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Abstract Given a compact basic semi-algebraic set K ⊂ R
n × R

m , a simple set B
(box or ellipsoid), and some semi-algebraic function f , we consider sets defined with
quantifiers, of the form

R f := {x ∈ B : f (x, y) ≤ 0 for all y such that (x, y) ∈ K}
D f := {x ∈ B : f (x, y) ≥ 0 for some y such that (x, y) ∈ K}.

The former set R f is particularly useful to qualify “robust” decisions x versus noise
parameter y (e.g. in robust optimization on some set � ⊂ B) whereas the latter
set D f is useful (e.g. in optimization) when one does not want to work with its lifted
representation {(x, y) ∈ K : f (x, y) ≥ 0}. Assuming thatKx := {y : (x, y) ∈ K} �= ∅
for every x ∈ B, we provide a systematic procedure to obtain a sequence of explicit
inner (resp. outer) approximations that converge to R f (resp. D f ) in a strong sense.
Another (and remarkable) feature is that each approximation is the sublevel set of a
single polynomial whose vector of coefficients is an optimal solution of a semidefinite
program. Several extensions are also proposed, and in particular, approximations for
sets of the form
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RF := {x ∈ B : (x, y) ∈ F for all y such that (x, y) ∈ K}

where F is some other basic-semi algebraic set, and also sets defined with two quan-
tifiers.

Keywords Sets with quantifiers · Robust optimization · Semi-algebraic set ·
Semi-algebraic optimization · Semidefinite programming

Mathematics Subject Classification 90C22

1 Introduction

Consider two sets of variables x ∈ R
n and y ∈ R

m coupled with a constraint (x, y) ∈
K, where K ⊂ R

n × R
m is some compact basic semi-algebraic set1 defined by:

K := {(x, y) ∈ R
n × R

m : x ∈ B; g j (x, y) ≥ 0, j = 1, . . . , s} (1)

for some polynomials g j , j = 1, . . . , s, and let B ⊂ R
n be a simple set (e.g. some

box or ellipsoid).
With f : K→ R a given semi-algebraic function on K (that is, a function whose

graph Ψ f := {(x, f (x)) : x ∈ K} is a semi-algebraic set), and

Kx := {y ∈ R
m : (x, y) ∈ K }, ∀x ∈ B, (2)

consider the two sets:

R f := { x ∈ B : f (x, y) ≤ 0 for all y ∈ Kx }, (3)

and
D f := { x ∈ B : f (x, y) ≥ 0 for some y ∈ Kx }. (4)

Both sets R f and D f which include a quantifier in their definition, are semi-algebraic
and are interpreted as robust sets of variables xwith respect to the other set of variables
y, and to some performance criterion f .

Indeed in the first case (3) one may think of “x” as decision variables which should
be robust with respect to some noise (or perturbation) y in the sense that no matter
what the admissible level of noise y ∈ Kx is, the constraint f (x, y) ≤ 0 is satisfied
whenever x ∈ R f . For instance, such sets R f are fundamental in robust control and
robust optimization on a set � ⊂ B (in which case one is interested in R f ∩ �).
Instead of considering � directly in the definition (3) ofR f one introduces the simple
set B ⊃ � because moments of the Lebesgue measure on B (which are needed later)
are easy to compute (in contrast to moments of the Lebesgue measure on �). For a
nice treatment of robust optimization the interested reader is referred to Ben-Tal et al.

1 A basic semi-algebraic set is the intersection ∩mj=1{x : g j (x) ≥ 0} of super level sets of finitely many
polynomials (g j ) ⊂ R[x].
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Approximations of sets defined with quantifiers 509

[2] where a particular emphasis is put on how to model the uncertainty so as to obtain
tractable formulations for robust counterparts of some (convex) conic optimization
problems. We are here interested in (converging) approximations of sets R f in the
general framework of polynomials.

On the other hand, in the second case (4) the vector x should be interpreted as design
variables (or parameters) and the set Kx defines a set of admissible decisions y ∈ Kx
within the framework of design x. And so D f is the set of robust design parameters
x, in the sense that for every value of the design parameter x ∈ D f , there is at least
one admissible decision y ∈ Kx with performance level f (x, y) ≥ 0. Notice that
D f ⊇ B\R f , and in a sense robust optimization on R f is dual to optimization on D f .

The semi-algebraic function f as well as the set K can be fairly complicated and
therefore in general both setsR f andD f are non convex so that their exact description
can be fairly complicated as well! Needless to say that robust optimization problems
with constraints of the form x ∈ R f , are very difficult to solve. In principle whenK is
a basic semi-algebraic set, quantifier elimination is possible via algebraic techniques;
see e.g. Bochnak et al. [4]. However, in practice (exact) quantifier elimination is very
costly and limited to problems of very modest size.

On the other hand, optimization problems with a constraint of the form x ∈ D f (or
x ∈ D f ∩ � for some �) can be formulated directly in the lifted space of variables
(x, y) ∈ R

n × R
m (i.e. by adding the constraints f (x, y) ≥ 0; (x, y) ∈ K) and so

with no approximation. But sometimes one may be interested in getting a description
of the set D f itself in Rn because its “shape” is hidden in the lifted (x, y)-description,
or because optimizing overK∩{(x, y) : f (x, y) ≥ 0}may not be practical. However,
if the projection of a basic semi-algebraic set (like e.g. D f ) is semi-algebraic, it is not
necessarily basic semi-algebraic and could be a complicated union of several basic
semi-algebraic sets (hence not very useful in practice).

So a less ambitious but more practical goal is to obtain tractable approximations
of such sets R f (or D f ). Then such approximations can be used for various purposes,
optimization being only one among many potential applications.

Contribution In this paper we provide a hierarchy (Rk
f ) (resp. (D

k
f )), k ∈ N, of inner

approximations for R f (resp. outer approximations for D f ). These two hierarchies
have three essential characteristic features:

(a) Each set Rk
f ⊂ R

n (resp. Dk
f ), k ∈ N, has a very simple description in terms of

the sublevel set {x ∈ B : pk(x) ≤ 0} (resp. {x ∈ B : pk(x) ≥ 0}) associated with
a single polynomial pk .

