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Abstract This paper investigates the computational aspects of distributionally robust
chance constrained optimization problems. In contrast to previous research thatmainly
focused on the linear case (with a few exceptions discussed in detail below), we con-
sider the case where the constraints can be non-linear to the decision variable, and in
particular to the uncertain parameters. This formulation is of great interest as it can
model non-linear uncertainties that are ubiquitous in applications. Our main result
shows that distributionally robust chance constrained optimization is tractable, pro-
vided that the uncertainty is characterized by its mean and variance, and the constraint
function is concave in the decision variables, and quasi-convex in the uncertain para-
meters. En route, we establish an equivalence relationship between distributionally
robust chance constraint and the robust optimization framework that models uncer-
tainty in a deterministic manner. This links two broadly applied paradigms in decision
making under uncertainty and extends previous results of the same spirit in the linear
case to more general cases. We then consider probabilistic envelope constraints, a
generalization of distributionally robust chance constraints first proposed in Xu et al.
(Oper Res 60:682–700, 2012) for the linear case. We extend this framework to the
non-linear case, and derive sufficient conditions that guarantee its tractability. Finally,
we investigate tractable approximations of joint probabilistic envelope constraints,
and provide the conditions when these approximation formulations are tractable.
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1 Introduction

Many optimization and decision making problems, when facing stochastic parameter
uncertainty, can be tackled via the celebrated chance constraint paradigm. Here, a
deterministic constraint is relaxed, and instead is required to hold with a certain prob-
ability (w.r.t. the uncertain parameter). That is, given a constraint f (x, δ) ≥ α where
x denotes the decision variable, α ∈ R denotes the target value, and δ, the uncertain
parameter, follows a distribution μ, one solves:

Pδ∼μ[ f (x, δ) ≥ α] ≥ p, (1)

for some value p ∈ (0, 1). Chance constraints were first proposed by Charnes and
Cooper [11], and since then there has been considerable work, e.g., Miller andWagner
[31], Prékopa [34], Delage and Mannor [16], and many others; we refer the reader to
the textbook by Prékopa [35] and references therein for a thorough review.

While the chance constraint formulation is conceptually intuitive, it has two dis-
advantages that limit its practical applications. First, it is usually difficult to obtain
enough samples to accurately estimate the distribution μ. Second, optimization prob-
lems involving chance constraints are notoriously hard to solve, even when f (·, ·) is
bilinear (i.e., linear in either argument) and μ is a uniform distribution (Nemirovski
and Shapiro [32]). Indeed, the only known tractable case of the chance constraint for-
mulation is when f (·, ·) is bilinear and μ follows a radial distribution (Calafiore and
El Ghaoui [10]; Alizadeh and Goldfarb [1]).

A natural extension of the chance constraint paradigm that overcomes the above
mentioned problems is the distributionally robust chance constrained (DRCC)
approach (e.g., Calafiore and El Ghaoui [10], Erdogan and Iyengar [22], Delage and
Ye [17], Zymler et al. [41]). In this paradigm, the distribution of the uncertain para-
meter is not precisely known, but instead, it is assumed to belong to a given set P.
Constraint (1) is then replaced with the following constraint

inf
μ∈P

Pδ∼μ[ f (x, δ) ≥ α] ≥ p. (2)

In words, (2) requires that for all possible probability distributions of the stochastic
uncertainty, the chance constraintmust hold. Typically,P is characterized by themean,
the covariance, and sometimes the support of the distribution as well, all of which can
be readily estimated from finite samples. The DRCC approach also brings in compu-
tational advantages, e.g., Cheung et al. [14] developed safe tractable approximations
of chance constrained affinely perturbed linear matrix inequalities. A celebrated result
by Calafiore and El Ghaoui [10] shows that when f (·, ·) is bilinear and P is char-
acterized by the mean and the variance, DRCC (2) can be converted into a tractable
second order cone constraint.

Yet, most previous results on the tractability of DRCC are restricted to the case that
f (·, ·) is bilinear, whereas not much has been discussedwhen f (·, ·) is non-linear. One
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exception that we are aware of is Zymler et al. [41], where they showed that DRCC is
tractable when f (x, δ) is linear in the decision variable x and quadratic or piecewise
linear in the uncertainty δ. However, their method is built upon the S-lemma, and
hence it is not clear how to extend the method to more general cases. Another one
is Cheng et al. [13] where they studied the knapsack problem with distributionally
robust chance constraints when f (x, δ) is piecewise linear in the uncertainty δ and
provided its equivalent formulation when the first and second moment and the support
information of δ are known. To the best of our knowledge, the general non-linear case
is largely untouched.

This paper is devoted to analyzing the tractability of DRCC (and its variants) under
general—i.e., non-linear— f (·, ·). This problem is of interest, because in many appli-
cations the uncertainty is inherently non-linear, and cannot bemodeled using a bilinear
f (·, ·), e.g., [9,28,42]; see Sect. 2 for a more detailed discussion. In particular, we
consider the following constraint

inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α] ≥ p, (3)

where f (x, δ) is concave in x, and quasi-convex in δ. Here, following the notations
from Xu et al. [40], we use (0,Σ) to denote all distributions with mean zero and
variance Σ , and let δ ∼ (0,Σ) stand for δ follows some unknown distribution μ

that belongs to (0,Σ). Notice that DRCC is a special case of distributionally robust
optimization (e.g., [17,21,33,36]) by setting the utility function to the indicator func-
tion. However, because the indicator function is neither convex nor concave in either
argument, previous results on the tractability of DRO do not apply in our setup.

Our first contribution, presented in Sect. 3, establishes that Constraint (3), when
f (·, ·) is concave-quasiconvex, is tractable. En route, we derive an equivalence rela-
tionship between (3) and a robust optimization formulation using a deterministic uncer-
tainty model (e.g., Ben-Tal et al. [5–7], Bertsimas and Sim [8]). This result thus links
the two arguably most widely used approaches in optimization under uncertainty, and
extends previous results of the same spirit for the linear case (e.g., Delage andMannor
[16], Shivaswamy et al. [38]).

Our second result, presented in Sect. 4, establishes the tractability of the proba-
bilistic envelope model in the non-linear case. The probabilistic envelope model is
proposed in Xu et al. [40], based on the following observation: the chance constraint
(1) only guarantees that the given constraint will be satisfied with probability p or vio-
lated with the remaining (1− p) probability, but no control is provided on the degree
of violation. To overcome this, Xu et al. [40] proposed the probabilistic envelope
constraint framework—essentially a set of infinite number of chance constraints at all
levels of potential violation. That is, replace the single DRCC in (3) with the following

inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − s] ≥ B(s), ∀s ≥ 0, (4)

where B(s) is a given non-decreasing and right-continuous function of s. However,
only the bilinear case has been investigated. In this paper, we extend the probabilis-
tic envelope constraint to non-linear uncertainties. We prove that the optimization
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problem involving the probabilistic envelope constraint (4) is tractable when f (·, ·)
is concave-quasiconvex and B(s) satisfies some weak conditions. Similarly as for
the (single) DRCC case, we establish a linkage between probabilistic envelope con-
straints and the comprehensive robust optimization framework using a deterministic
uncertainty model (Ben-tal et al. [2,3]).

It is worthwhile to note that the probabilistic envelope constraint is closely related
to stochastic dominance constraints in the literature of stochastic programming
(Dentcheva and Ruszczyński [18–20]); see Chapter 4 of the book by Shapiro et al. [37]
for more details. A stochastic dominance constraint refers to a constraint of the form
X �(k) Y where X andY are randomvariables and�(k) stands for k-th order stochastic
dominance. Thus, a probabilistic envelop constraint is indeed a first-order stochastic
dominance constraint with the right hand side is a random variable whose cumulative
distribution function isB(s). However, most of the literature in optimization with sto-
chastic dominance constraints does not address this specific case and instead focuses
on the second (or higher) order constraints case, a case that preserves convexity and
is more amenable to analysis. As we restrict our attention to this specific case, we
choose to use the name “probabilistic envelop constraint”.

Finally, we extend our results in two ways, namely, more flexible uncertainty mod-
eling and joint constraints. In Sect. 5, we provide tractability results for the case where
the mean and variance themselves are unknown, and the case that the mean and the
support of the distribution of the uncertain parameters are known. For more general
uncertainty models where exact results appear difficult, we provide a conservative
approximation scheme based on CVaR approximation of the chance constraints. In
Sect. 6, we extend the probabilistic envelope constraint formulation to its joint chance
constraint counterpart. This typically leads to a computationally challenging problem,
and we adopt the CVaR approximation approach proposed by Zymler et al. [41], and
show that the joint probabilistic envelope constraint can be approximated tractably
under some technical conditions.

Notation. We use lower-case boldface letters to denote column vectors, upper-case
boldface letters to denote matrices, and the transpose (superscript �) of the column
vectors to denote row vectors. The all-ones vector is denoted by 1. The space of
symmetric matrices of dimension n is denoted by S

n . For any twomatricesX,Y ∈ S
n ,

〈X,Y〉 = tr(XY) denotes the trace scalar product, and the relation X � Y (X 
 Y)
implies that X − Y is positive semi-definite (positive definite). Random variables are
always represented by δ. Finally, we call an optimization problem tractable if it can be
solved in polynomial time and call a set tractable if it is convex and a polynomial-time
separation oracle can be constructed.

2 Formulation and motivating examples

We first propose the distributionally robust chance constraint, the probabilistic enve-
lope constraint and the joint probabilistic envelope constraint discussed in this paper.
For clarity, we repeat some of the definitions given in the introduction. Given a ran-
dom variable δ and a function f (x, δ), a chance constraint places a lower-bound on
the probability that the constraint reaches a certain target, which is defined as
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Distributionally robust chance constraint : inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α] ≥ p. (5)

As discussed above, the distributionally robust chance constraint provides protection
against noise by bounding the probability of failing to achieve a pre-defined target
α. It says nothing about what happens when, with probability at most (1 − p), the
target is not met. In particular, there is no control over the magnitude of violation of
the constraint. To overcome this shortcoming, the probabilistic envelope constraint
is proposed, which can enforce all levels of probabilistic guarantees. Given a non-
decreasing function B(s), the probabilistic envelope constraint can be written as

Probabilistic envelope constraint : inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − s] ≥ B(s); ∀s ≥ 0.

