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Abstract Fixed-parameter tractability analysis and scheduling are two core domains
of combinatorial optimization which led to deep understanding of many important
algorithmic questions. However, even though fixed-parameter algorithms are appeal-
ing for many reasons, no such algorithms are known for many fundamental scheduling
problems. In this paper we present the first fixed-parameter algorithms for classical
scheduling problems such as makespan minimization, scheduling with job-dependent
cost functions—one important example being weighted flow time—and scheduling
with rejection. To this end, we identify crucial parameters that determine the problems’
complexity. In particular, we manage to cope with the problem complexity stemming
from numeric input values, such as job processing times, which is usually a core bot-
tleneck in the design of fixed-parameter algorithms. We complement our algorithms
with W[1]-hardness results showing that for smaller sets of parameters the respective
problems do not allow fixed-parameter algorithms. In particular, our positive and neg-
ative results for scheduling with rejection explore a research direction proposed by
Dániel Marx.
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1 Introduction

Scheduling and fixed-parameter tractability are two very well-studied research areas.
In scheduling, the usual setting is that one is given a set of machines and a set of
jobs with individual characteristics. The jobs need to be scheduled on the machines
according to some problem-specific constraints, such as release dates, precedence
constraints, or rules regarding preemption and migration. Typical objectives are min-
imizing the global makespan, the weighted sum of completion times of the jobs, or
the total flow time. During the last decades of research on scheduling, many important
algorithmic questions have been settled. For instance, for minimizing the makespan
and theweighted sumof completion time on identicalmachines, (1+ε)-approximation
algorithms (PTASs) are known for almost all NP-hard settings [1,25].

However, the running time of these approximation schemes usually has a bad depen-
dence on ε, and in practice exact algorithms are often desired. These and other consid-
erations motivate to study which scheduling problems are fixed-parameter tractable
(FPT), which amounts to identifying instance-dependent parameters k that allow for
algorithms that find optimal solutions in time f (k) · nO(1) for instances of size n
and some function f depending only on k. Separating the dependence of k and n
is often much more desirable than a running time of, e.g., O(nk), which becomes
infeasible even for small k and large n. The parameter k measures the complexity of
a given instance and thus, problem classification according to parameters yields an
instance-depending measure of problem hardness.

Despite the fundamental nature of scheduling problems, and the clear advantages
of fixed-parameter algorithms, to the best of our knowledge no such algorithms are
known for the classical scheduling problems we study here. One obstacle towards
obtaining positive results appears to be that—in contrast to most problems known
to be fixed-parameter tractable—scheduling problems involve many numerical input
data (e.g., job processing times, release dates, job weights), which alone render many
problems NP-hard, thus ruling out fixed-parameter algorithms. One contribution of
this paper is that—for the fundamental problems studied here—choosing the number
of distinct numeric values or an upper bound on them as the parameter suffices to
overcome this impediment. Note that this condition is much weaker than assuming
the parameter to be bounded by a constant (that can appear in the exponent of the run
time).

We hope that our work gives rise to a novel perspective on scheduling as well as on
FPT, yielding further interesting research on fixed-parameter tractability of the many
well-established and important scheduling problems.

1.1 Our contributions

In this paper we present the first fixed-parameter algorithms for several fundamental
scheduling problems. In Sect. 2 we study one of the most classical scheduling prob-
lems, which is minimizing the makespan on an arbitrary number of machines without
preemption, i.e. the problem P||Cmax. Assuming integral input data, our parameter
pmax defines an upper bound on the job processing times appearing in an instance
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with n jobs. We first prove that for any number of machines, we can restrict ourselves
to (optimal) solutions where jobs of the same length are almost equally distributed
among the machines, up to an additive error term of ± f (pmax) jobs. This insight can
be used as an independent preprocessing routine which optimally assigns the majority
of the jobs of an instance (given that n � pmax). After this preparation, we show that
the remaining problem can be formulated as an integer program in fixed dimension,
yielding an overall running time bounded by f (pmax) · nO(1). We note that without a
fixed parameter, the problem is strongly NP-hard. For the much more general machine
model of unrelated machines, we show that R||Cmax is fixed-parameter tractable when
choosing the number of machines and the number of distinct processing times as para-
meters. We reduce this problem again to integer programming in fixed dimension.

We remark that these problems are sufficiently complex so that we do not see a
way of using the “number of numbers” result by Fellows et al. [17]. Note that if the
number of machines or the number of processing times are constant, the problem is
still NP-hard [31], and thus no fixed-parameter algorithms can exist for those cases,
unless P = NP.

Then, in Sect. 3, we study scheduling with rejection. Each job j is specified by a
processing time p j , a weight w j , and a rejection cost e j (all jobs are released at time
zero). We want to reject a set J ′ of at most k jobs, and schedule all other jobs on one
machine to minimize

∑
j /∈J ′ w jC j +∑ j∈J ′ e j . We identify three key parameters: the

number of distinct processing times, the number of distinct weights, and the maximum
number k of jobs to be rejected. We show that if any two of the three values are taken
as parameters, the problem becomes fixed-parameter tractable. If k and either of the
other two are parameters, then we show that an optimal solution is characterized by
one of sufficiently few possible patterns of jobs to be rejected. Once we guessed the
correct pattern, an actual solution can be found by a dynamic program efficiently.
If the number of distinct processing times and lengths are parameters (but not k), we
provide a careful modeling of the problem as an integer programwith convex objective
function in fixed dimension. Here, we need to take particular care to incorporate the
rejection costs as bounded-degree polynomials, to be able to use the deep theory of
solving convex programs in fixed dimension efficiently. To the best of our knowledge,
this is the first time that convex programming is used in fixed-parameter algorithms.
We complement this result by showing that if only the number of rejected jobs k is the
fixed parameter, then the problem becomesW[1]-hard, which prohibits the existence of
a fixed-parameter algorithm, unless FPT = W[1] (which would imply subexponential
time algorithms for many canonical NP-complete problems such as 3-SAT, which
would in particular refute the Exponential Time Hypothesis). Our results respond to a
question by Marx [32] for investigating the fixed-parameter tractability of scheduling
with rejection.

Finally, in Sect. 4we turn our attention to the parametrized dual of the latter problem:
scheduling with rejection of at least n − s jobs (s being the parameter). We reduce
this to a much more general problem which can be cast as the profit maximization
version of the general scheduling problem (GSP) [5]. We need to select a subset J ′
of at most s jobs to schedule from a given set J , and each scheduled job j yields a
profit f j (C j ), depending on its completion time C j . Note that this function can be
different for each job and might stem from a difficult scheduling objective such as
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Table 1 Summary of our results

Problem Parameters Result

P||Cmax maximum p j FPT

R||Cmax #distinct p j and #machines FPT

1||∑≤k e j +∑w j C j #rejected jobs k and #distinct p j FPT

1||∑≤k e j +∑w j C j #rejected jobs k and #distinct w j FPT

1||∑≤k e j +∑w j C j #distinct p j and #distinct w j FPT

1||∑≤k e j +∑w j C j #rejected jobs k W[1]-hard
1|r j , (pmtn)|max

∑
≤s f j (C j ) #selected jobs s and #distinct p j FPT

1|r j , (pmtn)|max
∑

≤s f j (C j ) #selected jobs s W[1]-hard
1|r j , (pmtn)|max

∑
≤s f j (C j ) #distinct p j (in fact ∀ p j ∈ {1, 3}) para-NP-hard

Here, for job j by w j denotes its weight, by e j its rejection cost, by C j its completion time and by f j its
cost function

weighted flow time. Additionally, each job j has a release date r j and a processing
time p j . The goal is to schedule these jobs on onemachine tomaximize

∑
j∈J ′ f j (C j ).

We study the preemptive as well as the non-preemptive version of this problem. In
its full generality, GSP is not well understood. Despite that, we are able to give a
fixed-parameter algorithm if the number of distinct processing times is bounded by a
parameter, as well as the maximum cardinality of J ′. We complement our findings by
showing that for fewer parameters the problem is W[1]-hard or para-NP-hard (so NP-
hard for constant parameter value), respectively. Our contributions are summarized in
Table 1.

1.2 Related work

1.2.1 Scheduling

One very classical scheduling problem studied in this paper is to schedule a set of jobs
non-preemptively on a set ofm identical machines, i.e., P||Cmax. Research for it dates
back to the 1960swhenGrahamshowed that the greedy list scheduling algorithmyields
a (2 − 1

m )-approximation and a 4/3-approximation when the jobs are ordered non-
decreasingly by length [23]. After a series of improvements [14,20,29,35], Hochbaum
and Shmoys present a polynomial time approximation scheme (PTAS), even if the
number of machines is part of the input [25]. On unrelated machines, the prob-
lem is NP-hard to approximate with a better factor than 3/2 [15,31] and there is
a 2-approximation algorithm [31] that extends to the generalized assignment prob-
lem [36]. For the restricted assignment case, i.e., each job has a fixed processing time
and a set ofmachineswhere one can assign it to, Svensson [38] gives a polynomial time
algorithm that estimates the optimalmakespan up to a factor of 33/17+ε ≈ 1.9412+ε.

For scheduling jobs with release dates preemptively on one machine, a vast class
of important objective functions is captured by the GSP. In its full generality, Bansal
and Pruhs [5,6] give a O(log log P)-approximation, where P is the maximum ratio
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of processing times. One particularly important special case is the weighted flow
time objective where prior to this result the best known approximation factors where
O(log2 P), O(logW ), and O(log nP) [4,11]; where W is the maximum ratio of job
weights. Also, a quasi-PTASwith running time nO(log P logW ) is known [10]. Since the
best known complexity result is NP-hardness much remains unclear. A much better
understood classical objective in the GSP framework is minimizing

∑
j w jC j , i.e.,

the weighted sum of completion time; here, even on an arbitrary number of identical
machines an EPTAS is known [1].

A generalization of classical scheduling problems is scheduling with rejection.
There, each job j additionally has a rejection cost e j . The scheduler has the freedom to
reject job j and to pay a penalty of e j , in addition to some (ordinary) objective function
for the scheduled jobs. For one machine and the objective being to minimize the sum
of weighted completion times, Engels et al. [16] give an optimal pseudopolynomial
dynamic program for the case that all jobs are released at time zero and show that
the problem is weakly NP-hard. Sviridenko and Wiese [39] give a PTAS for arbitrary
release dates. For the objective to minimize the makespan plus the rejection cost on
multiple machines, Hoogeveen et al. [26] give FPTASs for almost all machine settings,
and a 1.58-approximation for the APX-hard case of an arbitrary number of unrelated
machines (when allowing preemption).

