
Math. Program., Ser. B (2014) 148:241–277
DOI 10.1007/s10107-014-0809-6

FULL LENGTH PAPER

Convex proximal bundle methods in depth: a unified
analysis for inexact oracles

W. de Oliveira · C. Sagastizábal · C. Lemaréchal

Received: 5 February 2013 / Accepted: 16 August 2014 / Published online: 7 September 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract The last few years have seen the advent of a new generation of bundle
methods, capable to handle inexact oracles, polluted by “noise”. Proving convergence
of a bundle method is never simple and coping with inexact oracles substantially
increases the technicalities. Besides, several variants exist to deal with noise, each
one needing an ad hoc proof to show convergence. We state a synthetic convergence
theory, in which we highlight the main arguments and specify which assumption
is used to establish each intermediate result. The framework is comprehensive and
generalizes in various ways a number of algorithms proposed in the literature. Based
on the ingredients of our synthetic theory, we consider various bundle methods adapted
to oracles for which high accuracy is possible, yet it is preferable not to make exact
calculations often, because they are too time consuming.

Mathematics Subject Classification 90C · 49M · 65K

1 Introduction and general aim

We are interested in the problem

min f (u), u ∈ R
n, (1.1)

W. de Oliveira
Instituto Nacional de Matemática Pura e Aplicada—IMPA, Rio de Janeiro, Brazil
e-mail: wlo@impa.br

C. Sagastizábal (B)
IMPA, Rio de Janeiro, Brazil
e-mail: sagastiz@impa.br

C. Lemaréchal
Inria, 655 avenue de l’Europe, Montbonnot, 38334 Saint Ismier, France
e-mail: claude.lemarechal@inria.fr

123

242 W. de Oliveira et al.

where f (·) : R
n → R is a (finite-valued) convex function. For each given u ∈ R

n , an
oracle—a noisy one-delivers inexact information, namely

⎧
⎪⎨

⎪⎩

fu = f (u) − ηu and

gu ∈ R
n such that f (·) � fu + 〈gu, · − u〉 − η

g
u

with ηu � η and η
g
u � η for all u ∈ R

n

(1.2)

where the error bound η is possibly unknown. For a given u, function values will be
denoted by a letter such as fu ; reserving the notation f (·) for the function itself.

To solve (1.1) we put in place a framework for bundle methods dealing with oracles
of the type (1.2). The considered setting is versatile and general, in the sense that it
covers and extends previous literature, such as the inexact bundle methods [12,15,
20], the incremental bundle method [6], and the partly inexact method [16]. We also
consider new methods, the Controllable Bundle Algorithm 5.4 and the Asymptotically
Exact Algorithm in Sect. 7.1.4. The latter is a proximal variant of the level bundle
method for oracles with on-demand accuracy considered in [4].

Similarly to the spirit of [3], our development highlights the main arguments and
assumptions used to establish each intermediate result. The analysis is presented in a
way that reveals how different procedures controlling oracle noise result in algorithms
solving (1.1) with different degrees of accuracy.

To give a flavor of different situations fitting (1.2), Sect. 2 starts with a broad set of
examples. Section 3 organizes the essential features of bundle methods in two sets of
parameters whose particularization gives rise to specific algorithms. The parametric
setting is useful to state a general algorithmic pattern in Sect. 4. The important mecha-
nism of noise attenuation, to be put in place when the oracle error cannot be controlled,
is addressed in Sect. 5. This section also illustrates a parameter specification for the
algorithmic pattern, the Controllable Bundle Algorithm 5.4, used along Sect. 6 to guide
the reader through the various convergence results therein. The final Sect. 7 consid-
ers many algorithms covered by our synthetic theory, including constrained bundle
methods.

2 Oracle examples

By the second line in (1.2),

f (·) � f (u) + 〈gu, · − u〉 − (ηu + η
g
u) (2.1)

from which, evaluating at u we deduce that, independently of the errors sign, ηu +η
g
u �

0. As a result, gu is a Convex Analysis ε-subgradient:

gu ∈ ∂ηu+η
g
u

f (u) with ηu + η
g
u � 0 for all u ∈ R

n . (2.2)

Even if in (1.2) the value of the upper error bound η is unknown, the inequality above
implies that η � ηu � −η

g
u � −η: both oracle errors are bounded from below by −η.

123

Convex proximal bundle methods in depth 243

An exact oracle has ηu ≡ η
g
u ≡ 0, the output is fu = f (u) and a true subgradient. In

an important subclass of inexact oracles illustrated by Examples 2.1 and 2.2, η
g
u ≡ 0

and ηu � 0, by (2.2). Following [21], we shall call this subclass of lower oracles,
because a lower linearization of f (·) is available:

f (u) − ηu = fu � f (u) and f (·) � fu + 〈gu, · − u〉 . (2.3)

Upper oracles, by contrast, can over-estimate function values: in (2.1) the error ηg is
positive.

Example 2.1 (Minimax: Lagrangian) For given functions h(·) and c(·) and X a non-
empty compact set, (1.1) is dual to the primal problem

max
x∈X

h(x), c(x) = 0 ∈ R
n . (2.4)

Specifically, for a multiplier u ∈ R
n the dual function is given by

f (u) := max
x∈X

L(x, u), with L(x, u) := h(x) + 〈u, c(x)〉 .

In a more general setting L(x, ·) is convex. Suppose that given u, the oracle outputs
fu := L(x, u) for some x ∈ X , together with some gu ∈ ∂u L(x, u). By convexity of
L(x, ·) and definition of f (·),

fu + 〈g, · − u0〉 = L(x, u) + 〈g, · − u0〉 � L(x, ·) � f (·).

For this lower oracle (2.3) holds. Such is the case in Lagrangian relaxation or column
generation when the operation maxx∈X L(x, u) is not performed exactly. ��
Example 2.2 (Minimax: Two-Stage Stochastic Linear Programs) Consider a stochas-
tic linear program with decision variables organized in two levels, denoted by u and y
for the first and second stage, respectively. If ξ ∈ � represents uncertainty, for vectors
e and q(ξ) and matrices T (ξ) and W , the corresponding two-stage linear program
with fixed recourse is

⎧
⎪⎨

⎪⎩

minu,y 〈e, u〉 + E[〈q(ξ), y〉]
s.t. T (ξ)u + W y = d(ξ) for almost every ξ ∈ �,

y � 0,

where we use the symbol E(·) for the expected value. For fixed u and ξ the recourse
function

Q(u; ξ) := inf
y�0

{
〈q(ξ), y〉 s.t. W y = d(ξ) − T (ξ)u

}

gives in (1.1) an objective of the form f (u) := 〈e, u〉 + E[Q(u; ξ)], which is finite-
valued when recourse is relatively complete. We now explain how to build different
oracles for this type of problems.

123

244 W. de Oliveira et al.

A dumb lower oracle For each fixed u and a given realization ξ , the evaluation of the
recourse function can be done by solving the dual linear program

Q(u; ξ) = sup
x

{
〈d(ξ) − T (ξ)u, x〉 s.t. W 	x � q(ξ)

}
.

If, to speed up calculations, instead of performing the max-operation for the considered
ξ we just take a feasible point xu,ξ (satisfying W 	xu,ξ � q(ξ)), then an oracle taking
fu := 〈e, u〉+E[〈d(ξ) −T (ξ)u, xu,ξ

〉], and gu := e −E[T (ξ)	xu,ξ] is of lower type
and fits (2.3).
A controllable lower oracle A better estimate can be computed by making some
iterations of a primal-dual linear programming solver. The oracle receives as additional
input an error bound η̄u � 0 and stops the primal-dual solver as soon as it finds a
feasible point xu,ξ for which

〈
d(ξ) − T (ξ)u, xu,ξ

〉 − Q(u; ξ) � η̄u . For this oracle
the subgradient error η

g
u is null and fu ∈ [f (u) − η̄u, f (u)] for any error bound η̄u

chosen by the user [4].
Asymptotically exact oracles To build an oracle that is eventually exact everywhere
from the controllable oracle, just take η̄u → 0, to force the error bound to vanish along
iterations.

A smarter oracle, called partly asymptotically exact, requires eventual exactness
only for some input points uk . This is done by combining the three preceding lower
oracles, as follows. Together with (u, η̄u), the oracle receives as additional input a
target γu and must compute fu within the “on-demand” accuracy η̄u only when the
target is reached:

fu is computed
{

as in the dumb lower oracle (fu ∈ [f (u) − η, f (u)]) if fu > γu,

as in the controllable lower oracle (fu ∈ [f (u) − η̄u, f (u)]) if fu � γu .

The bound η � 0 may be unknown while η̄u � 0 is known and controllable. In addition
to the dumb and controllable oracles, a third one, asymptotically exact, comes into
play when the user sets the target as a goal of decrease for f at uk and drives η̄uk to
zero; see [4].
An upper oracle Instead of considering all the random events (� may be infinite),
a small finite subset can be drawn from the sampling space for each given u. The
recourse function is computed exactly only for ξ in that subset; the corresponding
minimizers xu,ξ give approximate functional and gradient values in (2.3) whose errors
have unknown sign. The bound η may be unknown but exists and depends on the
probability distribution. ��
Example 2.3 (Chance-Constrained Programs) For a probability level p ∈ (0, 1], a
simple convex and compact polyhedron U , and a log-concave probability distribution
for ξ , in

{
minu∈U 〈h, u〉
s.t. P(T u � ξ) � p

123

Convex proximal bundle methods in depth 245

the constraint is convex and can be smooth, but its oracle requires computing a costly
gradient. To allow for approximate calculations, [21] minimizes over U the improve-
ment function

f (u) = max{〈h, u〉 − τ1, − ln(p) − ln[P(T u � ξ)] − τ2} for a parameter τ ∈ R
2;

see Sect. 7.4. The upper oracle in [21] delivers an unknown error that is bounded if so
is U . The error can be driven to zero at the expense of heavy computations. ��
Example 2.4 (Convex Composite Functions) All the functions above involve some
maximization operation. In a more general setting, including eigenvalue optimization
[11], given a convex function h(·) that is positively homogeneous (like the max-
function) and a convex smooth operator c(·), the objective in (1.1) can have the form
f (·) = (h ◦ c)(·). Suppose c : R

n → R
m and let Dc(·) denote its Jacobian. Given

û ∈ R
n , the function F(·; û) : R

m → R defined by F(·; û) := h(c(û)+ Dc(û)(·− û))

is used in the composite bundle method [19] to solve (1.1). Since computing the
Jacobian matrix is expensive, using oracle information for the convex function F(·; û)

eases calculations. With respect to the true f -information, nothing can be said about
the error sign: the oracle can be of upper type; see Sect. 7.5. ��

We will retain from these oracles that several situations can occur:

– Dumb oracle not much is known about output fu and gu . Such is the case in
Example 2.2. of the dumb lower and the (totally dumb) upper oracles.

– Informative oracle in addition to fu and gu , the oracle returns some reliable upper
bound η̄u for ηu . For Example 2.1, when the L(·, u)-maximization is a constrained
problem solved by a primal-dual method, the oracle outputs some feasible xu ,
giving fu = L(xu, u) and computes with dual arguments an upper bound Mu

(used to define η̄u := Mu − fu � 0).
– Controllable oracle in addition to u, the oracle receives η̄u and must compute fu

within η̄u-accuracy. This situation has itself several sub-cases:
– Achievable high accuracy. A smaller η̄u implies an acceptable increase in com-

puting times, as with the controllable lower oracle in Example 2.2.
– Partly achievable high accuracy. It is acceptable to make exact calculations at

“good” points, as in the partly asymptotically exact oracle in Example 2.2. By
this token, η̄u can be managed more aggressively. We shall see in Sect. 7.5 that
the convex composite oracle in Example 2.4 fits this category.

