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Abstract Random variables can be described by their cumulative distribution func-
tions, a class of nondecreasing functions on the real line. Those functions can in turn
be identified, after the possible vertical gaps in their graphs are filled in, with maximal
monotone relations. Such relations are known to be the subdifferentials of convex func-
tions. Analysis of these connections yields new insights. The generalized inversion
operation between distribution functions and quantile functions corresponds to graph-
ical inversion of monotone relations. In subdifferential terms, it corresponds to passing
to conjugate convex functions under the Legendre-Fenchel transform. Among other
things, this shows that convergence in distribution for sequences of random variables
is equivalent to graphical convergence of the monotone relations and epigraphical con-
vergence of the associated convex functions. Measures of risk that employ quantiles
(VaR) and superquantiles (CVaR), either individually or in mixtures, are illuminated
in this way. Formulas for their calculation are seen from a perspective that reveals
how they were discovered. The approach leads further to developments in which the
superquantiles for a given distribution are interpreted as the quantiles for an overlying
“superdistribution.” In this way a generalization of Koenker—Basset error is derived
which lays a foundation for superquantile regression as a higher-order extension of
quantile regression.
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1 Introduction

The aim of this article is to promote a way of looking at fundamental concepts in
probability and statistics by embedding them in a framework of convex analysis. The
key is a thorough duality between cumulative distribution functions on (—oo, 00) and
quantile functions on (0, 1), based on identifing them with the one-sided derivatives
of conjugate pairs of convex functions.

Motivation for this framework comes from the modeling of risk in optimization
under uncertainty, along with applications to stochastic estimation and approximation.
Sharply in focus, beyond distribution functions and quantiles are “‘superquantiles,”
which are quantifications of random variables now recognized as essential building-
blocks for “measures of risk” in finance and engineering. Superquantiles fit most
simply and naturally with random variables having a cost/loss/damage orientation, in
tune with the conventions of optimization theory in which functions are minimized and
inequality constraints are normalized to “<” form. The upper tails of the distributions
of such random variables are usually then of more concern than the lower tails. Cor-
responding adjustments in formulation and terminology from previous work having
the opposite orientation is one of our ongoing themes here. First- and second-order
stochastic dominance are adapted to this perspective, in particular.

A further benefit of the convex analysis framework is new characterizations of
convergence in distribution, a widely used property of approximation. Our analysis
indicates moreover how quantile regression, as an alternative to least-squares regres-
sion in statistics, can be bootstrapped into a new higher-order approximation tool
centered instead on superquantiles. Helpful estimates of superquantiles, for numeri-
cal work and more, are derived as well. Second-derivative duality in convex analysis
further produces a duality between distribution densities and quantile densities.

1.1 Distribution functions versus quantile functions

The path to these developments begins with elementary observations in a two-
dimensional graphical setting with pairs of nondecreasing functions in an extended
inverse-like relationship.

A real-valued random variable X gives a probability measure on the real line R
which can be described by the (cumulative) distribution function Fx for X, namely

Fx(x) = prob{X < x} for x € (—o0, 00). (1.1)
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Fig. 1 Distribution function Fy and quantile function Q y
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The function Fy is nondecreasing and right-continuous on (—o00, 00), and it tends to O
as x — —oo and to 1 as x — oo. These properties characterize the class of functions
that furnish distributions of random variables. Right-continuity of a nondecreasing
function reduces to continuity except at points where the graph has a vertical gap. The
set of such jump points, if any, has to be finite or countably infinite.

The probability measure associated with a random variable X can alternatively be
described by its quantile function Qx, namely

Ox(p) = min{x | Fx(x) > p} for p e (0,1), (1.2)

so that Qx (p) is the lowest x such that prob {X > x} < 1 — p. The function Qy is
nondecreasing and left-continuous on (0, 1), and those properties characterize the class
of functions that furnish quantiles of random variables. The correspondence between
distribution functions and quantile functions is one-to-one, with Fx recoverable from

Ox by

max{p ‘ Ox(p) < x} for x € (inf Qx, sup Ox],
Fx(x) = 1 for x > sup Oy, (1.3)
0 for x < inf Q.