In high-multiplicity scheduling, one considers the setting where there are only few
different job types, with jobs of the same type appearing in large bulks; one might
consider the number of job types as a fixed parameter.We refer to the survey byBrauner
et al. [9] for more information on high-multiplicity scheduling. Also, recently Bin
Packingwith a constant number of item sizes was shown to be solvable in polynomial
time [22], implying the same for P||Cmax with constantly many processing times.
However, this result does not give a fixed-parameter algorithm.

1.2.2 Fixed-parameter tractability

Until now, to the best of our knowledge, no fixed-parameter algorithms for the clas-
sical scheduling problems studied in this paper have been devised. In contrast, classi-
cal scheduling problems investigated in the framework of parameterized complexity
appear to be intractable; for example, k-processor scheduling with precedence con-
straints is W[2]-hard [8] and scheduling unit-length tasks with deadlines and prece-
dence constraints and k tardy tasks isW[1]-hard [19], for parameter k. Also, Jansen et
al.’s [27] W[1]-hardness result for unary bin packing parameterized by the number k
of bins implies that makespan minimization on k machines with jobs of polynomially
bounded processing times is W[1]-hard. Mere exemptions seem to be an algorithm
by Marx and Schlotter [33] for makespan minimization where k jobs have processing
time p ∈ N and all other jobs have processing time 1, for combined parameter (k, p),
as well as work of Alon et al. [2] who show that makespan minimization on m identi-
cal machines is fixed-parameter tractable parameterized by the optimal makespan. We
also mention that Chu et al. [12] consider the parameterized complexity of checking
feasibility of a schedule (rather than optimization). We remark that some scheduling-
type problems can be addressed by choosing as parameter the “number of numbers”,
as done by Fellows et al. [17]. Finally, Bessy and Giroudeau [7] show fixed-parameter
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tractability for the parameter k of tardy jobs in a model where each task consists of
two sub-tasks all of the same length and delayed by the same constant amount of idle
time.

A potential reason for this lack of positive results (fixed-parameter algorithms)
might be that the knowledge of fixed-parameter algorithms for weighted problems is
still in a nascent stage, and scheduling problems are inherently weighted, having job
processing times, job weights, etc.

2 Minimizing the makespan

2.1 Identical machines

We first consider the problem P||Cmax, where a given set J of n jobs (with individual
processing time p j and released at time zero) must be scheduled non-preemptively
on a set of m identical machines, as to minimize the makespan of the schedule. We
develop a fixed-parameter algorithm for solving this problem in time f (pmax) · nO(1),
where pmax is the maximum processing time over all jobs.

In the sequel, we say that some job j is of type t if p j = t ; let Jt := { j ∈ J | p j = t}.
First, we prove that there is always an optimal solution in which each machine has
almost the same number of jobs of each type, up to an additive error of ± f (pmax) for
suitable function f . This allows us to fix some jobs on themachines. For the remaining
jobs, we show that each machine receives at most 2 f (pmax) jobs of each type; hence
there are only (2 f (pmax))

pmax possible configurations for each machine. We solve the
remaining problem with an integer linear program in fixed dimension.

As a first step, for each type t , we assign
⌊ |Jt |

m

⌋
− f (pmax) jobs of type t to each

machine; let J0 ⊆ J be this set of jobs. This is justified by the next lemma, in whose
proof we start with an arbitrary optimal schedule and exchange jobs carefully between
the machines until the claimed property holds.

Lemma 1 There is a function f : N → N with f (pmax) ≤ 2O(pmax·log pmax) for all
pmax ∈ N such that every instance of P||Cmax admits an optimal solution in which
for each type t, each of the m machines schedules at least 
|Jt |/m� − f (pmax) and at
most 
|Jt |/m� + f (pmax) jobs of type t.

Proof For each machine i denote by J (i)
t the set of jobs of type t scheduled on i

in some (optimal) schedule. We prove the following (more technical) claim: there
always exists an optimal solution in which for every pair of machines i and i ′, and
for each � ∈ {1, . . . , pmax}, we have that ||J (i)

� | − |J (i ′)
� || ≤ h(�) · g(pmax), where

g(pmax) := (pmax)
3 + pmax and h(�) is inductively defined by setting h(pmax) := 1

and h(�) := 1 +∑pmax
j=�+1 j · h( j).

Suppose that there are two machines i, i ′ such that there is a value � for which

||J (i)
� | − |J (i ′)

� || > h(�) · g(pmax). Assume, without loss of generality, that |J (i)
� | −

|J (i ′)
� | > h(�) · g(pmax) and ||J (ī)

�′ | − |J (ī ′)
�′ || ≤ h(�′) · g(pmax) for all �′ > � and all

machines ī, ī ′. We show that i ′ has at least a certain volume of jobs which are shorter
than �. We calculate that
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�−1∑

j=1

j · |J (i ′)
j | =

⎛

⎝
pmax∑

j=1

j · |J (i ′)
j |
⎞

⎠− � · |J (i ′)
� | −

⎛

⎝
pmax∑

j=�+1

j · |J (i ′)
j |
⎞

⎠

≥
⎛

⎝−pmax +
pmax∑

j=1

j · |J (i)
j |
⎞

⎠− � · |J (i ′)
� | −

⎛

⎝
pmax∑

j=�+1

j · |J (i ′)
j |
⎞

⎠

≥
⎛

⎝−pmax +
pmax∑

j=1

j · |J (i)
j |
⎞

⎠− � · |J (i ′)
� |

−
⎛

⎝
pmax∑

j=�+1

j · (|J (i)
j | + h( j) · g(pmax))

⎞

⎠

> −pmax +
�∑

j=1

j · |J (i)
j | + � · (h(�) · g(pmax) − |J (i)

� |)

−
pmax∑

j=�+1

j · h( j) · g(pmax)

= −pmax +
�−1∑

j=1

j · |J (i)
j | + � · h(�) · g(pmax)

−
pmax∑

j=�+1

j · h( j) · g(pmax)

≥ (pmax)
3,

where the first inequality stems from the fact that the considered schedule is optimal
and therefore the loads of any two machines can differ by at most pmax. Hence,

there must be at least one type �′ < � such that �′ · |J (i ′)
� | ≥ (pmax)

2, and thus

|J (i ′)
� | ≥ pmax. Since the least common multiple of any two values in {1, . . . , pmax} is

at most (pmax)
2, we can swap r ∈ {1, . . . , pmax} jobs of type � from machine Mi with

r ′ ∈ {1, . . . , pmax} jobs of type �′ from machine Mi ′ , without changing the total load
of any of the two machines. By continuing inductively we obtain a schedule satisfying

||J (i)
�′ | − |J (i ′)

�′ || ≤ h(�′) · g(pmax) for any two machines i, i ′ and any type �′ ≥ �.
Inductively, we obtain an optimal schedule satisfying the claim for all types �. Thus,
the claim of the lemma holds for the function f (pmax) := h(1) · g(pmax).

We now prove the claimed upper bound on f . To this end, consider first the
function h as recursively defined above. Notice that h is parametrized by �, but also
depends on pmax. We prove, by induction on �, that h(�) = (pmax+1)!

(�+1)! . The base case is

for � = pmax, and it follows from the definition that h(pmax) = 1 = (pmax+1)!
(pmax+1)! . For the

inductive step, let � < pmax and take as inductive hypothesis that h(�′) = (pmax+1)!
(�′+1)!

for all �′ ∈ {� + 1, . . . , pmax}. We then have

123



540 M. Mnich, A. Wiese

h(�) = 1 +
pmax∑

j=�+1

j · h( j)

= 1 + (� + 1)h(� + 1) +
pmax∑

j=�+2

j · h( j)

= 1 + (� + 1)h(� + 1) + (h(� + 1) − 1)

= (� + 2)h(� + 1)

= (� + 2)
(pmax + 1)!

(� + 2)!
= (pmax + 1)!

(� + 1)! ,

as claimed.
Thus, the claim of the lemma holds for f (pmax) := h(1) · g(pmax), and therefore

we have f (pmax) ≤ ((pmax + 1)!)((pmax)
3 + pmax) = 2O(pmax log pmax). �

Denote by J ′ = J\J0 the set of yet unscheduled jobs.We ignore all other jobs from
now on. By Lemma 1, there is an optimal solution in which each machine receives at
most 2· f (pmax)+1 jobs from each type. Hence, there are at most (2· f (pmax)+2)pmax

ways how the schedule for eachmachine can look like (up to permuting jobs of the same
length). Therefore, the remaining problem can be solved with the following integer
program. Define a set C = {0, . . . , 2· f (pmax)+1}pmax of at most (2· f (pmax)+2)pmax

“configurations”, where each configuration is a vector C ∈ C encoding the number of
jobs from J ′ of each type assigned to a machine.

In any optimal solution for J ′, the makespan is in the range
{⌈

p(J ′)/m
⌉

, . . . ,⌈
p(J ′)/m

⌉+ pmax
}
, where p(J ′) = ∑

j∈J ′ p j , as p j ≤ pmax for each j . For
each value T in this range we try whether opt ≤ T , where opt denotes the min-
imum makespan of the instance. So fix a value T . We allow only configurations
C = (c1, . . . , cpmax) which satisfy

∑pmax
i=1 ci · i ≤ T ; let C(T ) be the set of these con-

figurations. For each C ∈ C(T ), introduce a variable yC for the number of machines
with configuration C in the solution. (As the machines are identical, only the number
of machines following each configuration is important.)

∑

C∈C(T )

yC ≤ m (1)

∑

C=(c1,...,cpmax )∈C(T )

yC · cp ≥ |J ′ ∩ Jp|, p = 0, . . . , pmax (2)

yC ∈ {0, . . . ,m}, C ∈ C(T ) (3)

Inequality (1) ensures that at most m machines are used, inequalities (2) ensure that
all jobs from each job type are scheduled. The whole integer program (1)–(3) has at
most (2 · f (pmax) + 2)pmax dimensions.

To determine feasibility of (1)–(3), we employ results about integer programming in
fixed dimension.Aswewill need it later,we cite here an algorithmdue toHeinz [24,28]
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that even allows (quasi-)convex polynomials as cost functions, rather than only linear
functions. While the functions we will use are all convex, note that a function is called
quasi-convex if every lower level set Lλ = {x ∈ R

n : g(x) ≤ λ} is a convex set.

