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Abstract The alternating direction method of multipliers (ADMM) is now widely
used in many fields, and its convergence was proved when two blocks of variables
are alternatively updated. It is strongly desirable and practically valuable to extend
the ADMM directly to the case of a multi-block convex minimization problem where
its objective function is the sum of more than two separable convex functions. How-
ever, the convergence of this extension has been missing for a long time—neither an
affirmative convergence proof nor an example showing its divergence is known in the
literature. In this paper we give a negative answer to this long-standing open question:
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The direct extension of ADMM is not necessarily convergent. We present a sufficient
condition to ensure the convergence of the direct extension of ADMM, and give an
example to show its divergence.

Keywords Alternating direction method of multipliers · Convergence analysis ·
Convex programming · Splitting methods

Mathematics Subject Classification 90C25 · 90C30 · 65K13

1 Introduction

We consider the convex minimization model with linear constraints and an objective
function which is the sum of three functions without coupled variables:

min θ1(x1) + θ2(x2) + θ3(x3)
s.t. A1x1 + A2x2 + A3x3 = b,

x1 ∈ X 1, x2 ∈ X2, x3 ∈ X3,

(1.1)

where Ai ∈ �p×ni (i = 1, 2, 3), b ∈ �p, Xi ⊂ �ni (i = 1, 2, 3) are closed convex
sets; and θi : �ni → � (i = 1, 2, 3) are closed convex but not necessarily smooth
functions. The solution set of (1.1) is assumed to be nonempty. The abstract model
(1.1) captures many applications in diversifying areas—e.g. see the image alignment
problem in [24], the robust principal component analysis model with noisy and incom-
plete data in [27], the latent variable Gaussian graphical model selection in [5,22] and
the quadratic discriminant analysis model in [21]. Our discussion is inspired by the
scenario where each function θi may have some specific properties and it deserves
to explore them in algorithmic design. This is often encountered in some sparse and
low-rank optimization models, such as the just-mentioned applications of (1.1). We
thus do not consider the generic treatment that the sum of three functions is regarded
as one general function and possible advantageous properties of each individual θi are
ignored or not fully used.

The alternatingdirectionmethodofmultipliers (ADMM)wasoriginally proposed in
[12] (see also [4,9]), and it is now a benchmark for the following convex minimization
model analogous to (1.1) but with only two blocks of functions and variables:

min θ1(x1) + θ2(x2)
s.t. A1x1 + A2x2 = b,

x1 ∈ X1, x2 ∈ X2 .

(1.2)

Let

LA(x1, x2, λ) = θ1(x1) + θ2(x2) − λT (A1x1 + A2x2 − b
)

+ β

2

∥∥A1x1 + A2x2 − b
∥∥2 (1.3)

be the augmented Lagrangian function of (1.2) with the Lagrange multiplier λ ∈ �p

and β > 0 be a penalty parameter. Then, the iterative scheme of ADMM for (1.2) is
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(ADMM)

⎧
⎪⎨

⎪⎩

xk+1
1 = Argmin{LA(x1, x

k
2 , λ

k) | x1 ∈ X1}, (1.4a)

xk+1
2 = Argmin{LA(xk+1

1 , x2, λ
k) | x2 ∈ X2}, (1.4b)

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 − b). (1.4c)

The iterative schemeofADMMembeds aGaussian–Seidel decomposition into each
iteration of the augmented Lagrangian method (ALM) in [19,25]; thus the functions
θ1 and θ2 are treated individually and so easier subproblems could be generated.
This feature is very advantageous for a broad spectrum of application such as partial
differential equations, mechanics, image processing, statistical learning, computer
vision, and so on. In fact, the ADMM has recently witnessed a “renaissance” in many
application domains after a long period without too much attention. We refer to [3,6,
11] for some review papers on the ADMM.

Given theADMM’s advantage in using each θi ’s properties individually, it is natural
to extend the original ADMM (1.4) for (1.2) directly to (1.1) and obtain the scheme

(Direct Extension of ADMM)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = Argmin

{
LA(x1, x

k
2 , x

k
3 , λ

k) | x1 ∈ X1

}
, (1.5a)

xk+1
2 = Argmin

{
LA(xk+1

1 , x2, x
k
3 , λ

k) | x2 ∈ X2

}
, (1.5b)

xk+1
3 = Argmin

{
LA(xk+1

1 , xk+1
2 , x3, λ

k) | x3 ∈ X3

}
, (1.5c)

λk+1 = λk − β(A1x
k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b), (1.5d)

where

LA(x1, x2, x3, λ) =
3∑

i=1

θi (xi ) − λT (A1x1 + A2x2 + A3x3 − b
)

+ β

2

∥∥A1x1 + A2x2 + A3x3 − b
∥∥2 (1.6)

is the augmented Lagrangian function of (1.1). This direct extension of ADMM is
strongly desired and practically used by many users, see e.g. [24,27]. The conver-
gence of (1.5), however, has been ambiguous for a long time—there is neither an
affirmative convergence proof nor an example showing its divergence in the litera-
ture. This convergence ambiguity has inspired an active research topic of developing
such algorithms that are slightly twisted versions of (1.5) but with provable conver-
gence and competitive numerical performance, see e.g. [15,17,20]. Since the direct
extension of ADMM (1.5) does work well for some applications (e.g. [24,27]), users
have the inclination to imagine that this scheme seems to be convergent even though
they are perplexed by the rigorous proof. In the literature, there was even very lit-
tle hint for the difficulty in the convergence proof for (1.5), see [6] for an insightful
explanation.

The main result of this paper is to answer this long-standing open question nega-
tively: The direct extension ofADMM(1.5) is not necessarily convergent.We organize
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the rest of this paper as follows. In Sect. 2, we present a sufficient condition to ensure
the convergence of (1.5). Then, based on the analysis in Sect. 2, we construct an exam-
ple to demonstrate the divergence of the direct extension of ADMM (1.5) in Sect. 3.
Some extensions of the paper’s main result are discussed in Sect. 4. Finally, some
concluding remarks are given in Sect. 5.

2 A sufficient condition ensuring the convergence of (1.5)

We first study a sufficient condition that can ensure the convergence for the direct
extension of ADMM (1.5). This condition is of only theoretical interest, but our idea
of constructing a counter example to show the divergence of (1.5) would be clearer
via this study.

Our claim is that the convergence of (1.5) is guaranteed when any two coefficient
matrices in (1.1) are orthogonal.We thuswill discuss the cases: AT

1 A2 = 0, AT
2 A3 = 0

and AT
1 A3 = 0. This new condition does not impose any strong convexity on the

objective function in (1.1), and it simply requires to check the orthogonality of the
coefficient matrices.

