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Abstract We obtain an improved finite-sample guarantee on the linear convergence
of stochastic gradient descent for smooth and strongly convex objectives, improving
from a quadratic dependence on the conditioning (L/μ)2 (where L is a bound on the
smoothness and μ on the strong convexity) to a linear dependence on L/μ. Further-
more, we show how reweighting the sampling distribution (i.e. importance sampling)
is necessary in order to further improve convergence, and obtain a linear dependence
in the average smoothness, dominating previous results. We also discuss importance
sampling for SGD more broadly and show how it can improve convergence also in
other scenarios. Our results are based on a connection we make between SGD and the
randomized Kaczmarz algorithm, which allows us to transfer ideas between the sepa-
rate bodies of literature studying each of the two methods. In particular, we recast the
randomized Kaczmarz algorithm as an instance of SGD, and apply our results to prove
its exponential convergence, but to the solution of a weighted least squares problem
rather than the original least squares problem. We then present a modified Kaczmarz
algorithm with partially biased sampling which does converge to the original least
squares solution with the same exponential convergence rate.
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1 Introduction

This paper connects two algorithms which until now have remained remarkably dis-
joint in the literature: the randomized Kaczmarz algorithm for solving linear systems
and the stochastic gradient descent (SGD) method for optimizing a convex objective
using unbiased gradient estimates. The connection enables us tomake contributions by
borrowing from each body of literature to the other. In particular, it helps us highlight
the role of weighted sampling for SGD and obtain a tighter guarantee on the linear
convergence regime of SGD.

Recall that stochastic gradient descent is a method for minimizing a convex objec-
tive F(x) based on access to unbiased stochastic gradient estimates, i.e. to an estimate
g for the gradient at a given point x, such that E[g] = ∇F(x). Viewing F(x) as
an expectation F(x) = Ei [ fi (x)], the unbiased gradient estimate can be obtained by
drawing i and using its gradient: g = ∇ fi (x). SGDoriginated as “StochasticApproxi-
mation” in the pioneeringwork of Robbins andMonroe [41], and has recently received
renewed attention for confronting very large scale problems, especially in the context
of machine learning [2,4,31,42]. Classical analysis of SGD shows a polynomial rate
on the sub-optimality of the objective value, F(xk) − F(x�), namely 1/

√
k for non-

smooth objectives, and 1/k for smooth, or non-smooth but strongly convex objectives.
Such convergence can be ensured even if the iterates xk do not necessarily converge
to a unique optimum x�, as might be the case if F(x) is not strongly convex. Here we
focus on the strongly convex case, where the optimum is unique, and on convergence
of the iterates xk to the optimum x�.

Bach and Moulines [1] recently provided a non-asymptotic bound on the conver-
gence of the iterates in strongly convex SGD, improving on previous results of this kind
[26, Section 2.2] [3, Section 3.2] [31,43]. In particular, they showed that if each fi (x)

is smooth and if x� is a minimizer of (almost) all fi (x), i.e. Pi (∇ fi (x�) = 0) = 1,
then E‖xk − x�‖ goes to zero exponentially, rather than polynomially, in k. That is,
reaching a desired accuracy ofE‖xk − x�‖2 ≤ ε requires a number of steps that scales
only logarithmically in 1/ε. Bach and Moulines’s bound on the required number of
iterations further depends on the average squared conditioning number E[(Li/μ)2],
where Li is the Lipschitz constant of ∇ fi (x) (i.e. fi (x) are “L-smooth”), and F(x) is
μ-strongly convex. If x� is not an exact minimizer of each fi (x), the bound degrades
gracefully as a function of σ 2 = E‖∇ fi (x�)‖2, and includes an unavoidable term that
behaves as σ 2/k.

In a seemingly independent line of research, theKaczmarz method was proposed as
an iterative method for solving (usually overdetermined) systems of linear equations
[19]. The simplicity of the method makes it useful in a wide array of applications
ranging from computer tomography to digital signal processing [16,18,27]. Recently,
Strohmer and Vershynin [46] proposed a variant of the Kaczmarz method using a
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random selection method which select rows with probability proportional to their
squared norm, and showed that using this selection strategy, a desired accuracy of ε

can be reached in the noiseless setting in a number of steps that scales like log(1/ε)
and linearly in the condition number.

1.1 Importance sampling in stochastic optimization

From a birds-eye perspective, this paper aims to extend the notion of importance
sampling from stochastic sampling methods for numerical linear algebra applications,
to more general stochastic convex optimization problems. Strohmer and Vershynin’s
incorporation of importance sampling into the Kaczmarz setup [46] is just one such
example, and most closely related to the SGD set-up. But importance sampling has
also been considered in stochastic coordinate-descent methods [33,40]. There also,
the weights are proportional to some power of the Lipschitz constants (of the gradient
coordinates).

Importance sampling has also played a key role in designing sampling-based low-
rank matrix approximation algorithms—both row/column based sampling and entry-
wise sampling—where it goes by the name of leverage score sampling. The resulting
sampling methods are again proportional to the squared Euclidean norms of rows
and columns of the underlying matrix. See [5,9,25,44], and references therein for
applications to the column subset selection problem and matrix completion. See [14,
24,48] for applications of importance sampling to the Nyström method.

Importance sampling has also been introduced to the compressive sensing frame-
work, where it translates to sampling rows of an orthonormal matrix proportionally to
their squared inner products with the rows of a second orthonormal matrix in which
the underlying signal is assumed sparse. See [20,39] for more details.

1.2 Contributions

Inspired by the analysis of Strohmer and Vershynin and Bach and Moulines, we prove
convergence results for stochastic gradient descent as well as for SGD variants where
gradient estimates are chosen based on a weighted sampling distribution, highlighting
the role of importance sampling in SGD.

We first show (Corollary 2.2 in Sect. 2) that without perturbing the sampling distri-
bution, we can obtain a linear dependence on the uniform conditioning (sup Li/μ), but
it is not possible to obtain a linear dependence on the average conditioning E[Li/μ].
This is a quadratic improvement over the previous results [1] in regimes where the
components have similar Lipschitz constants.

We then turn to importance sampling, using a weighted sampling distribution. We
show that weighting components proportionally to their Lipschitz constants Li , as
is essentially done by Strohmer and Vershynin, can reduce the dependence on the
conditioning to a linear dependence on the average conditioning E[Li/μ]. However,
this comes at an increased dependence on the residual σ 2. But, we show that by only
partially biasing the sampling towards Li , we can enjoy the best of bothworlds, obtain-
ing a linear dependence on the average conditioning E[Li/μ], without amplifying the
dependence on the residual. Thus, using importance sampling, we obtain a guarantee
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dominating, and improving over the previous best-known results [1] (Corollary 3.1 in
Sect. 2).