Theorem 1 ([24,28]) Let f̄ , ḡ1, . . . , ḡm ∈ Z[x1, . . . , xt ] be quasi-convex polynomi-
als of degree at most d ≥ 2, whose coefficients have binary encoding length at most �.
There is an algorithm that in time m · �O(1) · dO(t) · 2O(t3) computes a minimizer
x� ∈ Z

t with binary encoding size � · dO(t) of the following problem

min f̄ (x1, . . . , xt ), subject to ḡi (x1, . . . , xt ) ≤ 0, i = 1, . . . ,m x ∈ Z
t , (4)

or reports that no minimizer exists.

The smallest value T for which (1)–(3) is feasible gives the optimal makespan and
together with the preprocessing routine of Lemma 1 yields an optimal schedule. Thus,
we have proven the following.

Theorem 2 There is a function f̃ such that instances of P||Cmax with n jobs and m
machines can be solved in time f̃ (pmax) · (n + m)O(1).

Recall that without choosing a parameter, problem P||Cmax is strongly NP-hard (as
it contains 3- Partition).

A natural extension to consider is the problem P||Cmax parameterized by the num-
ber p of distinct processing times. Unfortunately, for this extension Lemma 1 is no
longer true as the following example shows. Let q1, q2 be two different (large) prime
numbers. Consider an instance with two identical machines M1, M2, and q1 many
jobs with processing time q2, and similarly q2 many jobs with processing time q1.
The optimal makespan is T := q1 · q2 which is achieved by assigning all jobs with
processing time q1 on M1 and all other jobs on M2, giving both machines a makespan
of exactly T . However, apart from swapping the machines this is the only optimal
schedule since the equation q1 · q2 = x1 · q1 + x2 · q2 only allows integral solutions
(x1, x2) such that x1 is a multiple of q2 and x2 is a multiple of q1.

On the other hand, for constantly many processing times the problem was recently
shown to be polynomial time solvable for any constant p [22].

2.2 Bounded number of unrelated machines

We study the problem Rm||Cmax where now the machines are unrelated, meaning that
a job can have different processing times on different machines. In particular, it might
be that a job cannot be processed on some machine at all, i.e., has infinite processing
time on that machine.

We choose as parameters the number p of distinct (finite) processing times, and
the number m of machines of the instance. This choice of parameters is motivated as
follows. If only the number of machines is a fixed parameter, then already P||Cmax is
W[1]-hard, even if all processing times are polynomially bounded [27]. On the other
hand, R||Cmax is NP-hard if only processing times {1, 2,∞} are allowed [15,31]. This
justifies to take both m and p̄ as a parameters in the unrelated machine case.
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We model the problem as an integer program in fixed dimension. We say that two
jobs j, j ′ are of the same type if pi, j = pi, j ′ for each machine i . Note that there are
only ( p̄+1)m different types of jobs. Denote by Z the set of all job types, and for each
z ∈ Z denote by nz the number of jobs of type z. Moreover, for each type z ∈ Z and
each machine i denote by qi,z the processing time of the jobs of type z on machine i .
For each combination of a type z and a machine i we introduce an integral variable
yi,z ∈ {0, . . . , n} which models how many jobs of type z are assigned to machine i .
The total number of these variables is then bounded by m · ( p̄ + 1)m . This allows us
to formulate our problem by the following integer program:

min T (5)

s.t.
∑

z∈Z
yi,z · qi,z ≤ T i = 1, . . . ,m (6)

m∑

i=1

yi,z = nz ∀z ∈ Z (7)

yi,z ∈ {0, . . . , n} i = 1, . . . ,m, z ∈ Z (8)

T ≥ 0 (9)

The above integer program (5)–(9) has only m · ( p̄ + 1)m + 1 dimensions and
m · ( p̄+1)m +m constraints. We solve it using Theorem 1. The inequalities (6) ensure
that the makespan on each machine is bounded by T . Inequalities (7) ensure that for
each type z ∈ Z all its jobs are assigned. This yields the following theorem.

Theorem 3 Instances of R||Cmax with m machines and n jobs with p distinct finite
processing times can be solved in time f (p,m) · (n + maxi max j log pi, j )O(1) for a
suitable function f .

Proof Any feasible schedule implies a solution (y, T ) of the above integer program
such that T equals the makespan of the schedule and each variable yi,z equals the
(integral) number of jobs of type z that are assigned on machine i (for each machine i
and each type z). Conversely, given a solution (y, T ) of the integer program we can
obtain a solution with makespan T by assigning the jobs of each type z ∈ Z arbitrarily
on the machines, subject to the constraint that each machine i gets at most yi,z jobs of
type z. Due to inequalities (7), this procedure assigns all jobs and due to inequalities (6)
the resulting makespan is indeed at most T . �

3 Scheduling with rejection

In this section we study scheduling with rejection to optimize the weighted sum of
completion time plus the total rejection cost, i.e, 1||∑≤k e j +

∑
w jC j . Formally, we

are given an integer k and a set J of n jobs, all released at time zero. Each job j ∈ J is
characterized by a processing time p j ∈ N, aweightw j ∈ N and rejection cost e j ∈ N.
The goal is to reject a set J ′ ⊆ J of at most k jobs and to schedule all other jobs non-
preemptively on a single machine, as to minimize

∑
j∈J\J ′ w jC j +∑ j∈J ′ e j . Note
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that if rejection is not allowed (k = 0), the problem is solved optimally by scheduling
jobs according to non-decreasing Smith ratios w j/p j , breaking ties arbitrarily [37].

3.1 Number of rejected jobs and processing times or weights

Denote by p ∈ N the number of distinct processing times in a given instance. First, we
assume that p and the maximum number k of rejected jobs are parameters. Thereafter,
using a standard reduction, we will derive an algorithm for the case that k and the
number w of distinct weights are parameters.

Denote by q1, . . . , qp the distinct processing times in a given instance. For each i ∈
{1, . . . , p}, we guess the number of jobs with processing time qi which are rejected in
an optimal solution. Each possible guess is characterized by a vector v = {v1, . . . , v p̄}
whose entries vi contain integers between 0 and k, and whose total sum is at most k.
There are at most (k + 1)p such vectors v, each one prescribing that at most vi jobs
of processing time pi can be rejected. We enumerate them all. One of these vectors
must correspond to the optimal solution, so the reader may assume that we know this
vector v.

In the following, we will search for the optimal schedule that respects v, meaning
that for each i ∈ {1, . . . , p} at most vi jobs of processing time qi are rejected. To
find an optimal schedule respecting v, we use a dynamic program. Suppose the jobs
in J are labeled by 1, . . . , n by non-increasing Smith ratios w j/p j . Each dynamic
programming cell is characterized by a value n′ ∈ {0, . . . , n}, and a vector v′ with
p entries which is dominated by v, meaning that v′

i ≤ vi for each i ∈ {1, . . . , p}.
For each pair (n′, v′) we have a cell C(n′, v′) modeling the following subproblem.
Assume that for jobs in J ′ := {1, . . . , n′} we have already decided whether we want
to schedule them or not. For each processing time qi denote by n′

i the number of jobs
in J ′ with processing time qi . Assume that for each type i , we have decided to reject
vi − v′

i jobs from J ′. Note that then the total processing time of the scheduled jobs
sums up to t := ∑

i qi · (n′
i − (vi − v′

i )). It remains to define a solution for the jobs
in J ′′ := {n′ + 1, . . . , n} during time interval [t,∞), such that for each type i we can
reject up to v′

i jobs. The problem described by each cell C(n′, v′) can be solved in
polynomial time, given one has already computed the values for each cell C(n′′, v′′)
with n′′ > n′:

Lemma 2 Let C(n′, v′) be a cell and let opt(n′, v′) be the optimal solution value to
its subproblem. Let i ∈ {1, . . . , p} be such that pn′+1 = qi , and let t :=∑i qi · (n′

i −
(vi − v′

i )). If v
′
i = 0 then

opt(n′, (v′
1, . . . , v

′
i , . . . , v

′
p))=opt(n′+1, (v′

1,. . . ,v
′
i , . . . , v

′
p))+(t+ pn′+1) · wn′,

otherwise opt(n′, (v′
1, . . . , v

′
i , . . . , v

′
p))

= min
{
opt(n′ + 1, (v′

1, . . . , v
′
i , . . . , v

′
p)) + (t + pn′+1) · wn′,

opt(n′ + 1, (v′
1, . . . , v

′
i − 1, . . . , v′

p)) + en′+1

}
.
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Proof First, suppose that opt(n′, v′) schedules job n′. Due to our sorting of jobs, n′
has the largest Smith ratio of all jobs in {n′, . . . , n}, and an optimal schedule with
value opt(n′, v′) schedules n′ at time t at cost (t + pn′) · wn′ , and the optimal solution
value to the remaining subproblem is given by opt(n′ + 1, (v′

1, . . . , v
′
i , . . . , v

′
�)). If

opt(n′, v′) rejects n′ (which can only happen if v′
i > 0) then opt(n′, v′) = opt(n′ +

1, (v′
1, . . . , v

′
i − 1, . . . , v′

�)) + en′ .
On the other hand, there is a solution for cell C(n′, v′) given by scheduling n′ at

time t and all other non-rejected jobs in the interval [t + pn′,∞) at cost opt(n′ +
1, (v′

1, . . . , v
′
i , . . . , v

′
�)) + (t + pn′) · wn′ . If v′

i > 0 there is also a feasible solution
with cost opt(n′ +1, (v′

1, . . . , v
′
i −1, . . . , v′

�))+en′ which rejects job n′ and schedules
all other non-rejected jobs during the interval [t,∞). �

The size of the dynamic programming table is bounded by n · (k + 1)p. Since for
1||∑w jC j one can interchange weights and processing times and get an equivalent
instance [13, Theorem 3.1], we obtain the same result when there are only p̄ distinct
weights.

Theorem 4 For sets J of n jobs with p distinct processing times or weights, the
problem 1||∑≤k e j +∑w jC j is solvable in time O(n · (k + 1)p + n · log n).

We show next that when only the number k of rejected jobs is taken as parameter,
the problem becomes W[1]-hard. (This requires that the numbers in the input can
be super-polynomially large. Note that for polynomially bounded processing times
the problem admits a polynomial time algorithm for arbitrary k [16].) This justifies
to define additionally the number of weights or processing times as parameter. We
remark that when jobs have non-trivial release dates, then even for k = 0 the problem
is NP-hard [30].