– Exorbitantly high accuracy. For instance if in Example 2.1 the L(·, u)-
maximization is a difficult, combinatorial and/or large scale problem, or when
in Example 2.2 the sampling space is too large and/or the probability distrib-
ution too involved.

3 Parametric characterization of bundle methods

An algorithm to solve (1.1) should construct a sequence {(ûk, ĝk)} whose respective
primal and dual terms aim at minimizing f (·) and approaching 0 ∈ R

n (thus provid-
ing a certificate of optimality). The centers ûk defined below are extracted from the

123

246 W. de Oliveira et al.

algorithm iterate sequence {uk} by collecting points that provide sufficient progress
towards the goal of solving (1.1); for instance, by reducing the functional value. We
describe this construction for proximal bundle methods with the least possible refer-
ences to the oracle errors. Noise comes into play only a posteriori, to determine to
which extent the algorithm really solves (1.1).

3.1 Defining the set P

To make the parametric notation clear, we start with the pure cutting-plane methods
[2,14]. Having called the oracle at a number of points u j , these algorithms accumulate
linearizations

f L
j (u) := fu j + 〈

gu j , u − u j
〉
. (3.1)

To compute the next iterate, uk+1, the master-program minimizes the cutting-plane
model

f̌k(·) := max
{

f L
j (·) : j ∈ Jk := {1, . . . , k}}.

As a result, the following set of parameters fully characterizes a cutting-plane method:

P =
{

the convex model f̌k(·) and
a measure of progress, such as fuk+1 − f̌k(uk+1)

}

,

that is, the optimality certificate used to stop the algorithm. Taking the maximum over
Jk in the inequalities f L

j (·) � f (·) + η
g
u j , obtained from (1.2), gives:

f̌k(·) � f (·) + max
j∈Jk

η
g
u j for all k. (3.2)

For stabilized cutting-plane variants, such as [2,4,8,11], the set P includes some
devices guaranteeing descent for special iterates, called centers:

P =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a convex model f M
k , possibly different from the cutting-plane one,

a measure of progress to stop the algorithm,

a stabili t ycenter ûk, a past iterate deemed “good enough”,

a proximal stabilization 1
2tk

| · −ûk |2,
other parameters and updating rules, including tk+1, f M

k+1(·), etc.

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

The quadratic norm, or proximal stabilization, is replaced by more general terms in
[7]. In all these methods, uk+1 is the unique minimum of a stabilized model function:

min
u∈Rn

f S
k (u), for f S

k (u) := f M
k (u) + 1

2tk
|u − ûk |2. (3.3)

123

Convex proximal bundle methods in depth 247

When the problem (1.1) is constrained by a simple polyhedron as in Example 2.3, the
minimization in (3.3) incorporates this feasible set; see Sect. 7.3.

The model in P does not need to be one based on cutting planes, although the
relation

f M
k (·) � f̌k(·) for all k, (3.4)

generally holds, for example when compressing the bundle Jk ; see Sects. 5.2 and
7.1. Traditional bundle methods work with polyhedral approximations; in eigenvalue
optimization, the spectral bundle methods [11,18] use non-polyhedral models. The
main requirement on the choice of f M

k (·) is pragmatic: problem (3.3) should be easily
solvable. Relevant assumptions will be given later, as the need arises; for now we just
mention that for lower oracles like in (2.3), taking f M

k (·) := f̌k(·) gives

f M
k (·) � f (·) for all k. (3.5)

When this inequality holds we shall say that a lower model is available.

3.2 Ensuring descent for the center subsequence: the set D

We single out from the set P the criterion to decide when an iterate becomes the next
center, and write it as a rule depending on objects specified by a second set, checking
if the iterate provides sufficient descent. The resulting set D is defined first for exact
oracles.

3.2.1 Exact oracles

When the oracle calculations are exact, descent is determined by observing progress
towards the goal of minimizing the objective function. Progress can be measured
relative to either the model, or some nominal reference value, or the objective function
itself. The three corresponding measures are respectively called and denoted by

model decrease δM
k , nominal decrease δN

k , and e f f ective decrease δE
k .

With exact oracles, the model decrease is δM
k = f (ûk) − f M

k (uk+1). The nominal
decrease, a non-negative measure because (3.3) minimizes the stabilized model f S

k (·),
is given by

δN
k := δM

k − αk

tk
|uk+1 − ûk |2, for some αk ∈ [0, 1]. (3.6)

Finally, the effective decrease has the expression δE
k = f (ûk) − f (uk+1).

We shall see in Proposition 6.1 that driving the model decrease to zero is an impor-
tant ingredient for the convergence analysis. The other two measures are involved in
the rule deciding when the iterate is “good enough”. For uk+1 to become the next

123

248 W. de Oliveira et al.

center, the difference f (uk+1) − f (ûk) = −δE
k should be sufficiently negative. The

descent test

m δN
k � δE

k for a given parameter m ∈ (0, 1), (3.7)

is used by the algorithm to decide between making

either a descent step or a null step
(3.7) holds (3.7) does not hold

move the center: ûk+1 = uk+1 keep the current center: ûk+1 = ûk .

3.2.2 Inexact oracles

To make the rule (3.7) precise, the set of descent parameters should be

D = {m, δN
k - by choosing αk and δM

k in (3.6) and δE
k }.

When the oracle output has some error neither f (uk+1) nor f (ûk) are available: only
estimates fuk+1 or fûk are at hand and some representatives for the decrease measures
need to be defined. Regarding the model decrease, we let

δM
k := �k − f M

k (uk+1), (3.8)

where the substitute for f (ûk) is a “level” �k chosen so that the inequality �k � fûk

holds:

{
�k ∈ [fûk , f (ûk)] if η

g
u ≡ 0, i.e., the oracle is of lower type, and

�k = fûk otherwise.
(3.9)

Theorem 4.5 below shows that the level, to be specified in the set P , is a natural
estimate for the optimal value of (1.1).

Regarding the nominal decrease (3.6), only non-negative δN
k in (3.7) give centers

with strictly decreasing function values. We shall see in Sect. 5 that in some situations,
for example with upper oracles, to ensure δN

k � 0 some corrective action, called of
noise attenuation, needs to be introduced.

Finally, for the effective decrease only two choices have been proposed in the
literature:

– Observed decrease δE
k = fûk − fuk+1 as in [12,15], regardless of the oracle noise.

– Realistic decrease δE
k = f̂k − fuk+1 as in [6,8], for the “threshold” between centers

f̂k := max

{
fûk

max j�k f M
j (ûk) for iterations j following the one generating ûk

}

.

(3.10)

123

Convex proximal bundle methods in depth 249

When (3.5) holds, the threshold takes a better account of reality than fûk . To com-
pute it, one sets f̂k := f M

k (ûk) after a descent step and f̂k = max{ f M
k (ûk), f̂k−1}

after a null step.

Of these two choices, the observed one is the only possible proposal when the oracle
accuracy is not controllable and the error bound is unknown. Convergence (up to the
model and oracle precision) can be shown in this case using our synthetic theory;
see Sect. 7.2. On the other hand, the realistic decrease is appealing but, as shown in
Sect. 7.1.3, to ensure convergence the oracle must be partly asymptotically exact with
errors vanishing fast enough.

For a lower oracle with a known error bound (such as the controllable oracle in
Example 2.2) and with a lower model, there is a third type of decrease:

– Conservative decrease δE
k = (fûk +η̄ûk)−(fuk+1+η̄uk+1), involving the knowledge

of the oracle error upper bounds η̄ûk and η̄uk+1 . Thanks to this additional informa-
tion, the corresponding new method, the Controllable Bundle Algorithm 5.4, even-
tually solves (1.1) up to the oracle accuracy at descent steps; see Corollary 6.12.

4 Main ingredients in the algorithm

Coping with inexact oracles increases substantially the technicalities. To clarify nota-
tion, we adopt the convention that a superscript (·)M [resp. (·)S , resp. a hat (̂·)] connotes
an item attached to the original model [resp. the objective function in (3.3), resp. the
stability center].

4.1 Aggregate objects and algorithmic pattern

Once (3.3) is solved to produce the next iterate, two key objects are the aggregate
linearization f L−k(·) and aggregate subgradient ĝk introduced below.

Lemma 4.1 (Aggregate objects) If the model f M
k (·) is convex,

uk+1 = ûk − tk ĝk, for some ĝk ∈ ∂ f M
k (uk+1) (4.1)

is the unique solution of the master-program (3.3) and the affine function

f L−k(u) := f M
k (uk+1) + 〈

ĝk, u − uk+1
〉

(4.2)

is an underestimate of the model: f L−k(·) � f M
k (·).

Proof Since its objective function is finite-valued and strongly convex, (3.3) has a
unique solution characterized by the optimality condition 0 ∈ ∂ f S

k (u) = ∂ f M
k (u) +

(u − ûk)/tk , which gives (4.1). The inequality f L−k(·) � f M
k (·) is just the subgradient

relation. ��
As a consequence of (4.1) the nominal decrease in (3.8) has the equivalent expres-

sions

123

250 W. de Oliveira et al.

δN
k = δM

k − αk tk |ĝk |2 = [�k − f M
k (uk+1)] − αk tk |ĝk |2 for some αk � 0. (4.3)

Without further specification of the sets P and D, an abstract algorithmic pattern,
depending on these objects, can now be outlined.

Algorithm Pattern 4.2 (P, D) Having P and D , a starting point u1 is chosen. The
oracle output (fu1 , gu1) is available. Set k = 1 and initialize û1 = u1.

Step 1. Having the model and tk > 0 defined by P, solve (3.3) to obtain ĝk , uk+1
and f L−k(·) as in Lemma 4.1. Based on the definitions in D , compute the
nominal decrease (4.3) and determine the need of noise attenuation.
Loop in Step 1 until noise needs no more attenuation.

Step 2. Call the oracle at uk+1 to obtain the output (fuk+1 , guk+1).
Step 3. With the objects in D, the descent test (3.7) decides between making

a Descent step or a Null step
(3.7) holds (3.7) does not hold

set ûk+1 = uk+1 set ûk+1 = ûk

choose f M
k+1(·) ∈ P choose f M

k+1(·) ∈ P satisfying
f M
k+1 � max { f L−k(·), f L

k+1(·)}.
Step 4. Increase k by 1 and loop to Step 1. ��

As our aim is to state general principles for convergence, this is an algorithmic
pattern, independent of the bundle variant and its particular choices for P and D. The
convergence analysis in Sect. 6 is done without specifying these sets. Section 7 reviews
several instances,

Specific Algorithm = Alg. Pattern4.2(P, D) for specific P, D.

For the new Algorithm 5.4, concrete sets P and D are given in Sect. 5.2.
Step 1 will be endowed with a stopping test based on the approximate optimality

inequality (4.12) below. Also, Step 1 may also need to incorporate a loop of noise
attenuation. This mechanism ensures eventual non-negativity of δN

k , so that the rule
(3.7) resembles a descent test. We shall see in Sect. 5 how to deal with this issue by
modifying Step 1 as in (5.5); if the noise attenuation loop in the reformulated Step 1
is infinite, Corollary 5.3 shows optimality of the current center (up to the model and
oracle precision).

Naturally, the model cannot be totally arbitrary: Step 3 (right branch) imposes
satisfaction of lower bounds. Upper bounds are also required; they are somewhat
linked with the choice of tk and will arise in Sect. 6.2, specifically in relation (6.5)
therein.