(6)

For example, if we want the probability of large constraint violation to decrease expo-
nentially, then we can setB(s) = 1− γ exp(−βs). Besides the individual probabilis-
tic envelope constraint discussed above, we propose the following joint probabilistic
envelope constraint (JPEC):

JPEC : inf
δ∼(0,Σ)

P[ fi (x, δ) ≥ αi − s, ∀i = 1, . . . ,m] ≥ B(s); ∀s ≥ 0. (7)

Computationally, the joint envelope constraint is more complicated. A common
method to simplify it is to decompose it into m individual envelope constraints by
applying Bonferroni’s inequality. However, since Bonferroni’s inequality is not tight,
this approximation method is usually overly conservative. In this paper, we use the
worst-case CVaRmethod proposed by Zymler et al. [41] to give a tractable and tighter
approximation for this joint envelope constraint.

Although the three types of constraints (5), (6), and (7) above can be general, they
may not be tractable due to the non-convex feasible sets. To ensure tractability, we
focus on the “concave-quasiconvex” case, i.e., the function f is concave w.r.t. the
decision variable, and quasi-convex w.r.t. the uncertain parameters, see the following
for a precise description:

Assumption 1 Let X and Y be two convex sets, and let f be a function mapping from
X × Y to R,

1. For each x ∈ X, the function f (x, ·) is quasi-convex and continuous on Y. For
each y ∈ Y, the function f (·, y) is concave on X.

2. The uncertainty δ is modeled as a random variable whose mean and variance are
known but its distribution is unknown. Without loss of generality, we assume the
mean is zero.

Notice that Assumption 1 generalizes the case where f (·, ·) is bilinear—a setup
that previous literature mainly focused on—to the non-linear case. In particular, the
uncertainty can be non-linear. Non-linearity of uncertainty arises naturally in a broad
range of applications, as we demonstrate by the following examples.
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2.1 Example 1: Portfolio optimization

Consider a stylized portfolio optimization problem, where an amount is to be allocated
to n stocks and held for a time period T . Denote the price of the i th stock after time
T by Si , and our goal is to maximize the Value at Risk (VaR) of the total return of the
portfolio, which leads to the following formulation, for a fixed γ ∈ (0, 1)

Maximize:x≥0,z z

Subject to: P

[∑
i

Si xi ≥ z

]
≥ 1 − γ ; 1�x = 1,

where xi is the allocation for the i th stock. It is well believed that the true drivers of the
uncertainty in stock price is not the stock return Si itself, but instead the compounded
rates of return, i.e., Si = exp(δi )where δi is the random variable to model and analyze.
For example, the celebrated log-normal model, pioneered by Black and Scholes [9],
models Si as Si = exp

(
(μi − σ 2

i /2)T + √
T ξi
)
where the vector ξ is Normally

distributedwithmean 0 and covariancematrixQ. This can be rewritten as Si = exp(δi )
where δ ∼ N ((μi − σ 2

i /2)T, TQ).
One common criticism of the log-normal model is that it assumes ξ to be Gaussian,

whereas empirical evidence suggests that ξ (and hence δ) is fat-tailed (e.g., Jansen
and deVries [26], Cont [15], Kawas and Thiele [27]). Since the Gaussian assumption
ignores the fat tails, it essentially leads the managers to take more risk than she is
willing to accept. On the other hand, it remains controversial about what is the most
appropriate fat-tail distribution to use in modeling returns [15,23,26,29], and “this
controversy has proven hard to resolve” as Jensen and de Vries stated [26]. In light
of this, one possible approach is to not commit to any distribution, but instead only
require that the first two moments match. This leads to the following problem:

Maximize:x≥0,z z

Subject to: inf
δ∼((μi−σ 2

i /2)T,TQ)

P

[∑
i

exp(δi )xi ≥ z

]
≥ 1 − γ ; 1�x = 1,

(8)

Observe that this formulation satisfies Assumption 1, i.e., the constraint is linear to
the decision variable and non-linearly convex to the uncertain parameters, and the
decision variables are non-negative.

In portfolio optimization, options are another cause of non-linearity of the uncer-
tainty (Kawas and Thiele [28], Zymler et al. [42]). Suppose for each stock, the investor
is allowed to purchase an European call option at the price of ci per unit, which gives
her the right to buy a unit of stock i at time T with the strike price pi . Thus, denote
the stock return as Si , the return of this option is max(Si − pi , 0), since the investor
will execute the option if and only if Si > pi . The portfolio optimization problem is
thus formulated as

Maximize:x≥0,y≥0,z z

Subject to: P

[∑
i

(
Si xi + max(Si − pi , 0)yi

) ≥ z

]
≥ 1 − γ ;
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∑
i

(xi + ci yi ) = 1,

where y is the investment of the European call options. Notice that the constraints
are non-linear, yet convex to Si . Indeed, following the previous argument, we may
further model Si = exp(δi ), and require that the first two moments of δ are known.
This makes the probabilistic constraint again satisfy Assumption 1.

2.2 Example 2: Transportation problem

Solving multi-stage optimization problems may also result in non-linearity of uncer-
tainty and decision variables.We illustrate this using a transportation decision problem.
Given a directed graph G = (V, E), and let S ⊂ V be the set of source nodes, and
D ⊂ V be the set of destination nodes, with S⋂ D = ∅. One can think of each node
in S as a supplier, and each node in D as a consumer.

The decision to make contains two stages: in the first stage, the decision maker
needs to decide the required flow of each source node and each destination node, i.e,
s(i) for i ∈ S and d( j) for j ∈ D. One can think of this as deciding how much
amount of good to order from each supplier, and how much to sell to each client. Cer-
tain linear constraints on the required flow are imposed: for example, the total supply
equals to the total demand, and they must be larger than a minimum demand L , i.e.,∑

i∈S s(i) =∑ j∈D d( j) ≥ L .
In the second stage, after all the ordered goods are produced by the suppliers, the

decision maker needs to decide how to transport these goods, i.e., the flow on the
network from sources to destinations, by solving a minimum cost flow problem given
si and d j . This can be formulated as a linear program, where the decision variable
f (u, v) is the flow from node u to node v:

Minimize:
∑

(u→v)∈E
δ(u, v) f (u, v)

Subject to:
∑

(u→v)∈E
f (u, v) −

∑
(v→u)∈E

f (v, u) = 0 ∀u /∈ S
⋃

D;
∑

(u→v)∈E
f (u, v) −

∑
(v→u)∈E

f (v, u) = s(u) ∀u ∈ S;
∑

(u→v)∈E
f (u, v) −

∑
(v→u)∈E

f (v, u) = −d(u) ∀u ∈ D;

f (u, v) ≥ 0 ∀(u → v) ∈ E;
f (u, v) = 0 ∀(u → v) /∈ E .

Denote the optimal value by h(s,d, δ). Suppose δ represents uncertain parameters
whose values are only revealed at stage two, then to ensure that the total transportation
cost is low with high probability, the first stage decision can be formulated using
DRCC:
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Maximize:s≥0,d≥0,z z

Subject to: inf
δ∼(μ,�)

P
[− h(s,d, δ) ≥ z

] ≥ 1 − γ ;∑
i∈S

s(i) =
∑
j∈D

d( j) ≥ L .

It is easy to verify that −h(s,d, δ) is non-linearly concave w.r.t. the decision variables
(s,d) and non-linearly convexw.r.t. δ. Thus, the above transportation problem satisfies
Assumption 1.

3 The chance constraint case

This section is devoted to the (individual) distributionally robust chance constraint
case (5). Our main theorem shows that when function f (x, δ) satisfies Assumption 1,
then a DRCC is equivalent to a robust optimization constraint. This bridges the two
main approaches in optimization under uncertainty, namely, stochastic programming,
and robust optimization. We then investigate the tractability of DRCC, providing
sufficient conditions for the individual DRCC (5) to be tractable.

3.1 Equivalence to robust optimization

In this subsectionwe show thatDRCC is equivalent to robust optimization by analyzing
the feasible set given by the constraint (5), which we denote by

S �
{
x| inf

δ∼(0,Σ)
P[ f (x, δ) ≥ α] ≥ p

}
=
{
x| sup

δ∼(0,Σ)

P[ f (x, δ) < α] ≤ 1 − p

}
.

Our main tool to analyze S is the following result from Marshall and Olkin [30].

Lemma 1 Let δ = (δ1, . . . , δk) be a random vector with E[δ] = 0, E[δδ�] = Σ , and
T ⊆ R

k be a closed convex set. Then we have

P[δ ∈ T ] ≤ 1

1 + θ2
,

where θ = infy∈T
√
y�Σ−1y, and the equality can always be attained.

Notice that one technical difficulty that we face to apply Lemma 1 is that the set
{δ| f (x, δ) < α} may not be closed. Hence we extend Lemma 1 to the case where T
is not necessarily closed:

Lemma 2 Let T ⊆ R
k be a convex set. Denote θ = infy∈T

√
y�Σ−1y. Then we have

sup
δ∼(0,Σ)

P[δ ∈ T ] = 1

1 + θ2
.
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Proof When T is empty, we have supδ∼(0,Σ) P[δ ∈ T ] = 0. On the other hand,

θ = infy∈T
√
y�Σ−1y=+∞ which implies 1/(1+θ2)=0. Hence the lemma holds.

When T is non-empty, T has a non-empty relative interior. Let x0 be a point in the
relative interior of T . Let T be the closure of T , and for 0 ≤ λ < 1 define T (λ) by

T (λ) = {λ(x − x0) + x0|x ∈ T }.

Thus, we have T (λ) is closed, convex, and T (λ) ⊆ T . Define

θ = inf
y∈T

√
y�Σ−1y, θ = inf

y∈T

√
y�Σ−1y, θ(λ) = inf

y∈T (λ)

√
y�Σ−1y,

and hence θ(λ) ≥ θ ≥ θ . On the other hand, for any x ∈ T , one can construct a
sequence xi → x such that xi ∈ θ(λi ) for some {λi }∞i=1, by the definition of T (λ).
Thus, since y�Σ−1y is a continuous function of y, we have infλ∈[0,1) θ(λ) ≤ θ ,
which implies infλ∈[0,1) θ(λ) = θ. By Lemma 1, the following inequalities hold for
0 ≤ λ < 1 since T (λ) and T are both closed convex sets:

1

1 + θ(λ)2
= sup

δ∼(0,Σ)

P[δ ∈ T (λ)] ≤ sup
δ∼(0,Σ)

P[δ ∈ T ] ≤ sup
δ∼(0,Σ)

P[δ ∈ T ] = 1

1 + θ
2 .