Theorem 5 Problem 1||∑≤k e j +
∑

w jC j isW[1]-hard for parameter the number k
of rejected jobs.

Proof We reduce from k- Subset Sum, for which the input consists of integers
s1, . . . , sn ∈ N and two values k, q ∈ N. The goal is to select a subset of k of
the given integers si that sum up to q. Parameterized by k, this problem is known to
beW[1]-hard [18]. Our reduction mimics closely a reduction from (ordinary) Subset
Sum in [16] that shows that 1||∑ e j +∑w jC j is weakly NP-hard.

Suppose we are given an instance of k- Subset Sum. Let S = ∑n
i=1 si . We con-

struct an instance of 1||∑≤k e j +
∑

w jC j with n jobs, where each job j has process-

ing time p j := s j , weight w j := s j , rejection cost e j := (S − q) · s j + 1
2 s

2
j . Since

p j = w j for all jobs j , the ordering of the scheduled jobs J\J ′ does not affect the
value of

∑
j∈J\J ′ w jC j . Using this fact and substituting for the rejection penalty, we

can rewrite the objective function as follows:
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∑

j∈J\J ′
w jC j +

∑

j∈J ′
e j =

∑

j∈J\J ′
s j

∑

i≤ j,i∈J\J ′
si +

∑

j∈J ′
e j

=
∑

j∈J\J ′
s2j +

∑

j<i,i, j∈J\J ′
s j si +

∑

j∈J ′

(

(S − q) · s j + 1

2
s2j

)

= 1

2

⎡

⎢
⎣

⎛

⎝
∑

j∈J\J ′
s j

⎞

⎠

2

+
∑

j∈J\J ′
s2j

⎤

⎥
⎦+(S−q)

∑

j∈J ′
s j + 1

2

∑

j∈J ′
s2j

= 1

2

⎛

⎝
∑

j∈J\J ′
s j

⎞

⎠

2

+ (S − q)
∑

j∈J ′
s j + 1

2

n∑

j=1

s2j .

Since
∑n

j=1 s
2
j does not depend on the choice of J ′, this is equivalent to minimizing

the following function h(x), with x =∑ j∈J\J ′ s j :

h(x) := 1

2
x2 + (S − q)(S − x) = 1

2

⎛

⎝
∑

j∈J\J ′
s j

⎞

⎠

2

+ (S − q)

⎛

⎝S −
∑

j∈J\J ′
s j

⎞

⎠ .

Theuniqueminimumof h(x) is 1
2 S

2− 1
2q

2 at x = S−q, i.e.,when
∑

j∈J\J ′ s j = S−q.
Hence, if such a set J ′ with |J ′| ≤ k exists, the resulting value is optimal for the
scheduling problem. Therefore, if the solution to the created instance of 1||∑≤k e j +∑

w jC j has value less than or equal to 1
2 S

2 + 1
2q

2 + 1
2

∑n
j=1 s

2
j , then the instance

of k- Subset Sum is a “yes”-instance. Conversely, if the instance of Subset Sum is
“yes”, then there is a schedule of value 1

2 S
2 + 1

2q
2 + 1

2

∑n
j=1 s

2
j . �

3.2 Number of distinct processing times and weights

We consider the number of distinct processing times and weights as parameters. To
this end, we say that two jobs j, j ′ are of the same type if p j = p j ′ and w j = w j ′ ;
let τ be the number of types in an instance. Note, however, that jobs with the same
type might have different rejection costs, so we cannot bound the “number of input
numbers” like Fellows et al. [17]. Instead, we resort to convex integer programming,
which to the best of our knowledge is used here for the first time in fixed-parameter
algorithms. The running time of our algorithmwill depend only polynomially on k, the
upper bound on the number of jobs we are allowed to reject. For each type i , let w(i)

be the weight and p(i) be the processing time of jobs of type i . Assume that job types
are numbered 1, . . . , τ such w(i)/p(i) ≥ w(i+1)/p(i+1) for each i ∈ {1, . . . , τ − 1}.
Clearly, an optimal solution schedules jobs ordered non-increasingly by Smith’s ratio
without preemption.

The basis for our algorithm is a problem formulation as a convex integer mini-
mization problem with dimension at most 2τ . In an instance, for each i , we let ni
be the number of jobs of type i and introduce an integer variable xi ∈ N0 modeling
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how many jobs of type i we decide to schedule. We introduce the linear constraint∑τ
i=1(ni − xi ) ≤ k, to ensure that at most k jobs are rejected.
The objective function is more involved. For each type i , scheduling the jobs of

type i costs

xi∑

�=1

w(i) · (� · p(i) +
∑

i ′<i

xi ′ · p(i ′)) = w(i) · xi ·
∑

i ′<i

xi ′ · p(i ′) + w(i) · p(i)
xi∑

�=1

�

= w(i) · xi ·
∑

i ′<i

xi ′ · p(i ′)+w(i) · p(i) · xi · (xi +1)

2

= : si (x).

As we want to formulate the overall problem as a convex program, ideally we would
like that each function si (x) is convex. Unfortunately, this is not necessarily the case.
However, the sum

∑
i si (x) is convex, which is sufficient for our purposes.

Lemma 3 The function
∑τ

i=1 si (x) is convex.

Proof We define yi = p(i) · xi for i = 1, . . . , τ . It then follows that

si (x) = w(i)

p(i)
yi

i−1∑

i ′=1

yi ′ + 1

2

w(i)

p(i)
y2i + 1

2
w(i)yi . (10)

Then the sum of the si (x) can be written as

τ∑

i=1

si (x) = 1

2

τ∑

i=1

w(i)

p(i)
y2i +

τ∑

i=1

w(i)

p(i)
yi

τ−1∑

i ′=1

yi ′ + 1

2

τ∑

i=1

w(i)yi (11)

We claim that (the right-hand side of) (11) can be rewritten as

1

2

(
w(1)

p(1)
− w(2)

p(2)

)

y21 + 1

2

(
w(2)

p(2)
− w(3)

p(3)

)

(y1 + y2)
2

+ · · · + 1

2

(
w(τ−1)

p(τ−1)
− w(τ)

p(τ )

)

(y1 + · · · + yτ−1)
2

+1

2

w(τ)

p(τ )
(y1 + · · · + yτ−1 + yτ )

2 + 1

2

τ∑

i=1

w(i)yi .

This will suffice to prove the convexity of
∑τ

i si (x): since we sorted the job types by

decreasing Smith ratios w(i)

p(i) , the convexity of
∑τ

i si (x) follows from the facts that we
can express it as a sum of squares with non-negative coefficients, and that the sum of
convex functions is convex.
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To prove the claim, we can proceed by induction on τ . For τ = 1, the first term
on the right-hand side of (10) vanishes, and thus the claim holds. Suppose now that
τ ≥ 2, and that we have proven the claim for all instances with strictly fewer than τ

types. Then

τ∑

i=1

si (x) = 1

2

τ∑

i=1

w(i)

p(i)
y2i +

τ∑

i=1

w(i)

p(i)
yi
∑

i ′<i

yi ′ + 1

2

τ∑

i=1

w(i)yi

=
[
1

2

τ−1∑

i=1

w(i)

p(i)
y2i +

τ−1∑

i=1

w(i)

p(i)
yi
∑

i ′<i

yi ′ + 1

2

τ−1∑

i=1

w(i)yi

]

+
[
1

2

w(τ)

p(τ )
y2τ + w(τ)

p(τ )
yτ

τ−1∑

i ′=1

yi ′ + 1

2
w(τ)yτ

]

=
[
1

2

(
w(1)

p(1)
− w(2)

p(2)

)

y21 + 1

2

(
w(2)

p(2)
− w(3)

p(3)

)

(y1 + y2)
2 + · · ·

+1

2

(
w(τ−2)

p(τ−2)
− w(τ−1)

p(τ−1)

)

(y1 + · · · + yτ−2)
2

+1

2

w(τ−1)

p(τ−1)
(y1 + · · · + yτ−2 + yτ−1)

2 + 1

2

τ−1∑

i=1

w(i)yi

]

+
[
1

2

w(τ)

p(τ )
y2τ + w(τ)

p(τ )
yτ

τ−1∑

i ′=1

yi ′ + 1

2
w(τ)yτ

]

= 1

2

(
w(1)

p(1)
− w(2)

p(2)

)

y21 + 1

2

(
w(2)

p(2)
− w(3)

p(3)

)

(y1 + y2)
2 + · · ·

+1

2

(
w(τ−1)

p(τ−1)
− w(τ)

p(τ )

)

(y1 + · · · + yτ−1)
2

1

2

w(τ)

p(τ )
(y1 + · · · + yτ−1 + yτ )

2 + 1

2

τ∑

i=1

w(i)yi ,

as desired. �

Observe that when scheduling xi jobs of type i , it is optimal to reject the ni − xi
jobs with lowest rejection cost among all jobs of type i . Assume the jobs of each
type i are labeled j (i)1 , . . . , j (i)ni by non-decreasing rejection cost. For each s ∈ N let
fi (s) := ∑ni−s

�=1 e
j (i)�

. In particular, to schedule xi jobs of type i we can select them

such that we need to pay fi (xi ) for rejecting the non-scheduled jobs (and this is an
optimal decision). The difficulty is that the function fi (s) is in general not expressible
by a polynomial whose degree is globally bounded (i.e., for each possible instance),
which prevents a direct application of Theorem 1.
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However, in Lemma 4 we show that fi (s) is the maximum of ni linear polynomials,
allowing us to formulate a convex program and solve it by Theorem 1.

Lemma 4 For each type i there is a set of ni polynomials p(1)
i , . . . , p(ni )

i of degree

one such that fi (s) = max� p
(�)
i (s) for each s ∈ {0, . . . , ni }.

