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Abstract Primal-dual algorithms have played an integral role in recent developments
in approximation algorithms, and yet there has been little work on these algorithms
in the context of LP relaxations that have been strengthened by the addition of more
sophisticated valid inequalities. We introduce primal-dual schema based on the LP
relaxations devised by Carr et al. for the minimum knapsack problem as well as for
the single-demand capacitated facility location problem. Our primal-dual algorithms
achieve the same performance guarantees as the LP-rounding algorithms of Carr et al.
which rely on applying the ellipsoid algorithm to an exponentially-sized LP. Further-
more, we introduce new flow-cover inequalities to strengthen the LP relaxation of the
more general capacitated single-item lot-sizing problem; using just these inequalities
as the LP relaxation, we obtain a primal-dual algorithm that achieves a performance
guarantee of 2. Computational experiments demonstrate the effectiveness of this algo-
rithm on generated problem instances.
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1 Introduction

Primal-dual algorithms have played an integral role in recent developments in approx-
imation algorithms, and yet there has been little work on these algorithms in the
context of LP relaxations that have been strengthened by the addition of more sophis-
ticated valid inequalities. We introduce primal-dual schema based on the LP relax-
ations devised by Carr et al. [7] for the minimum knapsack problem as well as for
the single-demand capacitated facility location problem. Our primal-dual algorithms
achieve the same performance guarantees as the LP-rounding algorithms of Carr et al.,
which rely on applying the ellipsoid algorithm to an exponentially-sized LP. Further-
more, we introduce new flow-cover inequalities to strengthen the LP relaxation of the
more general capacitated single-item lot-sizing problem; using just these inequalities
as the LP relaxation, we obtain a primal-dual algorithm that achieves a performance
guarantee of 2.

We say an algorithm is an approximation algorithm with a performance guarantee
of α when the algorithm runs in polynomial time and always produces a solution
with cost within a factor of α of optimal. Primal-dual algorithms are able to gain
the benefits of LP-based techniques, such as automatically generating a new lower
bound for each problem instance, but without having to solve an LP. Primal-dual
approximation algorithms were developed by Bar-Yehuda and Even and Chvátal [4,9]
for the weighted vertex cover and set cover problems, respectively. Subsequently, this
approach has been applied to many other combinatorial problems, such as results of
Agrawal et al. [2], Goemans and Williamson [12], Bertsimas and Teo [5] and Levi
et al. [14] for other related covering problems. Other recent work has been done on
covering problems with capacity constraints by Even et al. [10], Chuzhoy and Naor [8]
and Gandhi et al. [11]. In a similar vein, Bar-Noy et al. [3] gave a general framework
for devising primal-dual approximation algorithms for a variety of packing problems
(although phrased through an equivalent local-ratio lens); even more relevant, they
consider a loss minimization problem, and their algorithm, when specialized to the
minimum knapsack problem, is identical to the algorithm proposed here, and their
analysis shows that the algorithm is a 4-approximation algorithm. It is interesting to
note that although one can infer the LP-framework for this algorithm (and its analysis),
it is non-trivial to see that this amounts to exactly the flow-cover inequalities of Carr
et al.

In developing primal-dual (or any LP-based) approximation algorithms, it is impor-
tant to have a strong LP formulation for the problem. However, there are cases when
the LP relaxation of the natural IP formulation for a problem has a large integrality gap.
When this happens, one can mend the situation by introducing extra valid inequalities
that hold for any integral solution to the problem, but restrict the feasible region of the
LP. One class of valid inequalities that has proved useful for a variety of problems are
called flow-cover inequalities. Some of the early flow-cover style inequalities were
introduced by Padberg et al. [15] for various fixed charge problems. Another large
class of flow-cover inequalities was developed by Aardal et al. [1] for the capacitated
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facility location problem. Carr et al. [7] developed a different style of inequalities for
simpler capacitated covering problems, which are called knapsack-cover inequalities,
and these we use in developing our primal-dual algorithms. Levi et al. [13] used a
subset of the flow-cover inequalities of Aardal et al. [1] to develop a LP-rounding
algorithm for the multiple-item lot-sizing problem with monotone holding costs. Our
model is not a special case of theirs, however, since our result allows time-dependent
order capacities whereas their result assumes constant order capacities across all peri-
ods. Additionally, our result allows for time-dependent, per-unit production costs, and
it is not clear if their result can handle this added condition. Following thiswork and the
development of our own knapsack-cover inequalities for lot-sizing problems, Sharma
and Williamson demonstrated that the result of Levi et al. [13] has an analogue based
on our knapsack-cover inequalities as well. Finally, it is worth noting that Van Hoesel
and Wagelmans [17] have a FPTAS for the single-item lot-sizing problem that makes
use of dynamic programming and input data rounding. The disadvantage of this result
is that the running time of the algorithm can be quite slow for particular performance
guarantees. Although the primal-dual algorithmwe develop is a 2-approximation algo-
rithm, this is a worst-case bound and we would expect it to perform much better on
average in practice. Also this is the first LP-based result for the case of time-dependent
capacities.

