
Math. Program., Ser. B (2016) 157:219–243
DOI 10.1007/s10107-014-0832-7

FULL LENGTH PAPER

Decomposition algorithms for two-stage
chance-constrained programs

Xiao Liu · Simge Küçükyavuz · James Luedtke

Received: 1 March 2014 / Accepted: 15 October 2014 / Published online: 28 October 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract We study a class of chance-constrained two-stage stochastic optimization
problemswhere second-stage feasible recourse decisions incur additional cost. In addi-
tion, we propose a new model, where “recovery” decisions are made for the infeasible
scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop
decomposition algorithms with specialized optimality and feasibility cuts to solve this
class of problems. Computational results on a chance-constrained resource planing
problem indicate that our algorithms are highly effective in solving these problems
compared to a mixed-integer programming reformulation and a naive decomposition
method.

Keywords Two-stage stochastic programming · Chance constraints ·
Benders decomposition · Cutting planes

Mathematics Subject Classification 90C15 · 90C10

Simge Küçükyavuz and Xiao Liu are supported by the National Science Foundation (NSF) under Grant
CMMI-1055668.
James Luedtke is supported by NSF under Grant CMMI-0952907 and by the Applied Mathematics
activity, Advance Scientific Computing Research program within the DOE Office of Science under a
contract from Argonne National Laboratory.

X. Liu · S. Küçükyavuz (B)
Department of Integrated Systems Engineering, Ohio State University,
Columbus, Ohio, USA
e-mail: kucukyavuz.2@osu.edu

X. Liu
e-mail: liu.2738@osu.edu

J. Luedtke
Department of Industrial and Systems Engineering, University of Wisconsin-Madison,
Madison, Wisconsin, USA
e-mail: jrluedt1@wisc.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-014-0832-7&domain=pdf

220 X. Liu et al.

1 Introduction

Chance-constrained mathematical programs (CCMPs) aim to find optimal solutions
to problems where the probability of an undesirable outcome is limited by a given
threshold, ε. The first optimization problemwith disjoint chance constraints is defined
by Charnes et al. [10]. Charnes and Cooper [9] establish the deterministic equivalent
for chance-constrained programs. Miller and Wagner [16] study the mathematical
properties of joint chance-constrained programs with independent random variables.
Prékopa [20] studies joint probabilistic constraints with dependent random variables
and proposes an equivalent deterministic convex program under certain assumptions
on the distribution of the random right-hand side.

Luedtke and Ahmed [14] show that for more general distributions, sample-average
approximation (SAA) can be applied to find good feasible solutions and statistical
bounds to the original CCMPs. Related studies can also be found in [6–8,18]. The
resulting sampled problem can be formulated as a large-scale deterministic mixed-
integer program by introducing a big-M term for each inequality in the chance con-
straint and a binary variable for each scenario. However, the weakness of the linear
programming relaxation of this big-M formulation and its large size make it hard to
solve. Luedtke et al. [15], Küçükyavuz [12] study strong valid inequalities for the
deterministic equivalent formulation of chance-constrained problems with random
right-hand sides. An alternative reformulation for this class of problems involves using
the concept of (1−ε)-efficient points [21]. Sen [24] studies a disjunctive programming
reformulation by using (1 − ε)-efficient points. Dentcheva et al. [11] give reformula-
tions of CCMPs based on the (1− ε)-efficient points, and obtain valid bounds for the
objective value. Beraldi and Ruszczyński [3] propose a branch-and-bound algorithm
based on the enumeration of the exponentially many (1− ε)-efficient points. See also
Beraldi and Ruszczyński [2], Ruszczyński [22] and Saxena et al. [23] for algorithms
based on the (1 − ε)-efficient points reformulation. For problems with special struc-
tures, formulations that do not involve additional binary variables are developed in
Song and Luedtke [26], Song et al. [25].

Most of the earlier work in CCMPs, including the aforementioned studies, can be
seen as single-stage (i.e., static) decision-making problems where the decisions are
made such that after the uncertain data is realized, there is a low probability of an
undesirable outcome. Zhang et al. [32] consider multi-stage CCMPs and give valid
inequalities for the deterministic equivalent formulation, and observe that decompo-
sition algorithms are needed to solve large-scale instances of these problems. In this
paper, we study such algorithms for two-stage CCMPs, where after the uncertain
parameters are revealed, we would like to determine recourse actions that incur addi-
tional cost. This is similar to traditional two-stage stochastic programs (without chance
constraints), where some decisions aremade in the first stage before the uncertain para-
meters are revealed. In the second stage, recourse decisions are made to satisfy the
second stage problems for all possible scenarios at a minimum total expected cost.
Van Slyke and Wets [28] propose the L-shaped decomposition method, which is an
adaptation of the Benders decomposition algorithm [1] to such stochastic programs.
(See also Birge and Louveaux [5] for a multi-cut implementation.) However, these
methods cannot be directly applied to the two-stage CCMP, since both the feasibility

123

Decomposition algorithms for two-stage chance-constrained programs 221

and optimality cuts of the Benders method work on the assumption that all second
stage problems should be feasible, which is not the case for CCMPs. Luedtke [13]
overcomes one of these difficulties by developing a valid “feasibility cut” for a spe-
cial case of two-stage CCMPs with no additional costs for the second stage variables.
A few studies [29,30] have attempted to integrate Benders decomposition to solve
two-stage CCMP, but the optimality cuts in these algorithms involve undesirable “big-
M” coefficients, which lead to weak lower bounds and computational difficulties.
Hence, an interesting research question is whether we can derive strong optimality
cuts for two-stage CCMPs. In this paper, we answer this question in the affirmative. In
a concurrent work, Zeng et al. [31] propose a decomposition algorithm for two-stage
CCMP, which is based on bilinear feasibility and optimality cuts. However, these cuts
need to be linearized by adding additional variables which are constrained by “big-M”
inequalities. This yields a significantly larger master problem formulation, and in our
experiments we found that this approach also yielded weak lower bounds, although
more promising results were reported in Zeng et al. [31] on their test instances.

Similar to a static CCMP, the two-stage CCMPmodel assumes that we are allowed
to ignore the outcomes of a small fraction of the scenarios. This assumption is appro-
priate when constraint satisfaction is “all or nothing” or if the magnitude of constraint
violation is not important, e.g., if this simply results in lost demands. However, in
some other problems the magnitude of violation, and not just the probability that a
violation occurs, is also important. For example, in an emergency preparedness prob-
lem it is important to have a plan that meets all the needs with high probability, but also
that does not have excessive shortages in case the plan is not successful. As another
example, a power system operator wishes to have a plan in which all energy supply
needs are met with high probability, but also wishes to control the amount of shortage
in the cases when a shortage occurs. To deal with such problems, we introduce in §2
an alternative model for risk management, which models the need to recover from
an undesirable outcome. We refer to this model as two-stage CCMP with recovery
(CCMPR). We show that a standard two-stage CCMP is a special case of the two-
stage CCMPR, and thus algorithms for two-stage CCMPR can be used to solve either
problem. In §3 we propose a branch-and-cut based decomposition algorithm for two-
stage CCMPR based on optimality cuts that do not involve big-M terms. In §4, we
summarize the performance of the proposed decomposition algorithm on a resource
planning example. We conclude with §5.

2 Mathematical models

2.1 Two-stage chance-constrained programs with recourse

Let (Ω,F ,P) be a probability space.We consider a two-stage problemwith first-stage
decision variables x ∈ X ⊆ R

n1 , where X is assumed to be a polyhedron representing
the deterministic constraints of the problem. For each x ∈ X and random outcome
ω ∈ Ω , the second stage problem is defined as:

f (x, ω) := min
y

{
qω

�y : Tωx + Wωy ≥ hω, y ∈ R
n2+

}
. (1)

123

222 X. Liu et al.

Here, for eachω ∈ Ω , Tω is a d×n1 matrix, hω ∈ R
d ,Wω is a d×n2 matrix, qω ∈ R

n2+ ,
and y is the vector of second stage decision variables. We adopt the convention that
f (x, ω) = +∞ if (1) is infeasible. For any ω ∈ Ω , we define

P(ω) = {x ∈ X : ∃y ∈ R
n2+ , Tωx + Wωy ≥ hω},

as the set of first-stage solutions x forwhich the second-stage problem (1) has a feasible
solution (i.e., f (x, ω) < +∞ if and only if x ∈ P(ω)).

Given a cost vector c ∈ R
n1 , the traditional two-stage stochastic program has the

form:

min{c�x + Eω[f (x, ω)] : x ∈ X}.