Since supλ∈[0,1) 1
1+θ(λ)2

= 1

1+θ
2 , we have

sup
δ∼(0,Σ)

P[δ ∈ T ] = sup
δ∼(0,Σ)

P[δ ∈ T ]

which establishes the lemma. ��
Now we are ready to present the main result of this subsection.

Theorem 1 Suppose f (x, ·) is quasi-convex for every x ∈ X and f (·, y) is concave
for every y ∈ Y, and let p ∈ (0, 1) and set r = p/(1 − p), then the feasible set S of
the DRCC (5) is convex and admits

S = {x|∀y such that y�Σ−1y < r ⇒ f (x, y) ≥ α}.
If f (x, ·) is further assumed to be continuous for every x ∈ X, then the distributionally
robust chance constraint infδ∼(0,Σ) P[ f (x, δ) ≥ α] ≥ p is equivalent to

f (x, y) ≥ α, ∀y ∈ � � {y|y�Σ−1y ≤ r}.

Proof Since f (x, ·) is quasi-convex for each x ∈ X, the set Tx � {y| f (x, y) < α} is
convex for fixed x. Then from Lemma 2, the feasible set of the constraint (5) satisfies

S �
{
x| inf

δ∼(0,Σ)
P[ f (x, δ) ≥ α] ≥ p

}
=
{
x| sup

δ∼(0,Σ)

P[ f (x, δ) < α] ≤ 1 − p

}

=
{
x| sup

δ∼(0,Σ)

P[δ ∈ Tx] ≤ 1 − p

}
(a)=
{
x| inf

y∈Tx
y�Σ−1y ≥ r

}
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=
{
x| inf

f (x,y)<α
y�Σ−1y ≥ r

}
=
{
x|∀y such that f (x, y) < α ⇒ y�Σ−1y ≥ r

}
= {x|∀y such that y�Σ−1y < r ⇒ f (x, y) ≥ α},

where (a) holds by Lemma 2. Since f (·, y) is concave for every y, we know that S
is convex, as the property is preserved under arbitrary intersection. Hence we proved
the first part: S = {x|∀y such that y�Σ−1y < r ⇒ f (x, y) ≥ α}.

To show the second part, further notice that p ∈ (0, 1) implies r > 0. Thus we
have

S = {x| f (x, y) ≥ α, ∀y such that y�Σ−1y ≤ r},

where the equality holds because for each x ∈ X, f (x, y) and y�Σ−1y are both
continuous in y so that we can replace “<” by “≤” without effect on S. ��

Thus the probabilistic uncertainty model is linked to the deterministic set based
uncertainty model of robust optimization (e.g., Ben-Tal and Nemirovski [6,7], Bert-
simas and Sim [8]). This result is in the spirit of past work that has linked chance
constraints to robust optimization in the linear case (e.g., Delage and Mannor [16],
Shivaswamy et al. [38]).

Interestingly, based on the above theorem, we can establish an equivalence rela-
tionship between the distributionally robust chance constraint and the Worst Case
Conditional Value at Risk (WCCVaR) in the convex case, which recovers a result first
shown in [41] using a different proof.

Corollary 1 Suppose f (x, ·) is convex and continuous for every x ∈ X, then for
p ∈ (0, 1),

inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α] ≥ p ⇔ sup
δ∼(0,Σ)

CVaR1−p(− f (x, δ)) ≤ −α.

Proof See Appendix 9.1. ��
In the most general case, i.e., f (x, δ) is quasi-convex, the equivalence shown in

Corollary 1 does not hold. Consider a constraint with a random variable δ:

inf
δ∼(0,σ )

P[ f (x, δ) ≥ α] ≥ 0.5.

We now construct a function f (x, δ) that is quasi-convex but not convex w.r.t. δ. In
particular, we construct f (x, δ) that is decreasing (hence quasi-convex) and concave
w.r.t. δ, such that the DRCC above holds but the constraint on the worse-case CVaR
does not hold. For simplicity, denote − f (x, ·) by L(·) and let α = −σ . Define L(·)
as follows:

L(x) =
{

σ, x ≤ √
σ ;

x2, x >
√

σ .
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It can be easily shown that the constraint infδ∼(0,σ ) P[L(δ) ≤ σ ] ≥ 0.5holds.Consider
an uniformdistribution over the interval [−√

3σ ,
√
3σ ]which hasmean 0 and variance

σ . By simple computation, we can see that CVaR0.5(L(δ)) > σ w.r.t. this uniform
distribution when σ = 1.

3.2 Tractability of individual DRCC

In this subsection we investigate the tractability of DRCC. We first provide sufficient
conditions for optimization problems involving chance constraint (5) with function
f (x, δ) being tractable.We then show that for the special casewhere f (x, δ) = g(δ)�x
and g(δ) is linear or convex quadratic, we can convert (5) to an equivalent semi-definite
constraint.

Theorem 2 If function f (x, δ) satisfies Assumption 1, set � ⊆ X is tractable and
p ∈ (0, 1), then the following optimization problem

Minimize:x∈� cT x

Subject to: inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α] ≥ p (9)

can be solved in polynomial time, if (1) for any fixed δ the super-gradient of f (·, δ)
can be evaluated in polynomial time; and (2) for any fixed x ∈ � the following
optimization problems on y can be solved in polynomial time,

Minimize:y f (x, y)

Subject to: yTΣ−1y ≤ p

1 − p
.

(10)

Proof By Theorem 1, the feasible set S of the constraint (5) is given by

S =
{
x| f (x, y) ≥ α, ∀y such that y�Σ−1y ≤ p

1 − p

}
.

To establish the theorem, it suffices to construct a polynomial-time separation oracle
for S (Grötschel et al. [25]). A “separation oracle” is a routine such that for x∗, it can
be verified in polynomial time that (a) whether x∗ ∈ S or not; and (b) if x∗ /∈ S, a
hyperplane that separates x with S.

We now construct such a separation oracle. To verify the feasibility of x∗, notice that
x∗ ∈ S if and only if the optimal value of the optimization problem (10) is greater than
or equal to α, which can be verified by solving Problem (10) directly. By assumption,
this can be done in polynomial time.

If x∗ /∈ S, then by solving Problem (10), we can find in polynomial time y∗ such
that f (x∗, y∗) < α. Because f (x, y) is concave in x for each y ∈ Y, for any x ∈ S,
the following holds

f (x∗, y∗) + ∇x f (x∗, y∗)�(x − x∗) ≥ f (x, y∗) ≥ α.
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Thus, the hyperplane separating x∗ from the feasible set S is the following

f (x∗, y∗) + ∇x f (x∗, y∗)�(x − x∗) ≥ α,

which can be generated in polynomial time since the super-gradient of x can be
obtained in polynomial time. ��

We now consider the special case that f (x, δ) = g(δ)�x and each component gi (δ)
of g(δ) is either quadratic convex or linear.

Corollary 2 If f (x, δ) = g(δ)�x and satisfies Assumption 1 and each component of
g(δ) is a convex quadratic or linear function, i.e., it has the form gi (δ) = δ�Giδ +
p�
i δ + qi , where pi ∈ R

n, qi ∈ R and Gi ∈ S
n is a symmetric semi-definite matrix

(Gi is zero if gi (δ) is linear), then the following optimization problem

Minimize:x∈� c(x)

Subject to: inf
δ∼(0,Σ)

P[g(δ)�x ≥ α] ≥ p (11)

where p ∈ (0, 1), is equivalent to

Minimize:x∈�,β≥0 c(x)

Subject to:

(
βΣ−1 + G(x) 1

2 P(x)
1
2 P(x)� Q(x) − βp

1−p

)
� 0,

(12)

where G(x) �
∑n

i=1 xiGi , P(x) �
∑n

i=1 xipi , and Q(x) �
∑n

i=1 xiqi − α.

Proof See Appendix 9.2. ��
Notice that G(x), P(x) and Q(x) are all linear functions of x, and hence the semi-

definite constraint in Problem (12) is a linear matrix inequality. Compare to the result
by Calafiore and El Ghaoui [10] which only considers the case where f (·, ·) is bilinear,
the result above holds when f (x, ·) is convex quadratic. Zymler et al. [41] showed
that DRCC is tractable when f (x, δ) is linear in x and quadratic in δ. However, their
method is built upon S-lemma, and hence it is not clear how to extend the method
to more general cases. Our formulation needs stronger conditions— f (x, ·) is convex
quadratic—than [41], but the equivalent formulation is simpler than [41].

4 Probabilistic envelope constraint

Recall that the probabilistic envelope constraint refers to the following:

inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − s] ≥ B(s); ∀s ≥ 0. (13)

Here, s represents allowed magnitude of constraint violation, and B(s) is the proba-
bilistic guarantee associated with a constraint violation no more than s. Hence, B(s) ∈
(0, 1) for all s ≥ 0, and is assumed to be non-decreasing without loss of generality.
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When f (x, δ) is bilinear, the envelope constraint (13) is shown to be equivalent
to a comprehensive robust constraint, and proved to be tractable under mild technical
conditions in Xu et al. [40]. We consider in this section the tractability of (13) where
f (x, δ) satisfies Assumption 1. For convenience of exposition, we rewrite (13) to an
equivalent formulation as shown in the following lemma.

Lemma 3 If B(s) : R
+ �→ (0, 1) is a non-decreasing function that is continuous

from the right, then the probabilistic envelope constraint (13) is equivalent to

inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − t (r)] ≥ r

1 + r
; ∀r ≥ 0. (14)

Here t (r) � B−1( r
1+r ) and B−1(x) is defined as

B−1(x) �
{
inf{y ≥ 0|B(y) ≥ x} if ∃y such that B(y) ≥ x;
+∞ otherwise.

Furthermore, t (·) is non-decreasing, t (0) = 0, limr↑+∞ t (r) = +∞, and t (·) is
continuous at the neighborhood of 0.

Proof See Appendix 9.3. ��
Hence in the sequel, we analyze the probabilistic envelope constraint (14) instead

of (13). The following theorem shows that a probabilistic envelope constraint is equiv-
alent to a comprehensive robust constraint proposed in Ben-Tal et al. [2–4]. This thus
extends previous results for affine cases in Xu et al. [40] to general f (·, ·) satisfying
Assumption 1.