In Sect. 4, we consider the benefits of reweighted SGD also in other scenarios and
regimes.We showhowalso for smooth but not-strongly-convex objectives, importance
sampling can improve a dependence on a uniform bound over smoothness, (sup Li ), to
a dependence on the average smoothnessE[Li ]—such an improvement is not possible
without importance sampling. For non-smooth objectives, we show that importance
sampling can eliminate a dependence on the variance in the Lipschitz constants of
the components. In parallel work we recently became aware of, Zhao and Zhang [51]
also consider importance sampling for non-smooth objectives, including composite
objectives, suggesting the same reweighting as we obtain here.

Finally, in Sect. 5, we turn to the Kaczmarz algorithm, explain how it is an instan-
tiation of SGD, and how using partially biased sampling improves known guarantees
in this context as well. We show that the randomized Kaczmarz method with uniform
i.i.d. row selection can be recast as an instance of preconditioned Stochastic Gradient
Descent acting on a re-weighted least squares problem and through this connection,
provide exponential convergence rates for this algorithm. We also consider the Kacz-
marz algorithm corresponding to SGDwith hybrid row selection strategywhich shares
the exponential convergence rate of Strohmer and Vershynin [46] while also sharing a
small error residual term of the SGD algorithm. This presents a clear tradeoff between
convergence rate and the convergence residual, not present in other results for the
method.

2 SGD for strongly convex smooth optimization

We consider the problem of minimizing a smooth convex function,

x� = argmin
x

F(x) (2.1)

where F(x) is of the form F(x) = Ei∼D fi (x) for smooth functionals fi : H → R
over H = Rd endowed with the standard Euclidean norm ‖·‖2, or over a Hilbert
space H with the norm ‖·‖2. Here i is drawn from some source distribution D over
an arbitrary probability space. Throughout this manuscript, unless explicitly specified
otherwise, expectations will be with respect to indices drawn from the source distrib-
utionD. That is, we write E fi (x) = Ei∼D fi (x). We also denote by σ 2 the “residual”
quantity at the minimum,

σ 2 = E‖∇ fi (x�)‖22.

We will instate the following assumptions on the function F :

(1) Each fi is continuously differentiable and the gradient function∇ fi has Lipschitz
constant Li ; that is, ‖∇ fi (x) − ∇ fi ( y)‖2 ≤ Li‖x − y‖2 for all vectors x and y.

(2) F has strong convexity parameter μ; that is, 〈x − y,∇F(x) − ∇F( y)〉 ≥
μ‖x − y‖22 for all vectors x and y.
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We denote sup L the supremum of the support of Li , i.e. the smallest L such that
Li ≤ L a.s., and similarly denote inf L the infimum. We denote the average Lipschitz
constant as L = ELi .

A unbiased gradient estimate for F(x) can be obtained by drawing i ∼ D and
using ∇ fi (x) as the estimate. The SGD updates with (fixed) step size γ based on
these gradient estimates are then given by:

xk+1 ← xk − γ∇ fik (xk) (2.2)

where {ik} are drawn i.i.d. fromD. We are interested in the distance ‖xk − x�‖22 of the
iterates from the uniqueminimum, and denote the initial distance by ε0 = ‖x0 − x�‖22.

Bach and Moulines [1, Theorem 1] considered this setting1 and established that

k = 2 log(ε/ε0)

(
EL2

i

μ2 + σ 2

μ2ε

)
(2.3)

SGD iterations of the form (2.2), with an appropriate step-size, are sufficient to ensure
E‖xk − x�‖22 ≤ ε, where the expectations is over the random sampling. As long as
σ 2 = 0, i.e. the sameminimizer x� minimizes all components fi (x) (though of course
it need not be a unique minimizer of any of them), this yields linear convergence to x�,
with a graceful degradation as σ 2 > 0. However, in the linear convergence regime, the
number of required iterations scales with the expected squared conditioning EL2

i /μ
2.

In this paper, we reduce this quadratic dependence to a linear dependence. We begin
with a guarantee ensuring linear dependence, though with a dependence on sup L/μ

rather than ELi/μ:

Theorem 2.1 Let each fi be convex where ∇ fi has Lipschitz constant Li , with Li ≤
sup L a.s., and let F(x) = E fi (x) be μ-strongly convex. Set σ 2 = E‖∇ fi (x�)‖22,
where x� = argminx F(x). Suppose that γ < 1

sup L . Then the SGD iterates given by
(2.2) satisfy:

E‖xk − x�‖22 ≤ [
1 − 2γμ(1 − γ sup L))

]k ‖x0 − x�‖22 + γ σ 2

μ (1 − γ sup L)
, (2.4)

where the expectation is with respect to the sampling of {ik}.
If we are given a desired tolerance, ‖x − x�‖22 ≤ ε, and we know the Lipschitz

constants and parameters of strong convexity, we may optimize the step-size γ , and
obtain:

Corollary 2.2 For any desired ε, using a step-size of

γ = με

2εμ sup L + 2σ 2

1 Bach and Moulines’s results are somewhat more general. Their Lipschitz requirement is a bit weaker
and more complicated, but in terms of Li yields (2.3). They also study the use of polynomial decaying
step-sizes, but these do not lead to improved runtime if the target accuracy is known ahead of time.
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we have that after

k = 2 log(2ε0/ε)

(
sup L

μ
+ σ 2

μ2ε

)
(2.5)

SGD iterations,E‖xk − x�‖22 ≤ ε, where ε0 = ‖x0 − x�‖22 andwhere the expectation
is with respect to the sampling of {ik}.
Proof Substituting γ = με

2εμ sup L+2σ 2 into the second term of (2.4) and simplifying
gives the bound

γ σ 2

μ
(
1 − γ sup L

) ≤ ε/2.

Now asking that

[
1 − 2γμ(1 − γ sup L))

]k
ε0 ≤ ε/2,

substituting for γ , and rearranging to solve for k, shows that we need k such that

k log

(
1 − μ2ε(με sup L + 2σ 2)

2(με sup L + σ 2)2

)
≤ − log

(
2ε0
ε

)
.