This problem implicitly enforces that x ∈ P(ω) for almost every ω ∈ Ω , since
otherwise the objective value is infinite. In contrast, a traditional CCMP without costs
in the second stage has the form:

min{c�x : P{x ∈ P(ω)} ≥ 1 − ε, x ∈ X}.

The motivation behind the chance constraint model is that enforcing x ∈ P(ω) for
almost every ω ∈ Ω may either lead to an infeasible model, or may lead to a model in
which the first-stage solutions are too costly. Thus, the constraint that the second-stage
must be feasible in all possible realizations is replaced with the relaxed version that
enforces this to hold with high probability. This chance-constrained model does not
account for the cost of second-stage solutions in the case when they are feasible.

We propose a two-stage CCMP that extends both the traditional two-stage and
chance-constrainedmodels. Themodel uses indicator decision variables Iω forω ∈ Ω ,
where Iω = 0 implies that x ∈ P(ω):

min
x,I

c�x + P(Iω = 0)Eω[f (x, ω) | Iω = 0] (2a)

s.t. Iω = 0 ⇒ x ∈ P(ω), ω ∈ Ω (2b)

P{x ∈ P(ω)} ≥ 1 − ε (2c)

x ∈ X, Iω ∈ B, ω ∈ Ω. (2d)

The idea behind this model is that the recourse model (1) represents the “normal”
system operation, which is the desired state. The constraint (2c) together with the
logical condition (2b) enforces the chance constraint, which states that the probability
that the system has a feasible second stage solution is at least 1 − ε. The objective
in (2) minimizes the sum of the first-stage costs and the expected second stage costs,
averaged only over the outcomes ω for which Iω = 0. This ensures that the objective
is finite for any feasible solution.

Throughout the paper we make the following assumptions:

A1: The random vector ω has finite support, i.e., Ω := {ω1, ω2, . . . , ωm}, and each
outcome is equally likely (P{ω = ωk} = 1/m for k = 1, . . . ,m).

123

Decomposition algorithms for two-stage chance-constrained programs 223

A2: X and P(ω) for ω ∈ Ω are non-empty polyhedra;
A3: P(ω), ω ∈ Ω have the same recession cone, i.e., C := {r ∈ R

n : x + λr ∈
P(ω) ; ∀x ∈ P(ω), λ ≥ 0} for all ω ∈ Ω;

A4: There does not exist an extreme ray, r̃ , of X with c�r̃ < 0,

where (A1)–(A3) directly follow [13]. To simplify notation, let Pk = P(ωk), Wk =
Wωk , hk = hωk , qk = qωk Tk = Tωk , zk = Iωk , and f (x, k) = f (x, ωk) for all k ∈ K ,
where K = {1, 2, . . . ,m}. Assumption (A4) together with f (x, ω) ≥ 0 (because
q, y ≥ 0) ensures that there is a bounded optimal solution to the two-stage CCMP.

2.2 Two-stage chance-constrained programs with recovery

Model (2) ignores the outcome of scenarios that are not enforced to have a feasible
second-stage solution under the normal operations (Iω = 0), and instead just enforces
that the probability of this selected set of “ignored outcomes” be small. In this section,
we extend this model to also include a cost for scenarios in which the normal operation
is not enforced to be feasible (Iω = 1). The idea is to introduce a secondary “recovery”
model, that in some way represents the system operation in cases when we do not
operate under the normal operation defined by (1). For example, the recovery problem
may relax some of the constraints of the normal operational model, by including
decision variables that measure and penalize the magnitude of the violation of such
constraints. Formally, for any ω ∈ Ω and x ∈ X , we define the recovery operation
problem as follows:

f̄ (x, ω) = min
ȳ

{q̄�
ω ȳ : T̄ωx + W̄ω ȳ ≥ h̄ω, ȳ ∈ R

n̄2+ } (3)

where T̄ω, W̄ω are d̄ × n1 and d̄ × n̄2 matrices, respectively, h̄ω ∈ R
d̄ , q̄ ∈ R

n̄2+ , and ȳ
is the vector of recovery decisions. Note that the dimension n̄2 of ȳ is not necessarily
the same as the dimension n2 of the recourse decision vector y (similarly for d and d̄).
For example, the recovery problem may be identical to the normal recourse problem
except for the addition of new recovery decision variables that guarantee a feasible
solution always exists.

We then introduce the two-stage CCMPR model as follows:

min
x, I

c�x + P(Iω = 0)Eω[f (x, ω) | Iω = 0] + P(Iω = 1)Eω[f̄ (x, ω) | Iω = 1]
s.t. Iω = 0 ⇒ x ∈ P(ω), ω ∈ Ω (4a)

P{x ∈ P(ω)} ≥ 1 − ε (4b)

x ∈ X, Iω ∈ B, ω ∈ Ω. (4c)

The only difference between the CCMPR and CCMP models is the inclusion of
the term Eω[f̄ (x, ω) | Iω = 1] in the objective, which captures the expected cost of
the recovery operations, conditioned over the scenarios that are selected to operate in
recovery mode.

We make the following assumptions in addition to assumptions (A1)–(A4):

123

224 X. Liu et al.

B1: f̄ (x, ω) < +∞ for all x ∈ X, ω ∈ Ω .
B2: f (x, ω) ≥ f̄ (x, ω) for all x ∈ X, ω ∈ Ω .

The assumption (B1) is analogous to the standard relatively complete recourse assump-
tion used in two-stage stochastic programs,whichwe apply only to the recoverymodel.
The motivation behind assumption (B2) is that the recovery operation has a larger fea-
sible region than the normal operation due to the introduction of additional recovery
actions. The use of these recovery actions is either highly undesirable, or possibly
not even physically meaningful (e.g., if they are just used to measure constraint vio-
lation), and so the chance constraint enforces that in most scenarios they should not
be used. However, when they are allowed to be used, all the operations of the normal
recourse model are still feasible, and hence the cost in the recovery operation can only
be smaller. On the other hand, if the recovery actions are not allowed to be used, then
the recovery model reduces to the normal model, and incurs the same cost.

Based on assumption (A1), we once again simplify notation by letting W̄k = W̄ωk ,
h̄k = h̄ωk , q̄k = q̄ωk , T̄k = T̄ωk , and f̄ (x, k) = f̄ (x, ωk) for all k ∈ K . Using (A1)
and this new notation, we can re-write (4) as:

min
x,z

c�x + 1

m

(
m∑

k=1

(1 − zk) f (x, k) +
m∑

k=1

zk f̄ (x, k)

)
(5a)

s.t. zk = 0 ⇒ x ∈ Pk, k ∈ K (5b)
m∑

k=1

zk ≤ p (5c)

x ∈ X, z ∈ B
m, (5d)

where p := �mε�, and (5c) represents the chance constraint (2c). Throughout the
paper, we adopt the convention that 0 × ∞ = 0.

The deterministic equivalent formulation for two-stage CCMPR (5) is then:

min
x,y,ȳ,z

c�x + 1

m

m∑
k=1

q�
k yk + 1

m

m∑
k=1

q̄�
k ȳk (6a)

s.t. Tkx + Wk yk + M ′
k zk ≥ hk, k ∈ K (6b)

T̄k x + W̄k ȳk + M̄k(1 − zk) ≥ h̄k, k ∈ K (6c)
m∑

k=1

zk ≤ p (6d)

x ∈ X, y ∈ R
n2×m
+ , ȳ ∈ R

n̄2×m
+ , z ∈ B

m, (6e)

whereM ′
k, k ∈ K is a vector of sufficiently large numbers tomake (6b) redundantwhen

zk equals to 1, assuming it exists (e.g., when X is compact). Similarly, M̄k, k ∈ K is a
vector of sufficiently large numbers to make (6c) redundant when zk = 0 (assuming it
exists). Nonnegativity of the coefficient vector qk , togetherwith (6b) and nonnegativity
of the recourse variables y imply that when zk = 1 the normal operation cost term

123

Decomposition algorithms for two-stage chance-constrained programs 225

(q�
k yk) will be zero, and similarly when zk = 0 the recovery operation cost term

(q̄�
k ȳk) will be zero. In this paper, we give a decomposition algorithm with the aim of

avoiding the constraints (6b)–(6c), because they lead to weak LP relaxations and also
because of the introduction of a large number of variables yk, ȳk , k ∈ K .

Remark 1 In another line of work, an alternative risk-averse two-stage optimization
problem is defined where the expectation term in (2a) is replaced with the conditional
value-at-risk (CVaR) (see, for example Miller and Ruszczyński [17] and Noyan [19]).
Under the assumption that each scenario is equally likely and that ε = p

m , such amodel
would minimize the sum of p worst outcomes (using the representation of CVaR in
Bertsimas and Brown [4]) and hence will not lead to solutions with second-stage
infeasibility for any scenario. In contrast, model (2) minimizes the sum of m − p best
outcomes and allows the remaining outcomes to be infeasible with the assumption
that such outcomes can be ignored.