Proof For each � ∈ {0, . . . , ni − 1} we define p(�)
i (s) to be the unique polynomial of

degree one such that p(�)
i (�) = fi (�) and p(�)

i (� + 1) = fi (� + 1). We observe that
fi (s) is convex, since fi (�) − fi (� + 1) = e

j (i)ni−�

≥ e
j (i)ni−�−1

= fi (� + 1) − fi (� + 2)

for each � ∈ {0, . . . , ni − 2}. Therefore, the definition of the polynomials implies that
fi (s) ≥ p(�)

i (s) for each � ∈ {0, . . . , ni − 1} and each s ∈ {0, . . . , ni }. Since for

each s ∈ {0, . . . , ni − 1} we have that p(s)
i (s) = fi (s) and p(ni−1)

i (ni ) = fi (ni ), we

conclude that fi (s) = max� p
(�)
i (s) for each s ∈ {0, . . . , ni }. �

Lemmas3 and4 allowmodeling the entire problemwith the following convexprogram,
where for each type i the variable gi models the rejection cost for jobs of type i .

min
τ∑

i=1

gi + si (x)

s.t.
τ∑

i=1

(ni − xi ) ≤ k

gi ≥ p(�)
i (xi ) ∀ i ∈ {1, . . . , τ } ∀ � ∈ {1, . . . , ni }

g, x ∈ Z
τ≥0

Observe that the above integer convex program admits an optimal solution with gi =
max� p

(�)
i (xi ) = fi (xi ) for each i . Thus, solving it yields an optimal solution to the

overall instance.

Theorem 6 Any instance of the problem 1||∑≤k e j +∑w jC j on n jobs of τ types

can be solved in time (2τn + log(max j max{e j , p j , w j }))O(1) · 2O(τ 3).

Proof The number of integer variables is 2τ . All constraints and the objective function
can be expressed by convex polynomials of degree at most 2. Hence, using Theorem 1
weobtain anoverall running timeof (2τ+n·τ)·log(max j max{e j , p j , w j }))O(1)2O(τ 3).

�

4 Profit maximization for general scheduling problems

In this section, we consider the parameterized dual problem to scheduling jobs with
rejection: the problem to reject at least n − s jobs (s being the parameter) to minimize
the total cost given by the rejection penalties plus the cost of the schedule. As we will
show, this is equivalent to selecting at most s jobs and to schedule them in order to
maximize the profit of the scheduled jobs. In contrast to the previous section, here we
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allow jobs to have release dates and that the profit of a job depends on the time when
it finishes in the schedule, described by a function that might be different for each job
(similarly as for job dependent cost functions [5,6]).

Formally, we are given a set J of n jobs, where each job j is characterized by a
release date r j , a processing time p j , and a non-increasing profit function f j (t). We
assume that the functions f are given as oracles and that we can evaluate them in time
O(1) per query. Let p denote the number of distinct processing times p j in the instance.
We want to schedule a set J̄ ⊆ J of at most s jobs from J on a single machine. Our
objective is to maximize

∑
j∈ J̄ f j (C j ), where C j denotes the completion time of j in

the computed schedule.We call this problem the s-bounded General Profit Scheduling
Problem, or s-GPSP for short. Observe that this generic problem definition allows to
model profit functions that stem from scheduling objectives such as weighted flow
time and weighted tardiness.

We like to note that in a first version of this paper we presented an algorithm using
three, rather than two parameters. An anonymous referee gave us advice how to remove
one parameter and we present the improved version here. First, we show how to find
the best solution with a non-preemptive schedule, and subsequently we show how to
extend the algorithm to the preemptive setting.

4.1 Non-preemptive schedules

Denote by q1, . . . , qp the set of arising processing times in the instance. We start with
a color-coding step, where we color each job uniformly at randomwith one color from
{1, . . . , s}. When coloring the jobs randomly, with probability s!/ss all jobs scheduled
in an optimal solution (the set J̄ ) will receive distinct colors. We call such a coloring
of J̄ a good coloring. When trying enough random colorings, with high probability
we will find at least one good coloring. We will discuss later how to derandomize this
algorithm. For now, assume that we know a good coloring c : J → {1, . . . , s}.

We describe now a dynamic program that finds the best non-preemptive schedule
of at most s jobs with different colors. The dynamic program has one cell C(S, t)
for each combination of a set S ⊆ {1, . . . , s} and a time t ∈ T , where T := {r j +
∑p

i=1 si · qi | j ∈ J, s1, . . . , sp ∈ {0, . . . , s}}. Observe that the set T contains all
possible completion times of a job in an optimal non-preemptive schedule (we will
show later that this is even true for preemptive schedules). Also, |T | ≤ n ·(s+1)p. The
cell C(S, t) models the subproblem of scheduling a set of at most |S| jobs such that
their colors are pairwise different and contained in S, and so that the last job finishes
by time t the latest. We will denote by opt(S, t) the value of the optimal solution for
this subproblem with respect to the fixed coloring c.

Consider an optimal solution with value opt(S, t). If no job finishes at time t , then
opt(S, t) = opt(S, t ′) for some t ′ < t . Else, there is some job j with c( j) ∈ S that
finishes at time t ; then opt(S, t) = f j (t) + opt(S\{c( j)}, t ′), where t ′ is the largest
value in T with t ′ ≤ t − p j . We now prove this formally.
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Lemma 5 Let c : J → {1, . . . , s} be a coloring, let S ⊆ {1, . . . , s} and let t ∈ T .
The optimal value opt(S, t) for the dynamic programming cell C(S, t) equals

max

{

max
t ′∈T : t ′<t

opt(S, t ′), max
j∈J : (r j≤t−p j )∧c( j)∈S

f j (t)

+opt(S\{c( j)},max{t ′ ∈ T | t ′ ≤ t − p j }), 0
}

. (12)

Proof For cells C(S, tmin) with tmin = mint∈T t the claim is true since tmin = min j r j
and therefore opt(S, tmin) = 0. Now consider a cellC(S, t̄)with t̄ > tmin. Let opt′(S, t̄)
denote the right-hand side of (12). We show that opt(S, t̄) ≥ opt′(S, t̄) and opt(S, t̄) ≤
opt′(S, t̄).

For the first claim, we show that there is a schedule with value opt′(S, t̄). If
opt′(S, t̄) = 0 or opt′(S, t̄) = maxt ′∈T :t ′<t̄ opt(S, t ′) then the claim is immedi-
ate. Now suppose that there is a job j with r j ≤ t̄ − p j and c( j) ∈ S such
that opt(S, t̄) = f j (t̄) + opt(S\{c( j)},max{t ′ ∈ T |t ′ ≤ t̄ − p j }). Then there is
a feasible schedule for the problem encoded in cell C(S, t̄) that is given by the
jobs in the optimal solution for the cell C(S\{c( j)},max{t ′ ∈ T | t ′ ≤ t̄ − p j }),
and additionally schedules job j during [t̄ − p j , t̄). The profit of this solution is
f j (t̄) + opt(S\{c( j)},max{t ′ ∈ T | t ′ ≤ t̄ − p j }).
For showing that opt(S, t̄) ≤ opt′(S, t̄) consider the schedule for opt(S, t̄) and

assumew.l.o.g. that the set T contains all start and end times of jobs in that schedule. If
no job finishes at time t̄ then opt(S, t̄) = maxt ′∈T : t ′<t opt(S, t ′), using that T contains
all finishing times of a job in the optimal schedule. Note that {t ′ ∈ T |t ′ < t} �= ∅
since we assumed that t̄ > tmin. If a job j finishes at time t̄ then opt(S, t̄) = f j (t̄) +
opt(S\{c( j)},max{t ′ ∈ T | t ′ ≤ t̄ − p j }). This implies that opt(S, t̄) ≤ opt′(S, t̄).

�
To compute the value opt(S, t), our dynamic program evaluates expression (12). Note
that this transition implies opt(S, tmin) = 0 for tmin the minimum value in T . The
number of dynamic programming cells is at most 2s · |T | = 2sn · (s +1)p. Evaluating
expression (12) takes time O(|T |+n) = O((s+1)p+n), given that optimal solutions
to all subproblems are known. Togetherwith Lemma5 this yields the following lemma.

Lemma 6 There is an algorithm that, given an instance of s-GPSP with a set J of n
jobs of at most p distinct processing times together with a good coloring c : J →
{1, . . . , s}, in time O(2s ·n2 ·(s+1)2p) computes an optimal non-preemptive schedule
for the jobs in J .

Instead of coloring the jobs randomly, we can use a family of hash functions, as
described by Alon et al. [3]. Using our notation, they show that there is a family F of
2O(s) log n hash functions J → {1, . . . , s} such that for any set J ′ ⊆ J (in particular
for the set of jobs J ′ that is scheduled in an optimal solution) there is a hash function
F ∈ F such that F is bijective on J ′. The value of each of these functions on each
specific element of J can be evaluated in O(1) time. This yields the following.
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Theorem 7 There is a deterministic algorithm that, given an instance of s- GPSP
with n jobs and p processing times, computes an optimal non-preemptive schedule in
time 2O(s) · (s + 1)2p · n2 log n.

4.2 Preemptive schedules

We now extend our algorithm from the previous section to the settingwhen preemption
of jobs is allowed. Now the dynamic program becomes more complicated. As before,
we color all jobs in J uniformly at random with colors from {1, . . . , s}. Fix a good
coloring c : J → {1, . . . , s}. In the dynamic programming table we have one cell
C(S, t1, t2, P) for each combination of a set S ⊆ {1, . . . , s}, values t1, t2 ∈ T , where

as above T =
{
r j +∑p

i=1 si · qi | j ∈ J, s1, . . . , sp ∈ {0, . . . , s}
}
, and a value P ∈

P :=
{∑p

i=1 si · qi | s1, . . . , sp ∈ {0, . . . , s}
}
(note that like for T we have |P| ≤

(s + 1)p). This cell encodes the problem of selecting at most |S| jobs with total
processing time at most P such that (i) their colors are pairwise different and contained
in S, (ii) they are released during [t1, t2); we want to schedule them during [t1, t2),
possibly with preemption, the objective being to maximize the total profit.

To this end, we first prove that the set T contains all possible start- and completion
times of jobs of an optimal solution. The former denotes the first time in a schedule
where each job is being processed.

Lemma 7 There is an optimal solution such that for each scheduled job j , its start
time and completion time are both contained in T .

Proof Consider an optimal schedule S for the set of at most k jobs that we want to
schedule. If we fix the completion times of the jobs in the schedule as deadlines and
run the policy of earliest-deadline-first (EDF) with these deadlines, then we obtain
a schedule S ′ where each job finishes no later than in S. This is true since given
one machine and jobs with release dates and deadlines, there is a feasible preemptive
schedule (i.e., a schedule where each job finishes by its deadline) if and only if EDF
finds such a schedule. In particular, since the profit-functions of the jobs are non-
increasing, the profit given by S ′ is at most the profit given by S.

