (the same as for
LBM). When a lower bound f lowk for the optimal value f inf is found, the subsequent
iteration solves the LP (17) to update f lowk to f lowk+1 (the same as in LBM).

The essential parameters to tune in the updates above are μmax, m�, τ1 and τmin.

5.1.4 Tuning the parameters

The parameters were tuned for each problem class separately. To decide on the “best”
settings of parameters, we first ran each solver on representative instances (a subset of
about 10%)of each considered family of problems,with various possible combinations
of the solvers’ parameters.

– Setting the stopping tolerances. Depending on the solver, the tolerances involved
in stopping tests are: Tole for the aggregate error êk , Tolg for the norm of the
aggregate subgradient ĝk and TolΔ for the optimality gap Δk . As it is natural to
have the optimality measures êk and Δk of the same magnitude, we set Tole =
TolΔ = Tol. On the other hand, |ĝk | is a dimension-dependent measure, which
can be different. To set Tolg we performed the following steps for each class of
problems:
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– first, the sample of problems was solved by Algorithm 1 with the stopping test
êk ≤ 10−8 (checking also that ĝk is small enough at termination);

– at the last iteration ki of the given method on problem i , we performed a linear
regression on the data {êki } and {|ĝki |} to estimate the best constant ρ > 0 that
minimizes the mean square error

∑
i (ρêki − |ĝki |)2;

– given tolerance Tol for êk and Δk , we then set Tolg := ρTol.
In the final experiments reported, the solvers terminate either if the number of
oracle calls reaches 1000 (considered a failure) or when

êk �Tol and |ĝk |�Tolg, or Δk �Tol with Tol=(
1+∣∣ f̄ ∣∣) 10−8.

(40)
Here, f̄ is a good approximation of the optimal value f inf , obtained by running
one solver in advance, and the stopping tolerances are set as described above. The
last stopping test, based on the optimality gap, is employed only by the solvers
LBM and DSBM.

– Setting the initial prox-parameter. As mentioned, all the solvers employ an initial
prox-parameter τ1 (solvers LBM and DSBM use τ1 to define v�

1). For each class
of problems we tested τ1 ∈ {1, 5, 10}.

– Lower bound for the prox-parameter. Except for solver LBM: τmin∈{10−6, 10−5,

10−3}.
– Parameter a to update τk during null steps. Only for solvers PBM-1 and PBM-2:
a ∈ {2, 4, 5}.

– Level parameter m�. Only for solvers LBM and DSBM: m� ∈ {0.2, 0.5, 0.7}.
– Descent parameter m f . All solvers: m f ∈ {0.1, 0.5, 0.7}.
– Parameter μmax in (20). Only for solvers LBM and DSBM: μmax ∈ {1, 5, 10}.
As expected, the standard choice m f = 0.1 for the descent test proved adequate

for all the solvers. Another adequate choice was μmax = 5. Other parameters take
different values depending on the class of problems, as shown below.

In all the solvers, all linearizations are kept in the model until the bundle reaches
its maximal allowed size, which was set at 334 (approximately one third of the max-
imum number of iterations). When the maximal allowed size is reached, the solvers
eliminate inactive linearizations, if any exist. If there are no inactive linearizations, the
bundle is compressed: the two “less active” linearizations (with the smallest Lagrange
multipliers) are replaced by the latest f̄k+1 and by the aggregate linearization f̄ ak .

5.2 Two-stage stochastic linear programming problems

We consider ten families of problems available at http://web.uni-corvinus.hu/~ideak1/
kut_en.htm, by I. Deák. They result in convex linearly-constrained nonsmooth prob-
lems, of the form (1). Specifically,

f (x) := 〈c, x〉 +
N∑
i=1

pi Q(x, hi ) and X := {
x ∈ �n+ : Ax = b

}
,
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Table 1 Total number of oracle
calls and CPU time: sum over
200 instances

PBM-1 PBM-2 LBM DSBM

CPU time (min) 139 118 86 84

# Oracle calls 18,007 15,168 10,521 11,125

# Descent steps 4030 4234 4638 4649

# Level steps 0 0 10,521 3643

where

Q(x, hi ) := min
y∈�n2+

〈q, y〉 s.t. T x + Wy = hi

is the recourse function corresponding to the i th scenario hi ∈ �m2 with probability
pi > 0 (W and T above are matrices of appropriate dimensions); c ∈ �n , matrix
A ∈ �m1×n and vector b ∈ �m1 are such that the set X is bounded. We consider
twenty instances corresponding to scenarios

N ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}.