Theorem 3 Suppose t : R
+ �→ [0,+∞) is non-decreasing, t (0)= 0, limr↑+∞ t (r)=

+∞ and continuous at the neighborhood of 0. Then if function f (x, δ) satisfies
Assumption 1, the probabilistic envelope constraint

inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − t (r)] ≥ r

1 + r
; ∀r ≥ 0 (15)

is equivalent to the comprehensive robust constraint

f (x, y) ≥ α − t (‖y‖2
Σ−1), ∀y ∈ R

n . (16)

Proof Define the feasible set of (15) as S. For any fixed r ≥ 0, we have

S(r) =
{
x| inf

δ∼(0,Σ)
P[ f (x, δ) ≥ α − t (r)] ≥ r

1 + r

}
= {x|∀y such that y�Σ−1y < r ⇒ f (x, y) + t (r) ≥ α}.

by Lemma 3 and Theorem 1. Thus, we have

S =
{
x| inf

δ∼(0,Σ)
P[ f (x, δ) ≥ α − t (r)] ≥ r

1 + r
; ∀r ≥ 0

}
= {x|∀y such that y�Σ−1y < r ⇒ f (x, y) + t (r) ≥ α; ∀r ≥ 0}.
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Notice that without loss of generality, we can neglect the case r = 0 in the right hand
side, as {y|y�Σ−1y < 0} = ∅. Thus we have

S = {x|∀y such that y�Σ−1y ≤ r ⇒ f (x, y) + t (r) ≥ α; ∀r ≥ 0},

where in the last equality we use the fact that ∀x ∈ X, f (x, y) and y�Σ−1y are
both continuous in y, we can replace “<” by “≤” without effect on S as long as
{y�Σ−1y < r} is non-empty. By continuity of t (r) at r = 0, we further have

S = {x|∀(y, r) such that y�Σ−1y ≤ r ⇒ f (x, y) + t (r) ≥ α}.

The second equality holds because there exists no y such that y�Σ−1y ≤ r when
r < 0 so that the constraint r ≥ 0 can be removed. Hence the probabilistic envelope
constraint is equivalent to

f (x, y) + t (r) ≥ α, ∀(y, r) such that ‖y‖2
Σ−1 ≤ r. (17)

Notice that (17) is equivalent to constraint (16) by monotonicity of t (·). ��
It is known that comprehensive robust optimization generalizes robust optimiza-

tion (e.g., Ben-Tal et al. [2–4]). Indeed, if t (·) is taken to be an indicator func-
tion, i.e., t (r)= 0 for r∈[0, c] and +∞ for r>c, the formulation (16) recovers the
standard robust optimization formulation with the ellipsoidal uncertainty set � =
{y|y�Σ−1y ≤ c}. On the other hand, while robust optimization guarantees that the
constraint is not violated for any realization of the uncertain parameters in the set �,
it makes no guarantees for realizations outside that set. In contrast, the comprehensive
robust optimization formulation allows us to choose different functions t (·), in order to
provide different levels of protection for different parameter realizations, as opposed
to the “all-or-nothing” view of standard robust optimization.

We now investigate the tractability of probabilistic envelope chance constraints.We
first consider the general case where f (x, δ) is an arbitrary “concave-quasiconvex”
function. The following theorem is essentially an envelope constraint counterpart of
Theorem 2.

Theorem 4 If t (·) satisfies the conditions in Theorem 3, f (x, δ) satisfies Assumption
1 and set � ⊆ X is tractable, then the optimization problem with a linear objective
function and the probabilistic envelope constraint (13):

Minimize:x∈� c�x

Subject to: inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − t (r)] ≥ r

1 + r
; ∀r ≥ 0

(18)

can be solved in polynomial time if (1) one can provide the super-gradient of f (x, δ)
at x for fixed δ in polynomial time, and (2) for any fixed x the following optimization
problems can be solved in polynomial time:
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Minimize:y,r f (x, y) + t (r)

Subject to: y�Σ−1y ≤ r.
(19)

Proof By Theorem 3, the feasible set S can be rewritten as

S = {x|∀(y, r) such that y�Σ−1y ≤ r ⇒ f (x, y) + t (r) ≥ α}.

Similar to the proof of Theorem2,we construct a separation oracle to prove tractability.
In order to verify the feasibility of a given x∗, notice that x∗ ∈ S if and only if the
optimal objective value of the optimization problem (19) is greater than or equal to α,
which can be verified by directly solving Problem (19). By assumption, this can be
done in polynomial time.

If x∗ /∈ S, then by solving Problem (19), we can find in polynomial time (y∗, r∗)
such that f (x∗, y∗) + t (r∗) < α. Because f (x, y) is concave in x for each y ∈ Y, for
any x ∈ S, we have

f (x∗, y∗) + ∇ f (x∗, y∗)�(x − x∗) + t (r∗) ≥ f (x, y∗) + t (r∗) ≥ α.

Hence the hyperplane separating x∗ from the feasible set S is the following:

f (x∗, y∗) + ∇ f (x∗, y∗)�(x − x∗) + t (r∗) ≥ α, (20)

which can be generated in polynomial time since the super-gradient of x can be
obtained in polynomial time. This completes the proof. ��

Our next result states that when f (x, δ) = g(δ)�x and gi (δ) is quadratic, (14) can
be converted to a semi-definite constraint.

Corollary 3 Suppose t (·) satisfies the conditions in Theorem 3 and is convex,
f (x, δ) = g(δ)�x satisfies Assumption 1 and � ⊆ X is tractable, then if each com-
ponent gi (δ) of g(δ) is linear or convex quadratic as in Corollary 2, the optimization
problem (18) is equivalent to

Minimize:x∈�,β≥0 c�x

Subject to:

(
βΣ−1 + G(x) 1

2 P(x)
1
2 P(x)� Q(x) − t∗(β)

)
� 0

(21)

where t∗(β) is the conjugate function of t (r), i.e., t∗(β) � supr≥0 (βr − t (r)); and
P(·),G(·), Q(·) are defined as in Corollary 2. Furthermore, the optimization problem
(18) with a linear objective function and the probabilistic envelope constraint can be
solved in polynomial time if for any β ≥ 0 the following optimization problem on r
can be solved in polynomial time:

Minimize:r≥0 t (r) − βr. (22)

Proof See Appendix 9.3. ��
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In particular, when t (r) is a convex function, the optimization problems (19) and
(22) are both convex and can be solved efficiently.

5 Chance constraints: beyond mean and variance

Thus far we have studied the setup that models unknown parameters as following an
ambiguous distributionwith knownmean and covariance. In this sectionwe extend our
results to some other models of uncertain parameters—this includes the case where
the mean and the covariance themselves are unknown and can only be estimated
from data; and the case where other information of the uncertain parameter (e.g., the
support) may be available. Specifically, we first show that the chance constraint (5)
and the probabilistic envelope constraint (6) with uncertain mean and covariance are
still tractable. Then we deal with the case where the mean and support of the uncertain
parameter are known. Finally, we apply distributionally robust optimization to make
a conservative approximation for constraints (5) and (6) when additional information
on the uncertain parameter is available.

5.1 Uncertain mean and covariance

We first study the uncertain mean and covariance case. This model of ambiguity was
first proposed and studied in [17] for distributionally robust optimization, and was also
investigated for linear chance constraints in [40].We formulate the robust counterparts
of the distributionally robust chance constraint (5) and the probabilistic envelope con-
straint (6) where the mean and covariance themselves are uncertain, and then show
that optimization problems with these constraints are tractable under mild conditions.
Based on Theorem 1 and Theorem 3, we can easily obtain the following corollaries.
Corollary 4 and Corollary 5 show that the DRCC and the probabilistic envelope con-
straint with unknown mean and covariance is equivalent to a set of (infinitely many)
deterministic constraints. Note that the uncertainty sets U and S can be arbitrary.
Corollary 6 shows the tractability of probabilistic envelope constraints.

Corollary 4 If function f (x, δ) satisfies Assumption 1, then for p ∈ (0, 1) the chance
constraint

inf
δ∼(μ,Σ),μ∈U ,Σ∈S

P[ f (x, δ) ≥ α] ≥ p, (23)

is equivalent to the constraint f (x, y + μ) ≥ α, ∀y ∈ R
n,μ ∈ U and Σ ∈

S such that

(
Σ y
y� p

1−p

)
� 0, where U and S are the uncertainty sets of mean μ

and covariance Σ , respectively.

Corollary 5 Suppose t : R
+ �→ [0,+∞) is non-decreasing, t (0) = 0,

limr↑+∞ t (r) = +∞ and is continuous at the neighborhood of zero. Then if function
f (x, δ) satisfies Assumption 1, the probabilistic envelope constraint

inf
δ∼(μ,Σ),μ∈U ,Σ∈S

P[ f (x, δ) ≥ α − t (r)] ≥ r

1 + r
; ∀r ≥ 0, (24)
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is equivalent to the constraint

inf
μ∈U

f (x, y + μ) ≥ α − t

(
inf

Σ∈S
‖y‖2

Σ−1

)
, ∀y ∈ R

n, (25)

where U and S are the uncertainty sets of mean μ and covariance Σ , respectively.

Corollary 6 Under the conditions of Corollary 5, an optimization problem with a
linear objective function and the probabilistic envelope constraint (24) can be solved
in polynomial time if one can provide the super-gradient of f (x, δ) at x for fixed δ in
polynomial time, and for any fixed x the following optimization problem can be solved
in polynomial time:

Minimize: f (x, y + μ) + t (r)

Subject to:

(
Σ y
y� r

)
� 0

Σ ∈ S, μ ∈ U .

(26)

Proof See Appendix 9.5. ��
From Corollary 6 we see that if t (·) is convex, and U ⊆ R

n and S ∈ S
n×n+ are

both convex sets, then the optimization problem (26) is a SDP problem which can be
solved efficiently. The tractability result of the chance constraint (23) is a special case
of Corollary 6, namely, t (r) = 0 and r = p

1−p .

5.2 Known mean and support

We now investigate the case where the mean and the support of the uncertain para-
meter δ are known. We show that the corresponding robust chance constraint can be
reformulated as a set of infinitelymany deterministic constraints, and is tractable under
mild technical conditions. Unfortunately, it seems that these results can not be easily
extended to the probabilistic envelope constraint case, which is hence left for future
research.