We prove the claim by induction over the deadlines of the jobs in S ′. In fact, we
prove the following slightly stronger claim: for the job with s′-th deadline, its start

time and completion time are in the set Ts′ =
{
r j +∑p

i=1 si · qi | j ∈ J, s1, . . . , sp ∈
{0, . . . , s′}}.

For the job j1 with smallest deadline, we have that j1 starts at time r j1 ∈ T1 and
finishes at time r j1 + p j1 ∈ T1, since j1 has highest priority. Suppose by induction
that the claim is true for the jobs with the s′ − 1 smallest deadlines, and note that the
deadlines are distinct. Consider the job js′ with the s′-smallest deadline. Let Rs′ denote
its start time. Let J1 denote the jobs finishing before Rs′ . Similarly, let J2 denote the
jobs finishing during (Rs′Cs′ ]. Note that js′ ∈ J2 but J2 does not contain a job with
deadline later than js′ . Since we run EDF, Rs′ = r js′ or Rs′ = C js′′ for some job js′′ .

In both cases Rs′ ∈ T|J1|, and thus Rs′ = r j +∑p
i=1 s

(1)
i · qi for some job j ∈ J
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and values s(1)
1 , . . . , s(1)

p ∈ {0, . . . , |J1|}. During (Rs′Cs′ ], at most |J2| jobs finish, and
their total length is

∑p
i=1 s

(2)
i · qi for values s(2)

1 , . . . , s(2)
p ∈ {0, . . . , |J2|}. Hence,

Cs′ = r j +
p∑

i=1

s(1)
i · qi +

p∑

i=1

s(2)
i · qi = r j +

p∑

i=1

si · qi

for some job j ∈ J and values s1, . . . , sp ∈ {0, . . . , |J1| + |J2|}. By |J1| + |J2| = s′,
we have that C js′ ∈ Ts′ . �
Suppose we want to compute an optimal solution of value opt(S, t1, t2, P) for a cell
C(S, t1, t2, P). In any optimal solution, we can assume that the last finishing job has
smallest priority, i.e., we work on this job only if no other job is pending. Let j be this
(last) job and let R j denote its start time. Then, during [R j , t2) the only scheduled jobs
are j and some jobs that are released during [R j , t2). Also, all jobs scheduled during
[t1, R j ) are also released during [t1, R j ) and they are finished within [t1, R j ).

This observation gives rise to the dynamic programming transition. Given a cell
C(S, t1, t2, P), we enumerate all possibilities for the last job j , its start time R j ,
the total processing time of jobs scheduled during [t1, R j ) and [R j , t2), and their
colors. One combination corresponds to an optimal solution, and we reduce the overall
problem to the respective two subproblems for [t1, R j ), [R j , t2). (Observe that the
color coding step prevents to select the same job in both subproblems.) We justify this
transition in the following lemma. For ease of notation, for a cellC(S, t1, t2, P) denote
by en(S, t1, t2, P) the set of tuples ( j, S′, R j , P ′, P ′′) that we need to enumerate for
splitting the cell, i.e., all such tuples with c( j) ∈ S, t1 ≤ r j ≤ t2 − p j , S′ ⊆ S\{c( j)},
t2 − R j ≥ P ′′ + p j , P ′, P ′′ ∈ P , and P ′ + P ′′ + p j ≤ P .

Lemma 8 For a coloring c : J → {1, . . . , s}, each dynamic programming cell
C(S, t1, t2, P) satisfies

opt(S, t1, t2, P) = max
{

max
t ′∈T : t1≤t ′<t2

opt(S, t1, t
′, P),

max
( j,S′,R j ,P ′,P ′′)∈en(S,t1,t2,P)

f j (t2) + opt(S′, t1, R j , P
′)

+opt(S\(S′ ∪ {c( j)}, R j , t2, P
′′), 0

}
. (13)

Proof Similarly as in the proof of Lemma 5, let opt′(S, t1, t2, P) denote the right-hand
side of (13) for the cell C(S, t1, t2, p).

Consider a cell C(S, t1, t2, P). First, we show that opt(S, t1, t2, P) ≥ opt′(S, t1, t2,
P). To this end, it suffices to show that there is a feasible solution with value at least
opt′(S, t1, t2, P). If opt′(S, t1, t2, P) = 0 then the claim is immediate (just take the
empty solution). Otherwise, first assume that opt′(S, t1, t2, P) = opt(S, t1, t ′, P) for
some t ′ ∈ T with t ′ < t2. Any solution for the cell C(S, t1, t ′, P) is also feasible for
C(S, t1, t2, P), and thus opt(S, t1, t2, P) ≥ opt(S, t1, t ′, P). Hence, opt(S, t1, t2, P) ≥
opt′(S, t1, t2, P).

Finally, assume that there is a tuple ( j, S′, R j , P ′, P ′′) such that opt′(S, t1, t2, P) =
f j (t2) + opt(S′, t1, R j , P ′) + opt(S\(S′ ∪ {c( j)}, R j , t2, P ′′). We build a solution

123



Scheduling and fixed-parameter tractability 553

with this value as follows. During [t1, R j ), we schedule an optimal solution for the
cell C(S′, t1, R j , P ′). During [R j , t2), we schedule an optimal solution for the cell
C(S\(S′∪{c( j)}, R j , t2, P ′′). By assumption, t2−R j ≥ P ′′+ p j . Hence, the schedule
for the latter cell leaves total idle time during [R j , t2) of at least p j . During these idle
times we schedule job j and, thus, j finishes at time t2 the latest. As S′ ⊆ S\{c( j)}
and S′ ∩ (S\(S′ ∪ {c( j)}) = ∅, no job is scheduled in both subproblems. Also,
P ′ + P ′′ + p j ≤ P . Hence, the solution is feasible for the cell C(S, t1, t2, P) and its
value is at least f j (t2) + opt(S′, t1, R j , P ′) + opt(S\(S′ ∪ {c( j)}, R j , t2, P ′′). Thus,
opt(S, t1, t2, P) ≥ opt′(S, t1, t2, P).

Conversely, we want to show that opt(S, t1, t2, P) ≤ opt′(S, t1, t2, P). Consider an
optimal solution for the cell C(S, t1, t2, P). If opt(S, t1, t2, P) = 0, then the claim is
immediate. Otherwise, we can assume that in the schedule for the solution, the jobs
are ordered according to EDF by their respective completion time (see also the proof
of Lemma 7). Let j be the job with largest deadline (and hence smallest priority);
then c( j) ∈ S. If j ends at a time t ′ < t2 then opt(S, t1, t2, P) = opt(S, t1, t ′, P) ≤
opt′(S, t1, t2, P).

Now suppose that j finishes at time t2, and let R j denote its start time in an optimal
schedule of value opt(S, t1, t2, P). Observe that t1 ≤ r j ≤ t2 − p j . Let S′ ⊆ S\{c( j)}
denote the set of colors of jobs scheduled during [t1, R j ) in an optimal solution with
value opt(S, t1, t2, P) (observe that c( j) /∈ S′), and let P ′ denote the total processing
time of jobs scheduled during [t1, R j ). Since all jobs scheduled during [t1, R j ) start
and finish during that interval, we have that P ′ ∈ P . Also, let P ′′ denote the total
processing time of jobs other than j that are scheduled during [R j , t2) in a solution
of value opt(S, t1, t2, P). In particular, t2 − R j ≥ P ′′ + p j . As all those jobs start
and finish during [R j , t2), this implies that P ′′ ∈ P . Hence, ( j, S′, R j , P ′, P ′′) ∈
en(S, t1, t2, P), and thus

opt(S, t1, t2, P) = f j (t2) + opt(S′, t1, R j , P
′)

+opt(S\(S′ ∪ {c( j)}, R j , t2, P
′′) ≤ opt′(S, t1, t2, P).

�
Our dynamic program evaluates Eq. (13) for each cell. Observe that cells

C(S, t1, t2, p) with S = ∅ or t1 = t2 obey en(S, t1, t2, P) = ∅, and so
opt(S, t1, t2, p) = 0. This yields the following.

Lemma 9 There is an algorithm that, given a set of n jobs with p distinct processing
times and a good coloring c : J → {1, . . . , s}, in time 2O(s)sO(p)n4 computes an
optimal preemptive schedule for s-GSP.

Using the same derandomization technique as above, we obtain the following theorem.

Theorem 8 There is a deterministic algorithm that, given a set of n jobswith p distinct
processing times, in time 2O(s)sO(p)n4 log n computes an optimal preemptive schedule
for s-GSP.

Observe that (log n)O(p) = O((p log p)O(p) + n); this yields the following.
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Corollary 1 There is a deterministic algorithm that, given a set of n jobs with p
distinct processing times, computes an optimal solution for O(log n)-GSP in time
(p log p)O(p) · nO(1).

Applying Theorem 8, we obtain the following corollary when at least n−s jobs have
to be rejected.

Corollary 2 There is a deterministic algorithm that, given a set of n jobs with at most
p distinct processing times, each job having a private cost function w j , solves the
problem 1|r j , (pmtn)|∑S w j (C j )+∑S̄ e j in time 2

O(s)sO(p)n4 log n, when at least
n−s jobs have to be rejected.

Proof Any instance of the problem to reject n−s jobs and schedule the remaining s
jobs to minimize 1|r j , (pmtn)|∑S w j (C j ) +∑S̄ e j is equivalent to an instance of
s-GPSP (with or without preemption, respectively) where for each job j we define a
profit function f j (t) := e j − w j (t) and keep the release dates and processing times
unchanged. Then the corollary follows from Theorems 7 and 8. �
Observe that the objective function

∑
S f j (C j )+∑S̄ e j is in particular a generalization

of

– weighted flow time with rejection,
∑

S w j (C j − r j ) +∑S̄ e j , where each job j
has a weight w j associated with it

– weighted tardiness with rejection,
∑

S w j max{0, t − d j } +∑S̄ e j , where each
job j has additionally a deadline d j , and

– weighted sum of completion times with rejection,
∑

S w jC j +∑S̄ e j .

So our algorithm works for these objective functions as well.
When only the number s of scheduled jobs is chosen as parameter the problem

becomes W[1]-hard, as pointed out to us by an anonymous reviewer.