The best configuration found for the parameters is the following: PBM-1 and PBM-
2: τ1 = 10, τmin = 10−6 and a = 2; LBM: τ1 = 10, and m� = 0.2; DSBM: τ1 = 1,
τmin = 10−6 andm� = 0.2. All the solvers employed the tolerances Tolg = 100Tol
and Tol as in (40).

Table 1 shows the total number of oracle calls and CPU times for solving (succes-
sively) all the twenty instances of each of the 10 problems (in total, 200) by the four
methods.

DSBM is the fastest solver, followed by LBM. There were no failures in this bench-
mark. DSBM solver stopped by the relative optimality gap in 93% of the instances,
whereas LBM in around 96%.

Optimality measures are reported in Table 2, for a subset of the instances. Ideally,
both measures êk/(1 + | f̄ |) and ĝk/(1 + | f̄ |), or the measure Δk/(1 + | f̄ |), should
be zero. Table 2 presents the number of digits of accuracy for these quantities. For
instance, the number 09 for êk/(1 + | f̄ |) means that the quantity in question has the
value c 10−09, with some c ∈ (1, 10).

In Fig. 1 we give performance profiles [7] of the four solvers over the 200 instances.
The top graphic considers the number of oracle calls (iterations), and the bottom one
considers theCPU time. For example, let the criterion beCPU time. For each algorithm,
we plot the proportion of problems that it solved within a factor of the time required
by the best algorithm. In other words, denoting by ts(p) the time spent by solver s
to solve problem p and by t∗(p) the best time for the same problem among all the
solvers, the proportion of problems solved by s within a factor γ is

φs(γ ) = number of problems p such that ts(p) ≤ γ t∗(p)
total number of problems

.

Therefore, the value φs(1) gives the probability of the solver s to be the best by a given
criterion. Furthermore, unless ts(p) = ∞ (which means that solver s failed to solve
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Table 2 Comparison of the optimality measures: digits of accuracy

n êk/(1 + | f̄ |) ĝk/(1 + | f̄ |) Δk/(1 + | f̄ |)
PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM

5 09 09 08 08 13 10 08 08 09 09

10 09 09 08 09 13 10 06 10 09 08

15 09 09 08 06 13 11 05 05 09 09

20 09 09 09 09 13 09 06 08 09 08

25 09 09 09 07 14 10 04 06 09 09

30 09 09 09 06 13 07 05 05 09 09

35 09 09 13 08 12 09 05 06 09 09

40 09 10 08 08 14 08 06 10 09 10

45 09 09 08 07 08 08 06 05 09 09

50 09 09 08 08 11 08 07 09 09 08

55 09 09 08 08 10 08 06 08 09 09

60 09 09 09 09 08 07 06 07 09 08

65 09 08 10 08 08 07 05 07 09 09

70 08 09 09 07 07 08 05 06 09 09

75 09 09 10 09 08 07 06 08 09 08

80 09 09 09 09 12 08 06 09 09 09

85 09 09 09 09 11 07 08 07 09 08

90 09 09 08 08 11 09 06 07 09 09

95 10 07 09 09 08 08 07 06 08 09

100 09 08 10 08 08 07 05 07 09 09

problem p), it follows that limγ→∞ φs(γ ) = 1. Thus, the higher is the line, the better
is the solver (by this criterion).

We conclude from Fig. 1 that among the four solvers, LBM used less oracle calls
(and CPU time) in approximately 60% (58%) of the 200 different instances, followed
by DSBM (40%) that was better than both solvers PBM-1 and PBM-2.