The quantile function Q x, like the distribution function Fy, can have at most countably
many jumps where if fails to be continuous. The vertical gaps in the graph of Qx
correspond to the horizontal segments in the graph of Fy, and vice versa, as seen in
Fig. 1. It follows that Fx and Qx can likewise have at most countably many horizontal
segments in their graphs.

When the graph of Fy has no vertical gaps or horizontal segments, so that Fy is not
only continuous but (strictly) increasing, the “min” in (1.2) is superfluous and Qx (p)
is the unique solution x to Fy(x) = p. Then Qy is just the inverse F;l of Fx on
(0, 1). Without such restriction, though, one can only count on Q x(Fx(x)) > x and
Fx(Qx(p)) < p, along with

Fx(x) z p <= Qx(p) = x. (1.4)
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Fig. 2 The relation 'y and its inverse Ay
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The generalized inversion represented in (1.4) and formulas (1.2) and (1.3) can be
given a solid footing in geometry. By filling in the vertical gaps in the graphs of Fx
and Qy, and adding infinite vertical segments at the right and left ends of the resulting
“curve” for Oy to mimic the infinite horizontal segments which appear at the ends of
the graph of Fy when the range of X is bounded from above or below, one obtains the
“curves” I'y and Ax of Fig. 2. These “curves” are the reflections of each other across
the 45-degree line in R x R where x = p.

In the classical mindset it would be anathema to fill in vertical gaps in the graph of
a function, thereby ruining its status as a “function” (single-valued). In this situation,
though, there are overriding advantages. The graphs I'x and Ay belong to a class
of subsets of R? called maximal monotone relations. Such relations have powerful
properties and are basic to convex analysis, which identifies them with the “subdiffer-
entials” of convex functions. This will be recalled in Sect. 2. The graphical inversion
in Fig. 2, where

Ax ={(p.x)|(x.p) e Ix}. TI'x={(x.p)|(p.x) € Ax},

will be portrayed there as corresponding to the Legendre—Fenchel transform, which
dualizes a convex function by pairing it with a conjugate convex function.

Although monotone relations are central in this paper, the idea of looking at conju-
gate pairs of convex functions defined in one way or another through direct integration
of Fx and Qy isnotnew, cf. Ogryczak and Ruszczynski [14] and subsequently [15, 16].
What is different here is a choice of functions that better suits random variables with
cost/loss/damage orientation in handling their upper tails. The need of such a switch
for purposes in stochastic optimization has recently motivated Dentcheva and Mar-
tinez [4] to adapt also in that direction, but our approach seems to achieve that more
simply and comprehensively.

The convergence theory for maximal monotone relations and the convex functions
having them as their subdifferentials can be coordinated in our framework with results
about the convergence of sequences of random variables. A special feature is that
approximations on the side of convex analysis are most effectively studied through
“set convergence.” Maximal monotone relations are compared in terms of distances
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to their graphs, while convex functions are compared in terms of distances to their
epigraphs rather than their graphs. Indeed, epigraphical convergence of convex func-
tions is tantamount to graphical convergence of their subdifferentials. Epigraphical
convergence is the only topological convergence that renders the Legendre—Fenchel
transform continuous.

For a sequence of random variables X this leads, as we demonstrate in Sect. 3,
to fresh characterizations of “convergence in distribution” of Xy to a random variable
X. It corresponds to graphical convergence of the associated maximal monotone rela-
tions I'y, to I'y, or for that matter Ay, to Ay, and to epigraphical convergence of the
convex functions having their subdifferentials described by those relations. That epi-
graphical convergence, in this special context, can essentially be reduced to pointwise
convergence.

1.2 Superquantile functions

In associating with Iy a convex function having it as subdifferential, and then investi-
gating the conjugate of that convex function, information is gained about superquan-
tiles of random variables. Superquantiles refer to values which, like quantiles, capture
all the information about the distribution of a random variable, but in doing that avoid
some of the troublesome properties of quantiles such as potential discontinuity and
instability with respect to parameterization. They have been studied under different
names for modeling risk in finance, but here we are translating them to the general
theory of statistics and probability. Bringing out their significance in that environment
is one of our goals.