Utilizing the fact that −1/ log(1 − x) ≤ 1/x for 0 < x ≤ 1 and rearranging again
yields the requirement that

k ≥ log

(
2ε0
ε

)
· 2(με sup L + σ 2)2

μ2ε(με sup L + 2σ 2)
.

Noting that this inequality holds when k ≥ 2 log
(
2ε0
ε

)
· με sup L+σ 2

μ2ε
yields the stated

number of steps k in (2.5). Since the expression on the right hand side of (2.4) decreases
with k, the corollary is proven. �

Proof sketch The crux of the improvement over Bach and Moulines is in a tighter
recursive equation. Bach and Moulines rely on the recursion

‖xk+1 − x�‖22 ≤
(
1 − 2γμ + 2γ 2L2

i

)
‖xk − x�‖22 + 2γ 2σ 2,

whereas we use the Co-Coercivity Lemma 8.1, withwhichwe can obtain the recursion

‖xk+1 − x�‖22 ≤
(
1 − 2γμ + 2γ 2μLi

)
‖xk − x�‖22 + 2γ 2σ 2,

where Li is the Lipschitz constant of the component used in the current iterate. The
significant difference is that one of the factors of Li (an upper bound on the second
derivative), in the third term inside the parenthesis, is replaced by μ (a lower bound
on the second derivative of F). A complete proof can be found in the “Appendix”.
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Comparison to results of Bach andMoulines Our bound (2.5) replaces the dependence
on the average square conditioning (EL2

i /μ
2)with a linear dependence on the uniform

conditioning (sup L/μ). When all Lipschitz constants Li are of similar magnitude,
this is a quadratic improvement in the number of required iterations. However, when
different components fi have widely different scaling, i.e. Li are highly variable, the
supremum might be larger then the average square conditioning.

Tightness Considering the above, one might hope to obtain a linear dependence on
the average conditioning L/μ = ELi/μ. However, as the following example shows,
this is not possible. Consider a uniform source distribution over N +1 quadratics, with
the first quadratic f1 being N

2 (x[1] − b)2 and all others being 1
2 x[2]2, and b = ±1.

Any method must examine f1 in order to recover x to within error less then one,
but by uniformly sampling indices i , this takes (N + 1) iterations in expectation. It
is easy to verify that in this case, sup Li = L1 = N , L = 2 N

N+1 < 2 EL2
i = N ,

and μ = N
N+1 . For large N , a linear dependence on L/μ would mean that a constant

number of iterations suffice (as L/μ = 2), but we just saw that any method that
sampled i uniformly must consider at least (N + 1) samples in expectation to get
non-trivial error. Note that both sup Li/μ = N + 1 and EL2

i /μ
2 � N + 1 indeed

correspond to the correct number of iterations required by SGD.
We therefore see that the choice between a dependence on the average quadratic

conditioning EL2
i /μ

2, or a linear dependence on the uniform conditioning sup L/μ,
is unavoidable. A linear dependence on the average conditioning L/μ is not possible
with any method that samples from the source distribution D. In the next section, we
will show how we can obtain a linear dependence on the average conditioning L/μ,
using importance sampling, i.e. by sampling from a modified distribution.

3 Importance sampling

We will now consider stochastic gradient descent, where gradient estimates are sam-
pled from a weighted distribution.

3.1 Reweighting a distribution

For a weight function w(i) which assigns a non-negative weight w(i) ≥ 0 to each
index i , the weighted distribution D(w) is defined as the distribution such that

PD(w) (I ) ∝ Ei∼D [1I (i)w(i)] ,

where I is an event (subset of indices) and 1I (·) its indicator function. For a discrete
distribution D with probability mass function p(i) this corresponds to weighting the
probabilities to obtain a new probability mass function:

p(w)(i) ∝ w(i)p(i).
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Similarly, for a continuous distribution, this corresponds to multiplying the density by
w(i) and renormalizing.

One way to construct the weighted distributionD(w), and sample from it, is through
rejection sampling: sample i ∼ D, and accept with probability w(i)/W , for some
W ≥ supi w(i). Otherwise, reject and continue to re-sample until a suggestion i is
accepted. The accepted samples are then distributed according to D(w).

We use E(w)[·] = Ei∼D(w) [·] to denote an expectation where indices are sampled
from the weighted distribution D(w). An important property of such an expectation is
that for any quantity X (i) that depends on i :

E
(w)

[
1

w(i) X (i)
]

= E [X (i)] /E [w(i)] , (3.1)

where recall that the expectations on the r.h.s. are with respect to i ∼ D. In particular,

when E[w(i)] = 1, we have that E(w)
[

1
w(i) X (i)

]
= EX (i). In fact, we will consider

only weights s.t. E[w(i)] = 1, and refer to such weights as normalized.

3.2 Reweighted SGD

For any normalized weight functionw(i), we canweight each component fi , defining:

f (w)
i (x) = 1

w(i)
fi (x) (3.2)

and obtain
F(x) = E

(w)[ f (w)
i (x)]. (3.3)

The representation (3.3) is an equivalent, and equally valid, stochastic representation
of the objective F(x), and we can just as well base SGD on this representation. In this
case, at each iteration we sample i ∼ D(w) and then use ∇ f (w)

i (x) = 1
w(i)∇ fi (x) as

an unbiased gradient estimate. SGD iterates based on the representation (3.3), which
we will also refer to as w-weighted SGD, are then given by

xk+1 ← xk − γ

w(ik)
∇ fik (xk) (3.4)

where {ik} are drawn i.i.d. from D(w).
The important observation here is that all SGD guarantees are equally valid for

the w-weighted updates (3.4)—the objective is the same objective F(x), the sub-
optimality is the same, and the minimizer x� is the same. We do need, however,
to calculate the relevant quantities controlling SGD convergence with respect to the
modified components f (w)

i and the weighted distribution D(w).
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3.3 Strongly convex smooth optimization using weighted SGD

We now return to the analysis of strongly convex smooth optimization and investigate
how re-weighting can yield a better guarantee. To do so, we must analyze the relevant
quantities involved.

The Lipschitz constant L(w)
i of each component f (w)

i is now scaled, and we have,

L(w)
i = 1

w(i) Li . The supremum is given by:

sup L(w) = sup
i

L(w)
i = sup

i

Li

w(i)
. (3.5)

It is easy to verify that (3.5) is minimized by the weights

w(i) = Li

L
, (3.6)

and that with this choice of weights

sup L(w) = sup
i

Li

Li/L
= L. (3.7)

Note that the average Lipschitz constant L = E[Li ] = E
(w)[L(w)

i ] is invariant under
weightings.