5.3 RandMaxQuad problems

In this subsectionwe consider a family of randomly generated problems of the form (1)
with the objective function given by

f (x) = max
i=1,...,10

{〈Qi xx〉 + 〈qi x〉
} + α|x |1 and

f (x) = max
i=1,...,10

{〈Qi xx〉 + 〈qi x〉
} + α|x |∞,

where Qi ∈ �n×n and qi ∈ �n are randomly generated, Qi being symmetric positive
semidefinite, i = 1, . . . , 10. The problem’s dimension n varies according to
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Fig. 1 Performance profile: 200 instances of two-stage stochastic problems

n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 500}.

Parameter α runs through the values α ∈ {0.1, 0.5, 1}. Two settings were considered
for the feasible set X in (1): X = �n (unconstrained setting) and X = {x ∈ �n+ :∑n

i=1 x = 1} (simplex setting). In total, 708 different instances of problem (1) were
obtained by using different seeds for the MATLAB random number generator: 354
unconstrained and 354 constrained.

5.3.1 Unconstrained RandMaxQuad: 354 instances

The best configurations found for the parameters were: PBM-1: τ1 = 1, τmin = 10−6

and a = 5; PBM-2: τ1 = 1, τmin = 10−6 and a = 2; LBM: τ1 = 1, and m� = 0.2;
DSBM: τ1 = 1, τmin = 10−6 andm� = 0.2. Toleranceswere set asTolg = 1000Tol,
with Tol given in (40).

Among other information, Table 3 shows the total number of CPU time (inmin) and
oracles calls required to solve all the 354 unconstrained instances. Notice that the less
demanding with respect to oracle calls and CPU time is the DSBM solver, followed
by PBM-2. Table 3 also shows that around 75% of the DSBM iterations were of the
level type.

Table 4 presents optimality measures at termination for each solver on some
instances. DSBM stopped by the relative optimality gap in 29% of the instances,
whereas LBM triggered this additional stopping test in 38%.

Figure 2 gives performance profiles [7] of the four solvers over 354 instances of
the unconstrained RandMaxQuad problem.

We observe that DSBM required less oracle calls in approximately 48% of the
354 instances, followed by PBM-2 and PBM-1 (around 40 and 10%, respectively).
Besides, DSBM is more robust in terms of oracle calls: it achieves φ(γ ) = 1 for
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Table 3 Total number of oracle calls and CPU time: sum over 354 instances

PBM-1 PBM-2 LBM DSBM

CPU time (min) 302 154 462 143

# Oracle calls 121,155 80,261 202,922 77,741

# Descent steps 14,320 18,324 15,786 19,237

# Level steps 0 0 202,922 58,452

# Empty level sets 0 0 143 106

% Failure 2 1 25 0

Table 4 Comparison of the optimality measures: digits of accuracy

n êk/(1 + | f̄ |) ĝk/(1 + | f̄ |) Δk/(1 + | f̄ |)
PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM

10 09 09 09 09 08 06 05 05 09 09

20 09 09 09 09 06 06 05 05 09 09

30 09 09 09 10 06 06 05 06 09 –

40 09 09 09 09 06 06 06 06 – –

50 09 09 09 09 06 06 06 06 – –

60 09 09 09 10 06 06 06 06 – –

70 09 09 09 09 06 06 06 06 – –

80 09 09 09 09 06 06 06 06 – –

90 09 09 09 09 06 06 06 06 – –

100 09 09 09 09 06 06 06 06 – –

150 09 10 07 09 06 06 06 05 – –

200 09 09 07a 09 06 06 05a 06 – –

250 08 09 06a 09 06 06 05a 06 – –

300 09 09 06a 09 06 06 04a 06 – –

500 10 09 05a 09 06 06 05a 06 – –

– f lowk = −∞
a Means failure

lower values of γ . For this type of problems, both PBM-1 and PBM-2 are more robust
than LBM, that failed to satisfy the stopping test in around 25% of the instances, as
reported in Table 3.