Our Results This paper presents primal-dual 2-approximation algorithms for the fol-
lowing three covering problems (defined below): the minimum knapsack problem,
the single-demand facility location problem, and single-item lot-sizing problem. The
three models studied in this paper are generalizations of one another. That is to say, the
minimum knapsack problem is a special case of the single-demand capacitated facility
location problem, which is a special case of the single-item lot-sizing problem. We
present the result in order of generality with the aim of explaining our approach in the
simplest setting first.

– The minimum knapsack problem gives a set of items, each with a weight and a
value. The objective is to find a minimum-weight subset of items such that the
total value of the items in the subset meets some specified demand.

– In the single-demand facility location problem there is a set of facilities, each with
an opening cost and a capacity, as well as a per-unit serving cost that must be paid
for each unit of demand a facility serves. The goal is to open facilities to completely
serve a specified amount of demand, whileminimizing the total service and facility
opening costs.

– Finally the single-item lot-sizing problem considers a finite planning period of
consecutive time periods. In each time period there is a specified level of demand,
as well as a potential order with a given capacity and order opening cost. A feasible
solution must open enough orders and order enough product so that in each time
period there is enough inventory to satisfy the demand of that period. The inventory
is simply the inventory of the previous time period plus however much is ordered
in the current time period, minus the demand for that period. However, a per-unit
holding cost is incurred for each unit of inventory held over a given time period.
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Additionally, wemay consider a per-unit production cost for the amount of demand
requested in each order.

The straightforward LP relaxations for these problems have a bad integrality
gap, but can be strengthened by introducing valid flow-cover inequalities. The
inequalities Carr et al. [7] developed for the minimum knapsack problem are as
follows

∑

i∈F\A
ui (A)yi ≥ D − u(A) ∀A ⊆ F,

where the yi are the binary decision variables indicating if item i is chosen, u(A) is the
total value of the subset of items A, and the ui (A) can be thought of as the effective
value of item i with respect to A, which is the minimum of the actual value and the
right-hand-side of the inequality. These inequalities arise by considering that if we
did choose all items in the set A, then we still have an induced subproblem on all
of the remaining items, and the values can be truncated since we are only concerned
with integer solutions. Our primal-dual algorithm works essentially as a modified
greedy algorithm, where at each stage the item is selected that has the largest value
per cost. Instead of the actual values and costs, however, we use the effective values
and the slacks of the dual constraints as costs. Similar to the greedy algorithm for the
traditional maximum-value knapsack problem, the last item selected and everything
selected beforehand, can each be bounded in cost by the dual LP value, yielding a
2-approximation.

The study of approximation algorithms is not just to prove theoretical performance
guarantees, but also to gain sufficient understanding of the mathematical structure
of a problem so as to design algorithms that perform well in practice. We examine
the performance of the primal-dual algorithm for the single-item lot-sizing problem
in a series of computational experiments. We demonstrate the effectiveness of the
algorithm by comparing it to other natural heuristics, some of which make use of the
optimal LP solution.

The remainder of this paper is organized as follows. In Sect. 2 we go over the
minimum knapsack result in more detail. In Sect. 3 we generalize this result to apply
to the single-demand capacitated facility location problem. In Sect. 4 we generalize the
flow-cover inequalities to handle the lot-sizing problem, and then present and analyze
a primal-dual algorithm for the single-item lot-sizing problem. Finally, in Sect. 5 we
present computational results analyzing the performance of the primal-dual algorithm
for lot-sizing compared to other heuristics, as well as exploring the effectiveness of
utilizing the algorithm to create a better formulation.

2 Minimum knapsack

In the minimum knapsack problem one is given a set of items F , and each item i ∈ F
has a value ui and a weight fi . The goal is to select a minimumweight subset of items,
S ⊆ F , such that the value of S, u(S), is at least as big as a specified demand, D. The
natural IP formulation for this problem is
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optMK := min
∑

i∈F
fi yi (MK-IP)

s.t.
∑

i∈F
ui yi ≥ D

yi ∈ {0, 1} ∀i ∈ F, (1)

where the yi variables indicate if item i is chosen. The following example from [7]
demonstrates that the integrality gap between this IP and the LP relaxation is at least
as bad as D. Consider just 2 items where u1 = D − 1, f1 = 0, u2 = D and f2 = 1.
Any feasible integer solution must set y2 = 1 and have a cost of 1, whereas the LP
solution can set y1 = 1 and y2 = 1/D and incurs a cost of only 1/D. To remedy this
situation we consider using the flow-cover inequalities introduced in [7].

The idea is to consider a subset of items A ⊆ F such that u(A) < D, and let
D(A) = D − u(A). This means that even if all of the items in the set A are chosen,
we must choose enough items in F\A such that the demand D(A) is met. This is
just another minimum knapsack problem where the items are restricted to F \ A
and the demand is now D(A). The value of every item can be restricted to be no
greater than the demand without changing the set of feasible integer solutions, so let
ui (A) = min{ui , D(A)}. This motivates the following LP

optMK P := min
∑

i∈F
fi yi (MK-P)

s.t.
∑

i∈F\A
ui (A)yi ≥ D(A) ∀A ⊆ F

yi ≥ 0 ∀i ∈ F, (2)

and by the validity of the flow-cover inequalities argued above we have that every
feasible integer solution to (MK-IP) is a feasible solution to (MK-P). The dual of this
LP is

optMKD := max
∑

A⊆F

D(A)v(A) (MK-D)

s.t.
∑

A⊆F :i /∈A

ui (A)v(A) ≤ fi ∀i ∈ F (3)

v(A) ≥ 0 ∀A ⊆ F.