For a random variable X with cost/loss/damage orientation, the superquantile
Qx(p) at probability level p € (0, 1) has two equivalent expressions which look
quite different. First,

‘Ox(p) = expectation in the (upper) p-tail distribution of X. (1.5)

This refers to the probability distribution on [Qx(p), c0) which, in the case of
Fx(Qx(p)) = p, is the conditional distribution of X subject X > Qx(p), but which
“rectifies” that conditional distribution when Fx has a jump at the quantile Q x (p), so
that Fx (Qx(p)) > p.Inthelatter case thereis a probability atom at Q x (p) causing the
interval [Q x (p), 00) to have probability larger than 1 — p and the interval (Q x (p), o0)
to have probability smaller than 1 — p. To take care of the discrepancy, the p-tail dis-
tribution is defined in general as having F,[(p] (x) = max{0, Fx(x) — p}/(1 — p) as
its distribution. This amounts to an appropriate splitting of the probability atom at
Ox(p). The second expression for the superquantile is

1

— 1
Ox(p) = ﬂ/ Ox(phdp'. (1.6)

p
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Fig. 3 The pth quantile and the p-tail

The equivalence between the two expressions will be explained in Sect. 3, which will
also clarify the restrictions that need to be imposed to ensure both are well defined
(Fig. 3).

In finance, the quantile Q x (p) is identical to the popular notion of the value-at-risk
VaR ,(X) of X at probability level p.! The superquantile Q x(p) as defined by (1.5)
goes back to Rockafellar and Uryasev [22] (and an earlier working paper of 1999),
with follow-up in [23]. There it was called conditional-value-at-risk, as suggested
by (1.5) and its interpretation as the conditional expectation of X subject to X >
QOx(p) when Fy has no jump at the quantile Qx(p). It was denoted by CVaR , (X)
in order to contrast it with VaR ,(X). The expression on the right side of (1.6) was
independently introduced around the same time by Acerbi [1] as “expected shortfall,”
but the equivalence of the two was soon realized. Because statistical terminology
ought to be free from dependence on financial terminology, we think it helpful to
have “superquantile” available as a neutral alternative name. This was suggested in
our paper [20] on reliability in engineering and has been pursued further in the “risk
quadrangle” setting of [24].

That side-by-side approach advantageously suggests making a graphical compari-
son between the superquantile function Q y and the quantile function Qy, as in Fig. 4.
A new and immediate insight is that Qy is the inverse of a distribution function
Fx generated from Fy. We call this the corresponding superdistribution function. It
lets the superquantiles of X be identified as the quantiles for an auxiliary probability
measure on (—oo, 00).> Specifically, F is the distribution function for an auxiliary

' This is the case for loss-oriented random variables. In applications centered on random variables Y that
are gain-oriented, the value-at-risk of Y at probability level p is —Q[_y](1 — p). The avoidance of such
complications with minus signs is one of the reasons why we prefer cost/loss/damage orientation in setting
forth principles for use in statistics and probability with applications to optimization.

2 The interpretation of this integral as an average led Follmer and Schied [7] to instead call this quantity
“average value-at-risk” with notation AVaR.

3 The passage from the Fy distribution to the F x distribution is known as the Hardy-Littlewood transform
in the literature on distributions of maxima of martingales.
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Fig. 4 Superdistribution function F x and superquantile function Q x

random variable X derived from X, and this will have valuable consequences for us:

Fyx = F5 for the random variable X = Oy (Fx(X)). (1.7)

1.3 Motivating connections with risk

Although superquantiles have not previously been touted as a potentially significant
addition to basic statistics, their importance in formulating problems of stochastic
optimization is already well recognized. A brief discussion of “risk” will help in
understanding the interest in them coming from that direction.