Before applying Corollary 2.2, we must also calculate:

σ 2
(w) = E

(w)
[
‖∇ f (w)

i (x�)‖22
]

= E
(w)

[
1

w(i)2
‖∇ fi (x�)‖22

]

= E

[
1

w(i)
‖∇ fi (x�)‖22

]
= E

[
L

Li
‖∇ fi (x�)‖22

]
≤ L

inf L
σ 2. (3.8)

Now, applying Corollary 2.2 to the w-weighted SGD iterates (3.4) with weights
(3.6), we have that, with an appropriate stepsize,

k = 2 log(2ε0/ε)

(
sup L(w)

μ
+ σ 2

(w)

μ2ε

)

≤ 2 log(2ε0/ε)

(
L

μ
+ L

inf L
· σ 2

μ2ε

)
(3.9)

iterations are sufficient for E(w)‖xk − x�‖22 ≤ ε, where x�, μ and ε0 are exactly as in
Corollary 2.2.
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3.4 Partially biased sampling

If σ 2 = 0, i.e. we are in the “realizable” situation, with true linear convergence,
then we also have σ 2

(w) = 0. In this case, we already obtain the desired guarantee:

linear convergence with a linear dependence on the average conditioning L/μ, strictly
improving over Bach and Moulines. However, the inequality in (3.8) might be tight
in the presence of components with very small Li that contribute towards the residual
error (as might well be the case for a small component). When σ 2 > 0, we therefore
get a dissatisfying scaling of the second term, relative to Bach and Moulines, by a
factor of L/inf L .

Fortunately, we can easily overcome this factor. To do so, consider sampling from a
distribution which is a mixture of the original source distribution and its re-weighting
using the weights (3.6). That is, sampling using the weights:

w(i) = 1

2
+ 1

2
· Li

L
. (3.10)

We refer to this as partially biased sampling. Using these weights, we have

sup L(w) = sup
i

1
1
2 + 1

2 · Li

L

Li ≤ 2L (3.11)

and

σ 2
(w) = E

[
1

1
2 + 1

2 · Li

L

‖∇ fi (x�)‖22
]

≤ 2σ 2. (3.12)

Plugging these into Corollary 2.2 we obtain:

Corollary 3.1 Let each fi be convex where ∇ fi has Lipschitz constant Li and let
F(x) = Ei∼D[ fi (x)], where F(x) is μ-strongly convex. Set σ 2 = E‖∇ fi (x�)‖22,
where x� = argminx F(x). For any desired ε, using a stepsize of

γ = με

4(εμL + σ 2)

we have that after

k = 4 log(2ε0/ε)

(
L

μ
+ σ 2

μ2ε

)
(3.13)

iterations ofw-weightedSGD (3.4)withweights specifiedby (3.10),E(w)‖xk − x�‖22 ≤
ε, where ε0 = ‖x0 − x�‖22 and L = ELi .

Wenowobtain the desired linear scaling on L/μ, without introducing any additional
factor to the residual term, except for a constant factor of two. We thus obtain a result
which dominates Bach and Moulines (up to a factor of 2) and substantially improves
upon it (with a linear rather than quadratic dependence on the conditioning).
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One might also ask whether the previous best known result (2.3) could be improved
using weighted sampling. The relevant quantity to consider is the average square
Lipschitz constant for the weighted representation (3.3):

L2
(w)

.= E
(w)

[(
L(w)
i

)2] = E
(w)

[
L2i

w(i)2

]
= E

[
L2
i

w(i)

]
. (3.14)

Interestingly, this quantity is minimized by the same weights as sup L(w), given by
(3.6), and with these weights we have:

L2
(w) = E

[
L2
i

Li/L

]
= LELi = L

2
. (3.15)

Again, we can use the partially biasedweights give in (3.10), which yields L2
(w) ≤ 2L

2

and also ensures σ 2
(w) ≤ 2σ 2. In any case, we get a dependence on L

2 = (ELi )
2 ≤

E[L2
i ] instead of L2 = E[L2

i ], which is indeed an improvement. Thus, the Bach and
Moulines guarantee is also improved by using biased sampling, and in particular the
partially biased sampling specified by the weights (3.10). However, relying on Bach
andMoulines we still have a quadratic dependence on (L/μ)2, as opposed to the linear
dependence we obtain in Corollary 3.1.

3.5 Implementing importance sampling

As discussed above, when the magnitudes of Li are highly variable, importance sam-
pling is necessarily in order to obtain a dependence on the average, rather than worst-
case, conditioning. In some applications, especially when the Lipschitz constants are
known in advance or easily calculated or bounded, such importance sampling might
be possible by directly sampling from D(w). This is the case, for example, in trigono-
metric approximation problems or linear systems which need to be solved repeatedly,
or when the Lipschitz constant is easily computed from the data, and multiple passes
over the data are needed anyway. We do acknowledge that in other regimes, when
data is presented in an online fashion, or when we only have sampling access to the
source distributionD (or the implied distribution over gradient estimates), importance
sampling might be difficult.

One option that could be considered, in light of the above results, is to use rejection
sampling to simulate sampling from D(w). For the weights (3.6), this can be done by
accepting samples with probability proportional to Li/ sup L . The overall probability
of accepting a sample is then L/ sup L , introducing an additional factor of sup L/L .
This results in a sample complexity with a linear dependence on sup L , as in Corol-
lary 2.2 (for the weights (3.10), we can first accept with probability 1/2, and then if
we do not accept, perform this procedure). Thus, if we are presented samples from
D, and the cost of obtaining the sample dominates the cost of taking the gradient
step, we do not gain (but do not lose much either) from rejection sampling. We might

123



560 D. Needell et al.

still gain from rejection sampling if the cost of operating on a sample (calculating the
actual gradient and taking a step according to it) dominates the cost of obtaining it and
(a bound on) the Lipschitz constant.

3.6 A family of partially biased schemes

The choice of weights (3.10) corresponds to an equal mix of uniform and fully biased
sampling. More generally, we could consider sampling according to any one of a
family of weights which interpolate between uniform and fully biased sampling:

wλ(i) = λ + (1 − λ)
Li

L
, λ ∈ [0, 1]. (3.16)

Tobe concrete,we summarize below the a template algorithm forSGDwith partially
biased sampling:

Algorithm 3.1: Stochastic Gradient Descent with Partially Biased Sampling

Input:

• Initial estimate x0 ∈ R
d

• Bias parameter λ ∈ [0, 1]
• Step size γ > 0
• Tolerance parameter δ > 0
• Access to the source distribution D
• If λ < 1: bounds on the Lipschitz constants Li ; the weights wλ(i) derived from them (see eq.