Our primal-dual algorithm begins by initializing all of the primal and dual variables
to zero, which produces a feasible dual solution and an infeasible primal integer
solution. Taking our initial subset of items, A, to be the empty set, we increase the
dual variable v(A). Once a dual constraint becomes tight, the item corresponding to
that constraint is added to the set A, and we now increase the new variable v(A).
Note that increasing v(A) does not increase the left-hand-sides of dual constraints
corresponding to items in A, so dual feasibility will not be violated. This process is
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repeated as long as D(A) > 0, and once we finish we call our final set of items S,
which is our integer solution. This is a feasible solution to (MK-IP) since D(S) ≤ 0,
which implies u(S) ≥ D.

Algorithm 1: Primal-Dual for Minimum Knapsack
y, v ← 0;
A ← ∅;
while D(A) > 0 do

Increase v(A) until a dual constraint becomes tight for some item i ;
yi ← 1;
A ← A ∪ {i};

S ← A;

Theorem 1 Algorithm 1 terminates with a solution of cost no greater than 2 · optMK .

Proof Let � denote the final item selected by Algorithm 1. Then because the algorithm
only continues running as long as D(A) > 0 we have that

D(S\{�}) > 0 ⇒ D − u(S\{�}) > 0 ⇒ u(S\{�}) < D.

Also, the variable v(A) is positive only if A ⊆ S\{�}. Thus, since the algorithm only
selects items for which the constraint (3) has become tight, we have that the cost of
the solution produced is

∑

i∈F
fi yi =

∑

i∈S
fi =

∑

i∈S

∑

A⊆F :i /∈A

ui (A)v(A).

The expression on the right-hand side is summing over all items, i , in the final
solution S, and all subsets of items, A, that do not contain item i . This is the same as
summing over all subsets of items, A, and all items in the final solution that are not in
A. Thus we can reverse the order of the summations to obtain

∑

i∈F
fi yi =

∑

A⊆F

v(A)
∑

i∈S\A
ui (A)

=
∑

A⊆F

v(A)(u(S\{�}) − u(A) + u�(A)) (4)

<
∑

A⊆F

v(A)(D − u(A) + u�(A)), (5)

where (4) follows since for each item i other than �, ui (A) = ui . Also (5) holds by
making use of our observation above that u(S\{�}) < D. But we also have u�(A) ≤
D(A) by definition, hence

∑

i∈F
fi yi ≤

∑

A⊆F

2D(A)v(A) ≤ 2 · optMKD .

��
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3 Single-demand facility location

In the single-demand facility location problem, one is given a set of facilities F , where
each facility i ∈ F has capacity ui , opening cost fi , and there is a per-unit cost ci
to serve the demand, which requires D units of the commodity. The goal is to select
a subset of facilities to open, S ⊆ F , such that the combined cost of opening the
facilities and serving the demand is minimized. The natural IP formulation for this
problem is

optFL := min
∑

i∈F
( fi yi + Dci xi ) (FL-IP)

s.t.
∑

i∈F
xi = 1 (6)

ui yi ≥ Dxi ∀i ∈ F (7)

yi ≥ xi ∀i ∈ F

yi ∈ {0, 1} ∀i ∈ F

xi ≥ 0 ∀i ∈ F, (8)

where each yi indicates if facility i ∈ F is open and each xi indicates the fraction of
D being served by facility i ∈ F . The same example from the minimum knapsack
problem also demonstrates the large integrality gap of this IP. We once again turn to
the flow-cover inequalities introduced by Carr et al. [7].

For these inequalities, we once again consider a subset of facilities A⊆F such that
u(A) < D, and let D(A) = D − u(A). This means that even if all of the facilities
in the set A are opened, we must open enough facilities in F \ A such that we will
be able to assign the remaining demand D(A). But certainly for any feasible integer
solution, a facility i ∈ F\A cannot contribute more than min{Dxi , ui (A)yi } towards
the demand D(A). So if we partition the remaining orders of F \A into two sets F1
and F2, then for each i ∈ F1 we will consider its contribution as Dxi , and for each
i ∈ F2 we will consider its contribution as ui (A)yi . The total contribution of these
facilities must be at least D(A), so if we let F be the set of all 3-tuples that partition
F into three sets, we obtain the following LP

optFLP := min
∑

i∈F
( fi yi + Dci xi ) (FL-P)

s.t.
∑

i∈F1
Dxi +

∑

i∈F2
ui (A)yi ≥ D(A) ∀(F1, F2, A) ∈ F

xi , yi ≥ 0 ∀i ∈ F,

(9)

and by the validity of the flow-cover inequalities argued above we have that every
feasible integer solution to (FL-IP) is a feasible solution to (FL-P). The dual of this
LP is
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optFLD := max
∑

(F1,F2,A)∈F
D(A)v(F1, F2, A) (FL-D)

s.t.
∑

(F1,F2,A)∈F :i∈F1
Dv(F1, F2, A) ≤ Dci ∀i ∈ F (10)

∑

(F1,F2,A)∈F :i∈F2
ui (A)v(F1, F2, A) ≤ fi ∀i ∈ F (11)

v(F1, F2, A) ≥ 0 ∀(F1, F2, A) ∈ F .

