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Abstract In this paper, we study the integrality gap of the subtour LP relaxation for the
traveling salesman problem in the special case when all edge costs are either 1 or 2. For
the general case of symmetric costs that obey triangle inequality, a famous conjecture
is that the integrality gap is 4/3. Little progress towards resolving this conjecture
has been made in 30 years. We conjecture that when all edge costs ci j ∈ {1, 2}, the
integrality gap is 10/9. We show that this conjecture is true when the optimal subtour
LP solution has a certain structure. Under a weaker assumption, which is an analog of
a recent conjecture by Schalekamp et al., we show that the integrality gap is at most
7/6. When we do not make any assumptions on the structure of the optimal subtour LP
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solution, we can show that integrality gap is at most 5/4; this is the first bound on the
integrality gap of the subtour LP strictly less than 4/3 known for an interesting special
case of the TSP. We show computationally that the integrality gap is at most 10/9 for
all instances with at most 12 cities.

Keywords Traveling salesman problem · Subtour elimination ·
Linear programming · Integrality gap

Mathematics Subject Classification 90C05 · 90C27 · 05C70

1 Introduction

The traveling salesman problem (TSP) is one of the most well studied problems in
combinatorial optimization. Given a set of cities {1, 2, . . . , n}, and distances c(i, j)
for traveling from city i to j , the goal is to find a tour of minimum length that visits
each city exactly once. An important special case of the TSP is the case when the
distance forms a metric, i.e., c(i, j) ≤ c(i, k)+ c(k, j) for all i, j, k, and all distances
are symmetric, i.e., c(i, j) = c( j, i) for all i, j . The symmetric TSP is known to be
NP-hard, even if c(i, j) ∈ {1, 2} for all i, j [18]; note that such instances trivially obey
the triangle inequality. Such instances are also known to be APX-hard; that is, there
is no α-approximation algorithm for the problem for some α > 1 unless P = NP.

The metric TSP can be approximated to within a factor of 3
2 using an algorithm by

Christofides [7] from 1976. The algorithm combines a minimum spanning tree with
a matching on the odd-degree nodes to get an Eulerian graph that can be shortcut
to a tour; the analysis shows that the minimum spanning tree and the matching cost
no more than the optimal tour and half the optimal tour respectively. Better results
are known for several special cases, but, surprisingly, no progress has been made on
approximating the general symmetric TSP in more than 30 years. A natural direction
for trying to obtain better approximation algorithms is to use linear programming. The
following linear programming relaxation of the traveling salesman problem was used
by Dantzig et al. [8]. For simplicity of notation, we let G = (V, E) be a complete
undirected graph on n nodes. In the LP relaxation, we have a variable x(e) for all
e = (i, j) that denotes whether we travel directly between cities i and j on our tour.
Let c(e) = c(i, j), and let δ(S) denote the set of all edges with exactly one endpoint
in S ⊆ V . Then the relaxation is

Min
∑

e∈E

c(e)x(e)

(SUBT) subject to:
∑

e∈δ(i)

x(e) = 2, ∀i ∈ V, (1)

∑

e∈δ(S)

x(e) ≥ 2, ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 3, (2)

0 ≤ x(e) ≤ 1, ∀e ∈ E . (3)
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On the integrality gap of the subtour LP for the 1,2-TSP 133

The first set of constraints (1) are called the degree constraints. The second set of
constraints (2) are sometimes called subtour elimination constraints or sometimes
just subtour constraints, since they prevent solutions in which there is a subtour of just
the nodes in S. As a result, the linear program is sometimes called the subtour LP. It has
been shown by Wolsey [24] (and later Shmoys and Williamson [22]) that Christofides’
algorithm finds a tour of length at most 3

2 times the optimal value of the subtour LP;
these proofs show that the minimum spanning tree and the matching on odd-degree
nodes can be bounded above by the value of the subtour LP, and half the value of the
subtour LP, respectively. This implies that the integrality gap, the worst case ratio of the
length of an optimal tour divided by the optimal value of the LP, is at most 3

2 . However,
no examples are known that show that the integrality gap can be as large as 3

2 ; in fact,
no examples are known for which the integrality gap is greater than 4

3 . A well known
conjecture states that the integrality gap is indeed 4

3 ; see (for example) Goemans [10].
Recently, progress has been made in several directions, both in improving the best

approximation guarantee and in determining the exact integrality gap of the subtour
LP for certain special cases of the symmetric TSP. In the graph-TSP, the costs c(i, j)
are equal to the shortest path distance in an underlying unweighted graph. If the graph
is cubic and 3-connected, Gamarnik et al. [9] show an approximation algorithm with
guarantee slightly better than 3

2 . Oveis Gharan et al. [17] show that the graph-TSP
can be approximated to within 3

2 − ε for a small constant ε > 0 for all graphs. Boyd
et al. [6], and Aggarwal et al. [1] independently give a 4

3 -approximation algorithm if
the underlying graph is cubic. Mömke and Svensson [15] improve these results by
giving a 1.461-approximation for the graph-TSP and an 4

3 -approximation algorithm if
the underlying graph is subcubic. Mucha [16] improves the analysis of the Mömke–
Svensson algorithm to a 13

9 -approximation algorithm, and Sebő and Vygen [21] com-
bine the ideas of Mömke and Svensson [15] with an algorithm based on a carefully
chosen ear decomposition of the graph to obtain a 7

5 -approximation algorithm. All
of these α-approximation algorithms imply a corresponding upper bound of α on the
integrality gap for the corresponding graph-TSP instances.

In Schalekamp et al. [20], three of the authors of this paper resolve a related conjec-
ture. A 2-matching of a graph is a set of edges such that no edge appears twice and each
node has degree two, i.e., it is an integer solution to the LP (SUBT) with only constraints
(1) and (3). Note that a minimum-cost 2-matching thus provides a lower bound on the
length of the optimal TSP tour. A minimum-cost 2-matching can be found in polyno-
mial time using a reduction to a certain minimum-cost matching problem. Boyd and
Carr [5] conjecture that the worst case ratio of the cost of a minimum-cost 2-matching
and the optimal value of the subtour LP is at most 10

9 . This conjecture was proved to
be true by Schalekamp et al. and examples are known that show this result is tight.

Unlike the techniques used to obtain better results for the graph-TSP, the tech-
niques of Schalekamp et al. work on general weighted instances that are symmetric
and obey the triangle inequality. However, their results only apply to 2-matchings
and it is not clear how to enforce global connectivity on the solution obtained by
their method. A potential direction for progress on resolving the integrality gap for
the subtour LP is a conjecture by Schalekamp et al. that the worst-case integrality
gap is attained for instances for which the optimal subtour LP solution is a basic
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Fig. 1 Illustration of the worst example known for the integrality gap for the 1,2-TSP. The figure on the
left shows all edges of cost 1. The figure in the center gives the subtour LP solution, in which the dotted
edges have value 1

2 , and the solid edges have value 1; this is also an optimal fractional 2-matching. The
figure on the left gives the optimal tour and the optimal 2-matching

solution to the linear program obtained by dropping the subtour elimination con-
straints.