3.16); and access to the weighted distribution D(λ).

Output: Estimated solution x̂ to the problem minx F(x)

k ← 0
repeat

k ← k + 1
Draw an index i ∼ D(λ).
xk ← xk−1 − γ

wλ(i)
∇ fi (xk−1)

until ∇F(x) ≤ δ

x̂ ← xk

For arbitrary λ ∈ [0, 1], we have the bounds

sup L(wλ) = sup
i

Li

λ + (1 − λ)
Li

L

≤ min

(
L

1 − λ
,
supi Li

λ

)

and

σ 2
(wλ)

= E

[
1

λ + (1 − λ)
Li

L

‖∇ fi (x�)‖22
]

≤ max

(
1

λ
,

L

(1 − λ) inf i Li

)
σ 2

Plugging these quantities into Corollary 2.2, we obtain:
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Corollary 3.2 Let each fi be convex where ∇ fi has Lipschitz constant Li and let
F(x) = Ei∼D[ fi (x)], where F(x) is μ-strongly convex. Set σ 2 = E‖∇ fi (x�)‖22,
where x� = argminx F(x). For any desired ε, using a stepsize of

γ = με

2εμmin
(

L
1−λ

,
supi Li

λ

)
+ 2max

(
1
λ
, L

(1−λ) inf i Li

)
σ 2

we have that after

k = 2 log(2ε0/ε)

⎛
⎝min

(
L

1−λ
,
supi Li

λ

)
μ

+
max

(
1
λ
, L

(1−λ) inf i Li

)
σ 2

μ2ε

⎞
⎠

iterations of w-weighted SGD (3.4) with partially biased weights (3.16), E
(w)

‖xk − x�‖22 ≤ ε, where ε0 = ‖x0 − x�‖22 and L = ELi .

In this corollary, even if λ is close to 1, i.e. we add only a small amount of bias to
the sampling, we obtain a bound with a linear dependence on the average conditioning

L/μ (multiplied by a factor of 1
λ
), since we can bound min

(
L

1−λ
,
supi Li

λ

)
≤ L

1−λ
.

4 Importance sampling for SGD in other scenarios

In the previous section,we considered SGD for smooth and strongly convex objectives,
and were particularly interested in the regime where the residual σ 2 is low, and the
linear convergence term is dominant. Weighted SGD could of course be relevant also
in other scenarios, and we now briefly survey them, as well as relate them to our main
scenario of interest.

4.1 Smooth, not strongly convex

When each component fi is convex, non-negative, and has an Li -Lipschitz gradient,
but the objective F(x) is not necessarily strongly convex, then after

k = O

(
(sup L)‖x�‖22

ε
· F(x�) + ε

ε

)
(4.1)

iterations of SGD with an appropriately chosen step-size we will have F(xk) ≤
F(x�)+ε, where xk is an appropriate averaging of the k iterates Srebro et al. [45]. The
relevant quantity here determining the iteration complexity is again sup L . Further-
more, Srebro et al. [45], relying on an example from Foygel and Srebro [13], point out
that the dependence on the supremum is unavoidable and cannot be replaced with the
average Lipschitz constant L . That is, if we sample gradients according to the source
distribution D, we must have a linear dependence on sup L .
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The only quantity in the bound (4.1) that changes with a re-weighting is sup L—all
other quantities (‖x�‖22, F(x�), and the sub-optimality ε) are invariant to re-weightings.
We can therefor replace the dependence on sup L with a dependence on sup L(w) by
using a weighted SGD as in (3.4). As we already calculated, the optimal weights are
given by (3.6), and using them we have sup L(w) = L . In this case, there is no need
for partially biased sampling, and we obtain that with an appropriate step-size,

k = O

(
L‖x�‖22

ε
· F(x�) + ε

ε

)
(4.2)

iterations of weighed SGD updates (3.4) using the weights (3.6) suffice.
We again see that using importance sampling allows us to reduce the dependence

on sup L , which is unavoidable without biased sampling, to a dependence on L .

4.2 Non-smooth objectives

We now turn to non-smooth objectives, where the components fi might not be smooth,
but each component is Gi -Lipschitz. Roughly speaking, Gi is a bound on the first
derivative (gradient) of fi , while Li is a bound on the second derivatives of fi . Here,
the performance of SGD depends on the second moment G2 = E[G2

i ]. The precise
iteration complexity depends on whether the objective is strongly convex or whether
x� is bounded, but in either case depends linearly on G2 (see e.g. [32,43]).

By using weighted SGD we can replace the linear dependence on G2 with a linear

dependence on G2
(w) = E

(w)[(G(w)
i )2], where G(w)

i is the Lipschitz constant of the

scaled f (w)
i and is given by G(w)

i = Gi/w(i). Again, this follows directly from the
standard SGD guarantees, where we consider the representation (3.3) and use any
subgradient from ∂ f (w)

i (x).
We can calculate:

G2
(w) = E

(w)

[
G2

i

w(i)2

]
= E

[
G2

i

w(i)

]
(4.3)

which is minimized by the weights:

w(i) = Gi

G
(4.4)

where G = EGi . Using these weights we have G2
(w) = E[Gi ]2 = G

2
. Using impor-

tance sampling, we can thus reduce the linear dependence onG2 to a linear dependence

onG
2
. Its helpful to recall thatG2 = G

2+Var[Gi ]. What we save is therefore exactly
the variance of the Lipschitz constants Gi .

In parallel work, Zhao and Zhang [51] also consider importance sampling for sto-
chastic optimization for non-smooth objectives. Zhao and Zhang consider a more gen-
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eral setting, with a composite objective that is only partially linearized. But also there,
the iteration complexity depends on the second moment of the gradient estimates, and
the analysis performed above applies (Zhao and Zhang perform a specialized analysis
instead).

4.3 Non-realizable regime

Returning to the smooth and strongly convex setting of Sects. 2 and 3, let us con-
sider more carefully the residual term σ 2 = E‖∇ fi (x�)‖22. This quantity definitively
depends on the weighting, and in the analysis of Sect. 3.3, we avoided increasing it
too much, introducing partial biasing for this purpose. However, if this is the domi-
nant term, we might want to choose weights so as to minimize this term. The optimal
weights here would be proportional to ‖∇ fi (x�)‖2. The problem is that we do not
know the minimizer x�, and so cannot calculate these weights. Approaches which
dynamically update the weights based on the current iterates as a surrogate for x� are
possible, but beyond the scope of this paper.