(b) Both hierarchies (Rk
f ) and (Dk

f ), k ∈ N, converge in a strong sense since we

prove that (under some conditions) vol (R f \Rk
f )→ 0 (resp. vol (Dk

f \D f )→ 0)
as k → ∞ (and where “vol(·)” denotes the Lebesgue volume). In other words,
for k sufficiently large the inner approximations Rk

f (resp. outer approximations

Dk
f ) coincide with R f (resp. D f ) up to a set of very small Lebesgue volume.

(c) Computing the vector of coefficients of the above polynomial pk reduces to solv-
ing a semidefinite program whose size is parametrized by k.

As one potential application, the constraint pk(x) ≤ 0 (resp. pk(x) ≥ 0) can be
used in any robust (resp. design) optimization problem on � ⊆ B as a substitute for
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510 J. B. Lasserre

x ∈ R f ∩ � (resp. x ∈ D f ∩ �), thereby eliminating the variables y. One then obtains
a standard polynomial minimization problem P for which onemay apply the hierarchy
of semidefinite relaxations defined in [11] to obtain a sequence of lower bounds on
the optimal value (and sometimes an optimal solution if the size of the resulting is
moderate or if some sparsity pattern can be used for larger size problems). For more
details, the interested reader is referred to [11] (and Waki et al. [16] for semidefinite
relaxations that use a sparsity pattern). This approach was proposed in [12] for robust
optimization (and in [9] with some convergence guarantee). But the sets Rk

f can also
be used in other applications to provide a certificate for robustness as membership in
Rk

f is easy to check and the approximation is from inside.
We first obtain inner (resp. outer) approximations of R f (resp. D f ) when f is a

polynomial. To do so we extensively use a previous result of the author [10] which
allows to approximate in a strong sense the optimal value function of a parametric
optimization problem. We then describe how the methodology can be extended to the
casewhere f is a semi-algebraic function onK, whose graphΨ f is explicitly described
by a basic semi-algebraic set.2 This methodology had been already used in Henrion
and Lasserre [5] to provide (convergent) inner approximations for the particular case
of a set defined by matrix polynomial inequalities. The present contribution can be
viewed as an extension of [5] to the more general framework (3)–(4) and with f
semi-algebraic.

Finally, we also provide several extensions, and in particular, we consider:

– The case where one also enforces the computed inner or outer approximations to
be a convex set. This can be interesting for optimization purposes but of course, in
this case convergence as in (b) is lost.

– The case where f (x, y) ≤ 0 is now replaced with a polynomial matrix inequality
F(x, y) � 0, i.e., F(·, ·) is a real symmetric m × m matrix such that Fi j ∈ R[x, y]
for each entry (i, j). One then retrieves the methodology already used in Henrion
and Lasserre [5] to provide (convergent) inner approximations of the set {x ∈ B :
F(x) � 0} for some polynomial matrix inequality.

– The case where R f is now replaced with the set RF defined by:

RF = {x ∈ B : (x, y) ∈ F for all y such that (x, y) ∈ K},

where F is some basic-semi-algebraic set.
– The case where we now how have two quantifiers, like for instance,

R f = {x ∈ Bx : ∃ y ∈ By s.t. f (x, y,u) ≤ 0, ∀u : (x, y,u) ∈ K},

for some boxes Bx ⊂ R
n , By ⊂ R

m , and some compact set K ⊂ R
n × R

m × R
s .

– The case where K is a semi-algebraic (but not basic semi-algebraic) set.

2 That is, Ψ f = {(x, y, f (x, y)) : (x, y) ∈ K} = {(x, y, v) : (x, y) ∈ K; ∃w s.t. h�(x, y,w, v) ≥ 0, � =
1, . . . , s}, for some polynomials h� ∈ R[x, y,w, v].
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Approximations of sets defined with quantifiers 511

2 Notation and definitions

In this paper we use some material which is now more or less standard in what is
called Polynomial Optimization. The reader not totally familiar with such notions and
concepts, will find suitable additional material and details in the sources [3,11] and
[14].

Let R[x] denote the ring or real polynomials in the variables x = (x1, . . . , xn), and
let R[x]d be the vector space of real polynomials of degree at most d. Similarly, let
�[x] ⊂ R[x] denote the convex cone of real polynomials that are sums of squares
(SOS) of polynomials, and�[x]d ⊂ �[x] its subcone of SOS polynomials of degree at
most 2d. Denote bySm the space ofm×m real symmetric matrices. For a givenmatrix
A ∈ Sm , the notationA � 0 (resp.A � 0) means thatA is positive semidefinite (resp.
positive definite), i.e., all its eigenvalues are real and nonnegative (resp. positive). For
a Borel set B ⊂ R

n let vol(B) denote its Lebesgue volume.

Moment matrix With z = (zα) being a sequence indexed in the canonical basis (xα)

of R[x], let Lz : R[x] → R be the so-called Riesz functional defined by:

f

(
=

∑
α

fα xα

)
�→ Lz( f ) =

∑
α

fα zα,

and letMd(z) be the symmetricmatrixwith rows and columns indexed in the canonical
basis (xα), and defined by:

Md(z)(α, β) := Lz(xα+β) = zα+β, α, β ∈ N
n
d (5)

with Nn
d := {α ∈ N

n : |α| (=∑
i αi ) ≤ d}.

If z has a representing measure μ, i.e., if zα =
∫
xαdμ for every α ∈ N

n , then

〈f,Md(z)f〉 =
∫

f (x)2 dμ(x) ≥ 0, ∀ f ∈ R[x]d ,

and so Md(z) � 0. In particular, if μ has a density h with respect to the Lebesgue
measure, positive on some open set B, then Md(z) � 0 because

0 = 〈f,Md(z)f〉 ≥
∫
B
f (x)2 h(x)dx ⇒ f = 0.