In this paper, we turn our attention to the 1,2-TSP, where c(i, j) ∈ {1, 2} for all i, j .
Note that bounding the cost of enforcing connectivity is relatively easy in this class
of problems, since we may connect any two components for an increase in cost of at
most 2. Papadimitriou and Yannakakis [18] show how to approximate 1,2-TSP within
a factor of 11

9 by computing a minimum-cost 2-matching and merging its cycles into a
tour. In addition, they show a ratio of 7

6 if they start with a minimum-cost 2-matching
that has no cycles of length 3. Bläser and Ram [4] improve this ratio and the best
known approximation factor of 8

7 is given by Berman and Karpinski [3].
We do not know a tight bound on the integrality gap of the subtour LP even in the

case of the 1,2-TSP. As an upper bound, we appear to know only that the gap is at most
3
2 via Wolsey’s result. There is an easy nine city example showing that the gap must
be at least 10

9 ; see Fig. 1. This example has been extended to a class of instances on
9k nodes for any positive integer k by Williamson [23]. The contribution of this paper
is to begin a study of the integrality gap of the 1,2-TSP, and to improve our state of
knowledge for the subtour LP in this case. We prove an upper bound on the integrality
gap for the subtour LP of 5

4 , which is the first bound on the integrality gap with value
less than 4

3 for a natural class of TSP instances. Under an analog of a conjecture of
Schalekamp et al. [20], we show that the integrality gap is at most 7

6 , and with an
additional assumption on the structure of the solution, we can improve this bound to
10
9 . We describe these results in more detail below.

All the known approximation algorithms since the initial work of Papadimitriou
and Yannakakis [18] on the problem start by computing a minimum-cost 2-matching.
However, the example of Fig. 1 shows that an optimal 2-matching can be as much as
10
9 times the value of the subtour LP for the 1,2-TSP, so we cannot directly replace

the bound on the optimal solution in these approximation algorithms with the subtour
LP in the same way that Wolsey did with Christofides’ algorithm in the general case.
Using the result of Schalekamp et al. [20] and a new lemma that relates part of the
analysis of Papadimitriou and Yannakakis [18] to the subtour LP bound, we obtain a
preliminary upper bound on the integrality gap of the subtour LP for the 1,2-TSP of
7
9 · 10

9 + 4
9 = 106

81 ≈ 1.3086.
To improve this upper bound to 5

4 , we first show stronger results in some cases. A
fractional 2-matching is a basic optimal solution to the LP (SUBT)with only constraints
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On the integrality gap of the subtour LP for the 1,2-TSP 135

(1) and (3). Schalekamp et al. [20] have conjectured that the worst-case integrality gap
for the subtour LP is obtained when the optimal solution to the subtour LP is an extreme
point of the fractional 2-matching polytope. We show that if this is the case for 1,2-TSP
then we can find a tour of cost at most 7

6 the cost of the fractional 2-matching, implying
that the integrality gap is at most 7

6 in these cases. Next, we show that if this optimal
solution to the fractional 2-matching problem has a certain structure, then we can find
a tour of cost at most 10

9 times the cost of the fractional 2-matching, implying an upper
bound on the integrality gap of 10

9 for these cases. Figure 1 shows that this result is tight.
We then use the previous arguments to show that one can construct a tour of cost at

most 5
4 times the subtour LP value. To do this, we prove that we can assume without

loss of generality that the optimal value of the subtour LP is less than n + 1, where
n denotes the number of nodes. Combined with a more careful analysis based on
the results obtained before, we obtain our main result. The results above all lead to
polynomial-time algorithms, though we do not state the exact running times.

Finally, we perform computational experiments to show that the integrality gap is
at most 10

9 for n ≤ 12. We conjecture that the integrality gap is in fact exactly 10
9 .

We note that the upper bound on the integrality gap for general 1,2-TSP instances
presented in this paper is stronger than the bound that appeared in a preliminary
version of this paper [19] of 19

15 . In the time between publication of the preliminary
version and the current revision, Mnich and Mömke [14] obtained an upper bound
of 5

4 on the integrality gap for 1,2-TSP instances that have the additional property of
being “fractionally Hamiltonian”, which means that the optimal objective value of the
subtour LP is equal to the number of nodes in the instance. In this version, using the
same techniques as in the preliminary version, we show an unconditional upper bound
on the integrality gap of 5

4 , and a bound of 26
21 for fractionally Hamiltonian instances.

The remainder of this paper is structured as follows. Section 2 contains preliminaries
and a first general bound on the integrality gap for the 1,2-TSP. We show how to obtain
stronger bounds if the optimal subtour LP solution is a fractional 2-matching in Sect. 3.
In Sect. 4, we combine the arguments from the previous sections and show that the
integrality gap without any assumptions on the structure of the subtour LP solution is
at most 5

4 . We describe our computational experiments in Sect. 5. Finally, we close
with a conjecture on the integrality gap of the subtour LP for the 1,2-TSP in Sect. 6.

2 Preliminaries and a first bound on the integrality gap

We will work extensively with 2-matchings and fractional 2-matchings; that is, extreme
points x of the LP (SUBT) with only constraints (1) and (3), where in the first case the
solutions are required to be integer. For convenience we will abbreviate “fractional
2-matching” by F2M and “2-matching” by 2M. The basic solutions of the F2M poly-
tope have the following well-known structure (attributed to Balinski [2]). Each con-
nected component of the support graph (that is, the edges e for which x(e) > 0) is
either a cycle on at least three nodes with x(e) = 1 for all edges e in the cycle, or
consists of odd-sized cycles with x(e) = 1

2 for all edges e in the cycle connected by
paths of edges e with x(e) = 1 for each edge e in the path (the center figure in Fig. 1 is
an example). We call the former components integer components and the latter frac-
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tional components. In a fractional component, we call a path of edges e with x(e) = 1
a 1-path. The edges e with x(e) = 1

2 in cycles are called cycle edges. An F2M with a
single component is called connected, and we call a component 2-connected if, in the
graph induced by the component, the sum of the x-values on the edges crossing any
cut is at least 2. We let n denote the number of nodes in an instance.

As mentioned in the introduction, Schalekamp et al. [20] have shown the following.

Theorem 1 (Schalekamp et al. [20]) If edge costs obey the triangle inequality, then
the cost of an optimal 2-matching is at most 10

9 times the value of the subtour LP.

It is not hard to show that this immediately implies an upper bound of 13
9 on the

integrality gap of the subtour LP for the 1,2-TSP: we can just compute a minimum
cost 2-matching at a cost of 10

9 the value of the subtour LP, remove the most expensive
edge from each cycle, which gives a collection of node-disjoint paths, and add edges
of cost 2 to combine these paths into a tour. Each cycle has at least three edges; at
worst, we remove an edge of cost 1 from each cycle and then need an edge of cost 2
to patch the paths into a tour. Thus the overall cost increases by at most 1

3 n, giving a
tour, the cost of which can be bounded by 10

9 + 1
3 = 13

9 times the value of the subtour
LP, because n is a lower bound on the value of the subtour LP.

The algorithm of Papadimitriou and Yannakakis [18] improves on this idea, by
cleverly merging the cycles of the optimal 2M solution. We summarize the properties
of their algorithm that we will use. First, observe that we can assume without loss
of generality that the optimal 2M solution consists of a number of cycles with only
edges of cost 1 (“pure” cycles) and at most one cycle which has one or more edges
of cost 2 (the “non-pure” cycle), by deleting the edges of cost 2 and combining the
resulting disjoint paths into a single cycle. Moreover, if i is a node in the non-pure
cycle which is incident on an edge of cost 2 in the cycle, then there can be no edge
of cost 1 connecting i to a node in a pure cycle (since otherwise, we can merge the
non-pure cycle with a pure cycle without increasing the cost).