2.1 Case 1: AT
1 A2 = 0 or AT

2 A3 = 0

We remark that if two coefficient matrices of (1.1) in consecutive order are orthogonal,
i.e., AT

1 A2 = 0 or AT
2 A3 = 0, then the direct extension of ADMM (1.5) reduces to

a special case of the original ADMM (1.4). Thus the convergence of (1.5) under this
condition is implied by well known results in ADMM literature.

To see this, let us first assume AT
1 A2 = 0. According to the first-order optimality

conditions of the minimization problems in (1.5), we have xk+1
i ∈ Xi (i = 1, 2, 3)

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1(x1)−θ1(x
k+1
1 )+(x1−xk+1

1 )T
{
−AT

1 [λk−β(A1x
k+1
1 +A2x

k
2 +A3x

k
3 −b)]

}
≥0, ∀x1 ∈ X1, (2.1a)

θ2(x2)−θ2(x
k+1
2 )+(x2−xk+1

2 )T
{
−AT

2 [λk−β(A1x
k+1
1 +A2x

k+1
2 +A3x

k
3 − b)]

}
≥ 0, ∀x2 ∈ X2, (2.1b)

θ3(z)−θ3(x
k+1
3 )+(x3−xk+1

3 )T
{
−AT

3 [λk−β(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 −b)]

}
≥ 0, ∀x3 ∈ X3. (2.1c)

Then, because of AT
1 A2 = 0, it follows from (2.1) that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ1(x1)−θ1

(
xk+1
1

)
+
(
x1−xk+1

1

)T {−AT
1

[
λk−β

(
A1x

k+1
1 +A3x

k
3 −b

)]}
≥ 0, ∀x1 ∈ X1, (2.2a)

θ2(x2)−θ2

(
xk+1
2

)
+
(
x2−xk+1

2

)T {−AT
2

[
λk−β

(
A2x

k+1
2 +A3x

k
3 −b

)]}
≥ 0, ∀x2 ∈ X2, (2.2b)

θ3(x3)−θ3

(
xk+1
3

)
+
(
x3−xk+1

3

)T {−AT
3

[
λk−β

(
A1x

k+1
1 +A2x

k+1+A3x
k
2 −b

)]}
≥0, ∀x3∈X3, (2.2c)

which is also the first-order optimality condition of the scheme
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
xk+1
1 , xk+1

2

)
= Argmin

{
θ1(x1) + θ2(x2) − (λk)T (A1x1 + A2x2)

+ β
2 ‖A1x1 + A2x2 + A3xk3 − b‖2

∣∣∣∣
x1 ∈ X1,

x2 ∈ X2

}
, (2.3a)

xk+1
3 = Argmin

{
θ3(x3) − (λk)T A3x3 + β

2

∥∥∥A1x
k+1
1 + A2x

k+1
2 + A3x3 − b

∥∥∥
2 |x3 ∈ X3,

}
, (2.3b)

λk+1 = λk − β
(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b

)
. (2.3c)

Clearly, (2.3) is a specific application of the original ADMM (1.4) to (1.1) by
regarding (x1, x2) as one variable, [A1, A2] as one matrix and θ1(x1) + θ2(x2) as one
function. Note that both xk1 and x

k
2 are not required to generate the (k + 1)-th iteration

under the orthogonality condition AT
1 A2 = 0 in (2.3). Existing convergence results

for the original ADMM such as those in [8,18] thus hold for the special case of (1.5)
with the orthogonality condition AT

1 A2 = 0.
Similar discussion can be carried out under the orthogonality condition AT

2 A3 = 0.

2.2 Case 2: AT
1 A3 = 0

In the last subsection, we have discussed the cases where two consecutive coefficient
matrices are orthogonal. Now, we pay attention to the case where AT

1 A3 = 0 and show
that it can also ensure the convergence of (1.5).

To prepare for the proof, we need tomake something clear. First, note that the update
order of (1.5) at each iteration is x1 → x2 → x3 → λ and then it repeats cyclically.
Equivalently, we can update the variables via the order x2 → x3 → λ → x1 and thus
have the following iterative form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
2 = Argmin

{
LA(xk1 , x2, x

k
3 , λ

k) | x2 ∈ X2

}
, (2.4a)

xk+1
3 = Argmin

{
LA

(
xk1 , x

k+1
2 , x3, λ

k
)

| x3 ∈ X3

}
, (2.4b)

λk+1 = λk − β
(
A1x

k
1 + A2x

k+1
2 + A3x

k+1
3 − b

)
, (2.4c)

xk+1
1 = Argmin

{
LA

(
x1, x

k+1
2 , xk+1

3 , λk+1
)

| x1 ∈ X1

}
. (2.4d)

According to (2.4), there is a update for the variable λ between the updates for x3
and x1. Thus, the case AT

1 A3 = 0 requires discussion different from that in the last
subsection. Moreover, when xk1 is taken as xk+1

1 and xk+1
1 as xk+2

1 , the scheme (2.4)
reduces exactly to the direct extension of ADMM (1.5). Therefore, the convergence
analysis for the scheme (1.5) is equivalent to that for (2.4). For notational simplicity,
we will focus on the representation of (2.4) within this subsection.

Second, it worths to mention that the variable x2 is not involved in the iteration of
(2.4), meaning the scheme (2.4) generating a new iterate only based on (xk1 , x

k
3 , λ

k).
We thus follow the terminology in [3] to call x2 an intermediate variable; and cor-
respondingly call (x1, x3, λ) essential variables because they are really necessary to
execute the iteration of (2.4). Accordingly, we use the notationswk = (xk1 , x

k
2 , x

k
3 , λ

k),
uk = wk\λk = (xk1 , x

k
2 , x

k
3 ), vk = wk\xk2 = (xk1 , x

k
3 , λ

k), v = w\x2 = (x1, x3, λ),
V = X1 × X3 × �p and
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V∗ := {v∗ = (x∗
1 , x

∗
3 , λ

∗) | w∗ = (x∗
1 , x

∗
2 , x

∗
3 , λ

∗) ∈ �∗},

where �∗ is the collection of the KKT points of (1.1).
Third, it is useful to characterize the model (1.1) by a variational inequality. More

specifically, finding a saddle point of the Lagrangian function of (1.1) is equivalent to
solving the variational inequality problem: Finding w∗ ∈ � such that

VI(�, F, θ) : θ(u) − θ(u∗) + (w − w∗)T F(w∗) ≥ 0, ∀w ∈ �, (2.5a)

where

u :=
⎛

⎝
x1
x2
x3

⎞

⎠ , w :=

⎛

⎜
⎜
⎝

x1
x2
x3
λ

⎞

⎟
⎟
⎠ , θ(u) := θ1(x1)+θ2(x2)+θ3(x3), (2.5b)

F(w) :=

⎛

⎜
⎜⎜⎜
⎝

−AT
1 λ

−AT
2 λ

−AT
3 λ

A1x1 + A2x2 + A3x3 − b

⎞

⎟
⎟⎟⎟
⎠

, and � := X1×X2×X3 × �p. (2.5c)

Obviously, the mapping F(·) defined in (2.5c) is monotone because it is affine with a
skew-symmetric matrix.