An alternative approach is to bound ‖∇ fi (x�)‖2 ≤ Gi and so σ 2 ≤ G2. Taking this
bound, we are back to the same quantity as in the non-smooth case, and the optimal
weights are proportional to Gi . Note that this is a different weighting then using
weights proportional to Li , which optimize the linear-convergence term as studied in
Sect. 3.3.

To understand how weighting according to Gi and Li are different, consider a
generalized linear objective where fi (x) = φi (〈zi , x〉), and φi is a scalar function
with |φ′

i | ≤ Gφ and |φ′′
i | ≤ Lφ . We have that Gi ∝ ‖zi‖2 while Li ∝ ‖zi‖22.

Weighting according to the Lipschitz constants of the gradients, i.e. the “smooth-
ness” parameters, as in (3.6), versus weighting according to the Lipschitz constants
of fi as in (4.4), thus corresponds to weighting according to ‖zi‖22 versus ‖zi‖2, and
are rather different. We can also calculate that weighing by Li ∝ ‖zi‖22 [i.e. fol-

lowing (3.6)], yields G2
(w) = G2 > G

2
. That is, weights proportional to Li yield a

suboptimal gradient-dependent term (the same dependence as if no weighting at all
was used). Conversely, using weights proportional to Gi , i.e. proportional to ‖zi‖2
yields sup L(w) = (E[√Li ])√sup L—a suboptimal dependence, though better then
no weighting at all.

Again, as with partially biased sampling, we can weight by the average, w(i) =
1
2 · Gi

Ḡ
+ 1

2 · Li
L̄
and ensure both terms are optimal up to a factor of two.

5 The least squares case and the randomized Kaczmarz method

A special case of interest is the least squares problem, where

F(x) = 1

2

n∑
i=1

(〈ai , x〉 − bi )
2 = 1

2
‖Ax − b‖22 (5.1)
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with b an n-dimensional vector, A an n × d matrix with rows ai , and x� =
argminx

1
2‖Ax − b‖22 is the least-squares solution. Writing the least squares prob-

lem (5.1) in the form (2.1), we see that the source distribution D is uniform over
{1, 2, . . . , n}, the components are fi = n

2 (〈ai , x〉 − bi )2, the Lipschitz constants are
Li = n‖ai‖22, the average Lipschitz constant is 1

n

∑
i Li = ‖A‖2F , the strong convex-

ity parameter is μ = 1
‖(AT A)−1‖2 , so that K (A) := L/μ = ‖A‖2F‖(AT A)−1‖2, and

the residual is σ 2 = n
∑

i‖ai‖22| 〈ai , x�〉 − bi |2. Note that in the case that A is not
full-rank, one can instead replace μ with the smallest nonzero eigenvalue of A∗A as
in [23, Equation (3)]. In that case, we instead write K (A) = ‖A‖2F‖(AT A)†‖2 as the
appropriate condition number.

The randomized Kaczmarz method [7,8,15,17,27,28,46,47,49,52] for solving the
least squares problem (5.1) beginswith an arbitrary estimate x0, and in the kth iteration
selects a row i = i(k) i.i.d. at random from the matrix A and iterates by:

xk+1 = xk + c · bi − 〈ai , xk〉
‖ai‖22

ai , (5.2)

where the step size c = 1 in the standard method.
Strohmer andVershynin provided the first non-asymptotic convergence rates, show-

ing that drawing rows proportionally to ‖ai‖22 leads to provable exponential conver-
gence in expectation for the full-rank case [46]. Their method can easily be extended to
the case when thematrix is not full-rank to yield convergence to some solution, see e.g.
[23, Equation (3)]. Recent works use acceleration techniques to improve convergence
rates [6,10–12,22,29,30,34–38,52].

However, one can easily verify that the iterates (5.2) are precisely weighted SGD
iterates (3.4) with the fully biased weights (3.6).

The reduction of the quadratic dependence on the conditioning to a linear depen-
dence in Theorem 2.1, as well as the use of biased sampling which we investigate here
was motivated by Strohmer and Vershynin’s analysis of the randomized Kaczmarz
method. Indeed, applying Theorem 2.1 to the weighted SGD iterates (2.2) for (5.1)
with the weights (3.6) and a stepsize of γ = 1 yields precisely the Strohmer and
Vershynin [46] guarantee.

Understanding the randomized Kaczmarz method as SGD allows us also to obtain
improved methods and results for the randomized Kaczmarz method:

Using step-sizes As shown by Strohmer and Vershynin [46] and extended by Needell
[28], the randomized Kaczmarz method with weighted sampling exhibits exponential
convergence, but only to within a radius, or convergence horizon, of the least-squares
solution. This is because a step-size of γ = 1 is used, and so the second term in (2.4)
does not vanish. It has been shown [8,15,30,47,49] that changing the step size can
allow for convergence inside of this convergence horizon, although non-asymptotic
results have been difficult to obtain. Our results allow for finite-iteration guarantees
with arbitrary step-sizes and can be immediately applied to this setting. Indeed, apply-
ing Theorem 2.1 with the weights (3.6) gives
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Corollary 5.1 Let A be an n × d matrix with rows ai . Set e = Ax� − b, where x� is
the minimizer of the problem

x� = argmin
x

1

2
‖Ax − b‖22.

Suppose that c < 1. Set a2min = inf i‖ai‖22, a2max = supi‖ai‖22. Then the expected error
at the kth iteration of the Kaczmarz method described by (5.2) with row ai selected
with probability pi = ‖ai‖22/‖A‖2F satisfies

E‖xk − x�‖22 ≤
[
1 − 2c(1 − c)

K (A)

]k
‖x0 − x�‖22 + c

1 − c
K (A)r, (5.3)

with r = σ 2

n‖A‖2F ·a2min
. The expectation is taken with respect to the weighted distribution

over the rows.

When e.g. c = 1
2 , we recover the exponential rate of Strohmer and Vershynin

[46] up to a factor of 2, and nearly the same convergence horizon. For arbitrary c,
Corollary 5.1 implies a tradeoff between a smaller convergence horizon and a slower
convergence rate.