2.2.1 Special cases

We first observe that the two-stage CCMP model (2) is a special case of the two-stage
CCMPR model (4), by setting f̄ (x, ω) ≡ 0 for all x ∈ X and ω ∈ Ω . In this case,
because f (x, ω) ≥ 0 for all x ∈ X, ω ∈ Ω , we immediately have that assumptions
(B1) and (B2) are satisfied.

Another interesting special case of two-stage CCMPR is a penalty-based model.
We refer to this class of problems as two-stage CCMP with simple recovery. In this
case, the recovery model takes the form:

f̄ (x, ω) = min
y,u

{q�
ω y + w�

ω u : Tωx + Wωy + Dωu ≥ hω, y ∈ R
n2+ , u ∈ R

n′
2+ }, (7)

where Tω, Wω, hω, and qω are the data associated with the normal operation problem

under outcome ω. The vector of decision variables u ∈ R
n′
2+ can be interpreted as slack

variables that are introduced to ensure that (7) always has a feasible solution. Thus,
the full set of recovery variables is ȳ = (y, u), with dimension n̄2 = n2 + n′

2. The
use of the slack variables u is penalized in the objective with the nonnegative cost
vector wω. Dω is a d × n′

2 matrix. For example, feasibility of (7) can be guaranteed
by taking n′

2 = d and Dω to be a d × d identity matrix. To simplify notation, we let
W̄ω = (Wω, Dω) and q̄ω = (qω,wω). Hence, if a constraint is violated in the normal
model, then the corresponding slack variable equals the shortfall. If Dω is chosen such
that (7) is feasible for any x ∈ X , ω ∈ Ω , then assumption (B1) is satisfied. We next
show that assumption (B2) is also satisfied, and therefore this is a special case of the
two-stage CCMPR model (4). For any x ∈ X\P(ω), f (x, ω) = +∞, so the assump-
tion trivially holds. Now consider any x̂ ∈ P(ω) and ŷ, the optimal second stage
solution with objective f (x̂, ω). So we have Tω x̂+Wω ŷ ≥ hω. Then according to (7),
the vector (ŷ, 0) is a feasible solution (7). Hence, f (x̂, ω) = q�

ω ŷω = q̄�
ω (ŷω, 0) ≥

f̄ (x, ω), since (ŷ, 0) is a feasible solution to the recovery problem. In Sect. 4
we will report computational experiments with two-stage CCMPR on this special
case.

123

226 X. Liu et al.

2.2.2 Two-stage consistency

Takriti andAhmed [27] observe that in two-stage stochastic programswith an objective
tominimize aweighted sumof the expected cost and somemeasure of the variability of
costs, it is possible to obtain a model in which a second-stage solution obtained when
solving a deterministic equivalent of the two-stage problem is not an optimal solution
of the second-stage problem. They argue that this inconsistency makes such mod-
els inappropriate, and in the two-stage stochastic programming setting they provide
conditions on the variability measure that assure this inconsistency does not occur.

In our two-stage model, for a given first-stage solution x ∈ X and scenario ω ∈
Ω , the key question is whether we will operate in the normal model of (1), or in
the recovery model (3). The two-stage model introduces decision variables Iω to
distinguish these cases. However, the constraints (5b) only enforce that if Iω = 0 then
the normal operation is feasible, and do not enforce the converse that Iω = 0 whenever
the normal operation is feasible. Thus, the CCMPR model allows the possibility to
operate some scenarios in recovery mode even when they could feasibly be operated
with the normal recourse model. Thus, when we are actually solving the second-stage
problem for a given x ∈ X and ω ∈ Ω , it may be ambiguous which model should
be solved. If the normal model is infeasible, then it is clear that we must solve the
recovery model. However, if the normal model is feasible, then we need to have a
policy to determine whether this is one of the outcomes that is selected to be operated
in the recovery mode.

Model (5) determineswhich outcomeswill operate according to the recoverymodel
with a threshold policy. The decisionmaker first attempts to solve the normal operation
problem (1). If it is infeasible, the recovery model is implemented. Otherwise, the
decision-maker compares the cost of the normal operation f (x, ω) to a threshold
v∗. If the cost exceeds v∗, the decision-maker chooses to operate in recovery mode,
otherwise the decision-maker implements the optimal normal operation decision. The
value of v∗ can be obtained from the optimal solution of the CCMPR model (5) by
setting v∗ = max{ f (x, k) : zk = 0}. By construction, this policy of operation in
the second-stage is consistent with the solution obtained in the CCMPR model, and
for the given sample yields a solution that is feasible to the normal model in at least
1− ε fraction of the scenarios. This policy generalizes the traditional use of a chance
constraint, in which the “recovery” model amounts to just ignoring the scenario, and
this “recovery” option is only used when the normal model is infeasible. If we adopt
the convention that an infeasible problem has infinite cost, then the traditional chance
constraint model operates in recovery mode only when the cost of the normal model
is infinite. Our model instead operates in recovery mode only when the cost of normal
operation exceeds a finite value, v∗.

3 Decomposition algorithm for solving two-stage CCMP with recovery

In this section we propose a decomposition algorithm for two-stage CCMPR. We
begin this subsection by analyzing the structure of optimal solutions for (5).

Proposition 1 There exists an optimal solution (x∗, z∗) of (5) in which
∑m

k=1 z
∗
k = p.

123

Decomposition algorithms for two-stage chance-constrained programs 227

Proof This follows immediately from assumption (B2). ��
In otherwords, there exists an optimal solutionwhereweoperate under the “normal”

mode for exactly m − p scenarios. Thus, we can replace (5c) with the constraint∑m
k=1 zk = p.
To introduce the branch-and-cut algorithm, we first define the following sets which

will be approximated via cuts:

F =
{
x ∈ R

n1 , z ∈ B
m :

m∑
k=1

zk = p, zk = 0 ⇒ x ∈ Pk, k ∈ K

}
,

Z =
{

(x, z, θ) ∈ F × R+ : θ ≥ 1

m

m∑
k=1

(
(1 − zk) f (x, k) + zk f̄ (x, k)

)}
. (8)

With this notation, solving the problem min{c�x + θ : x ∈ X, (x, z, θ) ∈ Z}, where
θ is the variable which is used to represent the expected second-stage costs (from both
normal and recovery operations), gives an optimal solution (x∗, z∗) to (5) satisfying
Proposition 1.

The branch-and-cut algorithm we propose works with the following master prob-
lem:

RP(K0, K1) = min
x,z,θ

c�x + θ (9a)

s.t.
m∑

k=1

zk = p (9b)

(x, z) ∈ C (9c)

(x, z, θ) ∈ D (9d)

x ∈ X, z ∈ [0, 1]m, θ ≥ 0 (9e)

zk = 0, k ∈ K0; zk = 1, k ∈ K1, (9f)

where the sets K0 and K1 satisfy K0 ∩ K1 = ∅ and represent the sets of variables zk
fixed to zero and to one, respectively, during the branch and bound process. The set C
is a polyhedral outer approximation of F , which is defined by feasibility cuts of the
following form:

α�
1 x + δ�

1 z ≥ β1. (10)

Here α1 and δ1 are n1 andm dimensional coefficient vectors, respectively, and β1 ∈ R.
The set D is a polyhedral outer approximation of Z , which is defined by optimality
cuts of the form:

θ + δ�z ≥ β − α�x, (11)

where α and δ are n1 and m dimensional coefficient vectors, respectively, and β ∈ R.

123

228 X. Liu et al.

The key of the decomposition approach is to derive strong valid inequalities for the
sets F and Z . A class of strong valid feasibility cuts has been proposed by Luedtke
[13] based on the so-called mixing set. We use the same class of cuts in the present
paper. However, Luedtke [13] does not consider second-stage costs, and therefore does
not require any optimality cuts. In this paper, we focus on obtaining strong optimality
cuts for two-stage CCMPRs.