The Papadimitriou–Yannakakis algorithm solves the following bipartite matching
problem: On one side we have a node for every pure cycle, and on the other side,
we have a node for every node in the instance. There is an edge from pure cycle C
to node i , if i 	∈ C and there is an edge of cost 1 from i to some node in C . Let r
be the number of pure cycles that are unmatched in a maximum cardinality bipartite
matching. Papadimitriou and Yannakakis show how to “patch together” the matched
cycles. We refer the reader to their original paper [18] for more details. The resulting
cycles are then combined into a tour of cost at most

7

9
OPT(2M) + 4

9
n + 1

3
r, (4)

where OPT(2M) is the cost of an optimal 2M solution.1

1 In [18], OPT(2M) is expressed as n+k, where k is the number of edges of cost 2 in the optimal 2M solution.
The number of unmatched pure cycles is denoted by r2. The bound given by [18] is n+k+ 2

9 (n−n2−k)+r2,
where n2 is a quantity that is lower bounded by 3r2. Therefore, the bound in [18] can be upper bounded by
7
9 (n + k) + 4

9 n + 1
3 r2.

123



On the integrality gap of the subtour LP for the 1,2-TSP 137

We now show how to convert this bound into a bound in terms of the optimal value
to SUBT.

Lemma 1 Let r be the number of pure cycles that are unmatched in a maximum
cardinality bipartite matching instance defined by Papadimitriou and Yannakakis.
Then

OPT(SUBT) ≥ n + r.

Proof We note that for a bipartite matching instance, the size of the minimum cardi-
nality vertex cover is equal to the size of the maximum matching. We use this fact to
construct a feasible dual solution to the subtour LP that has value n+r . Let CM , VM be
the pure cycles and nodes (in the original graph), for which the corresponding nodes
in the bipartite matching instance are in the minimum cardinality vertex cover. The
dual of the subtour LP (SUBT) is

Max 2
∑

S⊂V

y(S) + 2
∑

i∈V

y(i) −
∑

e∈E

z(e)

(D) subject to:
∑

S⊂V :e∈δ(S)

y(S) + y(i) + y( j) − z(e) ≤ c(e), ∀e = (i, j),

y(S) ≥ 0, ∀S ⊂ V, 3 ≤ |S| ≤ n − 3,

z(e) ≥ 0, ∀e ∈ E .

We set z(e) = 0 for each e ∈ E , and we set y(i) = 1
2 for each i ∈ V \VM . For a

pure cycle on a set of nodes C , we set y(C) = 1
2 , if the cycle is not in CM . The dual

objective for this solution is exactly n +r : its value is n plus the number of pure cycles
minus the size of the vertex cover, or n plus the number of pure cycles minus the size
of the matching, since the vertex cover has the same size as the matching. Thus it is
the same as n plus the number of pure cycles not in the matching, or n + r .

It remains to show that the dual constructed is feasible. Define the load on an edge
e = (i, j) of solution (y, z) to be

∑
S⊂V :e∈δ(S) y(S) + y(i) + y( j) − z(e). For any

edge e = (i, j) of cost 1 inside a cycle of the 2M, the load on the edge is at most
1, since the only potentially non-zero dual variables loading the edge are the dual
variables y(i) and y( j). For an edge (i, j) where i ∈ C and j ∈ C ′ 	= C , the load
is y(i) + y( j) + y(C) + y(C ′) ≤ 2. Suppose (i, j) has cost 1, and the cycles C and
C ′ are both pure cycles. Then the edge occurs twice in the bipartite matching instance
(namely, once going from i to C and once going from j to C ′) and hence the dual of
at least two of the four objects i, j, C and C ′ has been reduced to 0. The total load on
edge (i, j) is thus at most 1. Now, suppose C ′ is the non-pure cycle, then yC ′ = 0,
since we only increased the dual variables for the pure cycles. Moreover, at least one
endpoint of the ( j, C) edge in the bipartite matching instance must be in the vertex
cover, so the load on edge (i, j) is again at most 1. ��

Note that, combined with (4) and Theorem 1, Lemma 1 implies that the cost of the
tour is at most 7

9 · 10
9 OPT(SUBT) + 4

9 OPT(SUBT) = 106
81 OPT(SUBT). This bound

obtained on the integrality gap seems rather weak, as the best known lower bound
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on the integrality gap is only 10
9 . Schalekamp et al. [20] have conjectured that the

integrality gap (or worst-case ratio) of the subtour LP occurs when the solution to the
subtour LP is a fractional 2-matching.

Conjecture 1 (Schalekamp et al. [20]) Let αn be the integrality gap of the subtour LP
on n vertices. Then there exists an instance which has an optimal subtour LP solution
that is an F2M and for which the optimal tour has cost at least αn times the subtour
LP cost.

In the next section, we show that we can obtain better bounds on the integrality gap
of the subtour LP in the case that the optimal solution is a fractional 2-matching. In
Sect. 4, we then show how to combine Lemma 1 with the bounds in the next section
to obtain an upper bound of 5

4 on the integrality gap.

3 Better bounds if the optimal solution is an F2M

If the optimal solution to the subtour LP is a fractional 2-matching, then a natural
approach to obtaining a good tour is to start with the edges with x-value 1, and add as
many edges of cost 1 and x-value 1

2 as possible, without creating a cycle on a subset
of the nodes. More precisely, we will propose an algorithm that creates an acyclic
spanning subgraph (V, T ) where all nodes have degree one or two. We will refer to an
acyclic spanning subgraph in which all nodes have degree one or two as a partial tour.
A partial tour can be extended to a tour by adding d/2 edges of cost 2, where d is the
number of degree 1 nodes. The cost of the tour is c(T )+d, where c(T ) = ∑

e∈T c(e).
We will use the following lemma.

Lemma 2 Let G = (V, T ) be a partial tour. Let A be a set of edges not in T that
form an odd cycle or a path on V ′ ⊂ V , where the nodes in V ′ have degree one in T .
We can find A′ ⊂ A such that (V, T ∪ A′) is a partial tour, and

– |A′| ≥ 1
3 |A| if A is a cycle,

– |A′| ≥ 1
3 (|A| − 1) if A is a path,

We postpone the proof of the lemma and first prove the implication for the bound
on the integrality gap if the optimal subtour LP solution is a fractional 2-matching.

Theorem 2 There exists a tour of cost at most 7
6 times the cost of a connected F2M

solution if c(i, j) ∈ {1, 2} for all i, j .