Uniform row selection TheKaczmarz variant of Strohmer andVershynin [46] calls for
weighted row sampling, and thus requires pre-computing all the row norms. Although
certainly possible in some applications, in other cases this might be better avoided.
Understanding the randomized Kaczmarz as SGD allows us to apply Theorem 2.1 also
with uniform weights (i.e. to the unbiased SGD), and obtain a randomized Kaczmarz
using uniform sampling, which converges to the least-squares solution and enjoys
finite-iteration guarantees:

Corollary 5.2 Let Abe ann×d matrixwith rows ai . Let D be the diagonalmatrixwith
terms d j, j = ‖ai‖2, and consider the composite matrix D−1A. Set ew = D−1(Axw

� −
b), where xw

� is the minimizer of the weighted least squares problem

xw
� = argmin

x

1

2
‖D−1(Ax − b)‖22.

Suppose that c < 1. Then the expected error after k iterations of the Kaczmarz method
described by (5.2) with uniform row selection satisfies

E‖xk − xw
� ‖22 ≤

[(
1 − 2c(1 − c)

K (D−1A)

)]k
‖x0 − xw

� ‖22 + c

1 − c
K (D−1A)rw,

where rw = ‖ew‖22/n.
Note that the randomized Kaczmarz algorithm with uniform row selection con-

verges exponentially to a weighted least-squares solution, to within arbitrary accuracy
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by choosing sufficiently small stepsize c. Thus, in general, the randomized Kacz-
marz algorithms with uniform and biased row selection converge (up to a convergence
horizon) towards different solutions.

Partially biased sampling As in our SGD analysis, using the partially biased sampling
weights is applicable also for the randomized Kaczmarz method. Applying Theorem
2.1 using weights (3.10) gives

Corollary 5.3 (Randomized Kaczmarz with partially biased sampling) Let A be an
n×d matrix with rows ai . Set e = Ax� − b, where x� is the minimizer of the problem

x� = argmin
x

1

2
‖Ax − b‖22.

Suppose c < 1/2. Then the iterate xk of the modified Kaczmarz method described by

xk+1 = xk + 2c · bi − 〈ai , xk〉
‖A‖2F/n + ‖ai‖22

ai (5.4)

with row ai selected with probability pi = 1
2 · ‖ai‖22

‖A‖2F
+ 1

2 · 1
n satisfies

E‖xk − x�‖22 ≤
[
1 − 2c(1 − 2c)

K (A)

]k
‖x0 − x�‖22 + cK (A)

1 − 2c
· 2σ 2

n‖A‖2F
(5.5)

The partially biased randomized Kaczmarz method described above [which does
have modified update Eq. (5.4) compared to the standard update Eq. (5.2)] yields the
same convergence rate as the fully biased randomized Kaczmarz method [46] (up to
a factor of 2), but gives a better dependence on the residual error over the fully biased
sampling, as the final term in (5.5) is smaller than the final term in (5.3).

6 Numerical experiments

In this section we present some numerical results for the randomized Kaczmarz algo-
rithm with partially biased sampling, that is, applying Algorithm 3.1 to the least
squares problem F(x) = 1

2‖Ax− b‖22 (so fi (x) = n
2 (〈ai , x〉−bi )2) and considering

λ ∈ [0, 1]. Recall that λ = 0 corresponds to the randomized Kaczmarz algorithm of
Strohmer and Vershynin with fully weighted sampling [46]. λ = 0.5 corresponds to
the partially biased randomized Kaczmarz algorithm outlined in Corollary 5.3. We
demonstrate how the behavior of the algorithm depends on λ, the conditioning of the
system, and the residual error at the least squares solution. We focus on exploring the
role of λ on the convergence rate of the algorithm for various types of matrices A. We
consider five types of systems, described below, each using a 1,000 × 10 matrix A.
In each setting, we create a vector x with standard normal entries. For the described
matrix A and residual e, we create the system b = Ax + e and run the randomized
Kaczmarz method with various choices of λ. Each experiment consists of 100 inde-
pendent trials and uses the optimal step size as in Corollary 3.2 with ε = 0.1; the plots
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show the average behavior over these trials. The settings below show the various types
of behavior the Kazcmarz method can exhibit.

Case 1 Each row of the matrix A has standard normal entries, except the last row
which has normal entries with mean 0 and variance 102. The residual vector
e has normal entries with mean 0 and variance 0.12.

Case 2 Each row of the matrix A has standard normal entries. The residual vector e
has normal entries with mean 0 and variance 0.12.

Case 3 The j th row of A has normal entries with mean 0 and variance j . The residual
vector e has normal entries with mean 0 and variance 202.

Case 4 The j th row of A has normal entries with mean 0 and variance j . The residual
vector e has normal entries with mean 0 and variance 102.

Case 5 The j th row of A has normal entries with mean 0 and variance j . The residual
vector e has normal entries with mean 0 and variance 0.12.

Figure 1 shows the convergence behavior of the randomized Kaczmarz method in
each of these five settings. As expected, when the rows of A are far from normalized,
as in Case 1, we see different behavior as λ varies from 0 to 1. Here, weighted sam-
pling (λ = 0) significantly outperforms uniform sampling (λ = 1), and the trend is
monotonic in λ. On the other hand, when the rows of A are close to normalized, as
in Case 2, the various λ give rise to similar convergence rates, as is expected. Out of
the λ tested (we tested increments of 0.1 from 0 to 1), the choice λ = 0.7 gave the
worst convergence rate, and again purely weighted sampling gives the best. Still, the
worst-case convergence rate was not much worse, as opposed to the situation with
uniform sampling in Case 1. Cases 3, 4, and 5 use matrices with varying row norms
and cover “high”, “medium”, and “low” noise regimes, respectively. In the high noise
regime (Case 3), we find that fully weighted sampling, λ = 0, is relatively very slow
to converge, as the theory suggests, and hybrid sampling outperforms both weighted
and uniform selection. In the medium noise regime (Case 4), hybrid sampling still
outperforms both weighted and uniform selection. Again, this is not surprising, since
hybrid sampling allows a balance between small convergence horizon (important with
large residual norm) and convergence rate. As we decrease the noise level (as in Case
5), we see that again weighted sampling is preferred.

Figure 2 shows the number of iterations of the randomized Kaczmarz method
needed to obtain a fixed approximation error. For the choice λ = 1 for Case 1, we cut
off the number of iterations after 50,000, at which point the desired approximation
error was still not attained. As seen also from Fig. 1, Case 1 exhibits monotonic
improvements as we scale λ. For Cases 2 and 5, the optimal choice is pure weighted
sampling, whereas Cases 3 and 4 prefer intermediate values of λ.