As in Sect. 2 the primal-dual algorithm begins with all variables at zero and an
empty subset of facilities, A. Before a facility is added to A, we will require that it
become tight on both types of dual constraints. To achieve this we will leave each
facility in F1 until it becomes tight on constraint (10), move it into F2 until it is
also tight on constraint (11), and only then move it into A. As before the algorithm
terminates once the set A has enough capacity to satisfy the demand, at which point
we label our final solution S.

Algorithm 2: Primal-Dual for Single-Demand Facility Location
x, y, v ← 0;
F1 ← F ;
F2, A ← ∅;
while D(A) > 0 do

Increase v(F1, F2, A) until a dual constraint becomes tight for facility i ;
if i ∈ F1 then /* i tight on (10) but not on (11) */

Move i from F1 into F2;
else /* else i tight on (10) and (11) */

xi ← ui (A)/D;
yi ← 1;
Move i from F2 into A;

S ← A;

Clearly Algorithm 2 terminates with a feasible solution to (FL-IP) since all of the
demand is assigned to facilities that are fully opened.

Theorem 2 Algorithm 2 terminates with a solution of cost no greater than 2 · optFL .

Proof Let � denote the final facility selected by Algorithm 2. By the same reasoning
as in Sect. 2 we have

D(S\{�}) > 0 ⇒ D − u(S\{�}) > 0 ⇒ u(S\{�}) < D.

The variable v(F1, F2, A) is positive only if A ⊆ S \ {�}. If a facility is in S then
it must be tight on both constraints (10) and (11) so

∑

i∈F
( fi yi + Dci xi ) =

∑

i∈S
( fi + Dci xi )

=
∑

i∈S

⎡

⎣
∑

(F1,F2,A)∈F :i∈F2
ui (A)v(F1, F2, A)+xi ]

∑

(F1,F2,A)∈F :i∈F1
Dv(F1, F2, A)

⎤

⎦ ,
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as in Sect. 2 we can simply reverse the order of summation to get

∑

i∈F
( fi yi + Dci xi ) =

∑

(F1,F2,A)∈F
v(F1, F2, A)

⎡

⎣
∑

i∈S∩F2

ui (A) +
∑

i∈S∩F1

Dxi

⎤

⎦ .

Recall that at the last step of Algorithm 2, facility �was assigned D(S\{�}) amount
of demand. Since D(A) only gets smaller as the algorithm progresses, we have that
regardless of what summation above the facility � is in, it contributes no more than
D(A). All of the other terms can be upper bounded by the actual capacities and hence

∑

i∈F
( fi yi + Dci xi ) =

∑

(F1,F2,A)∈F
v(F1, F2, A) [u(S\{�}) − u(A) + D(A)]

<
∑

(F1,F2,A)∈F
2D(A)v(F1, F2, A) ≤ 2 · optFLD,

where the inequality above follows from the observation made earlier. ��

4 Single-item lot-sizing with linear holding costs

In the single-item lot-sizing problem, one is given a planning period consisting of
time periods F := {1, . . . , T }. For each time period t ∈ F , there is a demand, dt , and
a potential order with capacity ut , which costs ft to place, regardless of the amount
of product ordered. At each period, the total amount of product left over from the
previous period plus the amount of product ordered during this period must be enough
to satisfy the demand of this period. Any remaining product is held over to the next
period, but incurs a cost of ht per unit of product stored. Also, we may consider a
per-unit production cost associated with the amount of demand requested for a given
order, but for now we will ignore this possibility. If we let

hst =
t−1∑

r=s

hr

and set htt = 0 for all t ∈ F , then we obtain a standard IP formulation for this problem
as follows

optLS := min
T∑

s=1

fs ys +
T∑

s=1

T∑

t=s

hst dt xst (LS-IP)

s.t.
t∑

s=1

xst = 1 ∀t (12)

T∑

t=s

dt xst ≤ us ys ∀s (13)
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xst ≤ ys ∀s ≤ t

ys ∈ {0, 1} ∀s
xst ≥ 0 ∀s ≤ t. (14)

where the ys variables indicate if an order has been placed at time period s, and the
xst variables indicate what fraction of the demand dt is being satisfied from product
ordered during time period s. This formulation once again suffers fromabad integrality
gap, which can be demonstrated by the same example as in the previous two sections.
We introduce new flow-cover inequalities to strengthen this formulation.

The basic idea is similar to the inequalities used in Sects. 2 and 3. We would like
to consider a subset of orders, A, where even if we place all the orders in A and use
these orders to their full potential, there is still unmet demand. In the previous cases,
the amount of unmet demand was D(A) = D− u(A). Now, however, that is not quite
true, since each order s is capable of serving only the demand points t where t ≥ s.
Instead, we now also consider a subset of demand points B, and define d(A, B) to be
the total unmet demand in B, when the orders in A serve as much of the demand in B
as possible. More formally

d(A, B) := min d(B) −
∑

s∈A

∑

t≥s:t∈B
dt xst (RHS-LP)

s.t.
t∑

s=1

xst ≤ 1 ∀t (15)

T∑

t=s

dt xst ≤ us ∀s (16)

xst ≥ 0 ∀s ≤ t.