Proof Let P = {e ∈ E : x(e) = 1} (the edges in the 1-paths of x). We will start the
algorithm with T = P . Let R = {e ∈ E : x(e) = 1

2 and c(e) = 1} (the edges of
cost 1 in the cycles of x). Note that the connected components of the graph (V, R)

consist of paths and odd cycles. The main idea is that we consider these components
one by one, and use Lemma 2 to show that we can add a large number of the edges of
each path and cycle, where we keep as an invariant that T is a partial tour. Note that
by Lemma 2, the number of edges added from each path or cycle A is at least |A|/3,
except for the paths for which |A| ≡ 1 (mod 3). Let P1 be this set of paths. We
would like to claim that we add a third of the edges on average from each component,
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On the integrality gap of the subtour LP for the 1,2-TSP 139

and we therefore preprocess the paths in P1, where we add one edge (either the first
or last edge from each path in P1) to T if this is possible without creating a cycle in
T , and if so, we remove this edge and its neighboring edge in R (if any) from R. After
the preprocessing, we use Lemma 2 to process each of the components in (V, R).

We call a path A in P1 “eared” if the 1-paths that are incident on the first and last
node of the path are such that they go between two neighboring nodes of A. Without
loss of generality we will assume for each path in P1 that is not eared, that the first edge
on the path does not form a cycle with a 1-path. It is not hard to see that we can add the
first edge from at least half of the paths in P1 that are not eared: Suppose we simply
add the first edge from each path in P1 that is not eared to T , regardless of whether it
makes a cycle in T or not. Then, each cycle in T contains at least two edges that came
from a path in P1, and hence, removing one such edge per cycle leaves a partial tour
T that contains the first edge from at least half of the paths that are not eared in P1.

After preprocessing the paths in P1, we iterate through the connected components
in (V, R) and add edges to T while maintaining that T is a partial tour. By Lemma 2,
the number of edges added from each path or cycle A is at least |A|/3, except for the
paths in P1. We now consider two cases for the paths in P1, depending on whether
we added an edge from the path to T in the preprocessing step or not. Note that for a
path A in P1 for which we added an edge to T in the preprocessing step, R contains
a path of |A| − 2 edges after the preprocessing step, and by Lemma 2, we add at least
(|A|− 2 − 1)/3 of these to T . Together with the edge added in the preprocessing step,
we thus add at least 1 + (|A| − 2 − 1)/3 = |A|/3 edges. For a path in P1 for which
we did not add an edge to T in the preprocessing stage, we add at least (|A| − 1)/3
edges. Now, recall that a path A in P1 has |A| ≡ 1 (mod 3), and that the number of
edges added is an integer, so in the first case, the number of edges added is at least
|A|/3 + 2

3 and in the second case it is |A|/3 − 1
3 . Let z be the number of eared paths

in P1. Then, the number of paths in P1 that are in the second case is at most z plus
the number of paths in P1 that fall in the first case. Hence, the total number of edges
from R that were added to T can be lower bounded by 1

3 |R| − 1
3 z. We now give an

upper bound on the number of nodes of degree one in T .
Let k be the number of cycle nodes in x , i.e. k = #{i ∈ V : x(i, j) =

1
2 for some j ∈ V }, and let p be the number of cycle edges of cost 2 in x , i.e.
p = #{e ∈ E : x(e) = 1

2 and c(e) = 2}. Note that (V, R) contains p paths (which
may have zero edges) on the cycle nodes, and hence p ≥ z. Initially, when T contains
only the edges in the 1-paths, all k nodes have degree one, and there are k − p edges in
R. We argued that we added at least 1

3 |R|− 1
3 z = 1

3 k − 1
3 p− 1

3 z edges to T . Each edge
reduces the number of nodes of degree one by two, and hence, the number of nodes of
degree one at the end of the algorithm is at most k −2( 1

3 k − 1
3 p− 1

3 z) = 1
3 k + 2

3 p+ 2
3 z.

Recall that c(P) denotes the cost of the 1-paths, and the total cost of T at the end of
the algorithm is at most c(P)+ 1

3 k − 1
3 p− 1

3 z. Since at most 1
3 k + 2

3 p+ 2
3 z nodes have

degree one in T , we can extend T into a tour of cost at most c(P) + 2
3 k + 1

3 p + 1
3 z.

The cost of the solution x can be expressed as c(P) + 1
2 k + 1

2 p. Note that each
1-path connects two cycle nodes, hence c(P) ≥ 1

2 k. Moreover, an eared path A is
incident to one (if |A| = 1) or two (if |A| > 1) 1-paths of length two, since the sup-
port graph of x is simple. Therefore we can lower bound c(P) by 1

2 k + z. Therefore,

123



140 J. Qian et al.

7
6

(
c(P) + 1

2 k + 1
2 p

) ≥ c(P) + 1
12 k + 1

6 z + 7
12 k + 7

12 p ≥ c(P) + 2
3 k + 1

3 z + 1
3 p,

where p ≥ z is used in the last inequality. ��
Proof of Lemma 2 The basic idea behind the proof of the lemma is the following: We
go through the edges of A in order, and try to add them to T if this does not create a
cycle or node of degree three in T . If we cannot add an edge, we simply skip the edge
and continue to the next edge. Since the edges in T form a collection of disjoint paths
and each node in A has degree one in T , we can always add either the first edge or the
second edge of A: if the first edge cannot be added, then adding it to T must create
a cycle, and since the edges in T form a collection of node disjoint paths, adding the
second edge of the path or cycle to T cannot create a cycle. Similarly, we need to skip
at most two edges between two edges that are successfully added to T : first, an edge
is skipped because otherwise we create a node of degree three in T , and if a second
edge is skipped, then this must be because adding that edge to T would create a cycle.
But then, adding the next edge on the path cannot create a cycle in T .

To lower bound the number of edges from we can add from each path or cycle A,
we partition the edges into groups of two or three consecutive edges. For a path A,
the first group contains the first two edges, and each subsequent group contains the
next three edges. The final group contains the last zero, one or two edges of the path.
For each group except the last group, at least one edge is added to T . Hence, we can
conclude that we can add at least (|A| − 4)/3 from the groups of size three, and 1 for
the first group, for a total of (|A|−1)/3 edges, where |A| denotes the number of edges
in A. For a cycle A, we need to be slightly more careful, since the argument that we
can add at least one edge from the last group of size three does not hold if the very
first edge was added to T (since it may be the case that the first and third edge of the
group cannot be added without creating a node of degree three, and the second edge of
the group cannot be added without creating a cycle). Therefore, we let the first group
contain two consecutive edges, where the second edge is the edge that was the first to
be added to T . By the same argument as for the path, we can thus conclude that we
can add at least (|A| − 1)/3 edges.

We now show that by being a little more careful, we can in fact add |A|/3 edges if
A is a cycle. Note that the number of nodes in A is odd, and hence there must be some
j such that the path in T that starts in u j ends in some node v 	∈ A. We claim that if
we consider the edges in A starting with either edge {u j−1, u j } or edge {u j , u j+1},
we are guaranteed that for at least one of these starting points, we can add both the
first and the third edge to T .