4.2 Measuring optimality

To establish approximate optimality conditions it is best to refer information to the
center ûk .

123

Convex proximal bundle methods in depth 251

Fig. 1 Translation of the origin to the stability elements and aggregate gap êk

4.2.1 Shifting the bundle information

With exact oracles the origin is translated to the stability elements (ûk, f (ûk)). For
inexact oracles, the level �k replaces f (ûk) and defines the aggregate linearization
gap, illustrated in Fig. 1 for a lower model and oracle:

êk := �k − f L−k(ûk). (4.4)

Combining (4.4), (4.2) and (4.1) gives for the model decrease (3.8) the expression

δM
k = êk + tk |ĝk |2, (4.5)

traditionally used as an optimality criterion with exact oracles. As explained next,
small values for δM

k can be deceiving when the oracle delivers inexact information.

Remark 4.3 (Noise Attenuation) Recall from (3.9) that for lower oracles the level can
be any value between fûk and f (ûk). For the function in Fig. 1, if the level is �k = fûk

the aggregate gap becomes negative and in (4.5) the model decrease may get close
to zero. However, the figure shows that the center ûk is far from near optimality:
rather than stopping, the algorithm should look for iterates further from ûk . This is the
basis of noise attenuation to cope with negative gaps, a track initiated by [12], deeply
developed in [15] and described in (5.5) below: increasing tk diminishes the attraction
toward the suspect center; and (4.5) shows that δM

k increases (unless ĝk vanishes). ��
The identity f M

k (uk+1) = f L−k(û)− 〈ĝk, ûk − uk+1
〉
from (4.2), gives for the aggre-

gate linearization the equivalent expression

f L−k(u) = �k − êk + 〈
ĝk, u − ûk

〉
, (4.6)

123

252 W. de Oliveira et al.

from which follow the useful relations below, derived from (4.1):

êk = �k − f M
k (uk+1) − 〈

ĝk, ûk − uk+1
〉 = �k − f M

k (uk+1) − tk |ĝk |2. (4.7)

At this point we introduce an important convergence parameter:

φk := êk + 〈
ĝk, ûk

〉 = �k − f L−k(ûk) + 〈
ĝk, ûk

〉
. (4.8)

As shown in Theorem 4.5 below, proving convergence for an algorithm amounts to

finding a K ∞ − subsequence {(φk, ĝk)} converging to (φ, 0) with φ � 0, (4.9)

for certain infinite iteration sets K ∞ generated by the considered algorithm, so the
stopping criterion in the set P checks that both φk and ĝk are sufficiently small.

Remark 4.4 (Duality gap interpretation of φk) For the primal problem (2.4) in Exam-
ple 2.1, (1.1) comes from Lagrangian relaxation or column generation and φk has a
nice interpretation as a duality gap. Recall that the dual function is given by

f (u) := max
x∈X

L(x, u), with L(x, u) := h(x) + 〈u, c(x)〉 .

Calling x j the primal point computed at u j , the oracle output is

fu j = L(x j , u j) = h(x j) + 〈
u j , c(x j)

〉
and gu j = c(x j).

The Lagrangian is affine with respect to u, so f L
j (·) = L(x j , ·). Moreover, when the

model is the cutting-plane function, a subgradient ĝk of the max-function f M
k (·) is a

convex combination of active subgradients. Hence, for λ j � 0 such that
∑

j λ j = 1,
ĝk = ∑

j λ j gu j = ∑
j λ j c(x j), and for each j such that λ j > 0, f M

k (uk+1) =
f L

j (uk+1) = L(x j , uk+1) = h(x j) + 〈
uk+1, c(x j)

〉
. Thus,

f M
k (uk+1) = ∑

j λ j h(x j) +
〈
uk+1,

∑
j λ j c(x j)

〉
[by convex combination]

= ∑
j λ j h(x j) + 〈

uk+1, ĝk
〉 [by the expression above for ĝk]

= �k − êk − 〈
ĝk, ûk − uk+1

〉 [by (4.7) and (4.1)]

Using the first identity in (4.8), we have therefore proved that

∑

j

λ j h(x j) = �k − êk − 〈
ĝk, ûk

〉 = �k − φk . (4.10)

Assume for simplicity that (2.4) is a linear program: h(x) = 〈h, x〉, c(x) = Ax − a,
and introduce the primal point x̂k := ∑

j λ j x j . By (4.10),
〈
h, x̂k

〉 = �k − φk and, as
�k from (3.9) is essentially a functional dual value,

123

Convex proximal bundle methods in depth 253

φk = �k − 〈
h, x̂k

〉
estimates the duality gap and

ĝk = A(x̂k − a) is a constraint value.

So both φk and ĝk should be driven to zero (at least with exact oracles, having �k =
f (ûk)). ��

4.2.2 Convergence: what it means

The following weakened form of (3.5), extends (3.2) to a general model:

for some ηM � 0 the inequality f M
k (·) � f (·) + ηM holds for all k, (4.11)

The condition is automatic for lower oracles and models (with ηM ≡ 0) and for upper
oracles, it determines the degree of agreement between the model and the true function.

Theorem 4.5 (Conditions for approximate optimality) Suppose the model satisfies
(4.11). If the Algorithmic Pattern 4.2 generates a K ∞-subsequence {(φk, ĝk)} satis-
fying (4.9), then the level defined in (3.9) eventually estimates the infimal value of f .
Namely,

lim sup
k∈K ∞

�k � inf f (·) + φ + ηM � inf f (·) + ηM . (4.12)

Consider an index set K ′ ⊂ K ∞ such that {ûk}K ′ has a limit û and define the corre-
sponding asymptotic oracle error at descent steps

η∞ := lim inf
k∈K ′ ηûk . (4.13)

Then (4.9) implies that û is an (η∞ + ηM)-solution to problem (1.1).

Proof Use Lemma 4.1 and (4.11) in (4.6): for all u and all k,

f (u) + ηM � f M
k (u) � f L−k(u) = �k − φk + 〈

ĝk, u
〉
.

Hence
〈
ĝk, u

〉− f (u) � φk − �k + ηM ; take the supremum over u to obtain that

sup
u

{〈ĝk, u
〉− f (u)} =: f ∗(ĝk) � φk − �k + ηM .

In view of (4.9), by closedness of the conjugate f ∗(·),
f ∗(0) � lim inf

k∈K ∞ f ∗(ĝk) � lim
k∈K ∞ φk + lim inf

k∈K ∞ (−�k) + ηM = φ − lim sup
k∈K ∞

�k + ηM ,

which is just (4.12) since the value of the conjugate function at zero satisfies f ∗(0) =
inf f (·). To see the final statement, given the iterate subsequence defined over K ′ ⊂ K ,
consider k ∈ K ′ and use (3.9) in the first line of (1.2), written at u = ûk : f (ûk)−ηûk =
fûk � �k . Passing to the limit yields the desired relation, by lower semicontinuity of
f (·):

123

254 W. de Oliveira et al.

f (û) − η∞ � lim sup
k∈K ′

[f (ûk) − ηûk] � lim sup
k∈K ′

�k � inf f (·) + ηM .

��
Instead of the asymptotic condition (4.9), seemingly introduced for the first time

in [15], convergence for bundle methods has always been established by

finding a K ∞ − subsequence {(êk, ĝk)} converging to (0,0). (4.14)

The difference is subtle indeed: both properties are equivalent when {ûk} is bounded;
precisely, condition (4.9) gives an elegant argument in the unbounded case, which was
overlooked before, for example in [3,13].

Theorem 4.5 gives some insight on the role played by �k , in particular on the reason
for its definition (3.9). The aim of the Algorithmic Pattern 4.2 is of course to estimate
as accurately as possible the optimal value and a solution of (1.1). The latter is done
by means of the stability center ûk while the former can be accomplished in various
ways. A straightforward approximation for the optimal value is fûk , but better can be
done when both the oracle and the model are of lower type (both (2.3) and (3.5) hold).
In this case, the value f̂k from (3.10) is more accurate than fûk and having in (4.12)
that �k = f̂k ensures by (3.10) that the estimate is the largest available functional
value. Nevertheless, notice that such definition for the level is acceptable only if f̂k

satisfies the relations in (3.9);

f̂k ∈ [fuk , f (uk)] for lower oracles and f̂k = fuk otherwise.

The inequality f̂k � fûk always holds by the definition (3.10). For lower oracles and
lower models, (3.5) ensures in addition that f̂k � f (ûk) and, hence, it is possible to
set �k = f̂k .

Theorem 4.5 also clarifies how a “partly asymptotically exact” lower oracle can
yield exact optima in the limit, without any error in spite of the oracle inexactness. If
the oracle is eventually exact only at descent steps, η∞ = 0 and f (ûk) − fûk → 0, so
(3.9) implies �k − f (ûk) → 0. If, in addition, the model is of lower type, (3.5) gives
ηM = 0 in (4.11) and in (4.12) the only possible value for φ is zero (like in (4.14)).

5 On noise management and a concrete instance

We now make precise the noise attenuation loop in Step 1. We also provide a particular
instance for the sets P and D in the Algorithmic Pattern 4.2, the Controllable Bundle
Algorithm 5.4, a new method with the ability of managing the oracle accuracy.

5.1 Properties of the aggregate gap

The rewriting (4.5) suggests that a small δM
k might bring closer the traditional con-

vergence property (4.14) for “not too negative” gaps. The relevance of the sign of êk

123

Convex proximal bundle methods in depth 255

was also noticed empirically for Fig. 1 in Remark 4.3. The noise attenuation mech-
anism will be triggered when êk becomes negative. Below we show how the gap
sign relates with objects in the set D , in particular with the sign of the nominal
decrease δN

k , whose non-negativity is fundamental for (3.7) to be a genuine descent
test.

Lemma 5.1 (Aggregate gap properties relevant for noise detection) In the Algorithmic
Pattern 4.2, consider the level, best function value, model and nominal decreases, and
gap defined, respectively, in (3.9), (3.10), (3.8), (4.3), and (4.4). The following holds.

(i) êk � �k − f̂k at all iterations.
(ii) Satisfaction of the inequality

êk � −βk tk |ĝk |2 for some βk ∈ [b, 1 − b] with b ∈ (0,
1

2
], (5.1)

is equivalent to any of the relations below

δM
k � max

{
êk, (1 − βk)tk |ĝk |2

}
⇐⇒ δN

k �
(

1 − (αk + βk)
)

tk |ĝk |2.
(5.2)

In particular, whenever (5.1) holds the model decrease is non-negative.
Furthermore, if we assume in (4.3) and (5.1) that

αk + βk � 1 − b, (5.3)

whenever (5.1) holds the nominal decrease is non-negative too.
(iii) If the model satisfies (4.11) then êk � −(ηûk + ηM

)
.

Proof By definition (4.4) and the model subgradient inequality in Lemma 4.1,

êk = �k − f L−k(ûk) � �k − f M
k (ûk). (5.4)

The first item follows from adding ± f̂k to the right hand side, recalling the definition
for f̂k in (3.10). The second item follows from some simple algebra using (4.5) and
(4.3).
For the third item, use the level definition (3.9) and the model assumption (4.11) in
(5.4) to write êk � fûk − f M

k (ûk) � fûk − f (ûk) − ηM and (2.3) ends the proof. ��
The allowed interval for βk in (5.1), together with (5.3), implies that αk ∈ [0, 1],

so the conditions are consistent with those required for αk in (3.6).
In view of item (ii) in Lemma 5.1, the inequality (5.1) can be used to detect when

the nominal decrease is negative and a corrective action needs to be taken. This test
will be incorporated in the Algorithmic Pattern 4.2 as follows.