Last, let us take a deeper look at the output of (2.4) and investigate some of its
properties. In fact, deriving the first-order optimality condition of the minimization
problems in (2.4) and rewriting (2.4c) appropriately, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2(x2)−θ2

(
xk+1
2

)
+
(
x2−xk+1

2

)T {−AT2

[
λk−β

(
A1x

k
1+A2x

k+1
2 +A3x

k
3−b

)]}

≥ 0, ∀x2 ∈ X2, (2.6a)

θ3(x3)−θ3

(
xk+13

)
+
(
x3−xk+13

)T {−AT3

[
λk−β(A1x

k
1+A2x

k+1
2 +A3x

k+1
3 − b)

]}

≥ 0, ∀x3 ∈ X3, (2.6b)
(
A1x

k
1+A2x

k+1
2 +A3x

k+1
3 −b

)
+ 1

β

(
λk+1−λk

)
=0, (2.6c)

θ1(x1)−θ1

(
xk1

)
+
(
x1−xk+1

1

)T {−AT1

[
λk+1−β

(
A1x

k+1
1 +A2x

k+1
2 +A3x

k+1
3 −b

)]}

≥0, ∀x1∈X1. (2.6d)

Then, substituting (2.6c) into (2.6a), (2.6b) and (2.6d); and using AT
1 A3 = 0, we

get
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ2(x2) − θ2

(
xk+1
2

)
+
(
x2 − xk+1

2

)T {−AT
2 λk+1 + βAT

2 A3

(
xk3 − xk+1

3

)}

≥ 0, ∀x2 ∈ X2, (2.7a)

θ3(x3) − θ3

(
xk+1
3

)
+
(
x3 − xk+1

3

)T {−AT
3 λk+1

}
≥ 0, ∀x3 ∈ X3, (2.7b)

(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b

)
+ A1

(
xk1−xk+11

)
− 1

β

(
λk−λk+1

)
=0, (2.7c)

θ1(x1) − θ1

(
xk+1
1

)
+
(
x1 − xk+1

1

)T {−AT
1 λk+1 − βAT

1 A1

(
xk1 − xk+1

1

)

+AT
1

(
λk − λk+1

)}
≥ 0, ∀x1 ∈ X1. (2.7d)

With the definitions of θ , F , �, uk and vk , we can rewrite (2.7) as a compact
form. We summarize it in the next lemma and omit its proof as it is just a compact
reformulation of (2.7).

Lemma 2.1 Let wk+1 = (xk+1
1 , xk+1

2 , xk+1
3 , λk+1) be generated by (2.4) from given

vk = (xk1 , x
k
3 , λ

k). Then we have

wk+1 ∈ �, θ(u) − θ
(
uk+1

)
+
(
w − wk+1

)T

×
{
F(wk+1) + Q

(
vk − vk+1

)}
≥ 0, ∀w ∈ �, (2.8)

where

Q =

⎛

⎜⎜
⎝

−βAT
1 A1 0 AT

1
0 βAT

2 A3 0
0 0 0
A1 0 − 1

β
I

⎞

⎟⎟
⎠ . (2.9)

Note that the assertion (2.8) is useful for quantifying the accuracy of wk+1 to
a solution point of VI(�, F, θ), because of the variational inequality reformulation
(2.5) of (1.1).

Now, we are ready to prove the convergence for the direct extension of ADMM
under the condition AT

1 A3 = 0. We first refine the assertion (2.8) under this additional
condition.

Lemma 2.2 Let wk+1 = (xk1 , x
k+1
2 , xk+1

3 , λk+1) be generated by (2.4) from given
vk = (xk1 , x

k
3 , λ

k). If AT
1 A3 = 0, then we have

wk+1 ∈ �, θ(u) − θ
(
uk+1

)
+
(
w − wk+1

)T {
F
(
wk+1

)
+ βPA3

(
xk3 − xk+1

3

)}

≥
(
v − vk+1

)T
H
(
vk − vk+1

)
, ∀w ∈ �, (2.10)
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where

P =

⎛

⎜⎜⎜
⎜
⎝

AT
1

AT
2

AT
3
0

⎞

⎟⎟⎟
⎟
⎠

, v =
⎛

⎝
x1
x3
λ

⎞

⎠ and H =
⎛

⎝
βAT

1 A1 0 −AT
1

0 βAT
3 A3 0

−A1 0 1
β
I

⎞

⎠ . (2.11)

Proof Since AT
1 A3 = 0, the following is an identity:

⎛

⎜⎜⎜⎜⎜
⎝

x1 − xk+1
1

x2 − xk+1
2

x3 − xk+1
3

λ − λk+1

⎞

⎟⎟⎟⎟⎟
⎠

T
⎛

⎜⎜
⎝

βAT
1 A1 βAT

1 A3 −AT
1

0 0 0
0 βAT

3 A3 0
−A1 0 1

β
I

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

xk1 − xk+1
1

xk3 − xk+1
3

λk − λk+1

⎞

⎟⎟
⎠

=

⎛

⎜⎜
⎝

x1 − xk+1
1

x3 − xk+1
3

λ − λk+1

⎞

⎟⎟
⎠

T ⎛

⎝
βAT

1 A1 0 −AT
1

0 βAT
3 A3 0

−A1 0 1
β
I

⎞

⎠

⎛

⎜⎜
⎝

xk1 − xk+1
1

xk3 − xk+1
3

λk − λk+1

⎞

⎟⎟
⎠ .

Adding the above identity to the both sides of (2.8) and using the notations of v and
H , we obtain

wk+1 ∈ �, θ(u) − θ
(
uk+1

)
+
(
w − wk+1

)T {
F
(
wk+1

)
+ Q0

(
vk − vk+1

)}

≥
(
v − vk+1

)T
H
(
vk − vk+1

)
, ∀w ∈ �, (2.12)

where (see Q in (2.9))

Q0 = Q +

⎛

⎜⎜⎜
⎜⎜⎜
⎝

βAT
1 A1 βAT

1 A3 −AT
1

0 0 0

0 βAT
3 A3 0

−A1 0 1
β
I

⎞

⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0 βAT
1 A3 0

0 βAT
2 A3 0

0 βAT
3 A3 0

0 0 0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

By using the structures of the matrices Q0 and P (see (2.11)), and the vector v, we
have

(w − wk+1)T Q0(v
k − vk+1) = (w − wk+1)TβPA3(x

k
3 − xk+1

3 ).