Theorem 5 Suppose the mean μ and support S of the uncertain parameter δ are
known and S is a closed convex set. If f (x, ·) is continuous and quasi-convex for
every x ∈ X, then for p ∈ (0, 1], the chance constraint

inf
δ∼(μ,S)

P[ f (x, δ) ≥ α] ≥ p, (27)

is equivalent to

f (x, δ1) ≥ α, ∀δ1, δ2 such that (1 − p)δ1 + pδ2 − μ = 0, δ1 ∈ S, δ2 ∈ S. (28)

Proof See Appendix 9.5. ��
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Theorem 6 If f (x, ·) is quasi-convex and continuous for every x ∈ X and f (·, y) is
concave for every y ∈ Y, the mean μ and support S of the uncertain parameter δ are
known, and S is a closed convex set, then for 0 < p ≤ 1, the optimization problem
with a linear objective function and a chance constraint (27):

Minimize: c�x
Subject to: inf

δ∼(μ,S)
P[ f (x, δ) ≥ α] ≥ p (29)

can be solved in polynomial time if (1) one can provide the super-gradient of f (x, y)
at x for fixed y in polynomial time, and (2) for any fixed x the following optimization
problems can be solved in polynomial time:

Minimize:δ1,δ2 f (x, δ1)

Subject to: (1 − p)δ1 + pδ2 − μ = 0

δ1, δ2 ∈ S. (30)

Proof From Theorem 5 we know that the chance constraint is satisfied if and only
if the optimal value of (30) is greater than or equal to α. Thus, the theorem can be
proved following a similar argument as the proof of Corollary 6. ��

5.3 Conservative approximation

For general sets of ambiguous distributions, optimization problems involving chance
constraints are notoriously hard to solve. Recall that CVaR provides a conservative
approximation of chance constraints (Nemirovski et al. [32]) , which allows us to apply
DRO to approximately solve such problems. For completeness, we give the following
lemma which is an extension of Nemirovski et al. [32]:

Lemma 4 Suppose that D is the ambiguity set of distributions of the uncertain para-
meter δ, then the chance constraint

sup
P∈D

P[ f (x, δ) ≥ 0] ≤ p, (31)

can be conservatively approximated by

−tp + γ ≤ 0, sup
P∈D

EP[[ f (x, δ) + t]+] ≤ γ, (32)

where 0 ≤ p ≤ 1, t ∈ R and γ ∈ R are decision variables, and [x]+ = max{x, 0}.
Here, by “conservative approximation” we mean that any solution that satisfies (32)
also satisfies (31).

Wiesemann et al. [39] proposed a unified framework for modeling and solving
distributionally robust optimization problems by introducing standardized ambiguity
sets
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D =
{

P ∈ P0(R
m, R

n) : EP[Aδ + Bμ] = b

P[(δ,μ) ∈ Ci ] ∈ [pi , pi ],∀i ∈ I

}
, (33)

where P represents a joint probability distribution of the random vector δ ∈ R
m

appearing in the constraint function f (x, δ) and some auxiliary randomvectorμ ∈ R
n ,

with A ∈ R
k×m , B ∈ R

k×n , b ∈ R
k , I = {1, . . . , I }, pi , pi ∈ [0, 1] and Ci are the

confidence sets.
Applying Theorem 1 and 5 in [39], the constraint supP∈D EP[[ f (x, δ) + t]+] ≤ γ

can be reformulated as a semi-infinite constraint system. For succinctness, we only
present the conservative approximation of the chance constraints when pi = pi = 1
and |I| = 1 to illustrate our approach.

Theorem 7 If the ambiguity set P can be converted into

D = {P ∈ P0(R
m, R

n) : EP[Aδ + Bμ] = b, P[(δ,μ) ∈ C] = 1
}

by the lifting theorem (Theorem 5 in [39]) where g(·) is a convex function, then the
chance constraint infP∈P P[ f (x, δ) ≥ α] ≥ p with p ∈ (0, 1) can be conservatively
approximated by

(Aδ + Bμ)�β ≥ max

[
−λ, α − f (x, δ) + b�β

1 − p
+ pλ

1 − p

]
, ∀(δ,μ) ∈ C (34)

where β, λ, x are decision variables. Furthermore, the optimization problem with a
linear objective function and the constraint (34) can be solved in polynomial time if
(1) one can provide the super-gradient of f (x, y) at x for fixed y in polynomial time,
and (2) for any fixed (x,β, λ) the following optimization problems

Minimize:δ,μ (Aδ + Bμ)�β + λ

Subject to: (δ,μ) ∈ C,
(35)

and

Minimize:δ,μ

(
Aδ + Bμ − b

1 − p

)�
β − pλ

1 − p
+ f (x, δ)

Subject to: (δ,μ) ∈ C,

(36)

can be solved in polynomial time.

Proof From Theorem 1 in [39] and Lemma 4, the conservative approximation formu-
lation can be easily obtained. The proof of the tractability result is similar to that of
Corollary 6, and hence omitted. ��

We now extend this result to the probabilistic envelope constraint case.

Theorem 8 Suppose t : R
+ �→ [0,+∞) is convex, non-decreasing and continuous

at the neighborhood of zero, and t (0) = 0, limr↑+∞ t (r) = +∞. If the ambigu-
ity set D satisfies the condition in Theorem 7, the probabilistic envelope constraint
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infP∈D P[ f (x, δ) ≥ α − t (r)] ≥ r/(1 + r), ∀r ≥ 0 can be conservatively approxi-
mated by

(Aδ + Bμ)�β ≥
max

[
−λ, α − f (x, δ) − t (r) + (1 + r)b�β + rλ

]
, ∀(δ,μ) ∈ C, r ≥ 0. (37)

Furthermore, the optimization problem with a linear objective function and this prob-
abilistic envelope constraint can be solved in polynomial time if one can provide the
super-gradient of f (x, y) at x for fixed y in polynomial time, and for any fixed (x,β, λ)

the following optimization problems:

Minimize:δ,μ,r (Aδ + Bμ)�β + λ

Subject to: (δ,μ) ∈ C, r ≥ 0,
(38)

and
Minimize:δ,μ,r [Aδ + Bμ − (1 + r)b]�β + f (x, δ) + t (r) − rλ

Subject to: (δ,μ) ∈ C, r ≥ 0.
(39)

can be solved in polynomial time.

Proof From Theorem 7, the probabilistic envelope constraint can be conservatively
approximated by

0 ≤ min
r≥0

max
β,λ

min
(δ,μ)∈C

(Aδ + Bμ)�β −

max
[
−λ, α − f (x, δ) − t (r) + (1 + r)b�β + rλ

]
, (40)

Furthermore, by switching “min” and “max”, this can be conservatively approximated
by (37). Then following a similar proof as that of Corollary 6, we obtain the tractability
result to complete the proof. ��

6 Joint chance constraint

In this section we investigate the case of JPEC (7) which can be reformulated as (from
Lemma 3)

inf
δ∼(0,Σ)

P[ fi (x, δ) ≥ αi − t (r), ∀i = 1, . . . ,m] ≥ r

1 + r
; ∀r ≥ 0, (41)

where t (r) = B−1(r/(1 + r)). The optimization problem with the constraint (41)
is usually intractable (e.g., Nemirovski and Shapiro [32]; Zymler et al. [41]), even
when f (x, δ) is a bi-linear function, and approximation schemes are often used to
tackle them. The most straightforward method to approximate the constraints (41) is
to decompose them into several individual probabilistic envelope constraints using
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Bonferroni’s inequality (see below for details). A notable advantage of the Bonfer-
roni approximation is that it is easy to implement and requires no assumptions on the
function fi (x, δ).

However, the Bonferroni approximation can be overly conservative. Zymler et al.
[41] proposed a tighter approximation method called worst-case CVaR approxima-
tion that outperforms other methods including the Bonferroni approximation (e.g.
Nemirovski and Shapiro [32] and Chen et al. [12]). In the rest of the section, we
extend both the Bonferroni approximation and worst-case CVaR methods to JPEC.
We also investigate the tractability of the two approximation schemes for fi (x, δ)
satisfying Assumption 1.

6.1 The Bonferroni approximation

The Bonferroni approximation for the JPEC (41) can be easily derived from Bonfer-
roni’s inequality. FromTheorems 2 and 4, we know that the optimization problemwith
a set of probabilistic envelope constraints generated by the Bonferroni approximation
method is tractable, under mild technical conditions. More specifically we have the
following theorem:

Theorem 9 Let t : R
+ �→ [0,+∞) be a non-decreasing function such that t (0) = 0

and limr↑+∞ t (r) = +∞, and ε be a constant vector such that
∑m

i=1 εi = 1 and
ε ≥ 0. The Bonferroni approximation of the JPEC (41) which has the form

inf
δ∼(0,Σ)

P[ fi (x, δ) ≥ αi − t (r)] ≥ 1 − εi

(1 + r)
; ∀r ≥ 0, ∀i = 1, . . . ,m. (42)

is tractable if for each i , (1) one can provide the super-gradient of fi (x, δ) at x for
fixed δ in polynomial time, and (2) for any fixed x the following optimization problem
can be solved in polynomial time:

Minimize:y,r fi (x, y) + t (r)

Subject to: y�Σ−1y ≤ r + 1

εi
− 1.

(43)

Proof Let r ′ = (1 + r)/εi − 1, then we have r ′/(1 + r ′) = 1 − εi/(1 + r). Let
t ′(r ′) � t (r), then we apply Theorem 4 to complete the proof. ��

6.2 The worst-case CVaR approximation

Zymler et al. [41] developed a new approximation scheme for robust joint chance
constraints termedWorst-case CVaR approximation. In this subsection we extend the
worst-case CVaR approximation to JPEC (41). In contrast to the rest of the paper, we
focus on the linear-quadratic uncertainty case, namely, f (x, δ) is linear in x for any
fixed δ and quadratic (possibly non-convex) in δ for each x ∈ X. Then (41) can be
rewritten respectively as:
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inf
δ∼(0,Σ)

P[δ�Qi (x)δ+yi (x)�δ+y0i (x)+t (r) ≤ 0, ∀i =1, . . . ,m]≥ r

1 + r
; ∀r ≥ 0;

(44)
where Qi (x), y0i (x) and yi (x) are all linear functions for i = 1, . . . ,m. Zymler et
al. [41] provided the Worst-case CVaR approximation for the following robust joint
chance constraint

inf
δ∼(0,Σ)

P[δ�Qi (x)δ + yi (x)�δ + y0i (x) ≤ 0, ∀i = 1, . . . ,m] ≥ p. (45)

Theorem 10 [41] LetA � {α ∈ R
m |α > 0}. For any fixed x and α ∈ A, the feasible

set of the worst-case CVaR approximation for the constraint (45) is

Z JCC (α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
x ∈ R

n :

∃(β,M) ∈ R × S
k+1,

β + 1
1−p 〈�,M〉 ≤ 0, M � 0

M −
⎛
⎝ αi Qi (x) 1

2αi yi (x)
1
2αi yi (x)� αi y0i (x) − β

⎞
⎠ � 0

∀i = 1, . . . ,m

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (46)

where � = diag(Σ, 1).