Clearly, neither {u j−1, u j } nor {u j , u j+1} can create a cycle if we add it to T .
So suppose that T ∪ {u j−1, u j } ∪ {u j+1, u j+2} contains a cycle. This cycle does
not contain the node u j , because the path in T that starts in u j ends in some node
v 	∈ C . Hence T contains a path that starts in u j+1 and ends in u j+2. But then
T ∪ {u j , u j+1} ∪ {u j+2, u j+3} does not have a cycle, since if it did, T must have a
path starting in u j+2 and ending in u j+3 which is only possible if u j+1 = u j+3. Since
the number of nodes in A is at least three, this is not possible. ��

We remark that the ratio of 7
6 in Theorem 2 is achieved if every 1-path contains just

one edge of cost 1, and all cycle edges have cost 1. However, in such a case, we could
find another optimal F2M solution of the same cost, which has fewer cycle edges: If
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we have a 1-path of cost 1 with endpoints in two different odd cycles of edges with
x(e) = 1

2 , we can obtain the alternative solution by removing the 1-path, and increasing
the x-value on the four cycle edges incident on its endpoints to 1, and then alternating
between setting the x-value to 0 and 1 around the cycles. Now, since the cycles are
odd, the degree constraints are again satisfied. The objective value does not increase
because we only change the x-value on edges of cost 1. For a 1-path of cost 1 with
endpoints in the same odd cycle, the cycle gives us two paths between the endpoints,
one of odd length and one of even length. We can alternate increasing and decreasing
the x-value by 1

2 on the odd-length path and finally decrease the x-value for the 1-path
to 1

2 , to obtain a new F2M solution of the same cost with fewer cycle edges. We note
that these modifications may increase the number of components of the F2M solution.

This motivates the following definition. We call an F2M solution canonical, if all
edges in the support have cost 1 and all 1-paths contain at least two edges. If a canonical
F2M solution is connected, we can improve the analysis in Theorem 2 to show the
following.

Theorem 3 There exists a tour of cost at most 10
9 times the cost of a connected

canonical F2M solution if c(i, j) ∈ {1, 2} for all i, j .

Proof We adapt the final paragraph of the proof of Theorem 2. As before, the cost of
the tour is at most c(P) + 2

3 k + 1
3 p + 1

3 z. However, since all cycle edges have cost 1,
p = 0 and z = 0. The cost of the tour is thus at most c(P) + 2

3 k.
The cost of the F2M solution is c(P)+ 1

2 k. Since each cycle node is the endpoint of
a 1-path and vice versa, the number of 1-paths is k/2. By the fact that x is canonical,
each of these 1-paths has cost at least two, so we get that c(P) ≥ k. The proof
is concluded by noting that then 10

9

(
c(P) + 1

2 k
) ≥ c(P) + 1

9 k + 10
9 · 1

2 k = c(P)

+ 2
3 k. ��

4 An upper bound of 5
4 on the integrality gap

We now show how to use the results in the previous two sections to obtain an upper
bound of 5

4 on the integrality gap for the general case. In addition, we show that if all
edges in the support of the optimal subtour LP solution have cost 1, then the integrality
gap is at most 26

21 .
We will bound the integrality gap of the solution obtained by the Papadimitriou–

Yannakakis algorithm, by (i) bounding the difference between the cost of the 2M and
the subtour LP, and (ii) bounding the difference between the 2M solution and the tour
constructed from it by the Papadimitriou–Yannakakis algorithm.

As in the Papadimitriou–Yannakakis algorithm described in Sect. 2, we call a cycle
in a 2M a “pure” cycle if all its edges have cost 1, and a “non-pure” cycle otherwise.
The idea behind this section is to show that the quantity in (i) can be “charged” to the
nodes in the non-pure cycle only, and that the quantity in (ii) can be “charged” mainly
to the nodes in the pure cycles.

We first state the following lemma, which formalizes the second statement.
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Lemma 3 If OPT(SUBT) < n + 1, then the difference between the cost of the 2M
used and the tour constructed by the Papadimitriou–Yannakakis algorithm can be
upper bounded by αnpure + β(nnon-pure − �), where npure is the number of nodes in
pure cycles in the 2M, nnon-pure is the number of nodes in the non-pure cycle, and �

is the number of edges of cost 2 in the non-pure cycle, for any values of α, β so that
9α ≥ 2 and 3α + 2β ≥ 1.

Note that Lemma 1 and the assumption that OPT(SUBT) < n + 1 imply that the
Papadimitriou–Yannakakis algorithm finds a bipartite matching that matches all the
pure cycles. A careful look at the analysis of Papadimitriou and Yannakakis [18] then
shows that their algorithm finds a tour which satisfies the lemma. The details basically
follow the analysis of Papadimitriou and Yannakakis, and are therefore postponed to
Appendix 1.

The key observation in this section is that we can indeed restrict our attention to
instances with OPT(SUBT) < n + 1, the requirement of Lemma 3.

Lemma 4 The worst-case integrality gap is attained on an instance with subtour LP
value less than n + 1, where n is the number of nodes in the instance.

Proof Consider an instance I on n nodes for which the ratio between the length of
the optimal tour and the subtour LP value is γ , and suppose OPT(SUBT) = n + k for
some k ≥ 1. We construct an instance I ′ with n′ = n + 1 nodes, for which the ratio
between the length of the optimal tour and the subtour LP value is at least γ , and the
optimal value of the subtour LP is at most n + k = n′ + k − 1. Repeatedly applying
this procedure proves the lemma.

If OPT(SUBT) = n + k, then the subtour LP solution on I has a total x-value of k
on edges of cost 2, since the objective value is equal to

∑
e∈E x(e)+∑

e∈E :c(e)=2 x(e),

and
∑

e∈E x(e) = 1
2

∑
v∈V

∑
e∈δ(v) x(e) = n. We fix an optimal subtour solution x ,

and we construct I ′ from I , by adding one node i , and adding edges (i, j) of cost
1, for every j in I that is incident on an edge e with c(e) = 2 and x(e) > 0. All
other edges incident on i get cost 2. Note that the optimal tour on I ′ has length at
least the length of the optimal tour on I , since we can take a tour on I ′ and shortcut
i to obtain a tour on I . On the other hand, we can use x to define a feasible solution
on I ′, by “rerouting” one unit in total from edges e = ( j, k) with c(e) = 2 to the
edges ( j, i) and (i, k). Since the cost of this solution on I ′ is the same as the cost of
x , the ratio between the length of the optimal tour and the subtour LP value has not
decreased. ��
Remark 1 We note that the proof of Lemma 4 implies that to compute integrality
gaps or approximation guarantees, we may assume without loss of generality that an
instance has an optimal subtour LP value of at most n + 1, where n is the number
of nodes in the instance. If this does not hold, we may add nodes as in the proof
of Lemma 4 without increasing OPT(SUBT), and a tour of cost C on the extended
instance can be shortcut to a tour on the original instance of cost at most C .

Theorem 4 The integrality gap of the subtour LP is at most 5
4 for the 1,2-TSP, and it

is at most 26
21 for 1,2-TSP instances for which OPT(SUBT) < n + 1

2 , where n is the
number of nodes in the instance.
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Proof By Lemma 4, we can assume without loss of generality that OPT(SUBT) <

n + 1. To compute a tour, we first drop the subtour elimination constraints and find an
optimal F2M solution. Since the F2M problem is a relaxation of the subtour LP, and it
is half-integral, its objective value is either n + 1

2 or n. Furthermore, note that in order
to bound the integrality gap, we may assume that every edge that is not in the support
of the optimal F2M solution has cost 2.

We first consider the case OPT(SUBT) < n + 1
2 , in which case the optimal F2M

solution has objective value n. Since all edges in the support of the F2M solution
have cost 1, we may assume by the arguments preceding Theorem 3 that all 1-paths
contain at least two edges of cost 1; in other words, we may assume the components
of the F2M solution are canonical. By applying Theorem 3 we convert each fractional
component of the F2M solution into a cycle on the nodes in the component.