The assertion (2.10) is proved. 
�

123



ADMM for multi-block convex minimization problems 65

Let us define two auxiliary sequences which will only serve for simplifying our
notation in convergence analysis:

w̃k =

⎛

⎜⎜⎜⎜⎜
⎝

x̃ k1

x̃ k2

x̃ k3

λ̃k

⎞

⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

xk+1
1

xk+1
2

xk+1
3

λk+1 − βA3(xk3 − xk+1
3 )

⎞

⎟⎟⎟⎟
⎠

and ũk =

⎛

⎜⎜
⎝

x̃ k1

x̃ k2

x̃ k3

⎞

⎟⎟
⎠ , (2.13)

where (xk+1
1 , xk+1

2 , xk+1
3 , λk+1) is generated by (2.4).

In the next lemma, we establish an important inequality based on the assertion in
Lemma 2.2, which will play a vital role in convergence analysis.

Lemma 2.3 Let wk+1 = (xk+1
1 , xk+1

2 , xk+1
3 , λk+1) be generated by (2.4) from given

vk = (xk1 , x
k
3 , λ

k). If AT
1 A3 = 0, we have w̃k ∈ � and

θ(u) − θ(ũk) + (w − w̃k)T F(w̃k) ≥ 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
)

+1

2
‖vk − vk+1‖2H , ∀w ∈ �, (2.14)

where w̃k and ũk are defined in (2.13).

Proof According to the definition of w̃k and F(w) (see (2.13) and (2.5c), respectively),
(2.10) can be rewritten as

w̃k ∈ �, θ(u) − θ(ũk) + (w − wk+1)T F(w̃k)

≥ (v − vk+1)T H(vk − vk+1), ∀w ∈ �. (2.15)

Note that wk+1 − w̃k = β

⎛

⎜
⎜
⎝

0
0
0

A3(xk3 − xk+1
3 )

⎞

⎟
⎟
⎠, we further obtain that w̃k ∈ �, and

θ(u) − θ(ũk) + (w − w̃k)T F(w̃k)

= θ(u) − θ(ũk) + (w − wk+1)T F(w̃k) + (wk+1 − w̃k)T F(w̃k)

≥ (v − vk+1)T H(vk − vk+1)

+ (A3(x
k
3 − xk+1

3 )
)T (

β(A1x
k+1
1 +A2x

k+1
2 + A3x

k+1
3 −b)

)
,∀w∈�. (2.16)

Setting x3 = xk3 in (2.7b), we obtain

θ3(x
k
3 ) − θ3(x

k+1
3 ) + (xk3 − xk+1

3 )T {−AT
3 λk+1} ≥ 0. (2.17)
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Note that (2.7b) is also true for the (k − 1)th iteration. Thus, it holds that

θ3(x3) − θ3

(
xk3

)
+
(
x3 − xk3

)T {−AT
3 λk

}
≥ 0.

Setting x3 = xk+1
3 in the last inequality, we obtain

θ3

(
xk+1
3

)
− θ3

(
xk3

)
+
(
xk+1
3 − xk3

)T {−AT
3 λk

}
≥ 0, (2.18)

which together with (2.17) yields that

(
λk − λk+1

)T
A3

(
xk3 − xk+1

3

)
≥ 0, ∀k ≥ 0. (2.19)

By using the fact λk − λk+1 = β(A1xk1 + A2x
k+1
2 + A3x

k+1
3 − b) (see (2.6c)) and the

assumption AT
1 A3 = 0, we get immediately that

β
(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b

)T
A3

(
xk3 − xk+1

3

)
≥ 0, (2.20)

and hence

w̃k ∈ �, θ(u)−θ
(
ũk
)
+
(
w−w̃k

)T
F
(
w̃k
)
≥
(
v−vk+1

)T
H
(
vk − vk+1

)
,∀w ∈ �.

(2.21)
By substituting the identity

(
v − vk+1

)T
H
(
vk − vk+1

)
= 1

2

(‖v − vk+1‖2H − ‖v − vk‖2H
)+ 1

2

∥∥∥vk − vk+1
∥∥∥
2

H

into the right-hand side of (2.21), we obtain (2.14). 
�
Now,we are able to establish the contraction propertywith respect to the solution set

of VI(�, F, θ) for the sequence {vk} generated by (2.4), from which the convergence
of (2.4) can be easily established.

Theorem 2.4 Assume AT
1 A3 = 0 for the model (1.1). Let {xk1 , xk2 , xk3 , λk} be the

sequence generated by the direct extension of ADMM (2.4). Then, we have:

(i) The sequence {vk := (xk1 , x
k
3 , λ

k)} is contractive with respective to the solution of
VI(�, F, θ ), i.e.,

‖vk+1 − v∗‖2H ≤ ‖vk − v∗‖2H − ‖vk − vk+1‖2H . (2.22)

(ii) If the matrices [A1, A2] and A3 are assumed to be full column rank, then the
sequence {wk} converges to a KKT point of the model (1.1).
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Proof (i) The first assertion is straightforward based on (2.14). Setting w = w∗ in
(2.14), we get

1

2

(‖vk−v∗‖2H −‖vk+1−v∗‖2H
)− 1

2
‖vk−vk+1‖2H ≥θ(ũk)−θ(u∗)+(w̃k−w∗)TF(w̃k).

From the monotonicity of F and (2.5), it follows that

θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w̃k) ≥ θ(ũk) − θ(u∗) + (w̃k − w∗)T F(w∗) ≥ 0,

and thus (2.22) is proved. Clearly, (2.22) indicates that the sequence {vk} is contractive
with respect to the solution set of VI(�, F, θ), see e.g. [2].

(ii) To prove (ii), by the inequality (2.22) and (see the definitions of v and H in
(2.11))

‖vk − vk+1‖2H = β‖A1(x
k
1 − xk+1

1 ) − 1

β
(λk − λk+1)‖2 + β‖A3(x

k
3 − xk+1

3 )‖2,

it follows that the sequences {A1xk1 − 1
β
λk} and {A3xk3 } are both bounded. Since A3

has full column rank, we deduce that {xk3 } is bounded. Note that

A1x
k
1 + A2x

k
2 = A1x

k
1 − 1

β
λk −

(
A1x

k−1
1 − 1

β
λk−1

)
− A3x

k
3 + b. (2.23)

Hence, {A1xk1 + A2xk2 } is bounded. Together with the assumption that [A1, A2] has
full column rank, we conclude that the sequences {xk1 }, {xk2 } and {λk} are all bounded.
Therefore, there exists a subsequence {xnk+1

1 , xnk+1
2 , xnk+1

3 , λnk+1} that converges to
a limit point, say (x∞

1 , x∞
2 , x∞

3 , λ∞). Moreover, from (2.22), we see immediately that

∞∑

k=1

‖vk − vk+1‖2H < +∞, (2.24)

which shows
lim
k→∞ H

(
vk − vk+1

)
= 0, (2.25)

and thus
lim
k→∞ Q

(
vk − vk+1

)
= 0. (2.26)