We first describe a naive way to obtain valid optimality cuts (11). Let (x̂, ẑ) be such
that x̂ ∈ X , ẑ ∈ B

m , and ẑ satisfies (9b). If there exists k ∈ K with ẑk = 0 and x̂ /∈ Pk ,
then this solution violates the logical condition (5b), and hence we seek and add a
feasibility cut. Otherwise, for each k ∈ K with ẑk = 0, we solve the corresponding
normal operation subproblem (which is now feasible by assumption):

min
y∈Rn2+

{q�
k y : Wk y ≥ hk − Tk x̂} = max

π∈Rd+
{π�(hk − Tk x̂) : π�Wk ≤ qk} (12)

and let πk be an optimal dual solution. Also let Πk be the set of dual extreme points
in (12). In addition, for each k ∈ K such that ẑk = 1 we solve the recovery problem

min
ȳ∈Rn̄2+

{q̄�
k ȳ : W̄k ȳ ≥ h̄k − T̄k x̂} = max

π̄∈Rd̄+
{π̄�(h̄k − T̄k x̂) : π̄�W̄k ≤ q̄k} (13)

and let π̄k be an optimal dual solution (let π̄k = 0 for problem (2) without recovery).
Also let Π̄k be the set of dual extreme points in (13). Then, if we let S(ẑ) = {k ∈ K :
ẑk = 0} and S̄(ẑ) = K\S(ẑ), we obtain the following optimality cut, which is valid
for Z :

θ +
∑

k∈S(ẑ)

Mkzk +
∑

k∈S̄(ẑ)

Mk(1 − zk)

≥ 1

m

⎛
⎝ ∑

k∈S(ẑ)

π�
k (hk − Tkx) +

∑

k∈S̄(ẑ)

π̄�
k (h̄k − T̄k x)

⎞
⎠ , (14)

where Mk, k ∈ K is assumed to be large enough so that inequality (14) is redundant
whenever zk = 1 for some k ∈ S(ẑ) or zk = 0 for some k ∈ S̄(ẑ) (let Mk = 0 for
k ∈ S̄(ẑ) for problem (2) without recovery). We refer to inequality (14) as the big-M
optimality cut. To see its validity, observe that for the solution (x̂, ẑ), this cut gives a
correct lower bound on the second-stage costs (normal and recovery). For any other
solution, we must have at least one k ∈ S(ẑ) with zk = 1 or k ∈ S̄(ẑ) with zk = 0, and
hence inequality (14) is valid for large enough Mk . Note that additional assumptions
may be necessary to ensure the existence of such Mk . Once again, our goal in this
paper is to avoid the use of such big-M cuts.

An alternative approach, recently proposed by Zeng et al. [31] for problemswithout
recovery, is to use a bilinear cut of the form:

θ ≥ 1

m

⎛
⎝ ∑

k∈S(ẑ)

(1 − zk)π
�
k (hk − Tkx) +

∑

k∈S̄(ẑ)

zk π̄
�
k (h̄k − T̄k x)

⎞
⎠ . (15)

123

Decomposition algorithms for two-stage chance-constrained programs 229

To use this cut in a branch-and-cut algorithm, the bilinear terms (zk x j for k ∈ K , j =
1, . . . , n1) need to be linearized by adding additional variables sk j and inequalities to
enforce sk j = zk x j . We experimented with this approach but on our test instances we
found its performance to be comparable to the performance of the basic method using
the cuts (14), and so we do not explore this approach further in this work. We think,
however, that investigating the integration of these different techniques would be an
interesting subject of future study.

3.1 Strong optimality cuts for two-stage CCMPR

In this section we derive valid optimality cuts that are stronger than the big-M opti-
mality cuts (14). First, we define a secondary subproblem associated with the normal
recourse problem for a given α ∈ R

n1 and k ∈ K :

vk(α) = min{ f (x, k) + α�x : x ∈ Pk} (16)

so that, by definition,

f (x, k) ≥ vk(α) − α�x, ∀x ∈ Pk . (17)

Problem (16) always has a feasible solution from assumption (A2). Let dom vk =
{α ∈ R

n1 : vk(α) > −∞} be the domain of vk .
Similarly, we define a secondary subproblem associated with the recovery problem

for a given α ∈ R
n1 and k ∈ K :

v̄k(α) = min{ f̄ (x, k) + α�x : x ∈ X} (18)

so that:

f̄ (x, k) ≥ v̄k(α) − α�x, ∀x ∈ X. (19)

Problem (18) always has a feasible solution from assumption (A2). Let dom v̄k be the
domain of v̄k .

We make the following additional assumption:

B3: There exists D ⊆ R
n1 such that dom vk = dom v̄k = D for all k ∈ K .

Assumption (B3) is satisfiedwith D = R
n1 if X is bounded. In our example application

in Sect. 4, this assumption is satisfied with D = R
n1+ .

Next, for each k ∈ K , we define the following set:

Zk = {
x ∈ X, zk ∈ B, ηk ∈ R+ : ηk ≥ (1 − zk) f (x, k) + zk f̄ (x, k)

}
,

where ηk represents the objective function value of the second-stage problem for
scenario k. Using the relationship θ = (1/m)

∑
k∈K ηk , valid inequalities for the sets

Zk , k ∈ K can be used to obtain valid inequalities for the set Z (optimality cuts).

123

230 X. Liu et al.

Proposition 2 Let k ∈ K, π ∈ Πk , and α = Tk�π . Then v̄k(α) > −∞ and the
following inequality is valid for Zk :

ηk + (π�hk − v̄k(α))zk ≥ π�hk − α�x . (20)

Proof Let (x, zk, ηk) ∈ Zk . If zk = 0, then

ηk ≥ f (x, k) ≥ π�hk − π�Tkx = π�hk − α�x

by weak duality. It also follows then that

vk(α) ≥ min{π�hk − α�x + α�x : x ∈ Pk} = π�hk,

which shows that α ∈ dom vk = D, and thus v̄k(α) > −∞ by assumption (B3).
Finally, if zk = 1, then ηk ≥ f̄ (x, k) ≥ v̄k(α) − α�x by (19). ��

We can obtain an analogous cut from dual solutions of the recovery problem.

Proposition 3 Let k ∈ K, π̄ ∈ Π̄k , and α = T̄�
k π̄ (π̄ = α = 0 for problem (2)

without recovery). Then vk(α) > −∞ and the following inequality is valid for Zk:

ηk + (π̄�h̄k − vk(α))(1 − zk) ≥ π̄�h̄k − α�x . (21)

Proof Analogous to the proof of proposition 2. ��
We next discuss how we obtain the dual solutions used in inequality (20) or (21).

Suppose that we have a solution (x̂, ẑ) and that ẑk = 0 for some scenario k ∈ K .
Then, we attempt to solve the normal operation problem (12). If it is infeasible (i.e.,
x̂ /∈ Pk), we must add a feasibility cut. If it is feasible, then we choose π in (20)
to be an optimal dual solution. Then, by construction, when ẑk = 0, (20) enforces
ηk ≥ f (x̂, k). If ẑk = 1 for some scenario k ∈ K , then we solve the recovery problem
(13) and choose π̄ in (21) to be an optimal dual solution. Again, this choice enforces
ηk ≥ f̄ (x̂, k) when ẑk = 1.

We can use inequalities (20) and (21) in a multi-cut implementation of a Benders-
type decomposition algorithm. For a single cut implementation, we have the following
corollary.

Corollary 1 Let S ⊆ K, πk ∈ Πk and αk = Tk�πk for k ∈ S, and π̄k ∈ Π̄k and
αk = T̄�

k π̄k (π̄k = αk = 0 for problem (2) without recovery) for k ∈ K\S. Then, the
following inequality is valid for Z:

θ + 1

m

∑
k∈S

(π�
k hk − v̄k(αk))zk + 1

m

∑
k∈K\S

(π̄�
k h̄k − vk(αk))(1 − zk)

≥ 1

m

∑
k∈S

π�
k hk + 1

m

∑
k∈K\S

π̄�
k h̄k − 1

m

m∑
k=1

α�
k x . (22)

123

Decomposition algorithms for two-stage chance-constrained programs 231

For a given a solution (x̂, ẑ) with x̂ ∈ X and ẑ ∈ B
m , and such that the logical

constraints (5b) are satisfied, we choose S = {k ∈ K : ẑk = 0} and for k ∈ S choose
πk to be an optimal dual solution of (12), and for k ∈ K\S choose π̄k to be an optimal
dual solution of (13).

Next we derive another class of optimality cuts for two-stage CCMPR.