Note that each cycle that is the result of applying Theorem 3 contains at least one
edge that is not in the optimal F2M solution, and thus it has at least one edge of cost 2.
By the observation of Papadimitriou and Yannakakis [18], we may merge these into a
single non-pure cycle. The integer components of the F2M solution are pure cycles,
since the support of the F2M solution only contains edges of cost 1. We let npure be
the number of nodes in the pure cycles (or, equivalently, in the integer components of
the F2M solution), and let nnon-pure be the number of nodes in the non-pure cycle (or,
equivalently, the number of nodes in the fractional components of the F2M solution).
Let � be the number of cost-2 edges in the computed 2-matching. Then the cost of
the computed 2-matching is n + � = npure + nnon-pure + �, by the assumption that the
optimal F2M solution has objective value n. By Theorem 3, nnon-pure+� ≤ 10

9 nnon-pure,
i.e., � ≤ 1

9 nnon-pure.
If we apply the Papadimitriou–Yannakakis algorithm to this 2-matching, this

increases the cost by at most αnpure + β(nnon-pure − �), provided that 9α ≥ 2 and
3α+2β ≥ 1 by Lemma 3. Choosing α = 5

21 , β = 1
7 , we thus find that the total cost of

the tour is at most n+�+ 5
21 npure+ 1

7 nnon-pure− 1
7� ≤ n+ 5

21 npure+( 1
7 + 6

7 · 1
9 )nnon-pure =

(1 + 5
21 )n, where we used the fact that � ≤ 1

9 nnon-pure.
If n + 1

2 ≤ OPT(SUBT) < n + 1, the optimal F2M solution has cost at most
n + 1

2 . We temporarily decrease the cost of the unique cost-2 edge in the F2M to 1, and
follow the same procedure as above, to find a 2-matching. Let nnon-pure be the number
of nodes in the non-pure cycle, and note that nnon-pure is at least 9, since a fractional
component of a canonical F2M solution contains at least two odd cycles, containing
at least six nodes, and at least three 1-paths, containing at least one additional node
each.

Let the cost of the computed 2-matching (with respect to the true costs) be n +�; in
other words, the procedure from Theorem 3 added �− 1 edges of cost 2 in addition to
the single cost-2 edge in the F2M. By Theorem 3, � − 1 ≤ 1

9 nnon-pure. As in the case
when OPT(SUBT) < n+ 1

2 , we apply the Papadimitriou-Yannakakis algorithm to this
2-matching, and by Lemma 3 this increases the cost by at most αnpure+β(nnon-pure−�).
We now choose α = 1

4 , β = 1
8 , to get that the total cost of the tour is at most

n +�+ 1
4 npure + 1

8 nnon-pure − 1
8� = n + 1

4 npure + 9
8 nnon-pure + 7

8 (�−1)+ 7
8 . Now, recall

that �− 1 ≤ 1
9 nnon-pure and that nnon-pure ≥ 9, and thus 7

8 ≤ 5
8 + 1

4 · 1
9 nnon-pure. Hence,
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we can upper bound the cost of the tour by n+ 1
4 npure+( 9

8 + 7
8 · 1

9 + 1
4 · 1

9 )nnon-pure+ 5
8 =

5
4 (n + 1

2 ) ≤ 5
4 OPT(SUBT). ��

Remark 2 The bound of 5
4 in Theorem 4 may be marginally improved by a more

careful analysis of small instances. It appears that in order to decrease the bound to
10
9 , or even 11

9 , more substantial new ideas are needed, however.

Remark 3 The results in this section yield a polynomial time algorithm for finding a
tour of cost at most 5

4 OPT(SUBT): first, solve the F2M problem, and use the procedure
from the proof of Lemma 4 to ensure that OPT(SUBT) < n + 1 by adding nodes if
necessary. Then, apply the procedure from the proof of Theorem 4 to find a tour of
cost at most 5

4 OPT(SUBT). Finally, shortcut the nodes added by the procedure from
Lemma 4 to get a tour for the original instance.

5 Computational results

In the case of the 1,2-TSP, for a fixed n we can generate all instances as follows.
For each value of n, we first generate all nonisomorphic graphs on n nodes using the
software package NAUTY [13]. We let the cost of edges be one for all edges in G
and let the cost of all other edges be two. Then each of the generated graph G gives
us an instance of 1,2-TSP problem with n nodes, and this covers all instances of the
1,2-TSP for size n up to isomorphism.

In fact, we can do slightly better by only generating biconnected graphs. We say
that a graph G = (V, E) is biconnected if it is connected and there is no vertex
v ∈ V such that removing v disconnects the graph; such a vertex v is a cut vertex. It
is possible to show that the subtour LP value is at least n + 1 if G is not biconnected,
hence, by Lemma 4 it suffices to consider biconnected graphs. However, the proof
of Lemma 4 involves adding additional new nodes (perhaps many of them). Using a
similar technique to the one in the proof of Lemma 4, one can show that given a graph
on n vertices, there is a biconnected graph on at most n + 2 vertices that has no better
ratio of optimal tour to subtour LP value. In Appendix 2 we prove two lemmas that
imply the following corollary.

Corollary 1 Let G = (V, E) be the graph of cost 1 edges in a 1,2-TSP instance.
Then if G = (V, E) is not biconnected, there exists a biconnected G ′ = (V ′, E ′) with
|V ′| ≤ |V | + 2 such that OPT(G)/SUBT(G) ≤ OPT(G ′)/SUBT(G ′).

For each instance of size n, we solve the subtour LP and the corresponding integer
program using CPLEX 12.1 [12] and a Macintosh laptop computer with dual core
2 GHz processor and 1GB of memory. It is known that the integrality gap is 1 for
n ≤ 5, so we only consider problems of size n ≥ 6. The results are summarized in
Table 1. For n = 11, the number of nonisomorphic biconnected graphs is nearly a
billion and thus too large to consider, so we turn to another approach. For n = 11 and
n = 12, we use the fact that we know a lower bound on the integrality gap of n+1

n ,
namely for the instances depicted in Fig. 2. The claimed lower bounds on the integrality
gap for these instances follow readily from the integrality gap for the example in Fig. 1.
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Table 1 The subtour LP integrality gap for 1,2-TSP for 6 ≤ n ≤ 12, where the ratio for 6 ≤ n ≤ 10 is
only on biconnected graphs

n 6 7 8 9 10 11 12

Subtour IP/LP ratio 8/7.5 8/7.5 9/8.5 10/9 11/10 12/11 13/12

No. of graphs 56 468 7,123 194,066 9,743,542 900,969,091 –

The second row shows the number of nonisomorphic biconnected graphs for 6 ≤ n ≤ 11

Fig. 2 Illustration of the instances with integrality gap at least 12
11 for n = 11 (without the grey node) and

13
12 for n = 12 (with the grey node) for the 1,2-TSP. All edges of cost 1 are shown

We then check whether this is the worst integrality gap for each vertex of subtour LP. A
list of non-isomorphic vertices of the subtour LP is available for n = 6 to 12 at Sylvia
Boyd’s website http://www.site.uottawa.ca/~sylvia/subtourvertices. In order to check
whether the lower bound on the integrality gap is tight, we solve the following integer
programming problem for each vertex x of the polytope for n = 11 and n = 12, where
now the costs c(e) are the decision variables, and x is fixed:

Max z − αn

∑

e∈E

c(e)x(e)

subject to:
∑

e∈T

c(e) ≥ z, ∀ tours T,

c(e) ∈ {1, 2}, ∀e ∈ E .