Indeed, Zymler et al. [41] showed that the approximation quality of the worst-case
CVaR is controlled by the parameter α and that the approximation becomes exact if
α is chosen optimally. Notice that Z JCC (α) contains semi-definite constraints, and
hence provides a tractable approximation to robust joint chance constraint. We now
extend this methodology to the joint probabilistic envelope constraints (44). From
Theorem 10, the feasible set of the constraint (44) can be approximated as

Z P (α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x ∈ R

n :

For any r ≥ 0 we have

∃(β,M) ∈ R × S
k+1,

β + (r + 1)〈�,M〉 ≤ 0, M � 0

M −
⎛
⎝ αi Qi (x) 1

2αi yi (x)
1
2αi yi (x)� αi (y0i (x) − t (r)) − β

⎞
⎠ � 0

∀i = 1, . . . ,m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (47)

Notice that in contrast to (46), (47) is defined through uncountably many sets of
constraints, and hence we need the following theorem to establish the tractability of
the set Z P .

Theorem 11 Fix α ∈ A. The optimization problem with a linear objective function
and the feasible set Z P (α) in (47) can be solved in polynomial time if for any fixed x,
the following optimization problem can be solved in polynomial time:
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min
Yi�0,r≥0

−tr(
m∑
i=1

αiYiBi ) + t (r)
m∑
i=1

αi tr(YiE)

s.t.
m∑
i=0

Yi = (r + 1)�, tr(E
m∑
i=1

Yi ) = 1, (48)

where Bi =
⎛
⎝ Qi (x) 1

2 yi (x)
1
2 yi (x)

� y0i (x)

⎞
⎠ and E =

(
0 0

0 1

)
.

Proof See Appendix 9.7. ��
Interestingly, Theorem 11 provides a tractability result for individual probabilistic

envelope constraint.

Corollary 7 If each component fi (·) of f (·) is quadratic (and possibly non-convex),
the optimization problem with a linear objective function and the probabilistic enve-
lope constraint (6) can be solved in polynomial time if for any fixed x, the following
optimization problem can be solved in polynomial time:

min
Y�0,r≥0

− tr(YB) + t (r)

s.t. Y = (r + 1)�, tr(EY) = 1,
(49)

where B =
⎛
⎝ Q(x) 1

2 y(x)
1
2 y(x)

� y0(x)

⎞
⎠ and E =

(
0 0

0 1

)
.

Proof When m = 1, α can be chosen as α = 1 without effect on the optimal solution
of (48). Then (48) can be simplified as (49). ��

Notice that Corollary 7 does not require that fi (·) is a convex quadratic function, and
hence, subject to the price of a more complex formulation, is more general than Corol-
lary 3 that investigates the probabilistic envelope constraint under convex quadratic
uncertainty.

7 Simulations

In this section we illustrate two proposed approaches—chance constraint (5) and prob-
abilistic envelope constraint (6) using the synthetic transportation problem discussed
in Sect. 2.

We consider the transportation problem where the graph G is a bi-parti graph
between sources and destinations, i.e., V = S⋃D and E = {(s → d)|s ∈ S, d ∈ D}.
Letm = |S| and n = |D|, then the unit cost δ is anm×nmatrix, and the transportation
problem can be rewritten as
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Fig. 1 The transportation problem: the resulting allocations for different guarantees γ = 0.1 − 0.8

Maximize:s≥0,d≥0 z

Subject to: inf
δ∼P

P
[− h(s,d, δ) ≥ z

] ≥ 1 − γ ;
1�
ms = 1�

n d ≥ L ,

where δ ∈ R
m×n , 1m and 1n are the all-one vectors with dimension m and n respec-

tively. The function h(s,d, δ) is defined by

h(s,d, δ) = Minimize:F∈Rm×n tr〈δ,F〉
Subject to: F�1m = d, F1n = s, F ≥ 0.

By Theorem 2, one can solve this transportation problem byMATLAB and CVX [24].
We consider the case where there are 10 suppliers and 3 consumers, and the least
demand L = 80. The mean Mi j and the variance �i j of the transportation cost
δi j are set to 100 + 0.1

√
3(i − 1) + j and 5/

√
3(i − 1) + j , respectively. Then the

transportation costs related to suppliers and consumers with lower serial numbers have
smaller means but larger variances, i.e., lower mean cost but more risky.

Our first goal is to minimize the total cost to some fixed confidence parameter γ .
Figure 1 shows the resulting allocations for different γ .

As expected, small γ leads to more conservative allocations which tend to select
supplies with higher mean costs and smaller variances, while large γ leads to less
conservative allocations which select suppliers with lower mean costs and larger vari-
ances.

In this example, the algorithm takes about 40 s on a desktop PCwith Intel i7 3.4GHz
CPU and 8Gmemory. The computational time for solving the transportation problems
of different numbers of suppliers is reported in Table 1. For a large-scale problem, i.e.
the number of suppliers is 1,000, our algorithm finds the result in about 30min. From
the table, it appears that the computation time scales roughly linearly with respect to
the number of suppliers. Note that one can use commercial solvers such as CPLEX
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Table 1 The running time for solving the transportation problem with different numbers of suppliers

Number of suppliers 10 50 100 200 500 1,000

Running time (min) 0.88 3.33 4.01 6.21 15.16 34.78

Fig. 2 The transportation problem: the resulting allocations for decay rates b=0.1, 1.0 and 10.0

instead of CVX to implement this algorithm, which is typically more computationally
efficient.

Using the same notations, the transportation problem with probabilistic envelope
constraints can be formulated as

Maximize:s,d z

Subject to: inf
δ∼P

P
[− f (s,d, δ) ≥ z − s

] ≥ B(s);
1�
ms = 1�

n d ≥ D;
s,d ≥ 0.

Our second goal is to minimize the total cost subject to a decaying probabilistic
envelopeB(s) = 1−1/(1+b

√
s + a/b2)which implies t (r) = max{(r2−a)/b2, 0}

by Lemma 3. We choose a = 1 and b = 0.1, 1.0, 10.0, giving different rates of decay
for the probability the constraint is violated at level s for each s. Based on Theorem 4,
we can easily solve this problem. Figure 2 shows the resulting allocations.

Clearly, larger b corresponds to a more risk averse attitude towards large constraint
violation so that the resulting allocation is more conservative and tends to choose
suppliers with larger mean costs and smaller variances.

8 Conclusion

The distributionally robust chance constraint formulation has been extensively studied.
Yet, most previous work focused on the linear constraint function case. In this paper,
motivated by applications where uncertainty is inherently non-linear, we investigate
the computational aspects of DRCC optimization problems for the general function
case. We show that the DRCC optimization is tractable, provided that the uncertainty
is characterized by its mean and variance, and the constraint function is concave-
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quasiconvex. This significantly expands the range of decision problems that can be
modeled and solved efficiently via the DRCC framework. Along the way, we establish
a relationship between the DRCC framework and robust optimization model, which
links the stochasticmodel and the deterministicmodel of uncertainty.We then consider
probabilistic envelope constraints, a generalization of distributionally robust chance
constraint first proposed in Xu et al. [40], and extend this framework to the non-linear
case, and obtain conditions that guarantee its tractability. Finally, we discuss two
extensions of our approach, provide approximation schemes for JPEC, and establish
conditions to ensure these approximation formulations are tractable.

Acknowledgments The authors thank the associate editor and two anonymous reviewers for their con-
structive comments which result in significant improvement of the paper. This work is supported by the
Ministry of Education of Singapore through AcRF Tier Two Grant R-265-000-443-112.

9 Appendices

9.1 Proof of Corollary 1

For clarity, we denote − f (x, δ) and −α by Lx(δ) and β, respectively. Since f (x, δ)
is convex w.r.t. δ for fixed x, Lx(δ) is a concave function. Then the equivalence to
establish can be rewritten as

sup
δ∼(0,Σ)

P[Lx(δ) > β] ≤ 1 − p ⇔ sup
δ∼(0,Σ)

CVaR1−p(Lx(δ)) ≤ β.

It is well known that supδ∼(0,Σ) CVaR1−p(Lx(δ)) ≤ β ⇒ supδ∼(0,Σ) P[Lx(δ) >

β] ≤ 1−p.Besides, supδ∼(0,Σ) P[Lx(δ) > β] > 1−p ⇔ supδ∼(0,Σ) VaR1−p(Lx(δ))

> β, hence we only need to show that supδ∼(0,Σ) CVaR1−p(Lx(δ)) > β ⇒
supδ∼(0,Σ) VaR1−p(Lx(δ)) > β.