Then, by taking the limits on the both sides of (2.8), using (2.26), one can immediately
write

w∞ ∈ �, θ(u) − θ(u∞) + (w − w∞)T F(w∞) ≥ 0, ∀w ∈ �, (2.27)

whichmeansw∞ = (x∞
1 , x∞

2 , x∞
3 , λ∞) is a KKTpoint of (1.1). Hence, the inequality

(2.22) is also valid if (x∗
1 , x

∗
2 , x

∗
3 , λ

∗) is replaced by (x∞
1 , x∞

2 , x∞
3 , λ∞). Then it holds

that
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‖vk+1 − v∞‖2H ≤ ‖vk − v∞‖2H , (2.28)

which implies that

lim
k→∞ A1(x

k
1 − x∞

1 ) − 1

β
(λk − λ∞) = 0, lim

k→∞ A3(x
k
3 − x∞

3 ) = 0. (2.29)

By taking limits to (2.23), using (2.29) and the assumptions, we know

lim
k→∞ xk1 = x∞

1 , lim
k→∞ xk2 = x∞

2 , lim
k→∞ xk3 = x∞

3 , lim
k→∞ λk = λ∞. (2.30)

which completes the proof of this theorem. 
�
Inspired by [18], we can also establish a worst-case convergence rate measured by

the iteration complexity in the ergodic sense for the direct extension of ADMM (2.4).
This is summarized in the following theorem.

Theorem 2.5 Assume AT
1 A3 = 0 for the model (1.1). Let {(xk1 , xk2 , xk3 , λk)} be the

sequence generated by the direct extension of ADMM (2.4) and w̃k be defined in (2.13).
After t iterations of (2.4), we take

w̃t = 1

t + 1

t∑

k=0

w̃k . (2.31)

Then, w̃ ∈ W and it satisfies

θ(ũt ) − θ(u) + (w̃t − w)T F(w) ≤ 1

2(t + 1)
‖v − v0‖2H , ∀w ∈ �. (2.32)

Proof By the monotonicity of F and (2.14), it follows that

w̃k ∈ �, θ(u) − θ(ũk) + (w − w̃k)T F(w) + 1

2
‖v − vk‖2H

≥ 1

2
‖v − vk+1‖2H , ∀w ∈ �. (2.33)

Together with the convexity of X1, X2 and X3, (2.31) implies that w̃t ∈ �. Summing
the inequality (2.33) over k = 0, 1, . . . , t , we obtain

(t + 1)θ(u)−
t∑

k=0

θ(ũk)+
(

(t + 1)w−
t∑

k=0

w̃k

)T

F(w)+ 1

2
‖v − v0‖2H ≥0, ∀w∈�.

Use the notation of w̃t , it can be written as

1

t + 1

t∑

k=0

θ(ũk) − θ(u) + (w̃t − w)T F(w) ≤ 1

2(t + 1)
‖v − v0‖2H , ∀w ∈ �.

(2.34)
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Since θ(u) is convex and

ũt = 1

t + 1

t∑

k=0

ũk,

we have that

θ(ũt ) ≤ 1

t + 1

t∑

k=0

θ(ũk).

Substituting it into (2.34), the assertion of this theorem follows directly. 
�
Remark 2.6 For an arbitrarily given compact set D ⊂ �, let d = sup{‖v−v0‖2H } | v =
w \ x2, w ∈ D}, where v0 = (x01 , x

0
3 , λ

0). Then, after t iterations of the extended
ADMM (2.4) , the point w̃t defined in (2.31) satisfies

sup
{
θ(ũt ) − θ(u) + (w̃t − w)T F(w)

}
≤ d

2(t + 1)
, (2.35)

which, according to the definition (2.5), means w̃t is an approximate solution of
VI(�, F, θ) with an accuracy of O(1/t). Thus a worst-case O(1/t) convergence
rate in the ergodic sense is established for the direct extension of ADMM (2.4).

3 An example showing the divergence of (1.5)

In the last section, we have shown that if it is additionally assumed that any two
coefficient matrices in (1.1) be orthogonal, then the direct extension of ADMM (1.5)
is convergent. Based on this study, we now give an example to show the divergence
of (1.5) when such an orthogonality condition is missing. The analyses below also
present a strategy for constructing more such examples.

More specifically, we consider the following linear homogeneous equation with
three variables:

A1x1 + A2x2 + A3x3 = 0, (3.1)

where Ai ∈ �3 (i = 1, 2, 3) are all column vectors and the matrix [A1, A2, A3] is
assumed to be nonsingular; and xi ∈ � (i = 1, 2, 3). The unique solution of (3.1) is
thus x1 = x2 = x3 = 0. Clearly, (3.1) is a special case of (1.1) where the objective
function is null, b is the all-zero vector in �3, and Xi = � for i = 1, 2, 3. The direct
extension of ADMM (1.5) is thus applicable to (3.1), and the corresponding optimal
Lagrange multipliers are all 0.

One will see next that the convergence of the direct extension of ADMM (1.5)
applied to solving the linear equations with a null objective is independent of the
selection of the penalty parameter β. That is, if the direct extension of ADMM (1.5)
is convergent for a selected β > 0, then it is convergent for every β > 0. On the other
hand, if (1.5) is not convergent for one selected β > 0, then it is not convergent for any
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β > 0. Hence, in our specific example to be developed below, one can think β = 1
without loss of generality.

3.1 The iterative scheme of (1.5) for (3.1)

Now, we elucidate the iterative scheme when the direct extension of ADMM (1.5) is
applied to solve the linear equation (3.1). In fact, as we will show, it can be represented
as a matrix recursion.

Specifying the scheme (1.5) with any given β > 0 by the particular setting in (3.1),
we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−AT
1 λk + βAT

1

(
A1x

k+1
1 + A2x

k
2 + A3x

k
3

)
= 0, (3.2a)

−AT
2 λk + βAT

2

(
A1x

k+1
1 + A2x

k+1
2 + A3x

k
3

)
= 0, (3.2b)

−AT
3 λk + βAT

3

(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3

)
= 0, (3.2c)

β
(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3

)
+ λk+1 − λk = 0. (3.2d)

By introducing a new variable μk := λk/β, we can recast the scheme (3.2) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−AT
1 μk + AT

1

(
A1x

k+1
1 + A2x

k
2 + A3x

k
3

)
= 0, (3.3a)

−AT
2 μk + AT

2

(
A1x

k+1
1 + A2x

k+1
2 + A3x

k
3

)
= 0, (3.3b)

−AT
3 μk + AT

3

(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3

)
= 0, (3.3c)

(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3

)
+ μk+1 − μk = 0. (3.3d)

It follows from the first equation in (3.3) that

xk+1
1 = 1

AT
1 A1

(−AT
1 A2x

k
2 − AT

1 A3x
k
3 + AT

1 μk). (3.4)

Substituting (3.4) into (3.3b), (3.3c) and (3.3d), we obtain a reformulation of (3.3)

⎛

⎜
⎝

AT
2 A2 0 01×3

AT
3 A2 AT

3 A3 01×3

A2 A3 I3×3

⎞

⎟
⎠

⎛

⎜
⎝

xk+1
2

xk+1
3

μk+1

⎞

⎟
⎠

=
⎡

⎢
⎣

⎛

⎜
⎝

0 −AT
2 A3 AT

2

0 0 AT
3

03×1 03×1 I3×3

⎞

⎟
⎠− 1

AT
1 A1

⎛

⎜
⎝

AT
2 A1

AT
3 A1

A1

⎞

⎟
⎠
(−AT

1 A2,−AT
1 A3, A

T
1

)

⎤

⎥
⎦

⎛

⎜
⎝

xk2
xk3
μk

⎞

⎟
⎠ .