Note that αn is the lower bound on the integrality gap for instances of n nodes. If the
objective is nonpositive for all of the vertices of the subtour LP, then we know that αn

is the integrality gap for a particular value of n.
Since the number of non-isomorphic tours of n nodes is (n − 1)!/2, the number of

constraints is too large for CPLEX for n = 11 or 12. We overcome this difficulty by
first solving the problem with only tours that have at least n − 1 edges in the support
graph of the vertex x , and repeatedly adding additional violated tours. We find that
the worst case integrality gap for n = 11 is 12

11 and for n = 12 is 13
12 .

We can now observe that our overall computation leads to a bound of 10
9 on the

integrality gap for instances of the 1,2-TSP with n ≤ 12. Suppose the worst-case
integrality gap for these instances is attained for an instance with k vertices. If k ≤ 8,
then we know that there is a biconnected graph on at most 10 vertices with no better
integrality gap, and we have determined the worst-case ratio for all biconnected graphs
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on at most 10 vertices. If k = 9 or k = 10, then we know there is a biconnected graph
on at most 12 vertices with no better integrality gap, and we have determined the
worst-case ratio for all biconnected graphs with at most 10 vertices and all instances
with 11 or 12 vertices. If k = 11 or k = 12, then we have determined the worst-case
ratio for all instances with 11 or 12 vertices. Thus for any instance with n ≤ 12, we
have determined that the integrality gap is at most 10

9 .

6 Conjectures and conclusions

As stated in the introduction, we conjecture the following.

Conjecture 2 The integrality gap of the subtour LP for the 1,2-TSP is 10
9 .

Schalekamp et al. [20] have conjectured that to determine the integrality gap for the
subtour LP, we can restrict ourselves to considering instances, which have an optimal
solution that is an extreme point of the F2M polytope.

We have shown in Theorem 2 that if an analogous conjecture is true for 1,2-TSP,
then the integrality gap for 1,2-TSP is at most 7

6 ; it would be nice to show that if the
analogous conjecture is true for 1,2-TSP then the integrality gap is at most 10

9 .
Finally, we remark that the integrality gap of the linear program obtained by adding

the constraints

∑

e∈δ(S)\F

x(e) +
∑

e∈F

(1 − x(e)) ≥ 1 ∀S ⊂ V, F ⊆ δ(S), |F | odd,

to (SUBT) is at most 11
9 by (4) and Lemma 1, since the 2M polytope is described by

these additional constraints plus the degree constraints. It is an interesting question
whether the analysis of Berman and Karpinski [3] can also be expressed in terms of
the optimal value of this stronger LP.

Acknowledgments We thank Sylvia Boyd for useful and encouraging discussions. We thank two anony-
mous referees for helpful comments and suggestions.

Appendix 1: Proof of Lemma 3

We now prove Lemma 3 from Sect. 4.

Lemma 5 If OPT(SUBT) < n + 1, then the difference between the cost of the 2M
used and the tour constructed by the Papadimitriou–Yannakakis algorithm can be
upper bounded by αnpure + β(nnon-pure − �), where npure is the number of nodes in
pure cycles in the 2M, nnon-pure is the number of nodes in the non-pure cycle, and �

is the number of edges of cost 2 in the non-pure cycle, for any values of α, β so that
9α ≥ 2 and 3α + 2β ≥ 1.

Proof Recall from Sect. 2 that the Papadimitriou–Yannakakis algorithm starts by
finding a maximum cardinality bipartite matching in a graph which has a node for
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each pure cycle on one side, and a node for each node in the instance on the other side.
There is an edge (C, i) if i 	∈ C , and there exists some node j in C such that (i, j) is
an edge of cost 1.

In Lemma 1, we show that OPT(SUBT) ≥ n + r , where r is the number of pure
cycles that are not matched in the maximum cardinality bipartite matching. Hence,
the assumption that OPT(SUBT) < n +1 implies that all the pure cycles are matched.
In order to show that this implies the lemma, we will repeat some key parts of the
algorithm and analysis of Papadimitriou and Yannakakis.

Consider the directed graph F = (C , A) which has a node for every cycle in the
2M, and an arc (C, C ′) if the maximum cardinality bipartite matching contains an edge
from cycle C to a node i in cycle C ′. Each node in F that corresponds to a pure cycle
has outdegree 1, and the non-pure cycle (if it exists) has outdegree 0. Papadimitriou
and Yannakakis show how to find a spanning subgraph of F ′ of F such that each
nontrivial component is an in-tree of depth one or a path of length two. The only
possible trivial component is the node that corresponds to the non-pure cycle. Since
the non-pure cycle has outdegree 0, it can only occur in a nontrivial component as the
root of an in-tree, or as the endpoint of a path of length two. It turns out that the latter
does not happen in the construction described by Papadimitriou and Yannakakis, but
even if it did, we could just remove the last edge in the length-two path to obtain one
in-tree of depth one and one trivial component containing the non-pure cycle. Hence,
we may assume the non-pure cycle only occurs in a nontrivial component as the root
of an in-tree.

Papadimitriou and Yannakakis now merge the cycles in one component of F ′ into
a single cycle containing at least one edge of cost 2 as follows: If the component is an
in-tree of depth one, let C be the cycle corresponding to the root, let C1, . . . , Cm be
the remaining cycles in the component, and let vi be the node in C such that (Ci , vi )

was in the bipartite matching. We consider the nodes in C in clockwise order, starting
from a node v 	= vi for i = 1, . . . , m if such a node exists, and an arbitrary node v

otherwise. If we encounter two adjacent nodes vi , v j in {v1, . . . , vm}, then we merge
the corresponding cycles Ci and C j with C according to (a) in Fig. 3. Otherwise, if
the current node is v j but its clockwise neighbor is not or if its clockwise neighbor is
the first node v, then we merge C j with C as in (b) in Fig. 3. Finally, if the component
is a path of length two, we merge the three cycles as in (c) in Fig. 3. Note that each
cycle in the resulting graph contains at least one edge of cost 2, and hence we can find
a tour of the same cost by removing the edges of cost 2, and arbitrarily connecting the
resulting paths into a tour.

We now show that the number of edges of cost 2 that are added by merging cycles
according to Fig. 3 can be upper bounded by αnpure + β(nnon-pure − �), provided that
α and β are so that 9α ≥ 2 and 3α + 2β ≥ 1.

We say a node is involved in a merging if it is either a node in one of the cycles that
are fully drawn in Fig. 3, or if it is node v or vi in subfigure (b). Note that each node
is involved in at most one merging. Recall that the non-pure cycle can only occur as
the root of a 1-tree of depth one or as a trivial component in F ′, and hence, only the
partially drawn cycle in (a) and (b) is (potentially) a non-pure cycle.