123

256 W. de Oliveira et al.

Step 1. Having the model and tk defined by P, solve (3.3) to obtain ĝk ,

uk+1 and f L−k(·) as in Lemma 4.1, and compute φk from (4.8).

Stop if φk and |ĝk | are both small enough. Otherwise, with the elements in D,

compute the gap (4.4) and determine the need of noise attenuation:

Noisy Iteration or Forthcoming Serious or Null Step

(5.1) does not hold (5.1) holds

Keep

{
ûk+1 = ûk

f M
k+1(·) = f M

k (·) Go to Step 2

Set tk+1 > tk

Repeat Step 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

When the test in Step 1 determines that noise became too large the stepsize tk
is sharply increased, inhibiting any decrease until the next descent step; see (6.14).
In Corollary 5.3 we show that this simple mechanism ensures that either the current
center is approximately optimal or the noise attenuation loop is finite and the algorithm
proceeds to Step 2. First, we make use of the aggregate gap properties in Lemma 5.1 to
examine for which models and oracles the noise attenuation test (5.1) can be dismissed.

Corollary 5.2 (Lower models and various oracles) Suppose Algorithmic Pattern 4.2
with Step 1 from (5.5) uses a lower model: in the set P the model satisfies (3.5).

(i) There is no need of noise attenuation and all iterations satisfy automatically (5.1)
with βk arbitrary, b = 0, so αk ∈ [0, 1] in (4.3), whenever one of the conditions
below hold.
(ia) In the parameter set the level from (3.9) is given by P � �k := f̂k from (3.10)

(recall that such a definition is possible in particular for lower oracles and
models: both (2.3) and (3.5) hold).

(ib) The oracle is exact: (2.3) holds with ηu ≡ 0.
(ii) The noise attenuation loop is finite if the oracle is lower and asymptotically exact

at descent steps:

(2.3) holds and in (4.13) η∞ = 0 with K ′ := {k : the descent test (3.7) holds}.
(5.6)

Proof Condition (ia) implies (5.1), by Lemma 5.1(i) and (ii). When the oracle is exact,
(ia) gives the result, because �k = f (ûk) in (3.9) and, if the model is lower, f̂k = f (ûk)

in (3.10). Similarly for (ii), reasoning asymptotically for k satisfying (3.7). ��

When only finitely many descent steps are generated (K ′ is finite), the condition
η∞ = 0 in (5.6) in fact requires an exact evaluation of descent steps.

For general models, the noise attenuation loop can be infinite and the Algorithmic
Pattern 4.2 may never reach Step 2. We use the important Theorem 4.5 to show that

123

Convex proximal bundle methods in depth 257

in this case the current center (the last descent step) is an approximate solution to
(1.1).

Corollary 5.3 (Upper oracles and noisy steps) Consider Algorithmic Pattern 4.2 with
Step 1 from (5.5) and assume in the set P the model satisfies (4.11).

If for some iteration k̂ the algorithm loops forever in Step 1, then tk ↑ ∞ and the
set K ∞ := {k � k̂ : condition (5.1) does not hold} is infinite. As a result, the last
descent iterate û := ûk̂ is an (ηûk̂

+ ηM)-solution to (1.1).

Proof In the noise attenuation loop, tk is increased and the stability center is main-
tained fixed to û. The K ∞-sequence of aggregate gaps {êk} is bounded below by
Lemma 5.1(iii), and non-positive because (5.1) does not hold. Since the K ∞-iterates
satisfy the negation of (5.1) and βk � b > 0 therein,

|ĝk |2 < − êk

βk tk
�

ηûk + ηM

b tk
;

hence, ĝk → 0 as tk is driven to infinity for k ∈ K ∞. Therefore, the limit of the
K ∞-subsequence {φk = êk + 〈

ĝk, û
〉} is φ = limK ∞ êk � 0, because (5.1) does not

hold. So the convergence condition (4.9) is satisfied, Theorem 4.5 applies, and the
desired result follows. ��

The analysis above shows that when the Algorithmic Pattern 4.2 performs Step 1 as
in (5.5), for any oracle and with a model satisfying (the very reasonable) assumption
(4.11),

– either for all iterations the loop in Step 1 ends with an iterate satisfying (5.1), for
which a descent or a null step will be made in Step 3;

– or for some iteration the loop in Step 1 in infinite and û is optimal up to the oracle
and model precision.

For this reason the convergence analysis in Sect. 6 only considers infinite sequences
stemming from the alternative in Step 3 in the Algorithmic Pattern 4.2: infinitely many
descent steps or an infinite tail of consecutive null steps.

5.2 Controllable bundle method

We now state a concrete algorithm for controllable lower oracles: like in Example 2.2,
high accuracy is possible yet the heavy computational burden makes it preferable to
avoid exact calculations, The main novelty for this variant is in the specific choice of
the level and the accuracy control of the oracle.

We assume there is an informative controllable oracle of lower type: in (1.2) η
g
u ≡ 0,

so (2.3) holds. Also, the input error bound η̄uk is sent to the oracle together with
the evaluation point uk to obtain fuk ∈ [f (uk) − η̄uk , f (uk)] and an approximate
subgradient guk .

123

258 W. de Oliveira et al.

The parameter set is given by

P =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a cutting-plane model f M
k (·)

= max
{

f L
j (·) : j ∈ Jk ⊆ {−(k − 1)} ∪ {1, . . . , k}

}

a stopping test checking if φk and ĝk are sufficiently small;
the proximal stabilization 1

2tk
| · −ûk |2 and an updating rule for tk :

- if descent step, tk+1 � tk

- if null step, tk+1 = max{tlow, σ tk} for σ ∈ (0, 1] and tlow > 0

the current stability center ûk and its level �k := f̂k from(3.10)

a rule to update the oracle error bound: η̄uk+1 = η̄ûk + fûk − �k .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(5.7)

The model function is not the pure cutting-plane model, whose index set is Jk =
{1, . . . , k}. Here, the aggregate linearization enters the index set, so the polyhedral
model allows for bundle compression, and (3.4) is satisfied.

The descent set has the elements:

D =

⎧
⎪⎨

⎪⎩

m ∈ (0, 1), αk ∈ [0, 1]
δN

k := �k − f M
k (uk+1) − αk tk |ĝk |2

δE
k := fûk + η̄ûk − fuk+1 − η̄uk+1 .

⎫
⎪⎬

⎪⎭
. (5.8)

Algorithm 5.4 Controllable Bundle Method (=Alg.Pattern 4.2 with P,D from (5.7),
(5.8))

The user chooses the starting point u1 and t1 � tlow. The oracle output (fu1 , gu1)

is available. Set k = 1 and initialize û1 = u1, J1 = {1}, and �1 = fu1 .

Step 1. Obtain ĝk , uk+1 and f L−k(·) from Lemma 4.1. by solving the quadratic program

min
r,u

r + 1

2tk
|u − ûk |2 s.t. r � f L

j (u), j ∈ Jk .

Compute φk as in (4.8); if φk and |ĝk | are small enough, stop.
Step 2. Update the oracle error bound η̄uk+1 = η̄ûk + fûk −�k and call the oracle with

input (uk+1, η̄uk+1) to obtain the output (fuk+1 , guk+1).
Step 3. Check the descent test (3.7), or the equivalent relation:

fuk+1 + η̄uk+1 � fûk + η̄ûk − m(�k − f M
k (uk+1)−αk tk |ĝk |2)

and perform one of the steps below:

123

Convex proximal bundle methods in depth 259

Descent step or Null step

The above inequality holds The above inequality does not hold

Set ûk+1 = uk+1 Set ûk+1 = ûk

Choose Jk+1 ⊃ {k + 1} Choose Jk+1 ⊃ {k + 1,−k}
Set �k+1 = f M

k+1(uk+1) Set �k+1 = max{�k, f M
k+1(ûk+1)}

Choose tk+1 � tk . Choose tk+1 ∈
[
max

(
tlow, σ tk

)
, tk

]
.

Step 4. Increase k by 1 and loop to Step 1. ��

The level choice satisfies �k = f̂k � fûk by (3.10). Also, note that the oracle
accuracy is automatically adjusted, a useful feature if the initial bound η̄u1 was taken
too large. Nevertheless, the update in Step 2 of Algorithm 5.4, forces the error bound
sequence {η̄uk } to be nonincreasing, so if the user chooses to start with exact calcula-
tions (η̄u1 = 0), the algorithm boils down to the classical proximal bundle method for
exact oracles. By Remark 6.8 and Corollary 6.12, having nonincreasing accuracy at
all iterations is crucial for proving convergence of the method. The partly asymptoti-
cally exact version in Sect. 7.1.4 drives ηûk → 0, by taking in (5.8) the conservative
decrease δE

k := fûk + η̄ûk − fuk+1 .

6 Convergence analysis

Our main purpose is to state a synthetic convergence theory for the Algorithmic Pat-
tern 4.2, without stating neither the parameter set nor the descent rule. References to
Algorithm 5.4 will be given throughout this section to make statements more concrete
and guide the reader until the final Theorem 6.11. This general result is suitable for
showing convergence of numerous bundle methods, including the inexact variants in
[12,15]; see Sect. 7.

In the Algorithmic Pattern 4.2, Step 1 is given by (5.5) without stopping test. Once
finiteness of the noise attenuation loop has been settled down by Corollaries 5.2 and
5.3, the K ∞-subsequences generated by the algorithm satisfy (5.1) and fit one of the
following arguments:

– Bundling: null steps issued from the same center suitably improve the model;
– Descent: steps satisfying (3.7) will force the convergence property (4.9).

We start with several intermediate stages that are independent of the descent rule (3.7).

6.1 Common results for descent and null steps

The following technical Féjer-like identity is derived from writing (4.1) in the form
|uk+1 − u|2 = |ûk − tk ĝk − u|2 and expanding the square:

|uk+1 − u|2 − |ûk − u|2 = t2
k |ĝk |2 + 2tk

〈
ĝk, u − ûk

〉
for any u ∈ R

n . (6.1)

123

260 W. de Oliveira et al.

It is useful to collect descent iterates in the set

K̂ := {k ∈ N : the descent test (3.7) is satisfied}.

and consider in (4.9) the infinite sets

K ∞ :=
{ {k ∈ N : k > k̂} if K̂ is finite, with last element k̂,

K̂ if K̂ has infinite cardinality.
(6.2)

Once again, recall that Corollaries 5.2 and 5.3 already ruled out an infinite loop in
Step 1 from (5.5), so the infinite sets K ∞ in (4.9) can only come from either a descent
or a null step.

The general convergence property below does not require the model in P to satisfy
any condition. However, we do assume the model satisfies (4.11), so that the corollaries
from Sect. 5 apply and the algorithm K ∞-subsequences are well defined.

Proposition 6.1 Suppose that in the set P the Algorithmic Pattern 4.2 has a bounded
model and stepsizes bounded away from zero, so that both (4.11) and

tk � tlow > 0, for all k (6.3)

hold. If for any of the two index sets K ∞ from (6.2) the model decrease eventually
vanishes:

lim
k∈K ∞ δM

k = 0,

the convergence property (4.9) holds for such a set.

Proof As Corollary 5.3 applies, (5.1) holds for k ∈ K ∞ and (5.2) yields that

lim
k∈K ∞ tk |ĝk |2 = 0 and

{
limk∈K ∞ ĝk = 0 by (6.3)

limk∈K ∞ êk = 0 by (4.5).