Localizing matrix Similarly, with z = (zα) and g ∈ R[x] written

x �→ g(x) =
∑

γ∈Nn

gγ xγ ,

letMd(g y) be the symmetric matrix with rows and columns indexed in the canonical
basis (xα), and defined by:
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512 J. B. Lasserre

Md(g z)(α, β) := Lz
(
g(x) xα+β

) = ∑
γ

gγ zα+β+γ , ∀α, β ∈ N
n
d . (6)

If z has a representing measure μ, then 〈f,Md(g z)f〉 =
∫

f 2gdμ, and so if μ is
supported on the set {x : g(x) ≥ 0}, then Md(g z) � 0 for all d = 0, 1, . . . because

〈f,Md(g z)f〉 =
∫

f (x)2g(x) dμ(x) ≥ 0, ∀ f ∈ R[x]d . (7)

In particular, if μ is the Lebesgue measure and g is positive on some open set B, then
Md(g z) � 0 because

0 = 〈f,Md(g z)f〉 ≥
∫
B
f (x)2 g(x)dx ⇒ f = 0.

3 Main result

LetK be the basic semi-algebraic set defined in (1) for somepolynomials g j ⊂ R[x, y],
j = 1, . . . , s, and with simple set (box or ellipsoid) B ⊂ R

n .
Denote by L1(B) the Lebesgue space of measurable functions h : B→ R that are

integrable with respect to the Lebesgue measure on B, i.e., such that
∫
B |h|dx <∞.

Given f ∈ R[x, y], consider the mapping J f : B→ R ∪ {−∞} defined by:

x �→ J f (x) := max
y
{ f (x, y) : y ∈ Kx}, x ∈ B. (8)

Therefore the set R f in (3) reads {x ∈ B : J f (x) ≤ 0} whereas D f in (4) reads
{x ∈ B : J f (x) ≥ 0}.
Lemma 1 The function J f is upper semi-continuous.

Proof With x ∈ B let (xn) ⊂ B, n ∈ N, be a sequence such that xn → x and
lim supz→x J f (z) = limn→∞ J f (xn). As K is compact, for every n ∈ N, J f (xn) =
f (xn, yn) for some yn ∈ Kxn . Therefore there is some subsequence (nk), k ∈ N, and
some y with (x, y) ∈ K, such that(xnk , ynk )→ (x, y) ∈ K as k →∞. Hence

lim sup
z→x

J f (z) = lim
k→∞ J f (xnk ) = lim

k→∞ f (xnk , ynk )

= f (x, y) ≤ max
z
{ f (x, z) : z ∈ Kx } = J f (x),

i.e., lim supz→x J f (z) ≤ J j (x), the desired result. ��
We will need also the following intermediate result.

Theorem 1 Let B ⊂ R
n be a compact set and J f : B→ R be a bounded and upper

semi-continuous function. Then there exists a sequence of polynomials {pk : k ∈ N} ⊂
R[x] such that pk(x) ≥ J f (x) for all x ∈ B and
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Approximations of sets defined with quantifiers 513

lim
k→∞

∫
B
| pk(x)− J f (x)| dx = 0 [Convergence in L1(B)]. (9)

Proof To prove (9) observe that J f being bounded and upper semi-continuous on B,
there exists a nonincreasing sequence ( fk), k ∈ N, of bounded continuous functions
fk : B → R such that fk(x) ↓ J f (x) for all x ∈ B, as k → ∞; see e.g. Ash [1,
Theorem A6.6, p. 390]. Moreover, by the Monotone Convergence Theorem:∫

B
fk(x) dx →

∫
B
J f (x) dx as k →∞,

and so∫
B
| fk(x)− J f (x)| dx =

∫
B
( fk(x)− J f (x)) dx → 0 as k →∞,

that is, fk → J f for the L1(B)-norm. Next, by the Stone-Weierstrass theorem, for
every k ∈ N, there exists p′k ∈ R[x] such that supx∈B |p′k − fk | < (2k)−1 and so
pk := p′k + (2k)−1 ≥ fk ≥ J f on B. In addition,

lim
k→∞

∫
B
|pk(x)− J f (x)| dx = lim

k→∞

∫
B
|pk(x)− fk(x)|︸ ︷︷ ︸

≤k−1
+| fk(x)− J f (x)| dx

≤ lim
k→∞

(
k−1vol(B)+

∫
B
| fk(x)− J f (x)| dx

)

≤ lim
k→∞

∫
B
| fk(x)− J f (x)| dx = 0.

The following result is an immediate consequence of Theorem 1.

Corollary 2 Let K ⊂ R
n × R

m be compact and let J f be as in (8). If Kx �= ∅ for
every x ∈ B, there exists a sequence of polynomials {pk : k ∈ N} ⊂ R[x], such that
pk(x) ≥ f (x, y) for all y ∈ Kx, x ∈ B, and

lim
k→∞

∫
B
| pk(x)− J f (x)| dx = 0 [Convergence in L1(B)]. (10)

3.1 Inner approximations of R f

Let K be as in (1) with Kx as in (2) and assume that B and R f in (3) have nonempty
interior.

Theorem 3 Let K ⊂ R
n × R

m in (1) be compact and Kx �= ∅ for every x ∈ B.
Assume that {x ∈ B : J f (x) = 0} has Lebesgue measure zero, and for every k ∈ N,
letRk

f := {x ∈ B : pk(x) ≤ 0}, where pk ∈ R[x] is as in Corollary 2. ThenRk
f ⊂ R f

for every k, and

vol
(
R f \Rk

f

)
→ 0 as k →∞. (11)
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514 J. B. Lasserre

Proof By Corollary 2, pk → J f in L1(B) as k → ∞. Therefore by [1, Theorem
2.5.1], pk converges to J f in measure, that is, for every ε > 0,

lim
k→∞ vol

({ x : |pk(x)− J f (x)| ≥ ε}) = 0. (12)

Next, as J f is upper semi-continuous on B, the set {x : J f (x) < 0} is open and as
the set {x ∈ B : J f (x) = 0} has Lebesgue measure zero,

vol(R f ) = vol
({x ∈ B : J f (x) < 0})

= vol

( ∞⋃
�=1
{x ∈ B : J f (x) ≤ −1/�}

)

= lim
�→∞ vol

({x ∈ B : J f (x) ≤ −1/�}
)

= lim
�→∞ vol

(
R f (�)

)
, (13)

where R f (�) := {x ∈ B : J f (x) ≤ −1/�}. Next, R f (�) ⊆ R f for every � ≥ 1, and

vol (R f (�)) = vol
(
R f (�) ∩ {x : pk(x) > 0})+ vol

(
R f (�) ∩ {x : pk(x) ≤ 0}) .