We now examine each of the cases (a), (b) and (c) in Fig. 3 in turn. In Fig. 3a one
edge of cost 2 is added and we can charge this edge to the (at least) 6 nodes from pure
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vj vi vj vi

(a)
v vi v vi

(b)

x y x y

(c)

Fig. 3 The three cases for merging cycles in [18] (Figure 2 in [18]). The black edges indicate edges of cost
1, and the grey edges (potentially) have cost 2

cycles involved in this merging, as long as 6α ≥ 1. This is indeed the case, because we
have the stronger requirement that 9α ≥ 2. In (b), again, one edge of cost 2 is added,
and we can charge the edge to the (at least) three nodes of the pure cycle involved in the
merging and the 2 nodes of the (potentially) non-pure cycle involved in the merging,
as long as 3α + 2β ≥ 1 (in case the 2 nodes were part of the non-pure cycle), and
5α ≥ 1 (in case the 2 nodes were part of a pure cycle). Finally, in Fig. 3c, two edges
of cost 2 are added; we can charge the two edges to the (at least) nine nodes from pure
cycles involved in the merging as long as 9α ≥ 2.

Hence, we have shown that difference in cost between the tour and the 2M can be
charged to the nodes, in such a way that each node is charged at most once, and a node
in a pure cycle is charged at most α and a node in a non-pure cycle is charged at most
β.

Finally, we remark that a node in a non-pure cycle is charged only in case (b). Now,
if (vi , v) in Fig. 3b is an edge of cost 2, then there is no need to charge any nodes,
since the cost after merging is the same as before the merge. Hence, if we direct all
edges of the non-pure cycle in clockwise direction, then the head of the edges of cost
2 is never charged. The total chage to the nodes in the non-pure cycle is therefore at
most β(nnon-pure − �). ��

Appendix 2: Proof of Corollary 1

We now show that the worst-case integrality gap for the subtour LP for the 1,2-TSP
can be found on graphs of cost 1 edges that are biconnected, as stated in Corollary 1
in Sect. 5. Let OPT(G) and SUBT(G) be the cost of the optimal tour and the value of
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the subtour LP (respectively) when G is the graph of cost 1 edges. We start by proving
that the worst case is obtained on a connected graph.

Lemma 6 Let G = (V, E) be the graph of cost 1 edges in a 1,2-TSP instance. Then
if G = (V, E) is not connected, there exists a connected graph G ′ = (V ′, E ′) with
|V ′| = |V | + 1 such that OPT(G)/SUBT(G) ≤ OPT(G ′)/SUBT(G ′).

Proof Suppose G has more than one connected component. We create G ′ = (V ′, E ′)
by adding a new vertex i∗ to the graph, and adding edges from all j ∈ V to i∗ so
that V ′ = V ∪ {i∗} and E ′ = E ∪ {(i∗, j) : j ∈ V }. Given a tour of G ′, we can
easily produce a tour of G of no greater cost by shortcutting i∗, so that OPT(G) ≤
OPT(G ′). Let x be an optimal solution to the subtour LP for the graph G. We now
define a solution x ′ for G ′, where x ′

i j = xi j if i and j are in the same connected
component of G, while if i and j are in different connected components of G, then
we set x ′

i j = 0, x ′
i∗i = xi j , and x ′

i∗ j = xi j . It is easy to see that the cost of x ′ is
the same as that of x . We now argue that there is some solution x ′′ feasible for the
subtour LP on G ′ such that its cost is no greater, so that SUBT(G ′) ≤ SUBT(G). It
is clear that the bounds constraints (3) are satisfied for x ′ and the degree constraints
(1) are satisfied for x ′ for all i ∈ V ; however, the degree constraint for i∗ may not
be satisfied. Since for any component C ⊆ V of G, x(δ(C)) ≥ 2, it is clear that
x ′(δ(i∗)) ≥ 2, but it may be the case that x ′(δ(i∗)) > 2. For the subtour constraints
(2), consider any S ⊂ V ′, S 	= ∅, such that i∗ /∈ S. Then x ′(δ(S)) ≥ x(δ(S)) ≥ 2,
and for any S ⊆ V ′ with i∗ ∈ S, S 	= {i∗}, x ′(δ(S)) = x ′(δ(V ′ − S)) ≥ 2 by
the previous argument. Finally, Goemans and Bertsimas [11] have shown (see also
Williamson [23]) that if edge costs obey the triangle inequality, and there is some
solution x ′ to the subtour LP in which degree constraints are exceeded but all other
constraints are met, then there is another feasible solution x ′′ of no greater cost in
which all constraints are satisfied. Hence we have that SUBT(G ′) ≤ SUBT(G). Thus
we have that OPT(G)/SUBT(G) ≤ OPT(G ′)/SUBT(G ′). ��
Lemma 7 Let G = (V, E) be the graph of cost 1 edges in a 1,2-TSP instance. Then
if G = (V, E) is connected but not biconnected, there exists a biconnected G ′ =
(V ′, E ′) with |V ′| = |V | + 1 such that OPT(G)/SUBT(G) ≤ OPT(G ′)/SUBT(G ′).

Proof By hypothesis we assume that the graph G = (V, E) is connected. Let i1, . . . , ik

be all the cut vertices of G, and let C1, . . . , C� be all the connected components
formed when these vertices are removed, so that C1, . . . , C�, {i1}, . . . , {ik} form a
partition of V . We create a new graph G ′ = (V ′, E ′) by adding a new vertex i∗,
and adding edges from i∗ to each vertex in C1 ∪ · · · ∪ C�, so that V ′ = V ∪ {i∗}
and E ′ = E ∪ {(i∗, j) : j ∈ C p for some p}. We note that G ′ is biconnected. As
before, we have OPT(G) ≤ OPT(G ′) since given a tour of G ′ we can shortcut i∗
to get a tour of G. Let x be an optimal subtour LP solution for graph G. We now
argue, as we did in the proof of Lemma 6, that we can create an x ′ that costs no more
than x such that all the subtour and bounds constraints are obeyed, and all degree
constraints are either met or exceeded; this will imply that SUBT(G ′) ≤ SUBT(G),
and complete the proof. Suppose without loss of generality that removing cut vertex
i1 creates components C1 and C = C2 ∪ · · · ∪ C� ∪ {i2} ∪ · · · ∪ {ik}, so that C1, {i1},
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and C partition V . We set x ′
i j = 0 and x ′

i∗i = x ′
i∗ j = xi j if i ∈ C1 and j ∈ C ;

x ′
i j = xi j otherwise. If i ∈ C1 and j ∈ C , then (i, j) /∈ E since i1 is a cut vertex, so

the cost of x ′ is no more than that of x . The arguments that all constraints are satisfied
except for the degree constraint on i∗ follow as in the proof of Lemma 6. We now
must argue that x ′(δ(i∗)) ≥ 2. To do this, we show that

∑
i∈C1, j∈C xi j ≥ 1. Since

x(δ(i1)) = 2, it must be the case that either
∑

j∈C xi1 j ≤ 1 or
∑

j∈C1
xi1 j ≤ 1; without

loss of generality we assume the former is true. Then since x(δ(C1 ∪ {i1})) ≥ 2, and
x(δ(C1 ∪ {i1})) = ∑

j∈C xi1 j + ∑
i∈C1, j∈C xi j , it follows that

∑
i∈C1, j∈C xi j ≥ 1,

and the proof is complete. ��
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