Therefore, for (4.9) to hold, we only need to show that φ = limK ∞ φk � 0. When
the index set is K ∞ = {k > k̂} this is direct from passing to the limit in the identity
φk = êk + 〈ĝk, û

〉
from (4.8), because û remains fixed to the last descent iterate. When

the index set is K ∞ = K̂ , take two consecutive indices k1 and k2 in K̂ and apply (6.1)
written with k = k2 (so that ûk2 = uk1+1) to obtain the identity

|uk2+1 − u|2 − |uk1+1 − u|2 = tk2 zk2(u), for zk := tk |ĝk |2 + 2
〈
ĝk, u − ûk

〉
.

The summation over k gives that −∞ < −|u0 −u|2 �
∑

k∈K̂ tk zk . Existence of some

κ > 0 such that zk � −κ for all k ∈ K̂ would imply
∑

k∈K̂ tk < +∞, which is
impossible because of (6.3). Thus we have proved the relations

123

Convex proximal bundle methods in depth 261

0 � lim sup
k∈K̂

zk = lim sup
k∈K̂

(
tk |ĝk |2 + 2

〈
ĝk, u

〉− 2
〈
ĝk, ûk

〉) = −2 lim inf
k∈K̂

〈
ĝk, ûk

〉
,

because tk |ĝk |2 → 0. Since êk → 0, passing to the limit in (4.8) gives φ =
lim inf K̂ φk � 0. ��

The relation with previous results in the bundle literature can be seen as follows.
By (4.6) and Lemma 4.1, f M

k (u) � f L−k(ûk) + 〈
ĝk, u − ûk

〉 = �k − êk + 〈
ĝk, u − ûk

〉

for all u ∈ R
n . When the model satisfies (4.11), by the level definition (3.9) and (1.2),

f (u) + ηM � f (ûk) − ηûk − êk + 〈
ĝk, u − ûk

〉
and, hence,

(4.11) implies that ĝk ∈ ∂εk f (ûk) for εk := êk + ηûk + ηM � 0, (6.4)

noting that εk � 0 by Lemma 5.1(iii).
For exact oracles, the arguments in Proposition 6.1 do not extend the standard proof

of bundle methods. Such a proof is based on the property ĝk ∈ ∂êk f (ûk) (not valid
for inexact oracles), which allows a refinement of (6.1). If the speed of convergence
of δM

k to zero can be assessed, better results are obtained: a weaker assumption on the
stepsizes is possible and the full sequence {ûk} converges when f (·) has a nonempty
set of minimizers. Not unexpectedly, a variant of Proposition 6.1 recovers these two
results if the oracle noise is suitably controlled, via the asymptotic error at descent
steps η∞ introduced in (5.6).

Theorem 6.2 (Link with the (partly asymptotically) exact case) Consider the Algo-
rithmic Pattern 4.2 applied with an oracle of lower type that is asymptotically exact
at descent steps, as in (5.6): η∞ = lim infk∈K̂ ηûk = 0. Suppose that in the set P the
model is lower and the stepsizes series diverges: (3.5) is satisfied and

∑

k∈K ∞
tk = ∞.

The following holds.

(i) If limk∈K ∞ δM
k = 0, then lim inf K ∞ f (uk) = inf f (·).

Suppose in addition that in P the stepsize sequence is bounded from above:

tk � tup, for all k.

(ii) In the null-step-tail case (K ∞ = {k > k̂}) the last descent step ûk ≡ uk̂ =: û
satisfies

û minimizes f (·), lim
k∈K ∞ uk = û, and lim

k∈K ∞ f M
k−1(uk) = f (û).

Furthermore, suppose both the oracle error and the model decrease series are con-
vergent:

∑

k∈K̂

ηûk < +∞ in (5.6) and
∑

k∈K̂

δM
k < +∞ in D.

123

262 W. de Oliveira et al.

(iii) In the infinite-descent-step case (K ∞ = K̂), for any limit point û of the sequence
{ûk}k∈K̂

û minimizes f (·), and the whole sequence {ûk}k∈K̂ converges to û.

Proof With the oracle and model assumptions Corollary 5.2(ii) applies and the sets
K ∞ are well defined. To see (i), note that (5.2) yields that δM

k � (1 − βk)tk |ĝk |2 �
(1 − b)tk |ĝk |2 � 0. Since δM

k → 0 by assumption, tk |ĝk |2 → 0 for the considered
subsequence. In (4.11), ηM = 0 by (3.5); together with (6.4) the inclusion ĝk ∈
∂εk f (ûk) holds with εk := êk + ηûk . Adding ηûk to the left hand side inequality in
(5.2) gives that εk = êk + ηûk � δM

k + ηûk and our assumption on ηûk implies that
εk → 0. Then (i) is [5, Prop. 1.2], where ĝ is denoted γ . To see (ii), first note that
(4.1) implies that |uk+1 − û|2 = t2

k |ĝk |2 → 0 because the stepsizes are bounded
above by assumption. As the model decrease vanishes, (3.8) gives that limk �k =
limk f M

k (uk+1). Together with the level definition (3.9) and the oracle assumption
(5.6), which forces ηû = 0, we see that f (û) = fû � limk f M

k (uk+1) � f (û).

By lower semicontinuity, f (û) � lim infk f (uk+1) and (ii) follows. To prove (iii),
observe first that û minimizes f (·) by (i). Then use that ĝk ∈ ∂εk f (ûk) and write from
(6.1)

|uk+1 − û|2 − |ûk − û|2 = t2
k |ĝk |2 + 2tk

〈
ĝk, û − ûk

〉

� t2
k |ĝk |2 + 2tk[f (û) − f (ûk) + εk] � t2

k |ĝk |2 + 2tkεk .

The definition of εk and (4.5) yield that t2
k |ĝk |2 + 2tkεk = tk(δM

k − êk + 2εk) �
2tk(δM

k + ηûk). For successive indices k1 and k2 in K̂ summing the inequalities

|uk2+1 − û|2 − |uk1+1 − û|2 � 2tk(δ
M
k + ηûk),

together with the assumptions on {ηûk } and {δM
k }, implies that the rightmost side term

forms a convergent series, so (iii) follows from [5, Prop. 1.3]. ��
In view of Proposition 6.1, obtaining small δM

k will be our main concern in Sect. 6.3.

We first state conditions ensuring this property when K̂ in (6.2) is finite.

6.2 Null-step tail

As the stability center remains fixed throughout the present subsection, we use the
notation û := ûk and assume a weakened form of (4.11), holding only at û:

for some η̂M � 0 the inequality f M
k (û) � f (û) + η̂M holds for all k. (6.5)

For the concrete Algorithm 5.4, the model is of lower type and the stronger condition
(4.11) always holds with (η̂M =)ηM = 0.

The null-step situation, in (6.2) K ∞ = {k > k̂}, just relies upon the memory effect
implied by f M

k+1(·) � f L−k(·), triggered by the right branch in Step 3 of the Algorithmic

123

Convex proximal bundle methods in depth 263

Pattern 4.2. We claim that when Step 3 systematically makes a null step, regardless of
any descent test,

lim sup
k>k̂

[
fuk − f M

k−1(uk)
]

� 0. (6.6)

Two sources of errors make (1.1) difficult: one coming from the oracle and another from
the model. Property (6.6) states that for null steps the model inexactness eventually
vanishes.

Another important observation on the role of (6.6) refers to the nominal and effective
decreases in (3.7). For simplicity, take αk = 0 in (4.3), so that δN

k = δM
k from (3.8).

Then

δE
k = �k − fuk+1 = δM

k + f M
k (uk+1) − fuk+1 = δN

k − [
fuk+1 − f M

k (uk+1)
]
.

When the bracket becomes small, the effective and nominal decreases get close
together. This is a little known point in bundle methods: a good (effective) decrease
�k − fuk+1 entails a more accurate model approximation fuk+1 − f M

k (uk+1).
To establish (6.6) we state first a technical result linking successive optimal values

of the master-program (3.3), based on arguments similar to the exact oracle case.

Lemma 6.3 Consider the Algorithmic Pattern 4.2 and suppose that in the set P the
model satisfies (6.5) and the stepsize is not increased at null steps:

tk � tk−1 if at iteration k − 1 the descent test (3.7) is not satisfied.

For uk and uk+1 obtained by a null step issued from the center û the following holds.

(i) f S
k−1(uk) + 1

2tk−1
|uk+1 − uk |2 � f S

k (uk+1),

(ii) f S
k−1(uk) + 1

2tk−1
|û − uk |2 � f (û) + η̂M ,

(iii) f M
k (uk+1) − f M

k−1(uk) � f S
k (uk+1) − f S

k−1(uk) + ok, where we have set

ok :=
〈
uk+1 − uk, û − uk

〉

tk
= tk−1

tk

〈
ĝk−1, uk+1 − uk

〉
. (6.7)

Proof For (i) and (ii) we refer to [15, Lemma 3.3]. To see (iii), by the definition in
(3.3),

f S
k (uk+1) − f M

k (uk+1) = 1

2tk
|uk+1 − uk + uk − û|2.

Develop the square and use tk � tk−1 in the right hand side to see that

1

2tk
|uk+1 − uk |2 − ok + 1

2tk
|uk − û|2 � −ok + 1

2tk−1
|uk − û|2.

The result follows, because f S
k (uk+1) − f M

k (uk+1) � −ok + f S
k−1(uk) − f M

k−1(uk).
��

123

264 W. de Oliveira et al.

With an exact oracle, (6.6) becomes f (uk) − f M
k−1(uk) → 0, a known result, see

for instance [5, Prop. 4.3]. Typically, f M
k−1(uk−1) = f (uk−1); so we can write this as

[f (uk) − f (uk−1)] + [f M
k−1(uk−1) − f M

k−1(uk)] → 0,

easily proved with the Lipschitz property of f (·) and f M(·) (Lemma 6.3 turns out to
imply uk − uk−1 → 0, see (6.10) below). In the inexact case, the oracle f -values
may behave erratically, as well as the successive models f M(·). Since Lemma 6.3(i)
implies a better behavior of the stabilized function f S(·), item (iii) relates the model
to the stabilized model.

Theorem 6.4 (Null steps) Consider the Algorithmic Pattern 4.2 applied with an oracle
having locally bounded inaccuracy:

∀ R � 0, ∃ η(R) � 0 such that |u| � R �⇒ ηu + η
g
u � η(R). (6.8)

Suppose that in the set P the model satisfies (6.5) and the stepsize is updated so that,
whenever at iteration k − 1 the descent test (3.7) is not satisfied,

there exist positive tlow and σ ∈ (0, 1] such that tk ∈
[
max

(
tlow, σ tk−1

)
, tk−1

]
.

Then the asymptotic property (6.6) holds.

Proof We first establish the preliminary results (6.9) and (6.10) below. The step-
size update satisfies the condition in Lemma 6.3. By item (i) therein, the sequence
{ f S

k−1(uk)} is nondecreasing, hence bounded from below; say f S
k−1(uk) � −M for all

k. By Lemma 6.3(ii),

1

2tk−1
|û − uk |2 � f (û) + η̂M − f S

k−1(uk) � f (û) + η̂M + M.