(3.5)
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Let

L =

⎛

⎜⎜
⎝

AT
2 A2 0 01×3

AT
3 A2 AT

3 A3 01×3

A2 A3 I3×3

⎞

⎟⎟
⎠ (3.6)

and

R=
⎛

⎜
⎝

0 −AT
2 A3 AT

2

0 0 AT
3

03×1 03×1 I3×3

⎞

⎟
⎠− 1

AT
1 A1

⎛

⎜
⎝

AT
2 A1

AT
3 A1

A1

⎞

⎟
⎠
(−AT

1 A2,−AT
1 A3, A

T
1

)
. (3.7)

Then the iterative formula (3.5) can be rewritten in the following fixed matrix map-
pings:

⎛

⎜
⎜
⎝

xk+1
2

xk+1
3

μk+1

⎞

⎟
⎟
⎠ = M

⎛

⎜
⎜
⎝

xk2

xk3

μk

⎞

⎟
⎟
⎠ = · · · = Mk+1

⎛

⎜
⎜
⎝

x02

x03

μ0

⎞

⎟
⎟
⎠ (3.8)

with

M = L−1R. (3.9)

Therefore, the direct extension of ADMM (1.5) is convergent for any starting point
if the matrix mapping is a contraction, or equivalently, the spectral radius of M , denote
by ρ(M), is strictly less than 1. Thus, to construct a divergent example, we would look
for a A such that ρ(M) > 1.

3.2 A concrete example showing the divergence of (1.5)

Nowwe are ready to construct a concrete example to show the divergence of the direct
extension of ADMM (1.5) for all β > 0 when it is applied to solve the model (3.1).

Our previous analysis in Sect. 2 has shown that the scheme (1.5) is convergent
whenever any two coefficient matrices are orthogonal. Thus, to show the divergence
of (1.5) for (3.1), the columns A1, A2 and A3 in (3.1) should be chosen such that any
two of them are non-orthogonal.

Specifically, we thus construct the matrix A as follows:

A = (A1, A2, A3) =
⎛

⎝
1 1 1
1 1 2
1 2 2

⎞

⎠ . (3.10)
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Given this matrix A, the system of linear equations (3.5) can be specified as

⎛

⎜⎜⎜
⎜
⎝

6 0 0 0 0
7 9 0 0 0
1 1 1 0 0
1 2 0 1 0
2 2 0 0 1

⎞

⎟⎟⎟
⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

xk+1
2

xk+1
3

μk+1
1

μk+1
2

μk+1
3

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

=

⎡

⎢⎢
⎢⎢
⎣

⎛

⎜⎜
⎜⎜
⎝

0 −7 1 1 2
0 0 1 2 2
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟
⎟⎟
⎠

− 1

3

⎛

⎜⎜
⎜⎜
⎝

4
5
1
1
1

⎞

⎟⎟
⎟⎟
⎠

(−4,−5, 1, 1, 1
)

⎤

⎥⎥
⎥⎥
⎦

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

xk2

xk3

μk
1

μk
2

μk
3

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Note with the specification in (3.10), the matrices L in (3.6) and R in (3.7) reduce
to

L =

⎛

⎜⎜⎜⎜
⎝

6 0 0 0 0
7 9 0 0 0
1 1 1 0 0
1 2 0 1 0
2 2 0 0 1

⎞

⎟⎟⎟⎟
⎠

and R = 1

3

⎛

⎜⎜⎜⎜
⎝

16 −1 −1 −1 2
20 25 −2 1 1
4 5 2 −1 −1
4 5 −1 2 −1
4 5 −1 −1 2

⎞

⎟⎟⎟⎟
⎠

.

Thus we have

M = L−1R = 1

162

⎛

⎜
⎜⎜⎜
⎝

144 −9 −9 −9 18
8 157 −5 13 −8
64 122 122 −58 −64
56 −35 −35 91 −56

−88 −26 −26 −62 88

⎞

⎟
⎟⎟⎟
⎠

. (3.11)

From direct computation, M admits the following eigenvalue decomposition

M = VDiag(d)V−1, (3.12)

where

d =

⎛

⎜
⎜⎜⎜
⎝

0.9836 + 0.2984i
0.9836 − 0.2984i
0.8744 + 0.2310i
0.8744 − 0.2310i

0

⎞

⎟
⎟⎟⎟
⎠
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and

V =

⎛

⎜
⎜⎜⎜
⎝

0.1314 + 0.2661i 0.1314 − 0.2661i 0.1314 − 0.2661i 0.1314 + 0.2661i 0
0.0664 − 0.2718i 0.0664 + 0.2718i 0.0664 + 0.2718i 0.0664 − 0.2718i 0

−0.2847 − 0.4437i −0.2847 + 0.4437i 0.2847 − 0.4437i 0.2847 + 0.4437i 0.5774
0.5694 0.5694 −0.5694 −0.5694 0.5774

−0.4270 + 0.2218i −0.4270 − 0.2218i 0.4270 + 0.2218i 0.4270 − 0.2218i 0.5774

⎞

⎟
⎟⎟⎟
⎠

.

An important fact regarding d defined above is that

ρ(M) = |d1| = |d2| = 1.0278 > 1,

from which we can construct a divergent sequence {(xk2 , xk3 , λk1, λk2, λk3)} starting from
certain initial points. The questions are: Can we find real-valued non-convergent start-
ing points? Does the set of non-convergent starting points form a continuously dense
set, that is, are they not isolated? We give affirmative answers below.