Theorem 9 Scheduling a set J̄ of s jobs from n given jobs (non-)preemptively on a
single machine to maximize

∑
j∈ J̄ b j − w j (C j ) is W[1]-hard for parameter s, even

if all n jobs have the same function w j and b j = p j for each job j . Thus, (non-)
preemptive s-GPSP is W[1]-hard for parameter s.
Proof Consider an instance of k-Subset Sum, specified by integers si and a target
value q. In our reduction, for each s j , we create a job j with processing time p j := s j ,
profit b j := s j and cost function w j defined as

w j (t) =
{
0, if t ≤ q,

+∞, if t > q,

for all times t . Then there is a set of s integers si whose sum is exactly q, if and only if
we can schedule the corresponding set J̄ of s jobs preemptively or non-preemptively
on a single machine such that

∑
j∈ J̄ b j − w j (C j ) = q. Notice that there is only a

single function w j (t) that is used for all jobs j ∈ J in this reduction. When defining
as profit function f j (t) := b j −w j (t) for each job j this yields an instance of k-GPSP
which is thus W[1]-hard. �
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On the other hand, we prove that choosing only the number of distinct processing
times p̄ as a parameter is not enough, as we show the problem to be NP-hard even if
p j ∈ {1, 3} for all jobs j . The same holds for the GSP [5] where—without the profit
maximization aspect—we are given a set of jobs j , each of them having a release
date r j and an individual cost function w j (t), and we want to schedule all of them on
one machine in order to minimize

∑
j w j (C j ) where C j denotes the completion time

of job j in the computed (preemptive) schedule. We prove this theorem in the next
section.

Theorem 10 The general profit scheduling problem (GPSP) and the GSP are NP-
hard, even if the processing time of each job is either exactly 1 or 3. This holds in both
the preemptive and non-preemptive setting.

5 Hardness of GPSP with processing times one and three

In this section we show that GPSP is NP-hard, even if p j ∈ {1, 3} for each job j .
We reduce from 3- Dimensional Matching, where one is given three sets A =
{a1, . . . , an}, B = {b1, . . . , bn}, and C = {c1, . . . , cn} for some n ∈ N, and a set
T ⊆ A × B × C . The goal is to find a subset T ′ ⊆ T with |T ′| = n such that for any
two different triples (ai , b j , ck), (a′

i , b
′
j , c

′
k) ∈ T ′ it holds that ai �= a′

i , b j �= b′
j , and

ck �= c′
k . Note that this implies that each element in A, B, and C appears in exactly

one triple in T ′. We say that the given instance is a “yes”-instance if there exists such
a set T ′. The 3- Dimensional Matching problem is NP-hard [21].

Given an instance of 3- Dimensional Matching, we construct an instance of
GPSP.With each triple (ai , b j , ck) ∈ T we associate an interval of length 3 on the time
axis. For each such triple, we define a value t (ai , b j , ck) such that for any two different
triples, the corresponding intervals [t (ai , b j , ck), t (ai , b j , ck) + 3) are disjoint and⋃

(ai ,b j ,ck )∈T [t (ai , b j , ck), t (ai , b j , ck)+3) = [0, 3|T |).We achieve this by assigning
to each triple (ai , b j , ck) ∈ T a unique identifier z(ai ,b j ,ck ) ∈ {0, |T | − 1} and define
t (ai , b j , ck) := 3 · z(ai ,b j ,ck ). For each triple (ai , b j , ck) ∈ T , we introduce four
jobs, all released at time t (ai , b j , ck): three jobs of unit length called A(ai , b j , ck),
B(ai , b j , ck), C(ai , b j , ck) that represent the occurrence of the respective element
from A, B, C in the triple (ai , b j , ck) (so the occurrence of the elements ai , b j , and ck
in (ai , b j , ck), respectively); and additionally one job of length three that we denote
by L(ai , b j , ck).

For each element in A ∪ B ∪ C we specify a unique point in time. We define
t (ai ) := 3|T | + i , t (b j ) := 3|T | + n + j , and t (ck) := 3|T | + 2n + k for each
respective element ai ∈ A, b j ∈ B, ck ∈ C ; see Fig. 1 for a sketch of the subdivision
of the time axis and the profit functions (that we define later).

Before specifying the profit function for each job, we give some intuition. The idea
is that if the given instance is a “yes”-instance, then there is an optimal schedule where

– for each triple (ai , b j , ck) in the optimal solution we schedule the job L(ai , b j , ck)
during the interval [t (ai , b j , ck), t (ai , b j , ck) + 3) and the jobs A(ai , b j , ck),
B(ai , b j , ck), and C(ai , b j , ck) during [t (ai ) − 1, t (ai )), [t (b j ) − 1, t (b j )), and
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Fig. 1 Sketch for the reduction in Theorem 11

[t (ck)−1, t (ck)), respectively. Note that this implies that during [t (ai ), t (ck)+1)
the machine is busy.

– for each triple (ai , b j , ck) that is not in the optimal solution we schedule jobs
A(ai , b j , ck), B(ai , b j , ck), C(ai , b j , ck) during [t (ai , b j , ck), t (ai , b j , ck) + 3)
(in an arbitrary order) and the job L(ai , b j , ck) somewhere after time 3|T | + 3n.

We define the profit functions so that there is always an optimal solution which is in
standard from. We say that a solution is in standard form if

1. each job A(ai , b j , ck) (job B(ai , b j , ck), job C(ai , b j , ck)) is scheduled either
during the interval [t (ai , b j , ck), t (ai , b j , ck) + 3) or during [3|T |, t (ai )) (during
[3|T |, t (b j ), during [3|T |, t (ck)); and

2. each job L(ai , b j , ck) is scheduled non-preemptively either completely during the
interval [t (ai , b j , ck), t (ai , b j , ck) + 3) or completely during [3|T | + 3n,∞).

Observe in particular that solutions in standard form schedule all jobs.
Formally, we define the profit functions as follows. Let M1 := 1+ 23n and M2 :=

M1 · 3|T | + 23n . For the jobs A(ai , b j , ck), B(ai , b j , ck), and C(ai , b j , ck) for each
triple (ai , b j , ck) ∈ T we define their profit function as follows:

f A(ai ,b j ,ck )(t) :=

⎧
⎪⎨

⎪⎩

M1 + M2, for t ≤ t (ai , b j , ck) + 3,

23n−i + M2, for t (ai , b j , ck) + 3 < t ≤ t (ai ),

0, for t > t (ai );

fB(ai ,b j ,ck )(t) :=

⎧
⎪⎨

⎪⎩

M1 + M2, for t ≤ t (ai , b j , ck) + 3,

22n− j + M2, for t (ai , b j , ck) + 3 < t ≤ t (b j ),

0, for t > t (b j );
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fC(ai ,b j ,ck )(t) :=

⎧
⎪⎨

⎪⎩

M1 + M2, for t ≤ t (ai , b j , ck) + 3,

2n−k + M2, for t (ai , b j , ck) + 3 < t ≤ t (ck),

0, for t > t (ck).

For the long job L(ai , b j , ck) for each triple (ai , b j , ck) ∈ T we define its profit
function as

fL(ai ,b j ,ck )(t) :=
{
3 · M1 + 3 · M2, for t ≤ t (ai , b j , ck) + 3,

3 · M2, for t > t (ai , b j , ck) + 3.

Lemma 10 There is always an optimal solution of the above instance of GPSP that
is in standard form.

Proof Given an optimal solution to the defined GPSP instance, suppose that it does
not satisfy the first property in the definition of the standard form. First, suppose
for contradiction that there is a job A(ai , b j , ck) that finishes after time t (ai ), thus
contributing zero towards the objective. Then the objective value can be at most 3|T | ·
(M1 + M2)+|T | · (3 · M1 + 3 · M2)− M1 − M2 (assuming that all other jobs give the
maximal possible profit). However, then there is a strictly better solution S′ which is
given by

– scheduling each job A(ai , b j , ck), B(ai , b j , ck), and C(ai , b j , ck) for each triple
(ai , b j , ck) ∈ T during [t (ai , b j , ck), t (ai , b j , ck) + 3), respectively, and

– scheduling each job L(ai , b j , ck) for each triple (ai , b j , ck) ∈ T somewhere dur-
ing [3|T | + 3n,∞).

The solution S′ yields a profit of at least 3|T | · (M1 + M2) + |T | · (3 · M2) >

3|T | · (M1 + M2) + |T | · (3 · M1 + 3 · M2) − M2, using that M2 > 3|T | · M1. Hence,
the first considered schedule was not optimal. For jobs B(ai , b j , ck) andC(ai , b j , ck),
the claim can be shown similarly.

Secondly, for contradiction suppose that there is a job A(ai , b j , ck) that is scheduled
during interval [t (ai , b j , ck)+3, 3·|T |). Then the computed schedule yields a profit of
at most 3|T |·(M1+M2)−M1+∑3n−1

�=0 2�+|T |·3M2 < 3|T |·(M1+M2)+|T |·3M2,
using that M1 >

∑3n−1
�=0 2� = 23n − 1. Hence, solution S′ (as defined above) is better

than the considered optimal solution, which yields a contradiction. Hence, any optimal
solution satisfies the first property.

Suppose now that we are given an optimal solution that violates the second
property. Then there is a job L(ai , b j , ck) that is not completely scheduled during
[t (ai , b j , ck), t (ai , b j , ck) + 3). Then its contribution for the global profit is 3 · M2
and this does not depend on where exactly after t (ai , b j , ck) + 3 it finishes. Thus,
we can move L(ai , b j , ck) so that it is completely scheduled non-preemptively during
[3|T | + 3n,∞), without changing its contribution to the profit. �

To show the correctness of our reduction, we show that there is a solution with an
overall profit of |T | · (3 · M1 + 3 · M2) + |T | · 3 · M2 + 23n − 1 if and only if the
instance of 3- Dimensional Matching is a “yes”-instance. In the proof of the next
lemma we simply calculate the profit we can obtain, assuming that we reduced from
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a “yes”-instance. The schedule yielding this profit is the one defined above where we
gave some initial intuition.

Lemma 11 If the given instance of 3- Dimensional Matching is a “yes”-instance,
then there is a solution with profit |T | · (3 · M1 + 3 · M2) + |T | · 3 · M2 + 23n − 1.