Using once more that stepsizes do not increase at null steps, we obtain that the sequence
{uk} is bounded. By (2.1) and (2.2), guk ∈ ∂ηuk +η

g
uk

f (uk), and the oracle assumption

(6.8) implies that {guk } is bounded ([14, Prop. XI.4.1.2]). Our assumption on the step-
size implies in particular that (6.3) holds and, hence,

the sequences {uk}, {ĝk = (û − uk+1)/tk} and {guk } are bounded. (6.9)

By Lemma 6.3(ii), the monotone sequence { f S
k−1(uk)} is bounded from above and

has a limit. Together with Lemma 6.3(i) and using once again the monotonicity of
stepsizes,

f S
k (uk+1) − f S

k−1(uk) → 0 and uk+1 − uk → 0. (6.10)

We now use these preliminary results to show (6.6). The right branch in Step 3 of the
algorithmic pattern forces f M

k (·) � f L
k (·) so, by (3.1), fuk + 〈guk , u − uk

〉 = f L
k (u) �

f M
k (u). In particular, when u = uk+1

123

Convex proximal bundle methods in depth 265

fuk − f M
k−1(uk) = f L

k (uk+1) + 〈
guk , uk − uk+1

〉− f M
k−1(uk)

� f M
k (uk+1) + 〈

guk , uk − uk+1
〉− f M

k−1(uk)

� [f S
k (uk+1) − f S

k−1(uk)] + [〈guk , uk − uk+1
〉] + ok,

by Lemma 6.3(iii). The results follows: by (6.9) and (6.10), the first two brackets tend
to zero; and similarly for the last term, recalling our assumptions for the stepsize and
(6.7). ��
Remark 6.5 (On boundedness) Assumption (6.8) could be refined as follows: the
oracle is bounded for any infinite sequence of null steps. We shall make use of this
refinement for some concrete instances in Sect. 7 related to Examples 2.3 and 2.4. ��
Remark 6.6 (On the role of the lower bound tlow) Assumption (6.3) was only used
to establish boundedness of the sequence {ĝk}. This assumption can be dropped if the
model is bounded everywhere, i.e., if (4.11) holds instead of (6.5). To see this, notice
that in this case (6.4) gives that ĝk ∈ ∂εk f (û) with εk = êk + ηû + ηM . By local
boundedness of the εk-subdifferential and by (6.8), we only need to show that {êk}
is bounded. The latter results from boundedness of { f S

k (uk+1)}: plug (4.1) into the
expression (4.7) of êk to obtain

êk = �k − f M
k (uk+1) − tk |ĝk |2 � �k − f S

k (uk+1) � �k + M � f (û) + M,

where the last inequality follows from (3.9) recalling that ûk = û.
Finally, the assumption (6.3) can also be dropped for oracles of lower type that are
partly asymptotically exact, as in Theorem 6.2. ��

6.3 The role of the descent test and general convergence result

For the bundling argument, property (6.6) allows us to analyze when the model
decrease eventually vanishes. Recall that this argument enters the game when in (6.2)
we have K ∞ = {k > k̂}—the descent test (3.7) does not hold. Since such a test
depends on the effective decrease, below we give a sufficient condition for δM

k → 0
involving this decrease.

Proposition 6.7 (Effective decrease and bundling mechanism) In the setting of The-
orem 6.4, suppose that for the level in the set P and the effective decrease in the set
D

lim sup
k>k̂

[
�k − fuk+1 − δE

k

]
� 0 ; (6.11)

then limk̂<k→∞ δM
k = 0.

Proof By Corollary 5.3 and Lemma 5.1 for the null step tail (5.1) holds and the model
and nominal decreases satisfy the inequalities in (5.2) for all k > k̂. Subtract the

123

266 W. de Oliveira et al.

identity f M
k (uk+1) = �k − δM

k from both sides of the negation of (3.7) and use (4.3)
to obtain

−δE
k − fuk+1 + fuk+1 − f M

k (uk+1) > −�k + δM
k − m δN

k .

Since in (4.3) the parameter αk � 0, δN
k � δM

k , and reordering terms we obtain that

(1 − m)δM
k < zk + fuk+1 − f M

k (uk+1) for zk := (�k − fuk+1) − δE
k .

By Theorem 6.4, the property (6.6) holds, together with (6.11) we obtain in the limit
that

(1 − m) lim sup δM
k � lim sup

[
zk + fuk+1 − f M

k (uk+1)
]

� lim sup zk � 0.

The result follows, recalling that m ∈ (0, 1) and, by (5.2), δM
k � 0. ��

Remark 6.8 (Interpretation for Algorithm 5.4) Condition (6.11) helps analyzing the
impact of different definitions for the effective decrease. For the conservative decrease
given in Algorithm 5.4, (6.11) is satisfied because �k = f̂k and

�k − fuk+1 − δE
k = �k − fuk+1 − (fûk + η̄ûk − fuk+1 − η̄uk+1)

= �k − fûk − η̄ûk + η̄uk+1

= 0,

where the last equality follows from the updating rule η̄uk+1 = η̄ûk + fûk − �k for the
error bounds. If we were to take the same level �k = f̂k , but use instead the realistic
decrease δE

k = fûk − fuk+1 , condition (6.11) would not hold. Indeed, reasoning like
above,

�k − fuk+1 − δE
k = f̂k − fuk+1 − (fûk − fuk+1)

= f̂k − fûk

� 0.

The above inequality can be strict due to definition (3.10). In order to ensure (6.11)
for this setting, the oracle should be asymptotically exact on descent steps, as in
(5.6). Finally, with the observed decrease from [15], �k = fûk and δE

k = fûk −
fuk+1 , condition (6.11) is satisfied for all oracles, but not necessarily (5.1)—this is
straightforward from Lemma 5.1 and (6.11). For (5.1) to hold in this setting, the
controllable bundle algorithm would need to incorporate the noise attenuation loop,
replacing Algorithm 5.4 Step 1 by the one in (5.5). ��

When the bundling argument applies, satisfaction of (6.11) is easy to accomplish
(taking for example δE

k = �k − fuk+1). By contrast, when the algorithm generates

infinitely many descent iterates (K ∞ = K̂ in (6.2)), the working horse is the descent
test (3.7). For the model decrease to vanish, the effective decrease needs to vanish too;

123

Convex proximal bundle methods in depth 267

this is (6.12) below, a property that cannot be imposed a priori, but needs to be shown
case by case, as in Sect. 7.

Proposition 6.9 (Effective decrease and descent mechanism) Consider the Algorith-
mic Pattern 4.2 and suppose that for the sets P and D the parameters αk, βk satisfy
(5.3). If for infinitely many iterations the descent test (3.7) is satisfied and

lim
k∈K̂

δE
k = 0 for K̂ from (6.2), (6.12)

then limk∈K̂ δM
k = 0.

Proof By Corollary 5.3, condition (5.1) holds and by Lemma 5.1(ii) the model and
nominal decreases satisfy the inequalities in (5.2) for all k ∈ K̂ . In view of the
assumption (5.3), both δM

k and δN
k � 0 and satisfaction of (3.7) gives that

m (1 − αk − βk)tk |ĝk |2 � m δN
k � δE

k , for k ∈ K̂ .

The result follows, because αk + βk < 1 by (5.3) and δM
k = δN

k + αk tk |ĝk |2 by (4.3).
��

Since with an exact oracle taking δE
k = f (ûk) − f (uk+1) is natural, the condition

in (1.1) inf f (·) > −∞. (6.13)

implies satisfaction of (6.12). We now show the same holds for Algorithm 5.4.

Remark 6.10 (Interpretation for Algorithm 5.4 (cont.)) Corollary 5.2(ia) Since the
oracle satisfies (1.2), the effective decrease is δE

k = fûk + η̄ûk − fuk+1 − η̄uk+1 and,
hence,

∑

k∈K̂

δE
k = fû1 + η̄û1 − lim

k∈K̂
(fûk + η̄ûk) � fû1 + η̄û1 − lim inf

k∈K̂
(f (ûk) − ηûk + η̄ûk)

� fû1 + η̄û1 − [lim inf
k∈K̂

f (ûk) + lim inf
k∈K̂

(−ηûk + η̄ûk)].

The sequence {−ηûk + η̄ûk } is contained in [0, η̄û1], so (6.12) follows from (6.13).
��

To prove convergence of a generic proximal bundle method, oracle errors play no
major role, but the stepsize needs to be updated in a manner that combines harmo-
niously all the requirements in the different statements. The following rule, depending
on parameters tlow > 0 and σ ∈ (0, 1], addresses this issue. The update prevents
decreasing the stepsize at null steps if noise was detected via a binary variable nak

(equal to 1 if there was noise attenuation after generating the current center ûk , and
zero otherwise):

123

268 W. de Oliveira et al.

⎧
⎪⎪⎨

⎪⎪⎩

tk � tk−1 + tlow if k − 1 is a noisy step

tk � tlow if k − 1 is a descent step

tk ∈
[
max

(
tlow, (1−nak−1)σ tk−1+nak−1tk−1

)
, tk−1

]
if k−1 is a null step.

(6.14)

Theorem 6.11 (Convergence) Consider the Algorithmic Pattern 4.2 with Step 1 from
(5.5) applied with an oracle (1.2) with locally bounded inaccuracy, as in (6.8). If

in the set P

⎧
⎪⎨

⎪⎩

the model satisfies (4.11),

the level is given as in (3.9), and

the stepsize update satisfies the rule (6.14),

(6.15)

in the set D

⎧
⎪⎨

⎪⎩

the effective decrease from (4.3) satisfies (6.11) and (6.12) and

the parameters αk and βk satisfy (5.3) if (5.1) is not automatic

or αk ∈ [0, 1] otherwise,

(6.16)

then the algorithm always generates some K ∞-subsequence that is optimal, in the
sense that (4.9) is satisfied and Theorem 4.5 applies.

Proof If Step 1 needs to test (5.1) and there is an infinite loop of noise attenuation,
since the update in (6.14) drives tk to infinity in this case, Corollary 5.3 gives the
result. Otherwise, the loop in Step 1 is always finite and the algorithm generates
either a last descent step at iteration k̂ followed by a null-step tail, or K̂ in (6.2) is
infinite. In the first case (6.14) satisfies the stepsize conditions in Theorem 6.4. As (3.5)
implies satisfaction of (6.5) with η̂ = ηM the theorem applies. By Proposition 6.7, the
model decrease vanishes and the assertion follows from Proposition 6.1, written with
K ∞ = {k > k̂}. Finally, if infinitely many descent steps are generated, the assumption
that limk∈K̂ δM

k = 0 follows from Proposition 6.9 and the result follows once again

from Proposition 6.1, this time written with K ∞ = K̂ . ��
Corollary 6.12 (Interpretation for Algorithm 5.4 (end)) If problem (1.1) satisfies
(6.13), any limit point û of the Controllable Bundle Algorithm 5.4 is η∞-optimal
with η∞ � η̄û1 .

Proof The sets P and D are given in (5.7) and (5.8), respectively. The sequence of error
bounds is nonincreasing and there is no need of noise attenuation, by Corollary 5.2(ia).
The update (5.7) fits the rule (6.14) and the oracle inaccuracy is controllable with a
nonincreasing sequence of error bounds, so (6.8) is satisfied with η(R) = η̄û1 . Finally,
as explained in Remarks 6.8 and 6.10, both (6.11) and (6.12) are satisfied for the
choices for δN

k and δE
k in (5.8). Theorem 6.11 applies with ηM = 0 because both the

oracle and the model are lower. ��
The final section reviews a number of methods fitting our convergence framework.

123

Convex proximal bundle methods in depth 269

7 Instances

For each bundle variant in this section convergence follows from Theorem 6.11, by
analyzing

– if the oracle is bounded, in the sense of (6.8) or the Remark 6.5; and
– if conditions (6.15) and (6.16) hold for the elements in the specific sets P and D.