Observe that by (12), vol
(
R f (�) ∩ {x : pk(x) > 0})→ 0 as k →∞. Therefore,

vol(R f (�)) = lim
k→∞ vol

(
R f (�) ∩ {x : pk(x) ≤ 0})︸ ︷︷ ︸

=Rk
f

≤ lim
k→∞ vol (Rk

f ) ≤ vol (R f ). (14)

As Rk
f ⊂ R f for all k, letting � →∞ and using (13) yields the desired result. ��

Theorem 3 states that the (potentially complicated) set R f can be approximated
arbitrarywell from inside by sublevel sets of polynomials. In particular, for application
in robust optimization problems where one wishes to optimize a function over some
set � ∩ R f for some � ⊂ B, one may reinforce the complicated (and intractable)
constraint x ∈ R f ∩ � by instead considering the inner approximation {x ∈ � :
pk(x) ≤ 0} obtained with the two much simpler constraints x ∈ � and pk(x) ≤ 0.
The resulting conservatism becomes negligible as k increases.

3.2 Outer approximations of D f

Let B and D f in (4) have nonempty interior.

Corollary 4 Let K ⊂ R
n × R

m in (1) be compact and Kx �= ∅ for every x ∈ B.
Assume that {x ∈ B : J f (x) = 0} has Lebesgue measure zero, and for every k ∈ N,
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Approximations of sets defined with quantifiers 515

letDk
f := {x ∈ B : pk(x) ≥ 0}, where pk ∈ R[x] is as in Corollary 2. ThenDk

f ⊃ D f

for every k, and
vol(D f \Dk

f ) → 0 as k →∞. (15)

Proof The proof uses same arguments as in the proof of Theorem 3. Indeed, D f =
B\Δ f with

Δ f := {x ∈ B : f (x, y) < 0 for all y ∈ Kx}
= {x ∈ B : sup

y
{ f (x, y) : y ∈ Kx} < 0}

= {x ∈ B : J f (x) < 0},

and since {x ∈ B : J f (x) = 0} has Lebesgue measure zero,

vol(Δ f ) = vol
({x ∈ B : J f (x) ≤ 0}) .

Hence by Theorem 3,

lim
k→∞ vol ({x ∈ B : pk(x) ≤ 0}) = vol

(
Δ f

)
,

which in turn implies the desired result

lim
k→∞ vol ({x ∈ B : pk(x) ≥ 0}) = lim

k→∞ vol ({x ∈ B : pk(x) > 0})
= vol

(
B\Δ f

) = vol
(
D f

)
,

because vol ({x ∈ B : pk(x) = 0}) = 0 for every k. ��
Corollary 4 states that the set D f can be approximated arbitrary well from outside

by sublevel sets of polynomials. In particular, if � ⊂ B and one wishes to work with
D f ∩ � and not its lifted representation { f (x, y) ≥ 0; , x ∈ �; (x, y) ∈ K}, one
may instead use the outer approximation {x ∈ � : pk(x) ≥ 0}. The resulting laxism
becomes negligible as k increases.

3.3 Practical computation

In this section we follow [10] and show how to compute a sequence of polynomials
(pk) ⊂ R[x], k ∈ N, as defined in Theorem 3. With K ⊂ R

n × R
m as in (1) and

compact, we assume that we know some M > 0 such that M − ‖y‖2 ≥ 0 whenever
(x, y) ∈ K. Next, and possibly after a re-scaling of the g j ’s, we may and will set
M = 1, B = [−1, 1]n . Next, let

γα := = 1

λ(B)

∫
B
xα dλ(x), α ∈ N

n

=
{
0 if αi is odd for some i∏n

i=1(αi + 1)−1 otherwise
;
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516 J. B. Lasserre

be themoments of the (scaled) Lebesguemeasureλ onB. In fact, as alreadymentioned,
one may consider any set B for which all moments of the Lebesgue measure (or any
Borel measure with support exactly equal to B) are easy to compute (for instance an
ellipsoid).

Moreover, letting gs+1(y) := 1− ‖y‖2, and xi �→ θi (x) := 1− x2i , i = 1, . . . , n,
for convenience we redefine K ⊂ R

n × R
m to be the basic semi-algebraic set

K = {(x, y) : g j (x, y) ≥ 0, j = 1, . . . , s+1; θi (x) ≥ 0, i = 1, . . . , n}, (16)

and let g0 ∈ R[x, y] be the constant polynomial equal to 1. With v j := �deg(g j )/2�,
j = 0, . . . ,m, and for fixed k ≥ max j [v j ], consider the following optimization
problem:

ρk = min
p,σ j ,ψi

∫
B
p(x) dλ(x)

s.t. p(x)− f (x, y) =
s+1∑
j=0

σ j (x, y) g j (x, y)+
n∑

i=1
ψi (x, y) θi (x)

p ∈ R[x]2k; σ j ∈ �k−v j [x, y], j = 0, . . . , s + 1
ψi ∈ �k−1[x, y], i = 1, . . . , n.