As before, we would also like to restrict the capacities of the orders not in A. To do
this, we define

us(A, B) := d(A, B) − d(A ∪ {s}, B), (17)

which is the decrease in remaining demand that would result if order s were added to A.
(This reduces to the same us(A) as defined in the previous sections when considered in
the framework of the earlier problems.) We once again partition the remaining orders
in F \A into two sets, F1 and F2, and count the contribution of orders in F1 as

∑
t dt xst

and orders in F2 as us(A, B)ys . This leads to the following LP, where once again F
is the set of all 3-tuples that partition F into three sets.

optLSP :=min
T∑

s=1

fs ys +
T∑

s=1

T∑

t=s

hst dt xst (LS-P)
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s.t.
∑

s∈F1,
t∈B

dt xst +
∑

s∈F2
us(A, B)ys≥ d(A, B) ∀(F1, F2, A) ∈ F , B ⊆ F (18)

xst , ys ≥ 0 ∀s ≤ t.

Before we demonstrate the validity of this LP, wemust first introduce some notation
and associated machinery. For a demand set, B, we define

e(B) :=
∑

t∈B
dt −

∑

t∈B

t∑

s=1

dt xst ,

which is the amount of demand unsatisfied in B with respect to a given solution.
We define Fill(A, B) to be the following procedure that describes how to assign
demand from B to orders in A. We consider the orders in A in arbitrary order, and for
each order we serve as much demand as possible, processing demands from earliest
to latest.

Unlike in the previous two sections, a given order is only able to serve a subset
of demand points, but we will show that the assignment resulting from the Fill
procedure is in fact a maximal assignment.

Lemma 1 If we start from an empty demand assignment and run Fill(A, B), then
we obtain a demand assignment such that e(B) = d(A, B). Thus, Fill produces an
assignment that is optimal for (RHS-LP).

Proof Consider the latest time period t ∈ B where e({t}) > 0. Let F1 := {1, . . . , t}
and F2 := {t + 1, . . . , T }. All orders A ∩ F1 must be serving up to capacity, since
otherwise they could have served more of demand dt . Furthermore, these orders must
only be serving demand in B ∩ F1, since Fill would have them finish the demand at
t before assigning later demand points. Since none of the orders in A ∩ F2 can serve
demand in B ∩ F1, we can conclude that a maximal amount of this demand is being
served by orders in A. Finally all of the demand in B ∩ F2 is being served by the way
t was chosen, thus we have a maximal assignment. ��
Lemma 2 For any order s ∈ F and demand subset B ⊆ F, and setsU ⊆ V ⊆ F \{s}
we have

us(V, B) ≤ us(U, B).

Proof We can calculate us(U, B) by running Fill(U ∪ {s}, B) where order s is
considered last. Then us(U, B) is equal to the demand served by s, since the demand
assigned to the orders inU ismaximal. Similarlywe can calculate us(V, B) by running
Fill(V ∪ {s}, B), again considering s last. If we start by considering all the orders
in U in the same order as we did previously, then the orders in U will have the same
demand assignment. Thismeans that the demand availablewhen s is consideredwill be
a subset of the demand available when s was considered previously. Hence the demand
s serves can be at most what s served previously, and so us(V, B) ≤ us(U, B). ��
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Lemma 3 Any feasible solution to (LS-IP) is a feasible solution to (LS-P).

Proof Consider a feasible integer solution (x, y) to (LS-IP) and let S := {s : ys = 1}.
Now for any (F1, F2, A) ∈ F and B ⊆ F we know

∑

s∈F1,
t∈B

dt xst ≥ d((F2 ∩ S) ∪ A, B),

since there is no way to assign demand from B to orders in (F2 ∩ S) ∪ A without
leaving at least d((F2 ∩ S) ∪ A, B) amount of demand unfulfilled. Thus at least that
amount of demand must be served by the other orders in S, namely those in F1.
Let k := |F2 ∩ S| and let s1, . . . , sk denote the elements of that set in some order.
Furthermore let Si := {s1, . . . , si } for each 1 ≤ i ≤ k, so Sk = F2 ∩ S. Then by
repeated use of (17) we have

∑

s∈F1,
t∈B

dt xst ≥ d((F2 ∩ S) ∪ A, B)

= d(((F2 ∩ S) ∪ A)\S1, B) − us1(((F2 ∩ S) ∪ A)\S1, B)

= d(((F2 ∩ S) ∪ A)\Sk, B) −
k∑

i=1

usi (((F2 ∩ S) ∪ A)\Si , B)

= d(A, B) −
k∑

i=1

usi (((F2 ∩ S) ∪ A)\Si , B)

≥ d(A, B) −
∑

s∈F2∩S

us(A, B)