Theorem 1 Let S ⊂ K have |S| = m − p, πk ∈ Πk and αk = Tk�πk for k ∈ S,
and π̄k ∈ Π̄k and αk = T̄�

k π̄k (π̄k = αk = 0 for problem (2) without recovery) for
k ∈ K\S. Also define v∗(αk) = min{vk′(αk) : k′ ∈ K\S} and v̄∗(αk) = min{v̄k′(αk) :
k′ ∈ S}. Then, the following inequality is valid for Z:

θ ≥ 1

m

∑
k∈S

(
π�
k hk − α�

k x + (v∗(αk) − π�
k hk)zk

)

+ 1

m

∑
k∈K\S

(
π̄�
k h̄k − α�

k x + (v̄∗(αk) − π̄�
k h̄k)(1 − zk)

)
. (23)

Proof Let (x, z, θ) ∈ Z . First, note, from (B3), that v∗(αk) and v̄∗(αk) arewell-defined
since αk ∈ D for k ∈ K . We prove the two inequalities:

m∑
k=1

f (x, k)(1 − zk) ≥
∑
k∈S

(
π�
k hk − α�

k x + (v∗(αk) − π�
k hk)zk

)
, (24)

m∑
k=1

f̄ (x, k)zk ≥
∑

k∈K\S

(
π̄�
k h̄k − α�

k x + (v̄∗(αk) − π̄�
k h̄k)(1 − zk)

)
(25)

which establishes the claim from the definition of Z in (8).
Let U = {k ∈ K : zk = 0}. By (9b), we have |U | = m − p, and so |S\U | =

|U\S|. Let σ : U\S → S\U be a one-to-one mapping between U\S and S\U , i.e.,
{σk : k ∈ U\S} = S\U . Then, using (17) we obtain

m∑
k=1

f (x, k)(1 − zk) =
∑
k∈U

f (x, k)

=
∑

k∈U∩S

f (x, k) +
∑

k∈U\S
f (x, k)

≥
∑

k∈U∩S

(π�
k hk − α�

k x) +
∑

k∈U\S
f (x, k)

≥
∑

k∈U∩S

(π�
k hk − α�

k x) +
∑

k∈U\S
(vk(ασk) − α�

σk
x)

≥
∑

k∈U∩S

(π�
k hk − α�

k x) +
∑

k∈U\S
(v∗(ασk) − α�

σk
x) (26)

=
∑

k∈U∩S

(π�
k hk − α�

k x) +
∑

k∈S\U
(v∗(αk) − α�

k x) (27)

123

232 X. Liu et al.

=
∑
k∈S

(
π�
k hk − α�

k x + (v∗(αk) − π�
k hk)zk

)
,

where (26) follows because U\S ⊆ K\S and therefore vk(ασk) ≥ v∗(ασk) and (27)
follows from the definition of one-to-one mapping σ . This establishes (24).

The arguments for (25) are similar. Let Ū = {k ∈ K : zk = 1} so that |Ū | = p and
so |S\Ū | = |Ū\S|. Let σ̄ : Ū\S → S\Ū be a one-to-one mapping between Ū\S and
S\Ū . Then, using (19), we obtain

m∑
k=1

f̄ (x, k)zk =
∑

k∈Ū
f̄ (x, k)

≥
∑

k∈Ū∩S

(π̄�
k h̄k − α�

k x) +
∑

k∈Ū\S
f̄ (x, k)

≥
∑

k∈Ū∩S

(π̄�
k h̄k − α�

k x) +
∑

k∈Ū\S
(v̄k(ασ̄k) − α�̄

σk
x)

≥
∑

k∈Ū∩S

(π̄�
k h̄k − α�

k x) +
∑

k∈Ū\S
(v̄∗(ασ̄k) − α�̄

σk
x)

=
∑

k∈Ū∩S

(π̄�
k h̄k − α�

k x) +
∑

k∈S\Ū
(v̄∗(αk) − α�

k x)

=
∑

k∈K\S

(
π̄�
k h̄k − α�

k x + (v̄∗(αk) − π̄�
k h̄k)(1 − zk)

)

which establishes (25). ��
Given a solution (x̂, ẑ)with x̂ ∈ X and ẑ ∈ B

m , and such that the logical constraints
(5b) are satisfied, in Theorem 1 we use S = {k ∈ K : ẑk = 0}, and for k ∈ S we
choose πk to be an optimal dual solution of (12), and for k ∈ K\S we choose π̄k to be
an optimal dual solution of (13). It is easy to see that if (x̂, ẑ) ∈ F , with this choice,
(23) enforces θ ≥ 1

m

∑
k∈K

(
f (x̂, k)(1 − ẑk) + f̄ (x̂, k)ẑk

)
.

Based on numerical experiments presented in §4.2, inequality (23) provides a
stronger lower bound than optimality cut (22) with faster convergence rate, how-
ever, at the cost of solving 2p(m − p) single scenario subproblems in order to obtain
the values v∗(αk) for each k ∈ S and v̄∗(αk) for each k ∈ K\S. Hence, a strategy is
to combine the optimality cuts (22) and (23).

Note that for the special case without recovery given by (2), the last term in inequal-
ity (23) is eliminated. In this case, we need to solve only p(m − p) secondary sub-
problems to obtain the values v∗(αk) for k ∈ S.

3.2 Strong optimality cut for random right-hand sides problem

Inequalities (22) and (23) are valid for two-stage CCMPR for which the randomness
appears only in the right-hand-side vectors hω, h̄ω, ω ∈ Ω . However, we can take

123

Decomposition algorithms for two-stage chance-constrained programs 233

advantage of the special structure of this class of problems to obtain optimality cuts
with less effort.

For (12) and (13) with Tk = T,Wk = W, T̄k = T̄ and W̄k = W̄ for all k ∈ K , the
corresponding dual subproblems share the same polyhedron for all k ∈ K and hence
the same dual extreme point sets Π for the dual of (12) and Π̄ for the dual of (13).
Furthermore, for each π ∈ Π and k ∈ K , we have

f (x, k) ≥ π�hk − π�T x, ∀x ∈ Pk

and for each π̄ ∈ Π̄ and k ∈ K

f̄ (x, k) ≥ π̄�h̄k − π̄�T̄ x, ∀x ∈ X.

Note that the second stage value approximation function generated by the same dual
extreme point π ∈ Π and π̄ ∈ Π̄ for different scenarios are parallel planes.

Let S ⊆ K have |S| = m − p (e.g., S = {k ∈ K : ẑk = 0} for some solution
ẑ), and let Gk(π) = π�hk for k ∈ S. In addition, define G∗(π) = min{Gk(π) :
k ∈ K\S}, for π ∈ Π . Also let Ḡk(π̄) = π̄�h̄k for k ∈ K\S. Similarly, define
Ḡ∗(π̄) = min{Ḡk(π̄) : k ∈ S}, for π̄ ∈ Π̄ . For each k ∈ S, let πk be an optimal
dual solution to (12) and for each k ∈ K\S, let π̄k be an optimal dual solution to (13)
(π̄k = 0 for problem (2) without recovery). Then the proposed optimality cut is:

θ ≥ 1

m

∑
k∈S

(Gk(πk) − π�
k T x + (G∗(πk) − Gk(πk))zk)

+ 1

m

∑
k∈K\S

(Ḡk(π̄k) − π̄�
k T̄ x + (Ḡ∗(π̄k) − Ḡk(π̄k))(1 − zk)). (28)

Theorem 2 Inequality (28) is valid for Z in the case when the randomness occurs
only in the right-hand-side.

Proof Based on the definition of Gk(πk), we have:

f (x, k) ≥ Gk(πk) − π�
k T x, ∀x ∈ Pk .

In addition, we have:

f̄ (x, k) ≥ Ḡk(π̄k) − π̄�
k T̄ x, ∀x ∈ P̄k .

Let αk = T�πk for k ∈ S, and αk = T̄�π̄k for k ∈ K\S. Then, the rest of the
proof is identical to the validity of (23), where the role of vk(α) in (17) is replaced by
Gk(πk), and the role of v̄k(α) in (19) is replaced by Ḡk(π̄k). ��
Deriving inequality (28) requires only O(mp) vector multiplications in contrast to
O(mp) optimization subproblems, so it requires less computational effort.

123

234 X. Liu et al.

3.3 Decomposition algorithm for two-stage CCMPRs

In this subsection, we present a branch-and-cut based decomposition algorithm. The
algorithm is described in Algorithm 1, and the optimality cut generation procedure
OptCuts(x̂, ẑ, θ̂ ,D) is given in Algorithm 2. The feasibility cut separation procedure
SepCuts(x̂, ẑ, C) used in Algorithm 1 is the same as that in [13], so we do not discuss
the details of SepCuts(x̂, ẑ, C).