(17)

For a feasible solution p ∈ R[x]2k of (17) the constraint certifies that p(x)− f (x, y) ≥
0 for all (x, y) ∈ K, and therefore, p(x) ≥ J f (x) for all x ∈ B. As minimizing∫
B p(x)dλ(x) is the same as minimizing

∫
B(p(x) − J j (x))dλ(x), by solving (17)

one tries to obtain a polynomial of degree at most 2k which dominates J f on B and
minimizes the L1-norm

∫
B(|p− J j |dλ. In other words, an optimal solution of (17) is

the best L1-norm approximation in R[x]2k of J f on B (from above).
It turns out that problem (17) is a semidefinite program. Indeed :

– The criterion
∫
B p(x) dλ(x) is linear in the coefficients p = (pα), α ∈ N

n
2k , of the

unknown polynomial p ∈ R[x]k . In fact,∫
B
p(x) dλ(x) =

∑
α∈Nn

2k

pα

∫
B
xα dλ(x)︸ ︷︷ ︸

γα

=
∑

α∈Nn
2k

pα γα.

– The constraint

p(x)− f (x, y) =
s+1∑
j=0

σ j (x, y) g j (x, y)+
n∑

i=1
ψi (x, y) θi (x),

with p ∈ R[x]2k; σ j ∈ �k−v j [x, y], j = 0, . . . , s, and ψi ∈ �k−1[x, y], k =
1, . . . , n, reduces to
– linear equality constraints between the coefficients of the polynomials p, σ j

and ψi , to satisfy the identity, and
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– Linear Matrix Inequality (LMI) constraints to ensure that σ j andψi are all SOS
polynomials of degree bounded by 2(k − v j ) and 2(k − 1) respectively.

The dual of the semidefinite program (17) reads:

ρ∗k = min
z

Lz( f )

s.t. Mk−v j (g j z) � 0, j = 0, . . . , s + 1
Mk−1(θi z) � 0, i = 1, . . . , n
Lz(xα) = γα, α ∈ N

n
2k,

(18)

where z = (zαβ), (α, β) ∈ N
n+m
2k , and Lz : R[x, y] → R is the Riesz functional intro-

duced in §2. Similarly, Mk(g j z) (resp. Mk(θi z)) is the localizing matrix associated
with the sequence z and the polynomial g j (resp. θi ), also introduced in Sect. 2 (but
now with (x, y) instead of x).

Next we extend [10, Theorem3.5] and prove that both (17) and its dual (18) have
an optimal solution whenever K has nonempty interior.

Theorem 5 Let K be as in (16) with nonempty interior, and assume that Kx �= ∅ for
every x ∈ B. Then:

There is no duality gap between the semidefinite program (17) and its dual (18).
Moreover (17) (resp. (18)) has an optimal solution p∗k ∈ R[x]2k (resp. z∗ = (z∗αβ),

(α, β) ∈ N
n+m
2k ), and

lim
k→∞

∫
B
|p∗k (x)− J f (x)| dx = 0 [Convergence in L1(B)]. (19)

Proof AsK has a nonempty interior it contains an open set O ⊂ R
n×Rm . Let Ox ⊂ B

be the projection of O onto B, so that its (Rn) Lebesgue volume is positive. Let μ be
the finite Borel measure on K defined by

μ(A × B) :=
∫
A

φ(B | x) dλ(x), A ∈ B(Rn), B ∈ B(Rm),

where for every x ∈ Ox, φ(dy | x) is the probability measure on R
m , supported on

Kx, and defined by:

φ(B | x) = vol (Kx ∩ B)/vol(Kx), ∀B ∈ B(Rm).

On B\Ox the probability φ(dy | x) is an arbitrary probability measure on Kx.
Let z = (zαβ), (α, β) ∈ N

n+m
2k , be the moments of μ. AsK ⊃ O ,Mk−v j (g j z) � 0

(resp. Mk−1(θi z) � 0) for j = 0, . . . , s + 1 (resp. for i = 1, . . . , n). Indeed for all
non zero vectors u (indexed by the canonical basis (xαyβ)),

〈u,Md−v j (g j z)u〉 =
∫
K
u(x, y)2g j (x, y) dμ(x, y)

>

∫
O
u(x, y)2g j (x, y) dμ(x, y) > 0
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(as u is supposed to be non trivial). Moreover, by construction of μ, its marginal on B
is the (scaled) Lebesgue measure λ on B and so

Lz(xα) =
∫
B
xα dλ(x) = γα, α ∈ N

n
2k .

In other words, z is a strictly feasible solution of (18), i.e., Slater’s condition holds for
the semidefinite program (18). By a now standard result in convex optimization, this
implies that ρk = ρ∗k , and (17) has an optimal solution if ρk is finite. So it remains to
show that indeed ρk is finite and (18) is solvable.

Observe that from the definition of the scaled Lebesgue measure λ on B, Lz(1) =
γ0 = 1. In addition, from the constraint Mk−1(gs+1 z) � 0, and Mk−1(θi z) � 0,
i = 1, . . . , n, we deduce that any feasible solution z of (18) satisfies:

Lz(y
2k
� ) ≤ 1, ∀� = 1, . . . ,m; Lz(x

2k
i ) ≤ 1, ∀i = 1, . . . , n.

Hence by [11, Proposition3.6] this implies |zαβ | ≤ max[γ0, 1] = 1 for all (α, β) ∈
N
n+m
2k . Therefore, the feasible set is compact as closed and bounded, which in turn

implies that (18) has an optimal solution z∗. And as Slater’s condition holds for (18)
the dual (17) also has an optimal solution. Finally (19) follows from [10, Theorem3.5].

��
Remark 6 In fact, in Theorem 3 one may impose the sequence (pk) ⊂ R[x], k ∈ N,
to be monotone, i.e., such that J f ≤ pk ≤ pk−1 on B, for all k ≥ 2. And similarly
for Corollary 4. For the practical computation of such a monotone sequence, in the
semidefinite program (17) it suffices to include the additional constraint (or positivity
certificate)

p∗k−1(x)− p(x) =
n∑

i=0
φi (x) θi (x), φ0 ∈ �[x]k, φi ∈ �[x]k−1, i ≥ 1,

where θ0 = 1 and p∗k−1 ∈ R[x]k−1 is the optimal solution computed at the previous
step k− 1. In this case the inner approximations (Rk

f ), k ∈ N, form a nested sequence

sinceRk
f ⊆ Rk+1

f for all k. Similarly the outer approximations (Dk
f ), k ∈ N, also form

a nested sequence since Dk+1
f ⊆ Dk

f for all k.