= d(A, B) −
∑

s∈F2
us(A, B)ys,

where the last inequality follows byLemma2. Thus (x, y) satisfies all of the flow-cover
inequalities (18). ��
The dual of (LS-P) is

optLSD := max
∑

(F1,F2,A)∈F
d(A, B)v(F1, F2, A, B) (LS-D)

s.t.
∑

(F1,F2,A)∈F ,B⊆F :
s∈F1,t∈B

v(F1, F2, A, B) ≤ hst ∀s ≤ t (19)

∑

(F1,F2,A)∈F ,B⊆F :
s∈F2

us(A, B)v(F1, F2, A, B) ≤ fs ∀s (20)

v(F1, F2, A, B) ≥ 0 ∀(F1, F2, A) ∈ F , B ⊆ F,

where we simply divided constraint (19) by dt .
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Just as in the previous two sections, the primal-dual algorithm initializes the vari-
ables to zero and the set A to the empty set. As in Sect. 3, we initialize F1 to be
the set of all orders, and an order will become tight first on constraint (19), when it
will be moved to F2, and then tight on (20), when it will be moved to A. Unlike in
Sect. 3, however, constraint (19) consists of many different inequalities for the same
order. This difficulty is averted since all the constraints (19) for a particular order will
become tight at the same time, as is proved below in Lemma 4. This is achieved by
slowly introducing demand points into the set B. Initially, B will consist only of the
last demand point, T . Every time an order becomes tight on all constraints (19), it is
moved from F1 into F2, and the demand point of that time period is added to B. In
this way we always maintain that F1 is a prefix of F , and B is the complementary
suffix. When an order s becomes tight on constraint (20), we move it to A and assign
demand to it by running the procedure Fill(s, B). Additionally we create a reserve
set of orders, Rs , for order s, that consists of all orders earlier than s that are not in
F1 at the time s was added to A. Finally, once all of the demand has been assigned
to orders, we label the set of orders in A as our current solution, S∗, and now enter a
clean-up phase. We consider the orders in the reverse order in which they were added
to A, and for each order, s, we check to see if there is enough remaining capacity of
the orders that are in both the reserve set and our current solution, S∗ ∩ Rs , to take on
the demand being served by s. If there is, then we reassign that demand to the orders
in S∗ ∩ Rs arbitrarily and remove s from our solution S∗. When the clean-up phase is
finished we label the nodes in S∗ as our final solution, S.

Lemma 4 All of the constraints (19) for a particular order become tight at the same
time, during the execution of Algorithm 3.

Proof We instead prove an equivalent statement: when demand t is added to B, then
for any order s ≤ t the slack of the constraint (19) corresponding to s and demand t ′
is hst for any t ′ ≥ t . This statement implies the lemma by considering s = t , which
implies all constraints (19) for s become tight at the same time. We prove the above
statement by (backwards) induction on the demand points. The case where t = T
clearly holds, since this demand point is in B before any dual variable is increased,
and hence the slack of constraint (19) for order s and demand T is hsT . Now assume
the statement holds for some t ≤ T . If we consider order s = t − 1 then by the
inductive hypothesis the slack of all constraints (19) for s and demand t ′ ≥ t is hst .
Hence the slack of all constraints (19) for orders s′ ≤ s decreases by hst between the
time t is added to B and when t − 1 is added to B. Then by the inductive hypothesis
again, we have that for any order s′ ≤ s and any demand t ′ ≥ t , when t − 1 is added
to B the slack of the corresponding constraint (19) is

hs′t − hst =
t−1∑

r=s′
hr −

t−1∑

r=s

hr =
t−1∑

r=s′
hr − ht−1 =

t−2∑

r=s′
= hs′,t−1.

Hence the statement also holds for t − 1. ��
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Algorithm 3: Primal-Dual for Single-Item Lot-Sizing
xst , ys ← 0;
F1 ← F ;
F2, A ← ∅;
B ← {T };
while d(A, F) > 0 do

Increase v(F1, F2, A, B) until dual constraint becomes tight for order s;
if s ∈ F1 then /* s tight on (19) but not on (20) */

Move s from F1 into F2;
B ← F\F1;

else /* else s tight on (19) and (20) */
ys ← 1;
Fill(s, B);
Move s from F2 into A;
Rs ← {r ∈ F\F1 : r < s};

S∗ ← A /* start clean-up phase */;
for s ← last order added to A to first order added to A do

if remaining capacity of orders in S∗ ∩ Rs is enough to serve demand of s then
Remove s from solution S∗;
ys , xst ← 0 /* unassign demand of s */;
Fill(S∗ ∩ Rs , F) /* reassign to reserve orders */;

S ← S∗;

Define � to be

� = �(F1, F2, A) := max{s : s ∈ S ∩ F2} ∪ {0},

so � is the latest order in the final solution that is also in F2, for a given partition, or if
there is no such order then � is 0, which is a dummy order with no capacity.

Lemma 5 Upon completion of Algorithm 3, for any F1, F2, A, B such that v(F1, F2,
A, B) > 0, we have

∑

s∈S∩F2

us(A, B) +
∑

s∈S∩F1

∑

t∈B:t≥s

dt xst < d(A, B) + u�(A, B).