Algorithm 1: Decomposition algorithm for two-stage CCMPRs

1 t ← 0, K0(0) ← ∅, K1(0) ← ∅, C ← R
n1×m , D ← R

n1×m×1, OPEN ← {0}, Ub ← +∞, Lb ←
−∞ ;

2 while OPEN �= ∅ do
3 Step 1 : Choose l ∈ OPEN and let OPEN ← OPEN \ {l} ;
4 Step 2 : Process node l;
5 while CUTFOUND �= TRUE and Lb < Ub; do
6 solve (9) ;
7 if (9) is infeasible then
8 CUTFOUND ← FALSE ;
9 else

10 Let (x̂ , ẑ, θ̂) be an optimal solution to (9);
11 Lb ← RP(K0(l), K1(l));
12 if ẑ ∈ {0, 1}m then
13 CUTFOUND ← SepCuts(x̂, ẑ,C) ;
14 if CUTFOUND �= TRUE then
15 CUTFOUND ← OptCuts(x̂, ẑ, θ̂ ,D) ;
16 end
17 if CUTFOUND �= TRUE, then update Ub ← Lb
18 end
19 end
20 end
21 Step 3 : Branch if necessary;
22 if Lb < Ub then
23 Choose k ∈ K such that ẑk ∈ (0,1);
24 K0(t + 1) ← K0(l) ∪ {k}, K1(t + 1) ← K1(l) ;
25 K0(t + 2) ← K0(l), K1(t + 2) ← K1(l) ∪{k} ;
26 t ← t + 2;
27 OPEN ← OPEN

⋃{t + 1, t + 2}
28 end
29 end

Theorem 3 Algorithm 1 converges to an optimal solution of (5) after finitely many
iterations.

Proof First, as shown in [13], the number of feasibility cuts (10) is finite, and (10)
always cuts off solutions where zk = 0 but x /∈ Pk . In addition, there are finitely many
optimality cuts (22), (23) and (28), because there are finitely many πk ∈ Πk, π̄k ∈ Π̄k

(and hence αk) to consider for all k ∈ K . Also, optimality cuts (22), (23) and (28) do
not cut off any (x, z, θ) ∈ Z with

∑
k∈K zk = m − p.

Next, we show that by using (22), (23) and (28), the algorithm converges to an
optimal solution (x∗, z∗). If for a current solution (x̂, ẑ), ẑ = z∗, then (22), (23) and

123

Decomposition algorithms for two-stage chance-constrained programs 235

Algorithm 2: Procedure: OptCuts(x̂, ẑ, θ̂ ,D)

Input: σ̂ = (x̂, ẑ, θ̂).

Output: If a valid optimality cut for (5) is found which is violated by (x̂, ẑ, θ̂), then add this cut to
D, and return TRUE. Otherwise return FALSE.

1 for all k ∈ K with ẑk = 0 do
2 solve (12) to obtain f (x̂, k) and a dual optimal solution πk ;
3 end
4 for all k ∈ K with ẑk = 1 do
5 solve (13) to obtain f̄ (x̂, k) and a dual optimal solution π̄k if there is recovery. Otherwise,

π̄k = 0. ;
6 end

7 if θ̂ < 1
m

∑m
k=1 f (x̂, k)(1 − ẑk) + 1

m
∑m

k=1 f̄ (x̂, k)ẑk then
8 CUTFOUND ← TRUE;
9 Generate an optimality cut: if the randomness appears only in the right hand-side, then use (28).

Otherwise, use (22) and (23) with αk = T�
k πk for k with ẑk = 0, and αk = T̄�

k π̄k for k with
ẑk = 1 (αk = 0 if there is no recovery);

10 else
11 CUTFOUND ← FALSE
12 end

(28) reduce to Benders optimality cuts, which correctly capture the cost approximation
function for (x̂, ẑ). Otherwise, (22), (23) and (28) provide a lower bound on θ∗.
Hence, the convergence of the algorithm directly follows from the convergence result
of Benders decomposition algorithm. Finally, since the algorithm uses a branch-and
cut procedure to solve the master problem, it processes a finite number of nodes. Thus,
it terminates finitely. ��
4 Application and computational experiments

In this section we test our proposed algorithm on a resource planning problem first
with no recovery (2) and then with recovery (5). We implemented our approach with
C using CPLEX 12.4. The subroutines SepCuts(x̂, ẑ, C) and OptCuts(x̂, ẑ, θ̂ ,D)were
implemented using the CPLEX lazy constraint callback function. These subroutines
are called whenever CPLEX finds an integer candidate solution to the master problem
(9). All the tests were run on a Windows XP operating system with 2.30 GHz Intel
QuadCore processor 2356 (2 cores) with 2GB RAM. Both cores were used for test-
ing the deterministic equivalent formulation and only a single core was used for the
decomposition algorithm. A time limit of one hour and a tree memory limit of 500
MB were enforced.

4.1 Two-Stage CCMP without recovery

Here we test our approach on a resource planning problem adapted from [13]. It
consists of a set of resources (e.g., server types), denoted by i ∈ I := {1, . . . , n1},
which can be used to meet demands of a set of customer types, denoted by j ∈ J :=
{1, . . . , r}.

123

236 X. Liu et al.

The problem can be stated as:

minx∈Rn1+ ,z∈Bm c�x + 1
m

m∑
k=1

(
(1 − zk) f (x, k) + zk f̄ (x, k)

)

s.t. zk = 0 ⇒ x ∈ Pk, k ∈ K
m∑

k=1
zk ≤ p,

where

Pk =
⎧⎨
⎩x ∈ R

n1+ : ∃y ∈ R
n1×r
+ ,

r∑
j=1

yi j ≤ ρki xi , ∀i ∈ I,
n1∑
i=1

μki j yi j ≥ ξk j , ∀ j ∈ J

⎫⎬
⎭ .

Here the first stage vector x represents the number of servers to employ, and c is its
cost. In this problem, ξ, ρ, μ are random vectors following a finite and discrete joint
distribution represented by a set of m equally likely scenarios K , where ρki ∈ (0, 1]
represents the utilization rate of server type i ∈ I , ξk j ≥ 0 represents the demand of
customer type j ∈ J , and μki j ≥ 0 represents the rate of serving customer type j
with server type i under scenario k ∈ K . Furthermore, the second stage problem for
k ∈ K is stated as:

f (x, k) =
⎧⎨
⎩ min

y∈Rn1×r
+

q�
k y :

r∑
j=1

yi j ≤ ρki xi , ∀i ∈ I,

n1∑
i=1

μki j yi j ≥ ξk j , ∀ j ∈ J

⎫⎬
⎭ ,

where yi j is the second-stage decision variable representing the number of server type
i allocated to customer j , and qki j is the unit allocation cost under scenario k. In this
section, we assume there is no recovery model, and so f̄ (x, k) ≡ 0. In Sect. 4.2, we
consider the problem with a recovery model.

We generate the parameters c, ρk , and μk following the scheme in [13] for the
same type of resource planning problems. To generate the random demands ξk , we
first generate a base demand ξ̄ j which follow N (200, 20) for all j ∈ J . Then we let
ξk j follow N (ξ̄ j , 0.1 × ξ̄ j) for all k ∈ K . We let the second stage cost qki j = ρki , for
all k ∈ K and j ∈ J , which guarantees that the second stage costs associated with the
highly reliable servers are more expensive.

In Table 1, we summarize our experiments on problems where only the demand
(right-hand side) is uncertain. We compare our “Strong” decomposition algorithm
which uses the optimality cuts (28), against two other approaches: the deterministic
equivalent problem (DEP) (6) and the “Basic” decomposition approach which uses

123

Decomposition algorithms for two-stage chance-constrained programs 237

Table 1 Result for instances with random demand

Instances DEP Basic Strong

(m, ε) (n1, r) Gap (%) Gap (%) # Time Gap (%)

(2,000, 0.05) (5,10) 4.60 2.34 3 166 0

(10,20) – 2.93 3 483 0

(15,30) – 2.69 3 1,106 0

(2,500, 0.05) (5,10) 4.64 2.61 3 279 0

(10,20) – 3.08 3 711 0

(15,30) – 2.88 2 1,819 0.09

(2,000, 0.1) (5,10) 7.1 5.46 3 723 0

(10,20) – 5.99 3 1,069 0

(15,30) – 6.27 3 1,032 0

(2,500, 0.1) (5,10) 7.63 5.32 3 641 0

(10,20) – 5.79 3 1,198 0

(15,30) – 6.03 2 2,112 0.02

the strong feasibility cuts (10) and the big-M optimality cuts (14). To obtain a valid
big-M in inequality (14), we let Mk = ∑r

j=1 πk jξk j , where πk is the dual vector for
the subproblem (12) for k ∈ K at the current optimality cut generation iteration.

In all the tables, each row reports the average of three instances under the same
settings: the numbers of server and customer types (n1, r), the risk level ε, and the
number of scenariosm. The Time column reports the average solution time in seconds,
and the Gap column reports the average percentage end gap of all instances for each
setting, given by (Ub−Lb)/Ub, whereUb and Lb are the best upper and lower bounds
returned by the algorithm, respectively. The # column reports how many of the three
instances are solved to optimality within the time limit. We do not include Time and #
columns in a table, if an algorithm reached the time limit for all instances tested. The
asterisk (*) indicates that there is at least one instance where the tree memory limit
is reached. The dash (–) indicates that no instance is solved to optimality, and that no
feasible solution is found by the algorithm within the time limit.