4 Extensions

4.1 Semi-algebraic functions

Suppose for instance that given q1, q2 ∈ R[x, y], one wants to characterize the set

{x ∈ B : min [q1(x, y), q2(x, y)] ≤ 0 for all y ∈ Kx},

where Kx has been defined in (2), i.e., the set R f associated with the semi-
algebraic function (x, y) �→ f (x, y) = min[q1(x, y), q2(x, y)]. If f would be the
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semi-algebraic function max[q1(x, y), q2(x, y)], characterizing R f would reduce to
the polynomial case (with some easy adjustments) as R f = Rq1 ∩ Rq2 . But for
f = min[q1, q2] this characterization is not so easy, and in fact is significantly more
complicated. However, even though f is not a polynomial any more, we shall next see
that the above methodology also works for semi-algebraic functions, a much larger
class than the class of polynomials. Of course there is no free lunch and the result-
ing computational burden increases because one needs additional lifting variables to
represent the semi-algebraic function.

With S ⊂ R
n being semi-algebraic, recall that a continuous function f : S → R

is a semi-algebraic function if its graph {(x, f (x)) : x ∈ S} is a semi-algebraic set.
And in fact, the graph of every semi-algebraic function is the projection of some basic
semi-algebraic set in a lifted space. For more details the interested reader is referred
to e.g. Lasserre and Putinar [13, p. 418].

So withK ⊂ R
n×R

m as in (1), let f : K→ R be a semi-algebraic function whose
graphΨ f = { (x, y, f (x, y)) : (x, y) ∈ K } is the projection {(x, y, v) ∈ R

n×Rm×R}
of a basic semi-algebraic set K̂ ⊂ R

n × R
m × R

r , i.e.:

v = f (x, y) and (x, y) ∈ K ⇐⇒ ∃w s.t. (x, y, v,w) ∈ K̂.

Letting f̂ : K̂→ R be such that f̂ (x, y, v,w) := v, we have

R f = { x ∈ B : f (x, y) ≤ 0 for all y such that (x, y) ∈ K }
= { x ∈ B : f̂ (x, y, v,w)) ≤ 0 for all (y, v,w) such that (x, y, v,w)) ∈ K̂ }.

Hence this is just a special case of has been considered in Sect. 3 and therefore
converging inner approximations of R f can be obtained as in Theorems 3 and 5.

Example 1 For instance suppose that f : Rn×Rm → R is the semi-algebraic function
(x, y) �→ f (x, y) := min[q1(x, y), q2(x, y)]. Then using a ∧ b = 1

2 (a + b− |a − b|)
and |a − b| = θ ≥ 0 with θ2 = (a − b)2,

K̂ = {(x, y, v, w) : (x, y) ∈ K; w2 = (q1(x, y)− q2(x, y))2; w ≥ 0;
2v = q1(x, y)+ q2(x, y)− w} ,

and

Ψ f = { (x, y, f (x, y)) : (x, y) ∈ K } = {(x, y, v) : (x, y, v, w) ∈ K̂}.

4.2 Convex inner approximations

It is worth mentioning that enforcing convexity of inner approximations ofR f is easy.
But of course there is some additional computational cost and the convergence in
Theorem 3 is lost in general.

To enforce convexity of the level set {x ∈ B : p∗k (x) ≤ 0} it suffices to require that
p∗k is convex on B, i.e., adding the constraint

〈u,∇2 p∗k (x)u〉 ≥ 0, ∀(x,u) ∈ B× U,

123



520 J. B. Lasserre

where U := {u ∈ R
n : ‖u‖2 ≤ 1}. The latter constraint can in turn be enforced by the

Putinar positivity certificate

〈u,∇2 p∗k (x)u〉 =
n∑

i=0
ωi (x,u) θi (x)+ ωn+1(x,u) θn+1(x,u), (20)

for some SOS polynomials (ωi ) ⊂ �[x,u] (and where θn+1(x,u) = 1− ‖u‖2).
Then (20) can be included in the semidefinite program (17) withω0 ∈ �[x,u]k , and

ωi ∈ �[x,u]k−1, i = 1, . . . n + 1. However, now z = (zα,γ,β), (α, β, γ ) ∈ N
2n+m ,

and so solving the resulting semidefinite program is more demanding.

4.3 Polynomial matrix inequalities

Let Aα ∈ Sm , α ∈ N
n
d , be real symmetric matrices and let B ⊂ R

n be a given box.
We first consider the set

S := {x ∈ B : A(x) � 0}, (21)

where A ∈ R[x]m×m is the matrix polynomial

x �→ A(x) :=
∑
α∈Nn

d

xα Aα.

If A(x) is linear in x then S is convex and (21) is an LMI description of S which is
very nice as it can be used efficiently in semidefinite programming.

In the general case the description (21) of S is called a PolynomialMatrix Inequality
(PMI) and cannot be used as efficiently as in the convex case. Indeed S is a basic semi-
algebraic set with an alternative description in terms of the box constraint x ∈ B andm
additional polynomial inequality constraints (including the constraint det(A(x)) ≥ 0).
However, this latter description may not be very appropriate either because the degree
of polynomials involved in that description is potentially as large asdm whichprecludes
its use for practical computation (e.g., for optimization purposes).

On the other hand, for polynomial optimization problems with a PMI constraint
A(x) � 0, one may still define an appropriate and ad hoc hierarchy of semidefinite
relaxations, as described in Hol and Scherer [7,8], and Henrion and Lasserre [6]. But
even if more economical than the hierarchy using the former description of S with m
(high degree) polynomials, this latter approach may not still be ideal. In particular it
is not clear how to detect (and then take benefit of) some possible structured sparsity
to reduce the computational cost.

So in the general case and when dm is not small, one may be interested in a descrip-
tion of S simpler than the PMI (21) so that it can used more efficiently.