Indeed, for any initial (x02 , x
0
3 , μ

0
1, μ

0
2, μ

0
3), let

⎛

⎜⎜⎜⎜
⎝

l1
l2
l3
l4
l5

⎞

⎟⎟⎟⎟
⎠

= V−1

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

x02

x03

μ0
1

μ0
2

μ0
3

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

. (3.13)

From (3.8) and (3.12), we know that

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

xk2

xk3

μk
1

μk
2

μk
3

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

= VDiag(d k)V−1

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

x02

x03

μ0
1

μ0
2

μ0
3

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

= VDiag(d k)

⎛

⎜⎜
⎜⎜
⎝

l1
l2
l3
l4
l5

⎞

⎟⎟
⎟⎟
⎠

= V

⎛

⎜⎜⎜
⎜
⎝

l1( 0.9836 + 0.2984i )k

l2( 0.9836 − 0.2984i )k

l3( 0.8744 + 0.2310i )k

l4( 0.8744 − 0.2310i )k

0

⎞

⎟⎟⎟
⎟
⎠

,
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Thus, as long as (l1l2) �= 0, the sequence would be divergent and there is no way for
it to converge to a solution point of (3.1).

There are many choices of the starting point (x02 , x
0
3 , μ

0
1, μ

0
2, μ

0
3) such that

(l1l2) �= 0. For example, ⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

x02

x03

μ0
1

μ0
2

μ0
3

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

= V

⎛

⎜⎜⎜⎜
⎝

α1
α1
α2
α2
α3

⎞

⎟⎟⎟⎟
⎠

, (3.14)

where αi are any real numbers and α1 �= 0 (which implies that l1 = l2 = α1 �= 0).
Furthermore, it is clear that the pair of V (1) and V (2) are two complex conjugate
vectors, so are the pair of V (3) and V (4), where V (i) denotes the i-th column of V .
Thus the starting point of (3.14) is real-valued.

Since the vectors (α1, α2, α3) ∈ �3 with α1 > 0 form a continuously dense half
space, the non-convergent starting points given by (3.14) with α1 > 0 also form a
continuously dense half space. Thus, we conclude the main result of this paper as
follows.

Theorem 3.1 For the three-block convex minimization problem (1.1), there is an
example where the direct extension of ADMM (1.5) is divergent for any penalty para-
meter β > 0 and for any starting-point in a certain continuously dense half space of
dimension 3.

Remark 3.2 The linear homogeneous Eq. (3.1) with the matrix given in (3.10), whose
feasible region is a singleton, is already sufficient to show the divergence of the direct
extension of ADMM (1.5). In fact, we can construct more sophisticated examples to
demonstrate the same divergence. For example, we consider the quadratic program-
ming model

min
1

2
x21

s.t.

⎛

⎝
1 1
1 1
1 1

⎞

⎠
(
x1
x2

)
+
⎛

⎝
1
1
2

⎞

⎠ x3 +
⎛

⎝
1
2
2

⎞

⎠ x4 = 0.
(3.15)

Obviously, the feasible region of (3.15) is not a singleton. Following the procedure in
Sect. 3, it is easy to show that applying the scheme (1.5) with any β > 0 to (3.15), the
resulting linear iterative mapping shares the same non-zero eigenvalues as those of
the matrix given in (3.11). Therefore, the corresponding spectral radius of the matrix
involved in the linear iterative mapping is still 1.0278. Hence, the model (3.15) also
shows the divergence of the direct extension of ADMM (1.5) with β > 0 and a certain
starting point.

4 Extensions

In this section, we extend our previous analysis to some relevant work in the literature.
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4.1 Strongly convex case of (1.1)

When all functions θi ’s in (1.1) are further assumed to be strongly convex and the
penalty parameter β is restricted into a specific range determined by all the strong
convex modulus of these functions, the direct extension of ADMM (1.5) is convergent
as proved in [14].

Then, it is interesting to ask whether the scheme (1.5) for a strongly convex min-
imization model is still convergent when the restriction on β in [14] is removed. In
other words, does the strong convexity of the objective function help the convergence
of the direct extension of ADMM for the three block convex minimization problem
(1.1)? A by-product of this paper is a negative answer to the question.

Theorem 4.1 For the model (1.1) with the strong convex assumption on its objective
function, the direct extension of ADMM (1.5) is not necessarily convergent for all
β > 0.

Recall that the requirement ρ(M) > 1 yields the divergence of the direct extension
of ADMM (1.5) when it is applied to solve (3.1). Consider the following strongly
convex minimization problem with three variables:

min 0.05x21 + 0.05x22 + 0.05x23

s.t.

⎛

⎝
1 1 1
1 1 2
1 2 2

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ = 0.
(4.1)

One can verify that each iteration of the direct extension of ADMM (1.5) applied to
the problem remains a fixed matrix mapping. Based on a simple calculation, it is seen
that for (4.1), the spectral radius of the matrix involved in (1.5) with β = 1 is 1.0087.
Thus, by a similar discussion to that in Sect. 3.2, one can find a proper starting point
such that the direct extension of ADMM (1.5) with β = 1 is divergent. The detail is
omitted for succinctness.

4.2 A revisit to the ADMM variant with a small step-size in [20]

To tackle the convergence ambiguity of the direct extension of ADMM (1.5), it was
recently proposed in [20]1 to attach a relaxation factor γ > 0 to the Lagrange-
multiplier updating step (1.5d). That is, the step (1.5d) was changed to

λk+1 = λk − γβ
(
A1x

k+1
1 + A2x

k+1
2 + A3x

k+1
3 − b

)
, (4.2)

where the “step-size” relaxation factor γ is required to be sufficiently small to ensure
that a certain error-bound condition is satisfied. As proved in [20], this ADMMvariant

1 A more general model with m block of functions and variables was considered in [20]. But here, for the
convenience of notation, we only focus on the model (1.1) with m = 3 and the analysis can be trivially
extended to the general case with a generic m.
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with a small step-size could be even linearly convergent provided that certain additional
assumptions are posed on the model (1.1). Indeed, the sufficiently small requirement
on γ plays a significant theoretical role in the convergence analysis in [20]; and the
analysis in [20] requires to know some model-dependent data to determine the value
of γ .

In fact, how to relax theLagrange-multiplier updating steps forALM-based iterative
schemes has been well investigated in the literature. For instance, when there is only
one block of variable and function in the model (1.1), the ADMM (1.4) reduces to the
standard ALM [19,25]; and it has been demonstrated in [1,7] that the convergence
can still be ensured if we attach a relaxation factor γ ∈ (0, 2) to the Lagrange-
multiplier updating step of the ALM. The key point is the fact elucidated in [26] that
the ALM is indeed an application of the proximal point algorithm in [23]; and thus
the relaxation idea in [13] is applicable. When the model (1.2) with two blocks of
variable and function is considered, the convergence can be ensured if a relaxation

factor γ ∈ (0,
√
5+1
2 ) is attached to the Lagrange-multiplier updating step (1.4c) in the

ADMM scheme (1.4). We refer the reader to [10] for the analysis and [28] for some
numerical experiments. Indeed, as well demonstrated in the literature, sometimes the
ALM and ADMM schemes can be numerically accelerated with a relaxation factor
γ > 1 in their Lagrange-multiplier updating steps. According to these facts about the
ALM and ADMM, we see that the upper bound for the factor γ ’s allowable range

is reduced from 2 to
√
5+1
2 when the ALM is splitted as the ADMM, i.e., when the

block of variable and function is increased from 1 to 2; but these upper bounds do not
depend on any model-dependent data. It is thus interesting to ask whether we can find
such a model-data-independent range for the γ in (4.2) so that the convergence of the
ADMM variant with a small step-size proposed in [20] can be guaranteed with any
value of γ in this range.