Proof First we consider the case when S∩ F2 = ∅. Here the first summation is empty,
so we just need to show the bound holds for the second summation. We know that
any order s ∈ S ∩ F1 is not in the reserve set for any order in A. This follows since
F1 decreases throughout the course of the algorithm, so since s is in F1 at this point,
then clearly s was in F1 at any point previously, in particular when any order in A
was originally added to A. Hence no demand that was originally assigned to an order
in A was ever reassigned to an order in F1. But from Lemma 1 we know that only an
amount d(A, B) of demand from demand points in B is not assigned to orders in A,
thus orders in F1 can serve at most this amount of demand from demand points in B
and we are done.

Otherwise it must be the case that S ∩ F2 �= ∅, hence � corresponds to a real order
that was not deleted in the clean-up phase. By the way � was chosen we know that any
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other order in S ∩ F2 is in an earlier time period than �, and since these orders were
moved out of F1 before �was added to A, they must be in the reserve set R�. However,
since � is in the final solution, it must be the case that when � was being considered
for deletion the orders in the reserve set that were still in the solution did not have
sufficient capacity to take on the demand assigned to �. Thus if we let x ′ denote the
demand assignment during the clean-up phase when � was being considered, then

∑

s∈(S∩F2)\{�}
us(A, B) ≤ u((S ∩ F2)\{�}) <

∑

s∈S∩F2
t∈B:t≥s

dt x
′
st .

None of the orders in A had been deleted when �was being considered for deletion, so
only an amount d(A, B) of the demand in B was being served by orders outside of A.
As argued previously, none of the orders in F1 took on demand being served by orders
in A, but they also did not take on demand being served by orders in S ∩ F2, since
these orders were never deleted. Thus we can upper bound the amount of demand that
orders from S ∩ F2 could have been serving at the time order � was being considered
for deletion as follows

∑

s∈S∩F2
t∈B:t≥s

dt x
′
st ≤ d(A, B) −

∑

s∈S∩F1
t∈B:t≥s

dt xst .

The desired inequality is obtained by rearranging terms and adding u�(A, B) to
both sides. ��

We are now ready to analyze the cost of the solution.

Theorem 3 Algorithm 3 terminates with a solution of cost no greater than 2 · optLS.
Proof As in the previous two sections, we can use the fact that all of the orders in the
solution are tight on all constraints (19) and (20).

∑

s∈S

[
fs +

T∑

t=s

dt hst xst

]

=
∑

s∈S

⎡

⎢⎢⎣
∑

(F1,F2,A)∈F ,
B⊆F :s∈F2

us(A, B)v(F1, F2, A, B)

+
T∑

t=s

dt xst
∑

(F1,F2,A)∈F ,
B⊆F :s∈F1,t∈B

v(F1, F2, A, B)

⎤

⎥⎥⎦

=
∑

(F1,F2,A)∈F ,B⊆F

v(F1, F2, A, B)

⎡

⎣
∑

s∈S∩F2

us(A, B) +
∑

s∈S∩F1

∑

t∈B:t≥s

dt xst

⎤

⎦ .
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Now we can apply Lemma 5 and achieve the desired result:

∑

s∈S

[
fs +

T∑

t=s

dt hst xst

]
<

∑

(F1,F2,A)∈F ,B⊆F

v(F1, F2, A, B) [d(A, B) + u�(A, B)]

≤
∑

(F1,F2,A)∈F ,B⊆F

2d(A, B)v(F1, F2, A, B)

≤ 2 · optLSD .

��

4.1 Time-dependent production costs

It is worth noting that Algorithm 3 and its corresponding analysis require almost no
changes to handle the case of time-dependent, per-unit productions costs. The only
change this introduces in the dual program (LS-D) is simply the addition of the term
ps to the right-hand-side of constraint (19). But this simply adds the same term to all
constraints (19) for a particular order, so it is straightforward to adjust the algorithm
so that Lemma 4 remains true, which is that all constraints (19) become tight for an
order at the same time. We simply change the way that the set B changes over time,
so that we add a demand point t to B precisely when the slack of all constraints (19)
corresponding to the order at t , are equal to pt . When pt = 0, this is precisely what
the algorithm did before and at the same time all constraints (19) become tight, and if
pt > 0 then they will all become tight pt time units later in the algorithm. The rest of
the analysis is the same as before.

5 Computational results

In this section we analyze the performance of Algorithm 3 compared to other reason-
able heuristics for the single-item lot-sizing problem, as well as explore how well this
algorithm can be used to strengthen the underlying formulation. We generated two
different sets of problem data. The first set mirrors the experiments done by Pochet
and Wolsey [16] for a nearly identical problem, with the one difference being that we
do not require the capacities to be non-decreasing over time. This set of data formed
problem instances where capacity was rather constrained, so we also used a second
set of instances where capacity was much less-constrained. In both cases, all of the
data distributions were uniform, with the ranges shown in Table 1. As done by Pochet
and Wolsey, to ensure feasibility, we make the added assumption that the demand for
any period is no more than the capacity for that period. This assumption is in essence
without loss of generality, since any feasible instance can be expressed in this form by
the following transformation. For any period where the demand exceeds the capacity,
we know that this excess must be served by earlier orders, so we may simply move the
excess demand to the previous period, and add the cost of holding this demand over
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Table 1 Ranges for uniform data distributions for the two generated data sets

Distribution Demand Capacity Order cost Holding cost

(a) [6, 35] [16, 25] [16, 20] [0.01, 0.05]
(b) [0, 9] [16, 38] [16, 33] [1, 4]

this period to the objective function. We varied the number of time periods from 40 to
1000, and for each value generated ten instances according to the above distributions.