Let Y := { y ∈ R
m : ‖y‖2 = 1 } denote the unit sphere of Rm . Then with (x, y) �→

f (x, y) := −〈y,A(x)y〉, the set S has the alternative and equivalent description

S = {x ∈ B : f (x, y) ≤ 0, ∀y ∈ Y} =: R f , (22)
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which involves the quantifier “∀”. Therefore the machinery developed in Sect. 3 can
be applied to define the hierarchy of inner approximations Rk

f ⊂ S in Theorem 3,

where for each k, Rk
f = {x ∈ B : pk(x) ≤ 0} for some polynomial pk of degree k.

Theorem 5 is still valid even though K has now empty interior. Observe that if x �→
A(x) is not a constant matrix, then with

x �→ J f (x) := sup
y
{ f (x, y) : y ∈ Y}, x ∈ B,

the set {x : J f (x) = 0} has Lebesgue measure zero because J f (x) is the largest
eigenvalue of −A(x). Hence by Theorem 3

vol
(
Rk

f

)
→ vol(S), as k →∞.

Notice that computing pk has required to introduce the m additional variables y but
the degree of f is not larger than d + 2 if d is the maximum degree of the entries.

Importantly for computational purposes, structure sparsity can be exploited to
reduce the computational burden. Write the polynomial

(x, y) �→ f (x, y) = −〈y,A(x) y〉 =
∑
α∈Nn

hα(y) xα, (x, y) ∈ R
n × R

m,

for finitely many quadratic polynomials {hα ∈ R[y]2 : α ∈ N
m}. Suppose that the

polynomial

x �→ θ(x) :=
∑
α∈Nn

hα(y) xα, x ∈ R
n,

has some structured sparsity. That is, {1, . . . , n} = ∪s�=1 I� (with possible overlaps)
and θ(x) =∑s

�=1 θ�(x�)where x� = {xi : i ∈ I�}. Then (x, y) �→ f (x, y) inherits the
same structured sparsity (but with now ∪s�=1 I ′� where I ′� = {xi , y1, . . . ym : i ∈ I�}).
And so in particular, for computing pk one may use the sparse version of the hierarchy
of semidefinite relaxations introduced in Waki et al. [16] which permits to handle
problems with a significantly large number of variables.

Example 2 The following illustrative example is taken fromHenrion and Lasserre [5].
With n = 2, let B ⊂ R

2 be the unit disk {x : ‖x‖2 ≤ 1}, and let

A(x) :=
[
1− 16x1x2 x1

x1 1− x21 − x22

]
; S := {x ∈ B : A(x) � 0}.

In Fig. 1 is displayed S and the degree two R1
f and four R2

f inner approximations of

S, whereas in Fig. 2 are displayed theR3
f andR

4
f inner approximations of S. One may

see that with k = 4, R4
f is already a quite good approximation of S.
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Fig. 1 Example 2: R1

f (left) and R
2
f (right) inner approximations (light gray) of S (dark gray) embedded

in unit disk B (dashed)
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f (left) and R

4
f (right) inner approximations (light gray) of S (dark gray) embedded

in unit disk B (dashed).

Next, with K as in (1) consider now sets of the form

R f := {x ∈ B : F(x, y) � 0 for all y in Kx},

where F ∈ R[x, y]m×m is a polynomial matrix in the x and y variables. Then letting
Z := {z ∈ R

m : ‖z‖ = 1}, K̂ := K × Z, and f : K̂→ R, defined by:

(x, y, z) �→ f (x, y, z) := 〈z,F(x, y) z〉, (x, y, z) ∈ K̂,

the set R f has the equivalent description:

R f := {x ∈ B : f (x, y, z) ≤ 0 for all (y, z) in K̂x},

and the methodology of Sect. 3 again applies even though K̂ has now empty interior.
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4.4 Several functions f

We next consider sets of the form

RF := {x ∈ B : (x, y) ∈ F for all y such that (x, y) ∈ K}

where F ⊂ R
n × R

m is a basic-semi algebraic set defined by

F := {(x, y) ∈ R
n × R

m : f�(x, y) ≤ 0, ∀� = 1, . . . , q},

for some polynomials ( f�) ⊂ R[x, y], � = 1, . . . , q. In other words,

R f = {x ∈ B : Kx ⊂ Fx},

where Fx := { y : (x, y) ∈ F}.
Of course it is a particular case of the previous section with the semi-algebraic

function f = max[ f1, . . . , fq ], but in this case a simpler approach is possible. Let
pk� ∈ R[x] be an optimal solution of (17) associated with f�, � = 1, . . . , q, and let
the set Rk

F be defined by

Rk
F := {x ∈ R

n : pk�(x) ≤ 0, � = 1, . . . , q} =
q⋂

�=1
Rk

f� ,

where for each � = 1, . . . , q, the set Rk
f�
is defined in the obvious manner.

The sets (Rk
F ) ⊂ RF , k ∈ N, provide a sequence of inner approximations of RF

with the nice property that

lim
k→∞ vol

(
Rk

F

)
= vol (RF ) ,

whenever the set { x ∈ B : max� J f� (x) = 0 } has Lebesgue measure zero.

4.5 Sets defined with two quantifiers

Consider three types of variables (x, y,u) ∈ R
n × R

m × R
s , a box Bx ⊂ R

n , a box
By ⊂ R

m , and a compact basic semi-algebraic set K ⊂ Bx × By × U. It is assumed
that for each (x, y) ∈ Bxy (= Bx × By),

Kxy := {u ∈ U : (x, y,u) ∈ K} �= ∅.