Since supδ∼(0,Σ) CVaR1−p(Lx(δ)) > β, then there exists a probability distribution
Pwith zero mean, covarianceΣ , and CVaR1−p(Lx(δ)) > β when δ ∼ P. Decompose
P = μ1 + μ2 where the measure μ1 constitutes a probability of p and the measure
μ2 constitutes a probability of 1 − p, and that Lx(y1) ≤ Lx(y2) for any y1 and y2
that belong to the support of μ1 and μ2 respectively. By the CVaR constraint, we have
(
∫
δ Lx(δ)dμ2)/(1 − p) > β.
We now construct a new probability P as follows: let μ′

2 be a measure that put a
probability mass of 1 − p on

∫
δ δdμ2/(1 − p), i.e., the conditional mean of μ2, and

let P = μ1 + μ′
2. Observe that P is a probability measure whose mean is the same as

that of P. Moreover, notice that μ2/(1− p) is a probability measure, by concavity of
Lx(·) we have that

Lx

(∫
δ

δdμ2/(1 − p)

)
≥
(∫

δ

Lx(δ)dμ2

)
/(1 − p) > β,

which implies that VaR1−p(Lx(δ)) > β for δ ∼ P̄.
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We now show that this also implies that supδ∼(0,Σ) VaR1−p(Lx(δ)) > β. Denote
the covariance w.r.t P̄ by Σ̄ and recall that both P and P̄ are zero mean, then

Σ − Σ̄ =
∫

δ

δδ�dP −
∫

δ

δδ�dP̄

=
∫

δ

δδ�dμ1 +
∫

δ

δδ�dμ2 −
∫

δ

δδ�dμ1 −
∫

δ

δδ�dμ′
2

=
∫

δ

δδ�dμ2 − (1 − p)

[∫
δ δdμ2

1 − p

] [∫
δ δdμ2

1 − p

]�

=
∫

δ

{
δ −

[∫
δ δdμ2

1 − p

]}{
δ −

[∫
δ δdμ2

1 − p

]}�
dμ2 � 0,

where the third equality is due to the definition of μ′
2. Note that from the construction

of P̄, we have supδ∼(0,Σ̄) P[Lx(δ) > β] > 1 − p. Denote the set {δ|Lx(δ) > β}
by Tx. First, we consider the case where Σ̄ is full rank. From Lemma 2, we

have infy∈Tx y�Σ̄
−1

y < r � p/(1 − p). Since Σ̄ � Σ and Σ̄ is full rank,

infy∈Tx y�Σ−1y ≤ infy∈Tx y�Σ̄
−1

y < r , which implies that supδ∼(0,Σ) P[Lx(δ) >

β] > 1 − p, which establishes the theorem.
The case where Σ̄ is not full rank requires additional work, as Lemma 2 or Theo-

rem 1 can not be applied directly. Consider the spectral decomposition Σ̄ = Q
Q�
and denote the pseudo inverse of Σ̄ by Σ̄

+
. Suppose that the top d diagonal entries

of 
 are non-zero. Let Qd be the submatrix of Q by selecting the first d columns of
Q and 
d be the top d × d submatrix of 
. Denote the column space of Σ̄ by C, and
let Q � {z|z = Q�

d δ, ∀δ ∈ Tx ∩ C}. Since there is no uncertainty in C⊥ w.r.t P̄,

sup
z∼(0,
d )

P[z ∈ Q] = sup
δ∼(0,Σ̄)

P[δ ∈ Tx ∩ C] = sup
δ∼(0,Σ̄)

P[δ ∈ Tx] > 1 − p.

From Lemma 2, we have infz∈Q z�
−1
d z < r . In other words, there exists z ∈ Q such

that z�
−1
d z < r , which implies that y�Σ̄

+
y < r for y � Qdz. From the Schur

complement, sinceΣ � Σ̄ � 0, (I−Σ̄Σ̄
+
)y = 0 and r−y�Σ̄

+
y = r−z�
−1

d z > 0,

we have

(
Σ y
y� r

)
�
(

Σ̄ y
y� r

)
� 0. Hence infy∈Tx y�Σ−1y < r, which implies that

supδ∼(0,Σ) P[Lx(δ) > β] > 1 − p. ��

9.2 Proofs of Results in Sect. 3.2

9.2.1 Proof of Corollary 2

By Theorem 1, the feasible set S = {x|x�g(y) ≥ α, ∀y�Σ−1y ≤ r} where r =
p/(1 − p). Hence, determining whether x ∈ S is equivalent to determining whether
the inner optimization problem min{y�Σ−1y≤r} x�g(y)−α ≥ 0. Rewrite the left hand
side as an optimization problem on y:
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Minimize: y�G(x)y + P(x)�y + Q(x)

Subject to: y�Σ−1y ≤ r,
(50)

by substituting gi (δ) = δ�Giδ+p�
i δ+qi . To proveCorollary 2,we need the following

two results.

Lemma 5 Fix x. The optimal value of the optimization problem (50) equals that of
the following SDP:

Maximize:β≥0,t t, subject to:

(
βΣ−1 + G(x) 1

2 P(x)
1
2 P(x)T Q(x) − t − βr

)
� 0. (51)

Proof The dual problem of (50) is: maxβ≥0 miny y�G(x)y + P(x)�y + Q(x) +
βy�Σ−1y − βr. By taking minimum over y and the Schur complement, this can be
reformulated as the SDP (51). Notice that there exists y such that y�Σ−1y < r since
r > 0, hence Slater’s condition is satisfied for (50), and the strong duality holds. ��

Thus, x ∈ S if and only if the optimal value of problem (50) is greater than or
equal to 0. This means we can convert the constraint in S into a feasibility problem as
follows:

Lemma 6 Under the conditions of Corollary 2, and let r = p/(1 − p), we have the
constraint

inf
δ∼(0,Σ)

P[g(δ)�x ≥ α] ≥ p, (52)

is equivalent to the following problem

Exist: β ≥ 0, s.t.:

(
βΣ−1 + G(x) 1

2 P(x)
1
2 P(x)� Q(x) − βr

)
� 0. (53)

Proof 1. Equation (52) ⇒ Equation (53): When Inequality (52) holds, the optimal
value t of (50) must be greater than or equal to 0. So from Equation (51), we have

(
βΣ−1 + G(x) 1

2 P(x)
1
2 P(x)T Q(x) − βr

)
�
(

βΣ−1 + G(x) 1
2 P(x)

1
2 P(x)T Q(x) − t − βr

)
� 0.

(54)
2. Equation (53) ⇒ Equation (52): Since the feasibility problem is solvable, t = 0

must be a feasible solution of (51), which implies Inequality (52).
��

Lemma 6 immediately implies Corollary 2. ��

9.3 Proofs of results in Sect. 4

9.3.1 Proof of Lemma 3

We now show that the constraints (13) and (14) are equivalent.
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1. (13) ⇒ (14): Since limy→+∞ B(y) may not converge to 1, we define B−1(x) =
+∞ when {y ≥ 0|B(y) ≥ x} = ∅. Then if r/(1 + r) is not in the range of B(s),
we have t (r) = +∞ so that the constraint (14) is always satisfied. Otherwise,
suppose that y∗ = t (r) = inf{y ≥ 0|B(y) ≥ r/(1 + r)}, then we have

inf
δ∼(0,Σ)

P[ f (x, δ)≥α − t (r)] = inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − y∗] ≥ B(y∗)≥ r

1 + r
.

2. (14) ⇒ (13): Since B(y∗) ∈ [0, 1) for any y∗ ≥ 0, there exists r∗ such that
B(y∗) = r∗

1+r∗ . From the definition of t (r), we have y∗ ≥ t (r∗) = inf{y ≥
0|B(y) ≥ r∗/(1 + r∗)}. Hence the following inequality holds

inf
δ∼(0,Σ)

P[ f (x, δ) ≥ α − y∗]≥ inf
δ∼(0,Σ)

P[ f (x, δ)≥α − t (r∗)]≥ r∗

1 + r∗ = B(y∗).

Furthermore, t (·) is non-decreasing since both r/(1 + r) and B(·) are non-
decreasing. By definition of t , B(0) ≥ 0 leads to t (0) = 0; and B(s) < 1 for all
s > 0 leads to B−1(1) = +∞ and hence limr↑+∞ t (r) = +∞. Also, B(0) > 0
implies for some ε > 0, B(0) ≥ ε, and hence t (ε) = 0. Thus, t (·) is continuous at a
neighborhood of 0. ��

9.4 Proof of Corollary 3:

The feasible set S = {x| infδ∼(0,Σ) P[g(δ)�x ≥ α − t (r)] ≥ r
1+r ; ∀r ≥ 0} admits

S
(a)= {x|∀(y, r) such that y�Σ−1y ≤ r ⇒ g(y)�x ≥ α − t (r)}

=
{
x| min

{y,r |y�Σ−1y≤r}
g(y)�x + t (r) − α ≥ 0

}
,

where (a) holds by Theorem 3. As each component gi (y) of g(y) is linear or
quadratic, i.e., gi (y) = y�Giy+p�

i y+qi , for fixed x the inner optimization problem
min{y,r |y�Σ−1y≤r} g(y)�x + t (r) − α can be rewritten as:

Minimize:r≥0,y y�G(x)y + P(x)�y + Q(x) + t (r)

subject to: y�Σ−1y − r ≤ 0,
(55)

where G(x) �
∑n

i=1 xiGi , P(x) �
∑n

i=1 xipi , and Q(x) �
∑n

i=1 xiqi − α. Thus,
in order to analyze S, we need to analyze the optimization problem (55). We have the
following lemma:

Lemma 7 For any fixed x, the optimal value of problem (55) is equivalent to that of
the following:

Maximize:β≥0,η η, subject to:

(
βΣ−1 + G(x) 1

2 P(x)
1
2 P(x)� Q(x) − t∗(β) − η

)
� 0, (56)
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where t∗(x) is the conjugate function of t (r) defined as t∗(x) = supr≥0 (xr − t (r)).

Proof By the Schur complement and the strong duality of problem (55) (Slater’s
condition holds by picking r = 1 and y = 0), one can easily obtain this lemma. ��

From Lemma 7, the constraint infδ∼(0,Σ) P[g(δ)�x ≥ α − t (r)] ≥ r
1+r , ∀r ≥ 0,

is equivalent to a constraint that the optimal value of the optimization problem (56) is
non-negative. Thus, x belongs to the feasible set of the envelope constraint if and only
if α = 0 is a feasible solution of (56), for the same x. This means we can remove the
−α term from (56). That is, when each component gi (·) of g(·) is linear or quadratic,
the envelope constraint is equivalent to the following feasibility problem:

exist: β ≥ 0, s.t.:

(
βΣ−1 + G(x) 1

2 P(x)
1
2 P(x)� Q(x) − t∗(β)

)
� 0. (57)

Hence the optimization problem (18) is equivalent to (21), which proves the first part
of the Theorem.

To prove the second part of the Theorem, it suffices to show that Problem (21)
can be solved in polynomial time. We show this by constructing a polynomial time
separation oracle. For any (β, x), if the optimization problem (22) can be solved in
polynomial time, which implies t∗(β) can be computed in polynomial time, then it
can be verified in polynomial time whether the constraint in (21) is satisfied or not,
and hence the feasibility of (β, x) can be determined in polynomial time. Moreover,
if (β0, x0) is infeasible and let r0 be the optimal solution of the problem (22) (by
assumption r0 can be found in polynomial time), then we have(

β0Σ
−1 + G(x0) 1

2 P(x0)
1
2 P(x0)� Q(x0) + t (r0) − β0r0

)
� 0,

and we can find in polynomial time (e.g., by SVD) a vector (y�
0 , 1) such that

(y�
0 , 1)

(
β0Σ

−1 + G(x0) 1
2 P(x0)

1
2 P(x0)� Q(x0) + t (r0) − β0r0

)(
y0
1

)
= (y�

0 Σ−1y0 − r0)β0 + y�
0 G(x0)y0 + P(x0)�y0 + Q(x0) + t (r0) < 0.