Recall that we are considering three blocks of variable and function in the model
(1.1); and the ALM subproblem at each iteration is splitted as three subproblems. So,
the steps (1.5a)–(1.5c) represent an approximation to the corresponding augmented
Lagrangian function but less accurate than the steps (1.4a)–(1.4b) of the ADMM.
Hence, based on the just mentioned facts about the ALM and ADMM, it seems rea-
sonable to expect that even if such a range exists, very likely its upper bound should

be smaller than
√
5+1
2 (in fact, by the counter example developed earlier, it could be

even smaller than 1). In the following, we will construct some examples to study this
fact numerically. Indeed, our numerical results strongly suggest that such a constant
upper bound does not even exist, though rigorous theoretical analysis lacks.

We still consider the linear equation example (3.1) but the matrix A is given by

A =
⎛

⎝
1 1 1
1 1 1 + α

1 1 + α 1 + α

⎞

⎠ (4.3)

where the positive scalar α > 0. Thus, thematrix in (3.10) used to show the divergence
of the direct extension of ADMM (1.5) is a special case of (4.3) with α = 1.
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Table 1 Spectral radius of the implementation of the ADMM variant with a small step-size (β = 1)

α = γ 1 0.1 1e−2 1e−3 1e−4 1e−5 1e−6 1e−7 1e−8

ρ(M(γ )) 1.027839 1.002637 1.000105 1.000004 >1 >1 >1 >1 >1

Now, we consider implementing the ADMM variant with a small step-size in [20]
to the problem (3.1) where the matrix A is given in (4.3) and the penalty parameter β is
fixed as 1. In particular, we take the relaxation factor γ in (4.2) exactly as the scalar α

in (4.3), i.e., γ = α; and test the convergence when the value of α (and also γ ) varies
from 1 to some extremely small values. Let M(α) be the corresponding matrix of
the resulting linear iterative mapping. Recall that the divergence occurs with a certain
initial point if the spectral radius of M(α), denoted by ρ(M(α)), is greater than 1. In
Table 1, we report the numerical values of ρ(M(α)) for several choices of α.

It is observed from Table 1 that for the example (3.1) where the matrix A is given in
(4.3) with the tested values of α, the ADMM variant with a small step-size in [20] is
still divergent even if γ is as small as 1e − 8. In other words, even if the value of γ in
(4.2) is extremely small (e.g., γ = 1e−8), the example (3.1) with α = γ in the matrix
A given by (4.3) already shows the divergence of the ADMM variant with a small
step-size. This numerical study thus inspires us to conjecture that it is not possible to
find a model-data-independent allowable range for the factor γ in (4.2) such that the
convergence of the ADMM variant with a small step-size can be guaranteed for any
value of γ in this range. This is a significant difference between the ADMM variant
with a small step-size and the ALM and ADMM schemes (Recall that the model-data-

independent ranges γ ∈ (0, 2) and γ ∈ (0,
√
5+1
2 ) exist for the ALM and ADMM,

respectively). Accordingly, with this numerical study, the rationale of proposing some
model-data-dependent conditions on the factor γ , such as the one in [20], to ensure
the convergence of the direct extension of ADMM for solving a multi-block convex
minimization model is also verified empirically.

5 Conclusions

We have shown by an example that the direct extension of the alternating direction
method of multiplier (ADMM) is not necessarily convergent for solving a convex
minimization model with linear constraints and a separable objective function with
three function blocks.

We first study a condition that can sufficiently ensure the convergence of the direct
extension of the ADMM. This new condition requires the orthogonality of the given
coefficient matrices in the model; but poses no restriction on strong convexity on the
objective functions in the model or range restriction on the penalty parameter in the
algorithmic implementation. This sufficient condition is only of theoretical interest,
because it is not easily satisfied by the known applications in the literature. But, the
study of this condition essentially inspires the idea and roadmap to construct the main
counter example to show the divergence of the direct extension of ADMM.
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We then extend the analysis to some other cases, including the strongly convex case
considered in [14] and an ADMM variant with a small step-size proposed in [20]. Our
main counter example can be easily extended to show that even with strong convexity
on the objective functions in the model (1.1), the direct extension of ADMM is again
not necessarily convergent with some specific β > 0. This is a complementary result
to the conclusion in [14]. Moreover, slightly extending the main counter example,
we can numerically show that it seems not possible to find a model-data-independent
allowable range for the relaxation factor γ in the Lagrange-multiplier updating step
(4.2) such that the convergence of the direct extension ofADMMcan be guaranteed for
any value of γ in this range. This further justifies the rationale in [20] of considering
some model-data-dependent conditions on the factor γ . Besides, the result in this
paper also justifies the rationale of algorithmic design in some recent work such as the
strategy of combining certain correction steps with the output of the direct extension
of ADMM in [15,17], and the idea in [16] which suggests interchanging the order of
variable updating appropriately and employing the proximal regularization for some
decomposed subproblems, in order to produce a splitting algorithm with provable
convergence under mild assumptions for multi-block convex minimization models. It
has been shown that these strategies work for tackling the lack of convergence of the
direct extension of ADMM.

Finally, we would mention that although our discussion focuses on the model (1.1)
where there are three variable and function blocks, our analysis can be easily extended
to the more general case where the number of variable and function is greater than
3. More specifically, we consider the more general multi-block convex minimization
model

min
∑m

i=1 θi (xi )

s.t.
∑m

i=1 Ai xi = b,
xi ∈ Xi ,

(5.1)

where m > 3, Ai ∈ �p×ni (i = 1, 2, . . . ,m), b ∈ �p, Xi ⊂ �ni (i = 1, 2, . . . ,m)
are closed convex sets; and θi : �ni → � (i = 1, 2, . . . ,m) are closed convex but not
necessarily smooth functions. Then, to ensure the convergence of the direct extension
of ADMM for (5.1), a sufficient condition analogous to that in Sect. 2 is: There exist
two integers i and j such that any two matrices in the sets {Ai , Ai+1, . . . , Ai+ j }
and {Ai+ j+1, Ai+ j+2, . . . , Am, A1, A2, . . . , Ai−1} are orthogonal. This is an easy
extension of the condition in Sect. 2; and based on this condition, some examples
similar as that in Sect. 3 can be easily found to show the divergence of the direct
extension of ADMM for (5.1). We omit the detail for succinctness.
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