7 Summary and outlook

We consider this paper as making three contributions: the improved dependence on
the conditioning for smooth and strongly convex SGD, the discussion of importance
sampling for SGD, and the connection between SGD and the randomized Kaczmarz
method.
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Fig. 1 The convergence rates for the randomized Kaczmarz method with various choices of λ in the five
settings described above. The vertical axis is in logarithmic scale and depicts the approximation error
‖xk − x�‖22 at iteration k (the horizontal axis)

For simplicity, we only considered SGD iterates with a fixed step-size γ . This is
enough for getting the optimal iteration complexity if the target accuracy ε is known
in advance, which was our approach in this paper. It is easy to adapt the analysis, using
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Fig. 2 Number of iterations k
needed by the randomized
Kaczmarz method with partially
biased sampling, for various
values of λ, to obtain
approximation error
‖xk − x�‖22 ≤ ε = 0.1 in the
five cases described above:
Case 1 (blue with circle marker),
Case 2 (red with square marker),
Case 3 (black with triangle
marker), Case 4 (green with x
marker), and Case 5 (purple
with star marker)
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standard techniques, to incorporate decaying step-sizes, which are appropriate if we
don’t know ε in advance.

We suspect that the assumption of strong convexity can be weakened to restricted
strong convexity [21,50] without changing any of the results of this paper; we leave
this analysis to future work.

Finally, our discussion of importance sampling is limited to a static reweighting
of the sampling distribution. A more sophisticated approach would be to update the
sampling distribution dynamically as the method progresses, and as we gain more
information about the relative importance of components. Although such dynamic
importance sampling is sometimes attempted heuristically, we are not aware of any
rigorous analysis of such a dynamic biasing scheme.
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8 Appendix: Proofs

Our main results utilize an elementary fact about smooth functions with Lipschitz
continuous gradient, called the co-coercivity of the gradient. We state the lemma and
recall its proof for completeness.

8.1 The co-coercivity Lemma

Lemma 8.1 (Co-coercivity) For a smooth function f whose gradient has Lipschitz
constant L,
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‖∇ f (x) − ∇ f ( y)‖22 ≤ L 〈x − y,∇ f (x) − ∇ f ( y)〉 .

Proof Since ∇ f has Lipschitz constant L , if x� is the minimizer of f , then (see e.g.
[32], page 26)

1

2L
‖∇ f (x) − ∇ f (x�)‖22 = 1

2L
‖∇ f (x) − ∇ f (x�)‖22 + 〈x − x�,∇ f (x�)〉

≤ f (x) − f (x�); (8.1)

Now define the convex functions

G(z) = f (z) − 〈∇ f (x), z〉 , and H(z) = f (z) − 〈∇ f ( y), z〉 ,

and observe that both have Lipschitz constants L andminimizers x and y, respectively.
Applying (8.1) to these functions therefore gives that

G(x) ≤ G( y) − 1

2L
‖∇G( y)‖22, and H( y) ≤ H(x) − 1

2L
‖∇H( y)‖22.

By their definitions, this implies that

f (x) − 〈∇ f (x), x〉 ≤ f ( y) − 〈∇ f (x), y〉 − 1

2L
‖∇ f ( y) − ∇ f (x)‖22

f ( y) − 〈∇ f ( y), y〉 ≤ f (x) − 〈∇ f ( y), x〉 − 1

2L
‖∇ f (x) − ∇ f ( y)‖22.

Adding these two inequalities and canceling terms yields the desired result. �

8.2 Proof of Theorem 2.1

With the notation of Theorem 2.1, and where i is the random index chosen at iteration
k, and w = wλ, we have

‖xk+1 − x�‖22 = ‖xk − x� − γ∇ fi (xk)‖22
= ‖(xk − x�) − γ (∇ fi (xk) − ∇ fi (x�)) − γ∇ fi (x�)‖22
= ‖xk − x�‖22 − 2γ 〈xk − x�,∇ fi (xk)〉

+ γ 2‖∇ fi (xk) − ∇ fi (x�) + ∇ fi (x�)‖22
≤ ‖xk − x�‖22 − 2γ 〈xk − x�,∇ fi (xk)〉

+ 2γ 2‖∇ fi (xk) − ∇ fi (x�)‖22 + 2γ 2‖∇ fi (x�)‖22
≤ ‖xk − x�‖22 − 2γ 〈xk − x�,∇ fi (xk)〉

+2γ 2Li 〈xk − x�,∇ fi (xk) − ∇ fi (x�)〉 + 2γ 2‖∇ fi (x�)‖22,

where we have employed Jensen’s inequality in the first inequality and the co-
coercivity Lemma 8.1 in the final line. We next take an expectation with respect to the
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choice of i . By assumption, i ∼ D such that F(x) = E fi (x) and σ 2 = E‖∇ fi (x�)‖2.
Then E∇ fi (x) = ∇F(x), and we obtain:

E‖xk+1 − x�‖22 ≤ ‖xk − x�‖22 − 2γ 〈xk − x�,∇F(xk)〉
+2γ 2

E [Li 〈xk − x�,∇ fi (xk) − ∇ fi (x�)〉] + 2γ 2
E‖∇ fi (x�)‖22

≤ ‖xk − x�‖22 − 2γ 〈xk − x�,∇F(xk)〉
+ 2γ 2 sup

i
LiE 〈xk − x�,∇ fi (xk) − ∇ fi (x�)〉 + 2γ 2

E‖∇ fi (x�)‖22
= ‖xk − x�‖22 − 2γ 〈xk − x�,∇F(xk)〉

+ 2γ 2 sup L 〈xk − x�,∇F(xk) − ∇F(x�)〉 + 2γ 2σ 2

We now utilize the strong convexity of F(x) and obtain that

≤ ‖xk − x�‖22 − 2γμ(1 − γ sup L)‖xk − x�‖22 + 2γ 2σ 2

= (1 − 2γμ(1 − γ sup L))‖xk − x�‖22 + 2γ 2σ 2

when γ ≤ 1
sup L . Recursively applying this bound over the first k iterations yields the

desired result,

E‖xk − x�‖22 ≤
(
1 − 2γμ(1 − γ sup L)

))k‖x0 − x�‖22

+ 2
k−1∑
j=0

(
1 − 2γμ(1 − γ sup L)

)) j
γ 2σ 2

≤
(
1 − 2γμ(1 − γ sup L)

))k‖x0 − x�‖22 + γ σ 2

μ
(
1 − γ sup L

) .
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