Notice that for any feasible solution (β, x), we must have

(y�
0 Σ−1y0 − r0)β + y�

0 G(x)y0 + P(x)�y0 + Q(x) + t (r0) ≥ 0.

Hence we have a separating hyperplane. ��

9.5 Proofs of results in Sect. 5

9.5.1 Proof of Corollary 6

As before, we construct a separation oracle to prove tractability. In order to verify the
feasibility of a given x∗, from Corollary 5 we know that x∗ is feasible if and only if
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the optimal value of the optimization problem (26) is greater than or equal to α, which
can be verified by directly solving Problem (26). By assumption, this can be done in
polynomial time.

If x∗ is not feasible, then we can find in polynomial time (y∗, r∗,μ∗,Σ∗) such that
f (x∗, y∗ + μ∗) + t (r∗) < α. Because f (x, y + μ) is concave in x for fixed y and μ,
for any feasible x, we have

f (x∗, y∗ + μ∗) + ∇ f (x∗, y∗ + μ∗)�(x− x∗) + t (r∗) ≥ f (x, y∗ + μ∗) + t (r∗) ≥ α.

Hence the hyperplane separating x∗ from the feasible set is the following:

f (x∗, y∗ + μ∗) + ∇ f (x∗, y∗ + μ∗)�(x − x∗) + t (r∗) ≥ α, (58)

which can be generated in polynomial time since the super-gradient of x can be
obtained in polynomial time. ��

9.6 Proof of Theorem 5

If f (x, δ) ≥ α for all δ ∈ S, the constraints (27) and (28) are satisfied, so we only need
to consider the case where there exists δ ∈ S such that f (x, δ) < α. Note that (27) is
equivalent to supδ∼(μ,S) P[ f (x, δ) < α] ≤ 1 − p, then we can apply the following
lemma:

Lemma 8 If the conditions in Theorem 5 hold and {δ : f (x, δ) < α} is nonempty,
then

sup
δ∼(μ,S)

P[ f (x, δ) < α] ≤ 1 − p (59)

is equivalent to

1 − p ≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

supθ,δ1,δ2
θ

such that θδ1 + (1 − θ)δ2 = μ,

0 ≤ θ ≤ 1,
f (x, δ1) < α,

δ1, δ2 ∈ S.

(60)

Proof Since μ ∈ S and {δ : f (x, δ) < α} is not empty, the optimization problem
in (60) is always feasible. To show the equivalence of (59) and (60), one needs to
prove that the optimal objective value θ∗ of the optimization problem in (60) equals
ζ = supδ∼(μ,S) P[ f (x, δ) < α].

The first step is to show θ∗ ≤ ζ : Since f (x, ·) is continuous for fixed x ∈ X and
S is a closed convex set, for any ε > 0 there exists a feasible solution (δ′

1, δ
′
2, θ

′)
such that |θ ′ − θ∗| < ε. Construct a probability distribution P

′(x) such that δ = δ′
1

with probability θ ′ and δ = δ′
2 with probability 1 − θ ′, then we have P

′ ∈ (μ,S). By
construction we have θ ′ ≤ P

′[ f (x, δ) < α] ≤ ζ where the second inequality holds
from P

′ ∈ (μ,S). Thus we have θ∗ ≤ ζ as ε can be arbitrarily small.
The second step is to prove θ∗ ≥ ζ : Consider any probability distribution P̄ ∈

(μ,S), and define θ̄ = P̄[ f (x, δ) < α], δ̄1 = E
P̄
[δ| f (x, δ) < α] and δ̄2 = E

P̄
[δ|
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f (x, δ) ≥ α]. We then have δ̄1θ̄ + δ̄2(1 − θ̄ ) = μ, f (x, δ̄1) < α and δ̄1, δ̄2 ∈ S,
or equivalently (δ̄1, δ̄2, θ̄ ) is a feasible solution of the optimization problem in (60).
Thus, we must have P̄[ f (x, δ) < α] = θ̄ ≤ θ∗, which implies that θ∗ ≥ ζ =
supδ∼(μ,S) P[ f (x, δ) < α]. Therefore, (59) is equivalent to (60). ��

From the equivalence shown in Lemma 8, we consider the following feasibility
problem parameterized by θ ∈ [0, 1], denoted Fθ :

exist: δ1, δ2

such that: θδ1 + (1 − θ)δ2 = μ,

f (x, δ1) < α,

δ1, δ2 ∈ S.

Then we have that for any 0 ≤ θ1 ≤ θ2 ≤ 1, Fθ2 being feasible implies Fθ1 being
feasible. To see this, let (δ∗

1, δ
∗
2) be a feasible solution to Fθ2 . Hence we have θ2δ

∗
1 +

(1 − θ2)δ
∗
2 = μ. Let δ′

2 be such that

μ − δ′
2 = (μ − δ∗

2) × (1 − θ2)θ1

(1 − θ1)θ2
.

Since θ2 ≥ θ1, we have that δ′
2 is on the line segment between μ and δ∗

2, and hence
belongs to S by its convexity. Furthermore, it is easy to check that (δ∗

1, δ
′
2) is feasible

to Fθ1 .
Thus, constraint (60) (and equivalently the chance constraint (27)) is equivalent to

F1−p+ε infeasible for all ε > 0, i.e.,

δ2 = −1 − p + ε

p − ε
(δ1 − μ) + μ /∈ S, ∀ f (x, δ1) < α and δ1 ∈ S.

This further implies F1−p is infeasible, i.e.,

δ2 = −1 − p

p
(δ1 − μ) + μ /∈ S, ∀ f (x, δ1) < α and δ1 ∈ S. (61)

To see this, we only need to show that F1−p being feasible implies that F1−p+ε is
feasible for some ε > 0. Suppose that there exists δ∗

1 ∈ S such that δ∗
2 = − 1−p

p (δ∗
1 −

μ)+μ ∈ S and f (x, δ∗
1) < α. By continuity of f (x, ·), we have that for a sufficiently

small η > 0, f (x, δ′
1) < α where δ′

1 � (1 − η)δ∗
1 + ημ. Note that δ′

1 ∈ S and there
exists ε > 0 such that − 1−p+ε

p−ε
(δ′

1 − μ) + μ ∈ S, which implies that F1−p+ε is
feasible.

Finally, the constraint (61) can be rewritten as

0 < min
δ1,δ2

‖(1 − p)δ1 + pδ2 − μ‖2 s.t. f (x, δ1) < α, δ1 ∈ S, δ2 ∈ S, (62)

which is equivalent to (28). Therefore, the theorem follows. ��
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9.7 Proofs of results in Sect. 6

9.7.1 Proof of Theorem 11

The constraints in Z P (47) requires that for any r ≥ 0, we can find β and M to
satisfy β + (r +1)〈�,M〉 ≤ 0 and the other (m+1) semi-definite constraints. This is
equivalent to requiring that the following optimization problem has an optimal value
less than or equal to 0 (notice that for any r ≥ 0, finding β andM to satisfy the (m+1)
semi-definite constraints itself is trivial):

max
r≥0

min
M�0,β

β + (r + 1)〈�,M〉

s.t. M −
(

αi Qi (x) 1
2αi yi (x)

1
2αi yi (x)� αi (y0i (x) − t (r)) − β

)
� 0 ∀i = 1, . . . ,m.

(63)

We analyze this requirement using duality. In order to find the dual problem of (63),
it is more convenient for us to analyze the following problem:

min
r≥0

max
M�0,β

− β − (r + 1)〈�,M〉

s.t. M −
(

αi Qi (x) 1
2αi yi (x)

1
2αi yi (x)� αi (y0i (x) − t (r)) − β

)
� 0 ∀i = 1, . . . ,m.

(64)

Consider the dual problem, the “max” part in (64) is equivalent to

L(r)= min
λi≥0

max
β,M

− β− (r+1)〈�,M〉+
m∑
i=1

λiλmin(M − Si + βE) + λ0λmin(M),

(65)
where the function λmin(X) denotes minimum eigenvalue of matrix X, and Si �
αiBi − αi t (r)E. Further note that the function λmin(X) is equivalent to the following
optimization problem: minY�0,tr(Y)=1 tr(YX). Thus (65) is equivalent to

L(r) = min
λi≥0

max
β,M

min{Yi |tr(Yi )=1,Yi�0} −β − (r + 1)〈�,M〉 + tr(λ0Y0M)

+
m∑
i=1

tr(λiYi (M − Si + βE)).

Notice that for any fixed λ, the objective function is continuous, convex w.r.t. (Yi )
m
i=0

and concave w.r.t. (β,M). Moreover, the feasible set of (Yi )
m
i=0 is compact and does

not depend on (β,M). Hence Sion’s minimax theorem applies, and we have

L(r) = min
λi≥0

min{Yi |tr(Yi )=λi ,Yi�0}max
β,M

−
m∑
i=1

tr(YiSi )

+〈M,

m∑
i=0

Yi − (r + 1)�〉 + β

(
〈E,

m∑
i=1

Yi 〉 − 1

)
.
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Taking maximum over β and M , we have that L(r) is equivalent to the following
optimization problem with variables Yi and λi :

L(r) = min
λi≥0

min{Yi |tr(Yi )=λi ,Yi�0} −
m∑
i=1

tr(αiYi (Bi − t (r)E))

s.t.
m∑
i=0

Yi = (r + 1)�, tr

(
E

m∑
i=1

Yi

)
= 1.

By taking minimum over λi , minr≥0 L(r) can be further reformulated as (48). Hence
from the analysis above, we know that (64) is equivalent to (48). To complete the proof,
we construct a separation oracle of Z P based on (48). Given x, if the optimization
problem (48) can be solved in polynomial time, then it can be verified whether x ∈ Z P

or not in polynomial time since x is feasible if and only if the optimal value of (48)
is greater than or equal to 0. Furthermore, if x /∈ Z P , let the optimal solution of (48)
be (r0, {Y0

i }), then we have −∑m
i=1 tr(αiY0

i Bi ) + t (r0)
∑m

i=1 αi tr(Y0
i E) < 0 since

x /∈ Z P . On the other hand, for any x ∈ Z P , the following inequality must be satisfied

−
m∑
i=1

tr(αiY0
i Bi ) + t (r0)

m∑
i=1

αi tr(Y0
i E) ≥ 0,

which implies that a separating hyperplane can be generated in polynomial time. ��
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