Regarding the set P, in (6.15) the stepsize is given by (6.14), so we only need to check
that the level and the model respectively satisfy (3.9) and (4.11).
As for the set D and (6.16), we first determine if the considered variant needs to
attenuate noise. If such is the case, parameters αk and βk will be given by (5.3);
otherwise αk ∈ [0, 1]. Here we only need to check that the effective decrease satisfies
conditions (6.11) and (6.12). For this last property, we assume that problem (1.1)
satisfies (6.13).

7.1 A collection of bundle methods for lower oracles and models

We review methods for lower oracles (2.3) and lower models, so that (3.5) holds and
in (4.11) the error is null: ηM = 0. To keep the master-program size controlled, the
cutting-plane model can be endowed with bundle compression, like in Sect. 5.2. This
mechanism replaces past linearizations by the aggregate one, f L−k(·), so that (3.4)

holds and, hence, in (3.9) taking �k = f̂k is possible. For all these variants, the set P
satisfies (6.15) and Step 1 never needs to attenuate noise because (5.1) always holds.

7.1.1 Exact oracles

Both the classical bundle methods and the spectral algorithms [11,18] use an exact
oracle and, hence, �k = f̂k = f (ûk). The effective decrease δE

k = f (ûk) − f (uk+1)

gives (6.11), because the left hand side therein is null, as for (6.12), it is direct from
(6.13). The descent test (3.7)

f (uk+1) � f (ûk) − mδN
k for δN

k = f (ûk) − f M
k (uk+1) − αk tk |ĝk |2

usually takes αk ≡ 0 in (4.3), but any value in [0, 1] could be used instead.

7.1.2 Partially inexact oracles

The partially inexact proximal bundle method was introduced in [9] and revisited in
[16], for a level variant see [4]. To ensure that the function information is exact at
descent steps the oracle should be a particular case of the partly asymptotically exact
one given in Example 2.2, with η̄u = 0 whenever fu � γu . Then �k = f̂k = f (ûk)

and the observed decrease δE
k := f (ûk) − fuk+1 yields both a null left hand side in

(6.11) and satisfaction of (6.12), by (6.13).

123

270 W. de Oliveira et al.

7.1.3 Incremental bundle method

The incremental bundle method [6] was developed for lower oracles with descent
errors vanishing fast enough, as in (5.6). The realistic decrease δE

k = f̂k − fuk+1 yields

in (6.11) a null left hand side. Condition (6.12) is satisfied because f̂k � fûk + ηûk

and, hence,

(0 �)
∑

k∈K̂

δE
k �

∑

k∈K̂

(fûk + ηûk − fûk+1) =
∑

k∈K̂

(fûk − fûk+1) +
∑

k∈K̂

ηûk < +∞.

When K̂ is finite, the last descent step û is η∞-solution with η∞ = ηû not necessarily
zero. When K̂ is infinite, η∞ = 0 and the limit point solves problem (1.1) exactly.
The criterion (4.8) makes superfluous the unboundedness detection loop in [6] (see
the errata in [5]).

7.1.4 Asymptotically exact bundle method

This is the proximal version of the level bundle method for oracles with on-demand
accuracy [4]. The variant is suitable for lower oracles that are eventually exact at
descent iterates, like the partly asymptotically exact oracle in Example 2.2: η

g
u ≡ 0

and the known error bound η̄ûk asymptotically vanishes. The conservative decrease
δE

k = fûk + η̄ûk − fuk+1 yields (6.11):

�k − fuk+1 − δE
k = f̂k − (fûk + η̄ûk) � f̂k − f (ûk)

because the oracle is lower. As for (6.12), by (6.13) combined with (1.2)

0�
∑

k∈K̂

(fûk − fuk+1) =
∑

k∈K̂

(fûk − fûk+1)

= fû1 − lim
k∈K̂

fûk = fû1 − lim
k∈K̂

(f (ûk)− ηûk)<+∞. (7.1)

So (fûk − fuk+1) → 0 and (6.12) holds because η̄ûk → 0 by the oracle assumption.
The descent test (3.7) is fuk+1 � fûk +η̄ûk −mδN

k for δN
k = f̂k − f M

k (uk+1)−αk tk |ĝk |2.
In this method, even though the oracle never delivers exact evaluations, convergence

is still exact, as in Sect. 7.1.2. To see this, it suffices to show that ηû = 0 if K ∞ =
{k > k̂} (when K ∞ = K̂ , 0 � ηuk � η̄uk → 0 by assumption). When there is a last
descent step û, the definitions of �k and δE

k imply that fuk+1 > fûk + η̄ûk − m δN
k if

(3.7) does not hold. Then

fuk+1 − f M
k (uk+1) > fû +η̄û −m δN

k − f M
k (uk+1) [by “not′′ (3.7)]

= fû + η̄û − m (δM
k − αk tk |ĝk |2) − f M

k (uk+1) [by (4.3)]
= fû + η̄û − �k − m (δM

k − αk tk |ĝk |2) + δM
k [by (3.8)]

= (
fû +η̄û − f̂k

)+(1−m)δM
k +m αk tk |ĝk |2. [because �k = f̂k]

123

Convex proximal bundle methods in depth 271

In view of (6.6), lim supk

(
fû + η̄û − f̂k

)+(1−m)δM
k +m αk tk |ĝk |2 � 0. However, the

second and third terms above are non-negative (δM
k � 0 by Proposition 6.9). Similarly

for the first term because, by the first line in (1.2) together with (3.10) and (3.4)
evaluated at û,

fû + η̄û � f (û) � f̂k . (7.2)

Therefore fuk+1 − f M
k (uk+1) → 0, hence f̂k → fû + η̄û . In the limit, the right hand

side in (7.2) yields that fû +η̄û = f (û) and, by the first line in (1.2), f (û) � fû +ηû �
fû + η̄û = f (û), so ηû = η̄û = 0, as stated.

Finally note that for oracles with errors vanishing sufficiently fast, as in (5.6), if the
update (6.14) takes stepsizes tk � tup, the stronger convergence result in Theorem 6.2
holds.

7.2 Inexact bundle methods

The methods in [12,15] also fit our convergence framework. They deal with uncon-
trollable oracles, bounded in the sense of (6.8) or Remark 6.5, and possibly of upper
type: the level (3.9) is �k = fûk . Then with any model of the form (3.4) condition
(4.11) holds and the set P satisfies (6.15). The set D satisfies (6.16) with the observed
decrease δE

k = fûk − fuk+1 , because (6.11) holds and (6.12) follows directly from
(7.1) (the oracle error is bounded).

Theorem 6.11 ensures convergence of the method subsequences satisfying (5.1)
(an infinite null tail or infinitely many descent iterates). Corollary 5.3 gives the result
for an infinite loop of noise attenuation (after a last descent step (5.1) never holds). In
all cases the algorithm determines asymptotically an (η∞ + ηM)-solution to problem
(1.1). The present work generalizes [15] from taking αk ≡ 0 and βk ≡ 1

2 to any pair
αk + βk � 1 − b, and βk ∈ [b, 1 − b] where b ∈ (0, 1

2].

7.3 Linearly constrained problems

All our results hold when constraining (1.1) to a nonempty polyhedron U :

min f (u) s.t. u ∈ U. (7.3)

because this simple set can be introduced directly in the master-program (3.3). In
Lemma 4.1, the update (4.1) adds a normal element νk ∈ NU (uk+1) to the aggregate
subgradient, so the aggregate linearization (4.2) is an underestimate of the function
over the set U only, [15, § 2].

The crucial boundedness property (6.9) in Theorem 6.4, which now needs to hold
for the sequence {ĝk + νk = (û − uk+1)/tk}, still follows from the condition (6.3); we
refer to [15, Lemma 3.3] for details.

123

272 W. de Oliveira et al.

7.4 Nonlinearly constrained problems

In the following generalization of Example 2.3, the convex problem

min h(u) s.t. u ∈ U and c(u) � 0, (7.4)

has an “easy” objective function h(·). a scalar constraint c(·) hard to evaluate and a
simple polyhedral set U . Supposing a Slater condition holds for this problem, we now
consider two solution methods whose convergence can be derived from our theory.

7.4.1 Using improvement functions

Letting h̄ denote the optimal value, solving the (7.4) is equivalent to solve (7.3) with

f (u) := max{h(u) − h̄, c(u)} over the set U.

When h̄ is unknown, a possible replacement is the objective value at the current center,
penalizing infeasibility, to prevent zigzagging. For example, the approximation in [21]:

fuk+1 := max{h(u) − h(ûk) − ρk max(cûk , 0), cu − σk max(cûk , 0)},

for parameters ρk, σk given. The notation makes explicit that the h- and c-oracles
are respectively exact and inexact: the subgradient is either the exact gh(uk+1) or the
inexact gc

uk+1
, depending on which term realizes the maximum. Since the c-oracle is of

upper type, so is the f -oracle and the level (3.9) is �k = fûk = (1 − σk) max(cûk , 0).
The method needs noise attenuation in Step 1, with parameters in (5.3) related to the
counterparts in [21] as follows

2αk = αvAS
k and 2βk = 1 − βvAS

k for (αvAS
k , βvAS

k) from [1].

The cutting-plane models for the objective and constraint functions give the model:

f M
k (u) = max{ȟk(u) − h(ûk) − ρk max(cûk , 0), čk(u) − σk max(cûk , 0)}.

Satisfaction of (4.11) follows the condition holding for čk(·) because U is compact,
while satisfaction of (6.8) follows from Remark 6.5.

With the (observed) effective decrease δE
k := �k − fuk+1 , (6.11) is automatic.

Finally, to show (6.12), we consider one particular case for the penalty (the setting
in [21] is more general):

ρk+1 = ρk + 1 at each iteration k satisfying (3.7) for which cuk+1 > 0.

Descent iterates are either always unfeasible or remain feasible after a first feasible
center is found (fuk+1 is a maximum). In the first case, cûk > 0 for all k ∈ K̂ = K ∞.

123

Convex proximal bundle methods in depth 273

By the penalty update, in the max-operation defining fu the second term eventually
prevails. Hence,

δE
k = �k − fuk+1 = (1 − σk)cûk − (cûk+1 − σkcûk)

= cûk − cûk+1 for k ∈ K̂ sufficiently large.

Summing over k ∈ K̂ shows that the effective decrease series is convergent, so
(6.12) holds (regardless of the value of σk). In the second case, descent steps are
eventually feasible and

δE
k = �k − fuk+1 = 0 − max{h(ûk+1) − h(ûk), cûk+1} � −h(ûk+1) + h(ûk)

for large k ∈ K̂ . Assuming once more (6.13) and taking the sum gives (6.12).
By Theorem 6.11, the algorithm limit points solve (7.3) within the accuracy η∞ +

ηM , and with the Slater assumption, solving this problem is equivalent to solving (7.4),
as desired.