From Table 1 we see that the deterministic equivalent formulation is not able to
solve any instances to optimality within the time limit. Moreover, it even fails to find
a feasible solution for instances of larger sizes. The basic decomposition algorithm
which uses the big-M optimality cuts, makes a big improvement over the deterministic
equivalent formulation. However, because of the weak lower bound resulting from the
big-M optimality cuts, it is still not capable of solving any of the instances within the
time limit. The end gaps are between 2–6% for the basic decomposition algorithm
after an hour. In contrast, the strong decomposition algorithm, based on the proposed
strong optimality cuts, is able to solve most of the instances to optimality. For the two
unsolved instances, the average end gap is less than 0.1%.

The only difference between the basic and strong decomposition algorithm is the
type of optimality cuts used. To illustrate the benefit of the optimality cuts we propose,
we report the number of nodes explored (Node) and the optimality cuts (Cut) added
to the master problem in the basic and strong decomposition algorithm in Table 2 for

123

238 X. Liu et al.

Table 2 Number of optimality cuts and nodes for instances with random demand

Instances Basic Strong

(m, ε) (n1, r) Node Cut Node Cut

(2,000, 0.05) (5,10) 15,257 624 67 17

(10,20) 9,266 474 3 58

(15,30) 10,166 203 104 9

(2,500, 0.05) (5,10) 9,174 563 6 34

(10,20) 9,833 427 3 70

(15,30) 8,203 190 20 135

(2,000, 0.1) (5,10) 10,097 581 853 181

(10,20) 13,139 263 76 160

(15,30) 8,967 196 61 100

(2,500, 0.1) (5,10) 8,275 554 598 93

(10,20) 11,703 266 19 134

(15,30) 5,867 132 9 137

the instances in Table 1. Observe that the strong decomposition algorithm requires
significantly fewer nodes than the basic decomposition algorithm. The number of
optimality cuts added for the strong decomposition algorithm is also generally smaller
than that for the basic decomposition algorithm. Hence, from Tables 1 and 2, we
conclude that the additional computational effort to generate (28) pays off.

In Table 3, we report results for instances with random demands, second-stage
costs, service and utilization rates. Since these instances are much more challenging,
we consider smaller instances. We see that the deterministic equivalent formulation
and the basic decomposition algorithm are not able to solve most of the instances. In
addition, for the basic decomposition method, the memory used by the branch-and-cut
tree explodes very fast as we added the big-M optimality cuts into the master problem,
and so most of the instances terminate due to the tree memory limit. On the other
hand, the strong decomposition algorithm with proposed optimality cuts (23) gives
the best results. It solves many more instances to optimality within the time limit. In
our implementation we choose not to use inequalities (22) for the case of no recovery.

Table 4 reports the number of nodes and optimality cuts for both of the decompo-
sition algorithms for instances with random demands, second-stage costs, service and
utilization rates. As before, the strong decomposition algorithm requires much fewer
optimality cuts and generally fewer number of branch-and-cut nodes to find solutions
that are of higher quality. Note that the branch-and-cut nodes reported appear to be
smaller in some cases for the basic decomposition algorithm than the strong decompo-
sition algorithm, but this is because the former algorithm terminates prematurely for
most of the instances due to the memory limit. Tables 3 and 4 highlight the benefits of
obtaining strong optimality cuts (23) despite their high computational requirements to
solve O(mp) single scenario subproblems. Note also that we can further take advan-
tage of the special structure of the resource planning problem as suggested in [13] to
solve these problems more effectively.

123

Decomposition algorithms for two-stage chance-constrained programs 239

Table 3 Results for instances with random ρ, μ, ξ, q

Instances DEP Basic Strong

(m, ε) (n1, r) # Time Gap # Time Gap # Time Gap

(400, 0.05) (5,10) 1 2,625 0.62 0 1,765* 1.55 3 809 0

(7,14) 0 3,600 1.21 1 1,020* 0.50 3 1,915 0

(500, 0.05) (5,10) 0 3,600 1.08 0 3,600 1.63 3 1,379 0

(7,14) 0 3,600 1.37 0 3,186* 0.36 2 2,006 0.006

(600, 0.05) (5,10) 0 3,600 1.17 0 3,067* 1.04 3 1,346 0

(7,14) 0 3,600 2.81 0 1,352* 0.50 2 2,731 0.07

(400, 0.1) (5,10) 0 3,600 1.50 0 3,600 3.49 1 2,633 0.21

(7,14) 0 3,600 4.09 1 860* 0.68 0 1,689 0.68

(500, 0.1) (5,10) 0 3,600 4.52 0 3,339* 4.15 1 2,528* 0.35

(7,14) 0 3,600 5.73 0 2,187* 1.11 1 1,831 0.74

(600, 0.1) (5,10) 0 3,600 3.89 0 2,639* 1.82 1 2,041 0.48

(7,14) 0 3,600 6.32 2 1,449 1.00 2 2,061 0.56

Table 4 Number of optimality cuts and nodes for instances with random ρ,μ, ξ, q

Instances Basic Strong

(m, ε) (n1, r) Node Cut Node Cut

(400, 0.05) (5,10) 36,117 825 2,676 207

(7,14) 20,674 367 14,619 301

(500, 0.05) (5,10) 49,404 1,361 6,681 243

(7,14) 92,401 442 41,060 177

(600, 0.05) (5,10) 33,291 996 17,977 246

(7,14) 33,280 321 116,324 162

(400, 0.1) (5,10) 44,402 880 83,383 300

(7,14) 41,287 160 27,159 169

(500, 0.1) (5,10) 31,864 878 82,179 216

(7,14) 23,154 346 12,052 124

(600, 0.1) (5,10) 41,218 394 37,493 146

(7,14) 23,743 297 152,293 82

4.2 Two-stage CCMP with recovery

Here we introduce the recovery version of the probabilistic resource planning problem
studied in §4.1, where the simple recovery operation is given by

f̄ (x, k) =
⎧⎨
⎩ min

y∈Rn1×r
+ ,u∈Rr+

q�
k y + w�

k u :
r∑
j=1

yi j ≤ ρki xi , ∀i ∈ I,

n1∑
i=1

μki j yi j + u j ≥ ξk j , ∀ j ∈ J

}
,

123

240 X. Liu et al.

Table 5 Result for 2-stage CCMPR with random demands only

Instances DEP Basic Strengthened Strong

(m, ε) (n1, r) Gap (%) Gap (%) # Time Gap (%) Gap (%)

(800, 0.05) (5,10) 2.16 4.26 1 2,484 1.27 0.19

(10,20) 5.28 10.29 0 3,600 2.44 0.19

(1,200, 0.05) (5,10) 5.05 9.07 1 2,432 1.32 0.21

(10,20) 4.05(-) 8.46 0 3,600 2.51 0.24

(800, 0.1) (5,10) 5.33 10.61 1 2,423 0.73 0.26

(10,20) 5.28 10.79 0 3,600 1.45 0.39

(1,200, 0.1) (5,10) 7.32 9.08 1 3,566 0.85 0.85

(10,20) 5.02(-) 14.28 0 3,600 1.69 0.60

where u j is a variable that represents the level of outsourcing to cover the shortage
in servers due to high demand of customer type j ∈ J . We let wk , the unit cost of
outsourcing, follow N (3, 0.2), which is higher than the unit costs of service qk .

In Table 5, we report the results for instances with random demands. For this class
of problems we use two types of optimality cuts (22) and (28) in the strong decom-
position algorithm, and compare its performance against the deterministic equivalent
formulation and the basic decomposition method with the big-M optimality cut. In
column ‘Strengthened’, we collected the results for the decomposition algorithm using
the optimality cuts (22) only. In column ‘Strong’, we report the results of the decom-
position algorithm which uses the optimality cut (28) only. The ‘-’ in the gap column
indicates that there is at least one instance where CPLEX failed to find any feasible
solution within the time limit. In this case, we report the average end gap only for
the instances for which it is available. As we can see, neither the deterministic equiv-
alent nor the basic decomposition algorithm terminated with an acceptable gap. In
addition, the basic decomposition algorithm performs worse than DEP for this class
of problems. In contrast, the strengthened decomposition algorithm which uses (22)
as optimality cuts results in much smaller end gaps, and solves a few instances to
optimality. The strong decomposition algorithm which uses (28) does not perform as
well on the problems with recovery as it does for the problems without recovery. It
reaches the time limit for all instances, but it still provides the smallest average end
gaps for every setting.