5.3.2 Constrained RandMaxQuad: 354 instances

We now consider problems with the same 354 objective functions, but constrained on
a simplex. The employed solver parameters are the following: PBM-1: τ1 = 1, τmin =
10−3 and a = 5; PBM-2: τ1 = 1, τmin = 10−5 and a = 2; LBM: τ1 = 1, and
m� = 0.7; DSBM: τ1 = 1, τmin = 10−6 and m� = 0.7. Tolerances were set as
Tolg = 1000Tol, with Tol given in (40).
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Fig. 2 Performance profile of the four solvers over 354 instances of MaxQuad

Table 5 Total number of oracle
calls and CPU time: sum over
354 instances

PBM-1 PBM-2 LBM DSBM

CPU time (min) 319 309 35 31

# Oracle calls 110,495 103,494 35,892 31,617

# Descent steps 11,206 11,599 15,586 11,263

# Level steps 0 0 35,892 14,607

# Empty level sets 0 0 355 358

% Failure 2 0 0 0

Table 5 shows the total number of oracle calls, CPU time, descent steps and level
steps required to solve all the constrained instances. We observe that the solvers LBM
and DSBM are much more effective on the constrained problems than PBM-1 and
PBM-2. Around 45% of the DSBM iterations were of the level type.

LBM triggered the optimality gap stopping test in 62% of the instances, while
DSBM in 72%. Note that these percentages were smaller for the unconstrained
instances: 38 and 29%, respectively. Table 6 reports (for some selected instances)
the optimality measures at the last iteration.

Performance profiles of the four solvers on these 354 constrained instances are
presented in Fig. 3. Among the considered solvers, we notice that DSBM is both the
fastest and the most robust one, followed by LBM.

5.4 Unit-commitment energy problems

In this subsection we consider a unit-commitment problem for a power system oper-
ation model with four power plants. For each given point x , an oracle must solve four
mixed-integer linear programming problems to compute f (x) and g ∈ ∂ f (x). The
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Table 6 Comparison of the optimality measures: digits of accuracy

n êk/(1 + | f̄ |) ĝk/(1 + | f̄ |) Δk/(1 + | f̄ |)
PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM

10 09 10 09 09 15 09 05 06 09 08

20 09 09 09 09 07 06 05 05 09 09

30 09 09 09 09 06 06 05 05 09 09

40 09 09 09 09 10 06 05 05 09 09

50 09 07 09 09 09 06 05 05 09 09

60 09 09 09 09 06 06 05 05 09 09

70 09 09 09 09 07 06 05 05 09 09

80 09 09 09 09 06 06 05 05 09 09

90 09 09 09 09 06 06 05 06 09 08

100 09 09 09 09 06 05 05 05 09 09

150 09 09 09 09 06 06 06 06 08 08

200 09 09 09 09 06 06 07 06 08 08

250 09 09 09 09 06 06 06 06 08 08

300 09 09 09 09 06 06 06 06 08 08

500 07 09 09 09 06 06 06 06 08 08

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

γ

φ (
γ )

Oracle Calls
 

PBM−1
PBM−2
LBM
DSBM

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

γ

φ (
γ )

CPU Time

 

 

PBM−1
PBM−2
LBM
DSBM

Fig. 3 Performance profile of the four solvers over 354 instances of constrained MaxQuad

feasible set for this problem is the positive orthant X = �n+. In our configuration,
the problem’s dimension ranges in n ∈ {12, 24, 36, 48, 60}. The electricity demands
for the unit-commitment problem were chosen randomly, using ten different seeds for
the random number generator. In total, 50 instances of the problem were considered.
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Table 7 Total number of oracle
calls and CPU times: sum over
50 instances

PBM-1 PBM-2 LBM DSBM

CPU time (min) 78 69 91 77

# Oracle calls 4540 4050 3976 3087

# Descent steps 1052 1381 2274 1526

# Level steps 0 0 3976 1807

# Empty level sets 0 0 50 50

Table 8 Comparison of the optimality measures: digits of accuracy

n êk/(1 + | f̄ |) ĝk/(1 + | f̄ |) Δk/(1 + | f̄ |)
PBM-1 PBM-2 LBM DSBM PBM-1 PBM-2 LBM DSBM LBM DSBM

12 11 10 09 05 11 10 08 05 09 10

24 12 09 09 06 12 11 06 06 09 09

36 09 09 09 07 10 10 08 06 09 09

48 09 09 09 08 11 09 08 09 09 09

60 09 09 09 06 11 10 07 06 09 09

The employed solver parameters are the following: PBM-1: τ1 = 10, τmin = 10−6

and a = 2; PBM-2: τ1 = 1, τmin = 10−5 and a = 4; LBM: τ1 = 1, and m� = 0.7;
DSBM: τ1 = 1, τmin = 10−6 and m� = 0.2. Tolerances were set as Tolg = Tol,
with Tol given in (40).