Sets with ∃, ∀. Consider a set D′f of the form
D′f := {x ∈ Bx : ∃ y ∈ By such that f (x, y,u) ≤ 0 for all u ∈ Kxy}. (23)

Such a set is not easy to handle, in particular for optimizing over it. So it is highly
desirable to approximate as closely as possible the set D′f with a set having a much
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simpler description, and in particular a description with no quantifier. We propose to
use the methodology of Sect. 3 to provide such approximations. Consider the lift of
D′f given by:

H f := {(x, y) ∈ Bxy : f (x, y,u) ≤ 0 for all u ∈ Kxy}
= {(x, y) ∈ Bxy : J f (x, y) ≤ 0},

where J f (x, y) := maxu { f (x, y,u) : (x, y,u) ∈ K }. Using results of Sect. 3 we can
find inner approximations (Hk

f ) of the form:

Hk
f := {(x, y) ∈ Bxy : pk(x, y) ≤ 0} ⊂ H f , k ∈ N,

for some polynomials (pk) ⊂ R[x, y]. This then gives inner approximations (Dk
f ) of

D′f of the form:

Dk
f = {x ∈ Bx : pk(x, y) ≤ 0 for some y ∈ By} ⊂ D′f , k ∈ N.

Considering again results of Sect. 3 we can find outer approximations of these inner
approximations, of the form:

Dk�
f = {x ∈ Bx : pk�(x) ≤ 0} ⊃ Dk

f , k, � ∈ N,

for some polynomials (pk�) ⊂ R[x]. Unfortunately obtaining (some type of) conver-
gence Dk�

f → D′f is much more difficult and requires additional hypotheses.
Sets with ∀, ∃. Consider now a set R′f of the form

R′f := {x ∈ Bx : ∀ y ∈ By, ∃u ∈ Kxy such that f (x, y,u) ≥ 0}. (24)

As for D′f , such a set is not easy to handle, in particular for optimizing over it. So
again it is highly desirable to approximate as closely as possible the set R′f with a set
having a much simpler description, and in particular a description with no quantifier.
So proceeding in a similar fashion as before,

R′f = {x ∈ Bx : J f (x, y) ≥ 0 for all y ∈ By},

and from Sect. 3 we can provide outer approximations (Rk
f ) of R

′
f of the form:

R′f ⊂ Rk
f = {x ∈ Bx : pk(x, y) ≥ 0 for all y ∈ By}, k ∈ N,

for some polynomials (pk) ⊂ R[x, y]. Considering again results of Sect. 3 we can
find inner approximations of these outer approximations, of the form:

Rk�
f = {x ∈ Bx : pk�(x) ≥ 0} ⊂ Rk

f , k, � ∈ N,
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for some polynomials (pk�) ⊂ R[x]. Unfortunately, as for approximating D′f , obtain-
ing (some type of) convergence Rk�

f → R′f is also much more difficult and requires
additional hypotheses.

4.6 General semi-algebraic set

We finally briefly discuss the case where the set K ⊂ R
n+m in (1) is semi-algebraic

but not basic semi-algebraic. Of courseK can be always represented as the projection
of some basic semi-algebraic set K̂ defined in a higher dimensional space Rn+m+t for
some t ∈ N. That is

K = {(x, y) : ∃ z such that (x, y, z) ∈ K̂ }.

If K̂ is known (i.e. K is known implicitly from K̂) then sets of the form D f in (4) can
be approximated as we have done in Sect. 3. Indeed,

D f = { x ∈ B : f (x, y) ≥ 0 for some y ∈ Kx }
= { x ∈ B : f (x, y) ≥ 0 for some (y, z) ∈ K̂x },

where for every x ∈ B, K̂x := { (y, z) : (x, y, z) ∈ K̂ }. (Sets K̂ with empty interior
may be tolerated.) Similarly, sets of the form R f in (3) can be also approximated as
we have done in Sect. 3 because

R f = { x ∈ B : f (x, y) ≤ 0 for all y ∈ Kx }
= { x ∈ B : f (x, y) ≤ 0 for all (y, z) ∈ K̂x }.

Finite union of basic semi-algebraic sets. Alternatively, a general semi-algebraic set
K is often described as the finite union∪tKt (with possible overlaps) of basic compact
semi-algebraic sets Kt , t ∈ T , defined by:

Kt = { (x, y) ∈ R
n+m : gt j (x, y) ≥ 0, j = 1, . . . , st }, t ∈ T,

for some polynomials (gt j ) ⊂ R[x, y], j = 1, . . . , st , t ∈ T .
Again the function

x �→ J f (x) := max
y
{ f (x, y) : (x, y) ∈ K }, x ∈ B,

is upper semicontinuous on B and so Corollary 2 applies.
Therefore we can apply again the methodology of Sect. 3 with ad hoc adjustments.
In particular, for practical computation of a sequence of polynomials (pk) ⊂ R[x]

of increasing degree and with pk ≥ J f for all k, and
∫
B |pk − J f | dλ→ 0 as k →∞,

the analogue of the semidefinite program (17) reads:
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ρk = min
p,σt j ,ψti

∫
B
p(x) dλ(x)

s.t. p − f =
st+1∑
j=0

σt j gt j +
n∑

i=1
ψti θi , t ∈ T

p ∈ R[x]2k; σt j ∈ �k−v j [x, y], j = 0, . . . , st + 1; t ∈ T
ψti ∈ �k−1[x, y], i = 1, . . . , n; t ∈ T .

(25)

If int (Kt ) �= ∅ for every t ∈ T and Kx := {y : (x, y) ∈ K } �= ∅ for every x ∈ B,
then the analogue of Theorem 5 is valid (in fact, setsKt with empty interior may also
be tolerated).

Namely, the semidefinite program (25) has an optimal solution p∗k ∈ R[x]2k with
the desired convergence property:

lim
k→∞

∫
B
|p∗k (x)− J f (x)| dx = 0 [Convergence in L1(B)].

5 Conclusion

We have seen how to approximate some semi-algebraic sets defined with quantifiers
by a monotone sequence of sublevel sets associated with appropriate polynomials
of increasing degree. Each polynomial of the sequence is computed by solving a
semidefinite program whose size increases with the degree of the polynomial and
convergence of the approximations takes place in a strong sense. Several extensions
have also been provided. Of course, solving the resulting hierarchy of semidefinite
programs is computationally expensive and so far, in its present form the methodology
is limited to problems of modest size only. Fortunately, larger size problemswith some
structured sparsity pattern can be attacked by applying techniques already used in [16].
However, evaluating (and improving) the efficiency of this methodology on a sample
of problems of significant size is a topic of further investigation.
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