7.4.2 Using exact penalties

The Slater condition ensures that in (7.4) the set of Lagrange multipliers is nonempty
and bounded. Therefore, for any ρ greater than the largest Lagrange multiplier, solu-
tions to (7.4) can be found by minimizing over the set U the exact penalty function

f (u) := h(u) + ρ max{c(u), 0},

i.e., the setting (7.3). As in Sect. 7.4.1, the transformation of the constrained problem
into a linearly constrained one introduces an exogenous inaccuracy that can be easily
handled together with the genuine errors in the h- and c-oracles.
With a model of the form f M

k (u) := hM
k (u)+ρ max {cM

k (u), 0}, (4.11) and (6.8) follow
from the h—and c-models and oracles.
The approach bottleneck is estimating the penalty: making successive approximations
of this parameter amounts to having a more accurate f -oracle. A possible penalty
update is ρk = max{ρk−1, λk + 1} for a Lagrange multiplier λk � 0 of

min
u∈U

hM
k (u) + 1

2tk
|u − ûk |2 s.t. cM

k (u) � 0, (7.5)

a Successive Quadratic Programming-like problem that gives the next iterate uk+1.
This is a feasible problem (by the Slater assumption) whose solution also solves

min
u∈U

hM
k (u) + ρk max {cM

k (u), 0} + 1

2tk
|u − ûk |2.

for sufficiently large ρk . For the approach to behave as an exact penalty method, the
penalty needs to stabilize eventually. This requires the Lagrange multiplier sequence
to be bounded, a property that we prove under appropriate assumptions.

123

274 W. de Oliveira et al.

Lemma 7.1 Suppose U is a bounded set and there exists u0 ∈ U such that c(u0) < 0.
If the stepsizes satisfy (6.3) and the c-model satisfies

cM
k (·) � ηM for some bound 0 � ηM < −c(u0),

the sequence of Lagrange multipliers {λk} of (7.5) is bounded.

Proof The optimality condition for (7.5) provides ph
k ∈ ∂hM

k (uk+1), pc
k ∈ ∂cM

k (uk+1),

pu
k ∈ NU (uk+1), and λk � 0 satisfying ph

k + uk+1−û
tk

+ λk pc
k + pu

k = 0. Without loss

of generality, suppose λk > 0, so that pk = pc
k + pu

k /λk and λk pk = −(ph
k + uk+1−û

tk
)

yield the identity λk |pk |2 = −
〈
pk, (ph

k + uk+1−û
tk

)
〉
. Assume for the moment pk �= 0;

by Cauchy–Schwarz,

λk = − 1

|pk |2
(〈

pk, ph
k

〉
+
〈

pk,
uk+1 − ûk

tk

〉)

� |pk |
|pk |2

(

|ph
k | + |uk+1 − ûk |

tk

)

.

As U is bounded and hM
k (·) is convex, then ph

k ∈ ∂hM
k (uk+1) is bounded as well.

Together with (6.3) we see that there exists a constant M > 0 such that λk � M/|pk |
for all k.

It remains to show that the sequence {|pk |} is bounded away from zero. The
definitions of pc

k and pu
k imply that cM

k (uk+1) + 〈
pc

k, u0 − uk+1
〉

� cM
k (u0) and

1
λk

〈
pu

k , u0 − uk+1
〉

� 0. By adding these two inequalities and remembering that

cM
k (uk+1) = 0 because λk > 0, we get

〈
pk, u0 − uk+1

〉
� cM

k (u0). Therefore,

−|pk ||u0 − uk+1| �
〈
pk, u0 − uk+1

〉
� cM

k (u0) � c(u0) + ηM < 0,

where the last inequality follows from the assumption on u0 and ηM . Since U is
a bounded set, we conclude that lim infk |pk | > 0, and hence {λk} is a bounded
sequence. ��

Once the penalty parameter eventually stabilizes at a value ρ, Theorem 6.11 applies:
the limit points of the sequence {ûk} solve the constrained problem within an accuracy
bound depending also on the value lim supk∈K̂ {0, ρ − ρk̂}, the asymptotic error made
when estimating the penalty at descent steps.

7.5 Composite functions

The composite bundle method [19] uses the approximation F(·; û) in Example 2.4
(with û = ûk) as an economic intermediate model for the function f (·) = (h ◦ c)(·).
The reason is that evaluating the f -subgradients is expensive, because they need
computing the c-Jacobian:

∂ f (u) = Dc(u)	∂h(C) for C = c(u).

123

Convex proximal bundle methods in depth 275

To interpret this method in our setting, consider as oracle output

fuk+1 := F(uk+1; ûk) = h(Ck+1) for Ck+1 := c(ûk) + Dc(ûk)(uk+1 − ûk)

guk+1 := Dc(ûk)
	Gk+1 for Gk+1 ∈ ∂h(Ck+1).

The h-oracle is exact everywhere but the f -oracle is exact at each center ûk . By smooth-
ness of the operator c, this oracle satisfies (6.8) for each fixed ûk , as in Remark 6.5.

By convexity, ȟ(·) � h(·) and by positive homogeneity, the model

f M
k (·) := ȟ(c(ûk) + Dc(ûk)(· − ûk))

stays below F(·; ûk), but not necessarily below f (·). An interesting feature of the
approach is that, even though the model is not of lower type ((3.5) may not hold), the
method does not need to attenuate noise, thanks to the special model structure. More
precisely, first note that

f M
k (ûk) = (ȟ ◦ c)(ûk)) � (h ◦ c)(ûk)) = f (ûk).

Then, because ĝk ∈ ∂ f M
k (uk+1) by Lemma 4.1, from (4.6) we see that

f (ûk) = f M
k (ûk) � f M

k (uk+1) + 〈
ĝk, ûk − uk+1

〉 = f L−k(ûk).

So taking as level �k = f (ûk) gives a null aggregate gap (4.4) and, by item (ii)
in Lemma 5.1, there is no need of noise attenuation. In [19] a null step is declared
whenever there is no descent for the approximating function, corresponding to the
observed decrease

δE
k := F(ûk; ûk) − F(uk+1; ûk) = f (ûk) − h(Ck+1) = �k − f M

k (uk+1),

which trivially ensures (6.11). Regarding (6.12), the composite bundle method checks
a backtracking test before declaring a descent step. More precisely, for k ∈ K̂

f (ûk) − f (ûk+1) = [f (ûk) − h(Ck+1)] + [h(Ck+1) − f (ûk+1)]
= δE

k + [h(Ck+1) − f (ûk+1)].

The usual argument invoking (6.13) would give (6.12) if the second bracket even-
tually vanished. The backtracking test declares a descent step if, in addition to (3.7),
the condition

〈Gk+1, Ck+1 − c(uk+1)〉 � −m2δ
N
k for Gk+1 ∈ ∂h(c(uk+1))

holds. Otherwise the stepsize is decreased (“backtracking”), with the same model and
center. As the number of backtracking steps is finite ([19]), eventually the algorithm
generates sets K ∞ as in (6.2). The backtracking condition is easy to test, because
the additional oracle call does not involve the expensive Jacobian at uk+1. Such a

123

276 W. de Oliveira et al.

computation is done only if the backtracking test is passed, to define the next cheap
oracle, i.e. F(·; ûk+1).
Since positively homogeneous functions are support functions,

h(c(uk+1)) = 〈Gk+1, c(uk+1)〉 and h(Ck+1) � 〈Gk+1, Ck+1〉 ,

so checking the need of backtracking is equivalent to testing if [h(Ck+1)− f (ûk+1)] �
−m2δ

N
k . Together with (3.7) this means that when K ∞ = K̂ we have that

f (ûk) − f (ûk+1) = δE
k + [h(Ck+1) − f (ûk+1)] � (m1 − m2)δ

N
k .

Since m1 − m2 > 0, taking the sum over k ∈ K ∞ implies that the series of nominal
decreases converges, by (6.13). So the effective decrease series converges too and
(6.12) follows.

By Theorem 6.11, the limit points of the sequence satisfy (4.12), and in view of the
level definition, they solve (1.1) exactly.

Acknowledgments Research partly done during a postdoctoral visit of the first author at Inria. The authors
are grateful to the reviewers for many insightful comments.

References

1. BenAmor, M.T., Desrosiers, J., Frangioni, A.: On the choice of explicit stabilizing terms in column
generation. Discret. Appl. Math. 157(6), 1167–1184 (2009)

2. Cheney, E., Goldstein, A.: Newton’s method for convex programming and Tchebycheff approxima-
tions. Numer. Math. 1, 253–268 (1959)

3. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program.
62(2), 261–275 (1993)

4. de Oliveira, W., Sagastizábal, C.: Level bundle methods for oracles with on-demand accuracy. Optim.
Methods Softw. 29(6), 1180–1209 (2014). doi:10.1080/10556788.2013.871282

5. Émiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning
(corrigendum). Optimization Online Report 2147 (2009)

6. Émiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning.
Comput. Opt. Appl. 46(2), 305–332 (2010)

7. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2003)
8. Frangioni, A.: Private communication (2008)
9. Gaudioso, M., Giallombardo, G., Miglionico, G.: An incremental method for solving convex finite

min–max problems. Math. Oper. Res. 31(1), 173–187 (2006)
10. Goffin, J.-L., Haurie, A., Vial, J-Ph: Decomposition and nondifferentiable optimization with the pro-

jective algorithm. Manag. Sci. 38(2), 284–302 (1992)
11. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim.

10(3), 673–696 (2000)
12. Hintermüller, M.: A proximal bundle method based on approximate subgradients. Comput. Optim.

Appl. 20(3), 245–266 (2001). doi:10.1023/A:1011259017643
13. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Hei-

delberg (1993). (Two volumes)
14. Kelley, J.E.: The cutting plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8, 703–712

(1960)
15. Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim.

16(4), 1007–1023 (2006)
16. Kiwiel, K.C.: Bundle Methods for Convex Minimization with Partially Inexact Oracles. Technical

Report, Systems Research Institute, Polish Academy of Sciences (April 2010)

123

http://dx.doi.org/10.1080/10556788.2013.871282
http://dx.doi.org/10.1023/A:1011259017643

Convex proximal bundle methods in depth 277

17. Marsten, R.E., Hogan, W.W., Blankenship, J.W.: The boxstep method for large-scale optimization.
Oper. Res. 23(3), 389–405 (1975)

18. Oustry, F.: A second-order bundle method to minimize the maximum eigenvalue function. Math.
Program. 89(1), 1–33 (2000)

19. Sagastizábal, C.: Composite proximal bundle method. Math. Program. 140(1), 189–233 (2013)
20. Solodov, M.V.: On approximations with finite precision in bundle methods for nonsmooth optimization.

J. Opt. Theory Appl. 119(1), 151–165 (2003)
21. van Ackooij, W., Sagastizábal, C.: Constrained bundle methods for upper inexact oracles with appli-

cation to joint chance constrained energy problems. SIAM J. Optim. 24(2), 733–765 (2014)

123

	Convex proximal bundle methods in depth: a unified analysis for inexact oracles
	Abstract
	1 Introduction and general aim
	2 Oracle examples
	3 Parametric characterization of bundle methods
	3.1 Defining the set P
	3.2 Ensuring descent for the center subsequence: the set D
	3.2.1 Exact oracles
	3.2.2 Inexact oracles

	4 Main ingredients in the algorithm
	4.1 Aggregate objects and algorithmic pattern
	4.2 Measuring optimality
	4.2.1 Shifting the bundle information
	4.2.2 Convergence: what it means

	5 On noise management and a concrete instance
	5.1 Properties of the aggregate gap
	5.2 Controllable bundle method

	6 Convergence analysis
	6.1 Common results for descent and null steps
	6.2 Null-step tail
	6.3 The role of the descent test and general convergence result

	7 Instances
	7.1 A collection of bundle methods for lower oracles and models
	7.1.1 Exact oracles
	7.1.2 Partially inexact oracles
	7.1.3 Incremental bundle method
	7.1.4 Asymptotically exact bundle method

	7.2 Inexact bundle methods
	7.3 Linearly constrained problems
	7.4 Nonlinearly constrained problems
	7.4.1 Using improvement functions
	7.4.2 Using exact penalties

	7.5 Composite functions

	Acknowledgments
	References