In this battery of problems, all the runs were successful, i.e., a stopping test was
satisfied before the maximal number of iterations was reached. Table 7 shows the
total number of oracle calls and CPU times required to stop the four solvers over all
instances of the problem.

PBM-2 was the fasted solver on these problems, followed by DSBM. DSBM termi-
nated by the optimality gap in 98% of the instances, whereas LBM in 96%.Moreover,
around 58% of the DSBM’s iterations were of the level type. In Table 8 we present
(for some instances) the optimality measures at the last iteration.

Figure 4 gives performance profiles of the four solvers over 50 instances of the
problem.

We observe that DSBM required less oracle calls in approximately 90% of cases,
while PBM-2 was the fastest solver in 20% of the instances.

5.5 Classical unconstrained nonsmooth test problems

In this subsection we consider some typical functions for nonsmooth optimization
benchmarking, such as MaxQuad [4, p. 153], TR48 [18, p.21, vol. II] and others. All
the problems are unconstrained and have known optimal values. We refer to [24] for
more information on these test problems.

Tables 9 and 10 report on results obtained by the four solvers on this type of
problems, using default dimensions and starting points.
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Fig. 4 Performance profile of the four solvers over 40 instances

Table 9 Total number of oracle calls and CPU time

Problem # Oracle calls CPU time (s)

LBM PBM-1 PBM-2 DSBM LBM PBM-1 PBM-2 DSBM

TR48 260 157 127 139 30.399 9.986 6.873 8.669

MaxQuad 78 231 111 96 4.834 16.767 5.074 3.595

Ury 65 64 58 60 3.361 2.224 1.981 2.214

CPS 183 63 83 65 31.812 1.910 2.794 2.546

TiltedMax 50 14 18 15 2.285 0.434 0.601 0.461

Check 50 61 72 44 2.954 1.913 2.818 1.803

NK 58 62 81 61 2.938 1.754 2.543 3.053

Sum 744 652 550 480 78.583 34.988 22.684 22.341

Table 10 Digits of accuracy in
the difference f (x̂) − f inf Problem LBM PBM-1 PBM-2 DSBM f inf

TR48 1 5 3 3 −638,565

MaxQuad 6 9 9 7 −0.84140833459641

Ury 4 4 5 5 500

CPS 8 7 9 7 0

TiltedMax 8 9 7 9 0

Table 10 shows the true optimal value of each problem (column f inf ) and the
number of digits of accuracy in the difference f (x̂) − f inf for the four solvers at
termination, where x̂ is the obtained solution.
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We can conclude from Table 10 that the quality of solutions obtained by the doubly
stabilized method is as good as the other solvers.

6 Concluding remarks

We proposed a new algorithm for nonsmooth convex minimization, called doubly
stabilized bundle method. It combines the level and proximal stabilizations in a single
subproblem, and at each iteration automatically “chooses” between a proximal and
a level step. The aim is to take advantage of good properties of both, depending on
the problem at hand, and also use the simplicity of updating the level parameter to
produce a simple and efficient rule to update the proximal parameter, thus speeding
up the optimization process. In addition, the method provides a useful stopping test
based on the optimality gap.

The algorithm appears to perform well in computation, as validated in Sect. 5,
where almost 1,000 instances of various types of problemswere considered.Numerical
results show that the proposed method compares favorably with both the proximal and
level bundle methods.

The new doubly stabilized algorithm can also handle inexactness of data in a natural
way,without introducing specialmodifications to the iterative procedure (such as noise
attenuation).
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