For the two-stage CCMPR with random ρ,μ, ξ, q, we generated the “expensive”
optimality cut (23) once every m × 0.02 calls to the OptCuts(x̂, ẑ, θ̂ ,D) function. For
the remaining calls, we use the strengthened big-M optimality cut (22). For example,
for an instance which has 1000 scenarios, inequality (23) was generated once every 20
calls to the procedureOptCuts(x̂, ẑ, θ̂ ,D).We compare the proposed algorithmagainst
the deterministic equivalent formulation and the basic decomposition algorithm.

As we can see from Table 6, for the general two-stage CCMPR problems, the
deterministic equivalent formulation and the basic decomposition algorithm which
utilizes the big-M optimality cuts both performed poorly on all instances due to large

123

Decomposition algorithms for two-stage chance-constrained programs 241

Table 6 Result for two-stage CCMPR with random ρ,μ, ξ, q

Instances DEP Basic Strong

(m, ε) (n1, r) Gap (%) Gap (%) # Time Gap (%)

(1,000, 0.05) (5,10) 6.94 6.11 0 3,600 1.34

(10,20) 6.91 8.51 2 1,381 0.14

(1,200, 0.05) (5,10) 7.61 6.53 0 3,600 1.67

(10,20) – 8.79 2 1,413 0.20

(1,000, 0.1) (5,10) 10.16 11.05 0 3,600 2.62

(10,20) 7.17 14.33 1 1,539* 0.60

(1,200, 0.1) (5,10) 12.63 11.76 0 3,600 2.95

(10,20) – 14.28 0 2,316* 0.80

solution times and end gaps. These instances are difficult for the strong decomposition
algorithm as well. In most instances our algorithm reaches the time limit, but the end
gaps are less than 3% for all instances. In addition, there are some instances where this
algorithm reaches the memory limit. Therefore, developing more efficient algorithms
for the general two-stage CCMPR continues to be an interesting research question.

5 Conclusion

In this paper, we study a class of chance-constrained two-stage stochastic optimiza-
tion problems where second-stage feasible recourse decisions incur additional cost. In
addition, “recovery” decisions are made for the infeasible scenarios to obtain feasible
solutions to a relaxed second-stage problem. We develop Benders-type decomposi-
tion algorithms with specialized optimality and feasibility cuts to solve this class of
problems. Computational results on a chance-constrained resource planing problem
indicate that our algorithms are highly effective in solving these problems compared
to a mixed-integer programming reformulation and a basic decomposition method,
especially for the cases where the randomness appears only on the right-hand-side.
Even though our description assumes that the first-stage feasible region X is a polyhe-
dron, our algorithm can be extended to the case where there are integer restrictions on
the first stage variables. Similarly, we currently add optimality cuts when an integral
z is found as an optimal solution to the master problem. An interesting extension is
to add the optimality cuts at fractional z encountered during the branch-and-bound
algorithm.

Acknowledgments We are grateful to the two anonymous referees and Dave Morton for their comments
on an earlier version.

References

1. Benders, J.: Partitioning procedures for solvingmixed-variables programming problems.Numer.Math.
4(1), 238–252 (1962)

123

242 X. Liu et al.

2. Beraldi, P., Ruszczyński, A.: A branch and bound method for stochastic integer programs under prob-
abilistic constraints. Optim. Methods Softw. 17, 359–382 (2002)

3. Beraldi, P., Ruszczyński, A.: The probabilistic set covering problem. Oper. Res. 50(6), 956–967 (2002)
4. Bertsimas, D., Brown, D.: Constructing uncertainty sets for robust linear optimization. Oper. Res.

57(6), 1483–1495 (2009)
5. Birge, J.R., Louveaux, F.V.: A multicut algorithm for two-stage stochastic linear programs. Eur. J.

Oper. Res. 34(3), 384–392 (1988)
6. Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels.

Math. Program. 102, 25–46 (2005)
7. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Automat.

Control 51, 742–753 (2006)
8. Campi, M., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: fea-

sibility and optimality. J. Optim. Theory Appl. 148, 257–280 (2011)
9. Charnes, A., Cooper, W.: Deterministic equivalents for optimizing and satisficing under chance con-

straints. Oper. Res. 11, 18–39 (1963)
10. Charnes, A., Cooper, W., Symonds, G.: Cost horizons and certainty equivalents: an approach to sto-

chastic programming of heating oil. Manag. Sci. 4, 235–263 (1958)
11. Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points of discrete distributions

in probabilistic programming. Math. Program. 89, 55–77 (2000)
12. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132,

31–56 (2012)
13. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical

programs with finite support. Math. Program. 146, 219–244 (2014)
14. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic con-

straints. SIAM J. Optim. 19, 674–699 (2008)
15. Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with

probabilistic constraints. Math. Program. 12, 247–272 (2010)
16. Miller, B.L., Wagner, H.M.: Chance constrained programming with joint constraints. Oper. Res. 13(6),

930–965 (1965)
17. Miller, N., Ruszczyński, A.: Risk-averse two-stage stochastic linear programming: modeling and

decomposition. Oper. Res. 59(1), 125–132 (2011)
18. Nemirovski, A., Shapiro, A.: Scenario approximation of chance constraints. In: Calafiore, G., Dabbene,

F. (eds.) Probabilistic and randomized methods for design under uncertainty, pp. 3–48. Springer,
London (2005)

19. Noyan, N.: Risk-averse two-stage stochastic programmingwith an application to disaster management.
Comput. Oper. Res. 39(3), 541–559 (2012)

20. Prékopa, A.: Contributions to the theory of stochastic programming.Math. Program. 4, 202–221 (1973)
21. Prékopa, A.: Dualmethod for the solution of a one-stage stochastic programming problemwith random

RHS obeying a discrete probability distribution. ZORMethods Models Oper. Res. 34, 441–461 (1990)
22. Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained

knapsack polyhedra. Math. Program. 93, 195–215 (2002)
23. Saxena, A., Goyal, V., Lejeune, M.: MIP reformulations of the probabilistic set covering problem.

Math. Program. 121, 1–31 (2009)
24. Sen, S.: Relaxations for probabilistically constrained programs with discrete random variables. Oper.

Res. Lett. 11, 81–86 (1992)
25. Song, Y., Luedtke, J., Küçükyavuz, S.: Chance-constrained binary packing problems. INFORMS J.

Comput. 26(4), 735–747 (2014)
26. Song, Y., Luedtke, J.R.: Branch-and-cut approaches for chance-constrained formulations of reliable

network design problems. Math. Program. Comput. 5(4), 397–432 (2013)
27. Takriti, S., Ahmed, S.: On robust optimization of two-stage systems. Math. Program. 99, 109–126

(2004)
28. Van Slyke, R., Wets, R.J.: L-shaped linear programs with applications to optimal control and stochastic

programming. SIAM J. Appl. Math. 17, 638–663 (1969)
29. Wang, J., Shen, S.: Risk and energy consumption tradeoffs in cloud computing service via stochastic

optimization models. In: Proceedings of the 5th IEEE/ACM International Conference on Utility and
Cloud Computing (UCC 2012). Chicago, IL (2012)

123

Decomposition algorithms for two-stage chance-constrained programs 243

30. Wang, S., Guan, Y.,Wang, J.: A chance-constrained two-stage stochastic program for unit commitment
with uncertain wind power output. IEEE Trans. Power Syst. 27, 206–215 (2012)

31. Zeng, B., An, Y., Kuznia, L.: Chance constrained mixed integer program: bilinear and linear formula-
tions, and Benders decomposition. Optimization Online (2014). http://www.optimization-online.org/
DB_FILE/2014/03/4295.pdf

32. Zhang, M., Küçükyavuz, S., Goel, S.: A branch-and-cut method for dynamic decision making under
joint chance constraints. Manag. Sci. 60(5), 1317–1333 (2014)

123

http://www.optimization-online.org/DB_FILE/2014/03/4295.pdf
http://www.optimization-online.org/DB_FILE/2014/03/4295.pdf

	Decomposition algorithms for two-stage chance-constrained programs
	Abstract
	1 Introduction
	2 Mathematical models
	2.1 Two-stage chance-constrained programs with recourse
	2.2 Two-stage chance-constrained programs with recovery
	2.2.1 Special cases
	2.2.2 Two-stage consistency

	3 Decomposition algorithm for solving two-stage CCMP with recovery
	3.1 Strong optimality cuts for two-stage CCMPR
	3.2 Strong optimality cut for random right-hand sides problem
	3.3 Decomposition algorithm for two-stage CCMPRs

	4 Application and computational experiments
	4.1 Two-Stage CCMP without recovery
	4.2 Two-stage CCMP with recovery

	5 Conclusion
	Acknowledgments
	References