We now describe the heuristics that were used to compare against the performance
of the primal-dual algorithm.

1. GREEDY, where orders are selected greedily based upon a notion of cost-
effectiveness. At any given time, all orders that have not yet been selected are
evaluated, and the one with the cheapest cost per demand served is added to
the solution. To calculate this cost, we assume an order processes the remaining
unsatisfied demand in order from earliest to latest, just as in the Fill procedure
of Sect. 4. We then take the holding cost associated with this order serving all of
this demand, add it to the ordering cost, and then divide by how much demand
would be served. The order which has the lowest value is selected, and the demand
it would serve is assigned to it.

2. RR, where orders are selected based upon a randomized rounding of the optimal
LP solution. Here the LP is first solved, and then each order s is selected to be
opened with probability ys . The resulting ordering cost for this process is the same
in expectation as the ordering cost of the LP, but this may lead to an infeasible
solution. To fix this, we process the orders in reverse chronological order starting
at time period T , and perform the randomized rounding as described above. If an
order is added to the solution then it is assigned all of the demand that the Fill
procedure would give it. If at any point we require an order to be open in order to be
able to serve the remaining demand, then it is opened without any randomization.

3. PART, where the problem is partitioned into many subproblems, and for each
subproblem the optimal integer solution is found. Themain restrictionwith finding
the optimal integer solution with commercial solvers is that the running time blows
up very quickly as the number of time periods increases. Breaking a problem down
into more manageable pieces makes finding the optimal integer solution for these
parts a feasible option. To this end, first the optimal LP solution is found, and then
the amount of inventory at the end of each period is computed. The time period is
then broken into intervals, where each interval starts and ends with no inventory
in the optimal LP solution. For each of these intervals, the optimal integer solution
is found, and we combine all these solutions to produce a solution to the original
problem.

The results of running each of the above heuristics along with the primal-dual
algorithm on both sets of generated problem instances are summarized in Fig. 1. In
addition a lower bound on the value of the optimal integer solution is shown which is
simply the value of the dual solution generated by the primal-dual algorithm. Comput-
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(a)

(b)

Fig. 1 The results of running the heuristics on all of the generated problem instances, along with the lower
bound (Dual) generated by the primal-dual algorithm (PD). The optimal solution values (Opt) are shown
for the number of time periods it could be reasonably computed, which is approximately 100 for (a) and
200 for (b)

ing the actual value of the optimal integer solution would have been computationally
intractable for how large we took the number of time periods to be.

We see from Fig. 1a that surprisingly the GREEDY heuristic performed the best
of all, though the primal-dual algorithm was fairly close. The good performance of
GREEDY may be attributed to the way the data for these problems were distributed,
which resulted in needing to open a large number of orders to satisfy all the demand.
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Table 2 Numerical results for adding generated flow-cover inequalities to formulation

Formulation Number of time periods

20 40 60 80 100

Original

Gap 1.045 1.027 1.024 1.022 1.018

Nodes 49 232 5898 4.802 · 104 8.076 · 105
Time(s) 0.09531 0.5109 10.78 132.6 3142

Flow-Cover

Gap 1.043 1.025 1.022 1.019 1.016

Nodes 7 139 3248 1.999 · 104 2.187 · 104
Time(s) 0.09844 0.7328 16.20 169.0 2871

It would be expected that in an optimal integer solution to such a problem, most of
the orders opened would be serving close to their capacity. However, with problem
instances that have capacity less constrained, it would seem likely that the myopic
selection routine of GREEDY could backfire, which is exactly what we see in Fig. 1a.
However, the primal-dual algorithm still manages to remain competitive even though,
like the GREEDY heuristic, every order it opens was initially assigned all the demand
available to it. This shows the robustness of the performance of the primal-dual algo-
rithm over different types of problem instances.

An additional benefit of using the primal-dual algorithm is that during the course of
its execution it generates a polynomial number of flow-cover inequalities. Even if one
requires an optimal integer solution, this approximation-algorithm could still be useful
in both providing a good initial feasible solution, as well as a number of inequalities
to strengthen the formulation. This could potentially both decrease the integrality gap
as well as reduce the number of branch-and-bound nodes and total time required by
the solver. For time periods ranging from 20 to 100 we compared the result of adding
the generated flow-cover inequalities to the original formulation, the results of which
are summarized in Table 2.

The gap for the generated problem instances started off rather small, and the added
flow-cover inequalities reduced it by only a very modest amount. There was, however,
a fairly significant reduction in the number of branch-and-bound nodes required once
the flow-cover inequalities had been added to the formulation, which amounted to a
about a factor of 4 difference. This did not result in a great decrease in the amount of
time required to solve, although some time savings did occur. It seems likely though
that for instances with larger gaps (especially for those significantly larger than 2) the
effect of adding the flow-cover inequalities found by the primal-dual algorithm will
be much more dramatic.
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