Proof Let T ′ ⊆ T be a solution of the instance of 3- Dimensional Matching (note
that |T ′| = n). For each tuple (ai , b j , ck) ∈ T ′ we schedule the job L(ai , b j , ck) during
[t (ai , b j , ck), t (ai , b j , ck) + 3), and jobs A(ai , b j , ck), B(ai , b j , ck), C(ai , b j , ck)
during [t (ai ) − 1, t (ai )), [t (b j ) − 1, t (b j )), and [t (ck) − 1, t (ck)), respectively. Note
that since T ′ is a feasible solution, at most one job is scheduled in each interval [t (ai )−
1, t (ai )), [t (b j ) − 1, t (b j )), and [t (ck) − 1, t (ck)). For all tuples (ai , b j , ck) /∈ T ′ we
schedule the job L(ai , b j , ck) in some arbitrary interval during [3|T |+3n,∞) and the
jobs A(ai , b j , ck), B(ai , b j , ck), andC(ai , b j , ck) during [t (ai , b j , ck), t (ai , b j , ck)+
3). This solution yields an overall profit of 3|T | · (M1 + M2) +∑3n−1

�=0 (M2 + 2�) +
(|T | − n) · 3 · M2 = |T | · (3 · M1 + 3 · M2) + |T | · 3 · M2 + 23n − 1. �

The following lemma shows the converse statement of the previous lemma. In a
nutshell, in its proof we argue that

– for each triple (ai , b j , ck) the machine is busy during the interval [t (ai , b j , ck),
t (ai , b j , ck)+ 3), either with the job L(ai , b j , ck), and, if this is not the case, then
the three jobs A(ai , b j , ck), B(ai , b j , ck), and C(ai , b j , ck) are scheduled there
(the latter jobs give the most profit when scheduled there),

– some jobs of the types A(ai , b j , ck), B(ai , b j , ck), and C(ai , b j , ck) are sched-
uled during [3|T |, t (cn)). Their respective non-zero profits during this interval
are 23n−i + M2, 22n− j + M2, and 2n−k + M2, respectively. Thus, apart from the
additive term M2 they are geometrically spaced. This ensures that in order to get
a large enough total profit, one has to schedule exactly one job A(ai , b j , ck) for
each i ∈ {1, . . . , n} during [3|T |, t (an)), and similarly for each j, k ∈ {1, . . . , n}
one has to schedule exactly one job B(ai , b j , ck) and exactly one jobC(ai , b j , ck)
during [3|T |, t (bn)) and during [3|T |, t (cn)), respectively. This will then imply
that we reduced from a “yes”-instance.

Lemma 12 If there is an optimal solution of the GPSP instance yielding a profit of at
least |T |·(3·M1+3·M2)+|T |·3·M2+23n−1, then the instance of 3- Dimensional
Matching is a “yes”-instance.

Proof Given a solution to our defined GPSP instance, by Lemma 10 we can assume
it is in standard form. Let T ′ ⊆ T be the set of triples (ai , b j , ck) ∈ T corre-
sponding to the jobs L(ai , b j , ck) that are scheduled during their respective intervals
[t (ai , b j , ck), t (ai , b j , ck) + 3). We claim that they form a feasible solution and that
|T ′| = n. The profit obtained by the jobs L(ai , b j , ck) corresponding to the triples
in T ′ equals |T ′| ·(3 ·M1+3 ·M2). The total profit given by all other jobs L(ai , b j , ck)
equals (|T | − |T ′|) · 3 · M2. For all jobs A(ai , b j , ck), B(ai , b j , ck), and C(ai , b j , ck)
such that L(ai , b j , ck) is not scheduled during [t (ai , b j , ck), t (ai , b j , ck) + 3) we
can assume that the former are all scheduled during [t (ai , b j , ck), t (ai , b j , ck) + 3)
(since there they yield the maximum profit and no other job is scheduled there). The
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profit of those jobs equals then (|T | − |T ′|) · 3(M1 + M2). Denote by J ′ the set of all
other jobs A(ai , b j , ck), B(ai , b j , ck), and C(ai , b j , ck), i.e., such that L(ai , b j , ck)
is scheduled during [t (ai , b j , ck), t (ai , b j , ck) + 3)). Their total profit equals 3|T ′| ·
M2 +∑A(ai ,b j ,ck )∈J ′ 23n−i +∑B(ai ,b j ,ck )∈J ′ 22n− j +∑C(ai ,b j ,ck )∈J ′ 2n−k . Thus, we
can write the total profit of the solution as

|T ′| · (3 · M1 + 3 · M2) + (|T | − |T ′|) · 3 · M2

+(|T | − |T ′|) · 3(M1 + M2) + 3|T ′| · M2

+
∑

A(ai ,b j ,ck )∈J ′
23n−i +

∑

B(ai ,b j ,ck )∈J ′
22n− j +

∑

C(ai ,b j ,ck )∈J ′
2n−k

= |T | · (3 · M1 + 3 · M2) + |T | · 3 · M2 +
∑

A(ai ,b j ,ck )∈J ′
23n−i

+
∑

B(ai ,b j ,ck )∈J ′
22n− j +

∑

C(ai ,b j ,ck )∈J ′
2n−k

By assumption, the total profit is at least |T |·(3·M1+3·M2)+|T |·3·M2+23n−1. This
implies that

∑
A(ai ,b j ,ck )∈J ′ 23n−i +∑B(ai ,b j ,ck )∈J ′ 22n− j +∑C(ai ,b j ,ck )∈J ′ 2n−k ≥

23n − 1.

Claim For each i ∈ {1, . . . , n} there is exactly one job A(ai , b j , ck) ∈ J ′, for each
j ∈ {1, . . . , n} there is exactly one job B(ai , b j , ck) ∈ J ′, and for each k ∈ {1, . . . , n}
there is exactly one job C(ai , b j , ck) ∈ J ′.
Proof of the claim As we assumed the solution to be in standard form, all jobs in J ′
are scheduled during [3|T |, t (cn)).

First, we show that there must be a job A(ai , b j , ck) ∈ J ′ with i = 1. The max-
imum profit one can obtain during the interval [3|T |, t (cn)) from jobs A(ai , b j , ck)
with i ≥ 2, and from jobs B(ai , b j , ck), C(ai , b j , ck) with arbitrary i is obtained by
scheduling two jobs A(a2, b j , ck), A(a2, b j ′ , ck′) during [t (a1) − 1, t (a1) + 1) =
[3|T |, 3|T | + 2), one job A(ai , b j , ck) during [t (ai ) − 1, t (ai )) for each i ≥ 3,
one job B(ai , b j , ck) during [t (b j ) − 1, t (b j )) for each j , and one job C(ai , b j , ck)
during [t (ck) − 1, t (ck)) for each k. This yields a profit of 23n−2 +∑n

i=2 2
3n−i +∑n

j=1 2
2n− j + ∑n

k=1 2
n−k = 23n−2 + 23n−1 − 1 < 23n − 1. Therefore, since

∑
A(ai ,b j ,ck )∈J ′ 23n−i +∑B(ai ,b j ,ck )∈J ′ 22n− j +∑C(ai ,b j ,ck )∈J ′ 2n−k ≥ 23n − 1 this

implies that there must be one job A(ai , b j , ck) ∈ J ′ with i = 1. Let A(a1, b j1 , ck1) ∈
J ′ be this job.

As our solution is in standard form, we know that A(a1, b j1 , ck1)must be scheduled
in the interval [3|T |, 3|T | + 1). Thus, all jobs in J ′\{A(a1, b j1 , ck1)} are scheduled
during [3|T | + 1, 3|T | + n) and they yield a total profit of at least 23n − 1− 23n−1 =
23n−1 − 1. With a similar argumentation as above we can show that for each i ∈
{2, . . . , n} there is exactly one job A(ai , b j , ck) ∈ J ′, and similarly for each j ∈
{1, . . . , n} and each k ∈ {1, . . . , n} there is exactly one job B(ai , b j , ck) ∈ J ′ and one
job C(ai , b j , ck) ∈ J ′. This completes the proof of the claim. �

Now observe that the jobs in J ′ correspond exactly to the elements ai , b j , ck of
the triples in T ′. The above claim implies that each element in A ∪ B ∪ C appears
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exactly once in them. Thus, the triples T ′ form a feasible solution to the instance of 3-
Dimensional Matching that we reduced from which is therefore a “yes”-instance.

�
Lemmas 11 and 12 together show the correctness of the above reduction. Since by

Lemma 10 we can restrict ourselves to solutions in standard form and those are non-
preemptive, our reduction works for the preemptive as well as for the non-preemptive
setting.

Theorem 11 The General Profit Scheduling Problem (GPSP) is NP-hard, even if the
processing time of each job is either exactly 1 or 3. This holds in the preemptive as
well as in the non-preemptive setting.

Using the fact that solutions in standard form schedule all jobs, we can modify the
above transformation to show that also the GSP is NP-hard if the processing time of
each job is either exactly 1 or 3. All we need to do is to define a cost function w j for
each job by setting w j (t) := 3 · M1 + 3 · M2 − f j (t), which in particular ensures that
for no completion time any job has negative costs. Then the goal is to find a feasible
schedule on one machine to minimize

∑
j w j (C j ).

Corollary 3 The GSP is NP-hard, even if the processing time of each job is either
exactly 1 or 3. This holds in the preemptive setting as well as in the non-preemptive
setting.

6 Discussion and future directions

In this paper, we obtained the first fixed-parameter algorithms for several fundamental
problems in scheduling.We identified key problemparameters that determine the com-
plexity of an instance, so that when these parameters are fixed the problem becomes
polynomial time solvable.

There are several interesting open questions in the connection of scheduling and
FPT. One important scheduling objective is weighted flow time (which in the approxi-
mative sense is not completely understood yet, even on onemachine). It would be inter-
esting to investigate whether this problem is FPT when parametrized by, for instance,
an upper bound on the maximum processing time and the maximum weight of a job
(assuming integral input data). For scheduling jobs non-preemptively on identical
machines to minimize the makespan, in Sect. 2 we proved the first FPT result for this
problem. It would be interesting to extend this to the setting with release dates or to
consider as parameter the number of distinct processing times (rather than an upper
bound on those). Recently the problem was shown to be polynomial time solvable for
any constant number of distinct processing times [22], but the given algorithm is not
a fixed-parameter algorithm. When the jobs have precedence constraints, a canoni-
cal parameter would be the width of the partial order given by these constraints, and
it would be interesting to study whether P|prec|Cmax admits fixed-parameter algo-
rithmswhen parameterized by the partial orderwidth and additionally by themaximum
processing time. For scheduling with rejection, we further suggest the number of dis-
tinct rejection costs as a parameter to investigate. Finally, it would be desirable to
understand the kernelizability of all scheduling problems we considered here.
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