A measure of risk is a functional R that assigns to a random variable X a value
R(X) in (—o0, 0o] as a quantification of the risk in it.* The context here is that of
X representing a generalized “cost,” “loss” or “damage” index, meaning that lower
values are preferred to higher values. Typically it is desired to have the outcomes of
X below a threshold b, but some violations may have to be accepted. For instance,
it would be nice if the losses for a given portfolio of financial assets were always
< 0, but arranging for that might not be feasible. How then can trade-off preferences
be captured? How can the desire to have X be “adequately” < b in its outcomes be
given a mathematical formulation? The role of a risk measure R is to model this as
R(X) <b.

Specific examples can help in appreciating the issues. In taking R(X) = E[X]
(expectation), the interpretation of R(X) < b is that the outcomes of X are < b
“on average.” That choice could be strengthened by taking the measure of risk to be
R(X) = E[X] + Ao (X) for a parameter value A > 0, where o (X) denotes standard
deviation. Then the interpretation of R(X) < b is that outcomes of X above b can
only be in the part of the distribution of X lying more than A standard deviation
units beyond the expectation. Such a “safety margin” approach is attractive for its

4 Measures of risk are not “measures” in the usual sense of mathematics. This terminology, in which a
“measure” is a “quantification,” is widespread in finance.
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resemblance to confidence levels in statistics. A third choice of risk measure, aimed
at enforcing certainty, is to take R(X) = sup X (the essential supremum of X, which
might be 0o). Then R(X) < b means there is zero probability of an outcome > b.

Two further examples, more directly in line with our interests in this article, are
quantiles, R(X) = Qx(p), and superquantiles, R(X) = ‘O (p), as measures of risk.
The corresponding interpretations of having R(X) < b are as follows:

Ox(p) < b <= prob{X < b} > p < prob{X > b} <1 —p, (1.8)
Ox(p) <b <= eveninits p-tail distribution,
X is < b on average. (1.9)

Probabilistic constraints as in (1.8) have a wide following. In contrast, the condition
in (1.9) might appear arbitrary and hard to work with. But it has serious motivation in
the theory of risk, plus the virtue of taking into account some degree of effects in the
upper tail of the distribution of X beyond the threshold 5.

A feature of risk theory that elevates superquantiles above quantiles is found in
the notion of coherency proposed by Artzner et al. [2], originally for purposes of
determining appropriate cash reserves in the banking industry. Coherency of a risk
measure R entails having

R(C) = C for constant random variables X = C,
R(X) < R(X) when X < X' almost surely,
R(X +X') < R(X) + R(X",
R(AX) =AX for A >0. (1.10)

Along with the surface meaning of these axioms,’ there are crucial implications
for preserving convexity when measures of risk are employed in optimization. This is
explained from several angles in [24].

For the examples above, coherency holds for the extreme choices R(X) = E[X]
and R(X) = sup X, but it is absent in general for R(X) = E[X] + Ao (X) with
A > 0 (because the monotonicity axiom fails) and for R(X) = Qx(p) (because
the subadditivity axiom fails). However, coherency does hold for R(X) = Ox(p).
Moreover it holds for weighted sums like R(X) = ZZ’zl M Ox(pr) with Ay >
0 and Z;"Zl M = 1, and even for “continuous” versions of those sums, R(X) =

fol Ox(p)di(p) for a probability measure A on (0, 1).” In fact, a functional R(X)

5 In reliability terms, with outcomes X > b signaling “failure,” 1 — p is the probability of failure in (1.8)
and the buffered probability of failure in (1.9), cf. [20].

6 The subadditivity inequality, for instance says, in the context of cash reserves in finance, that if the cash
amount R (X) is adequate for covering the risks in a portfolio with losses described by the random variable
X, and R(X’) is enough for a separate portfolio with losses described by X', then the sum of these amounts
should cover the combined portfolio. This supports the idea of diversification of assets. See Follmer and
Schied [7] for more about the role of coherency in finance.

7 Such expressions relate strongly to “dual utility theory,” the foundations of which have recently been
strengthened by Dentcheva and Ruszczynski [6].
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expressible as the supremum of a collection of such superquantile integrals is known
to be the most general kind of coherent measure of risk that depends only on Fy and
possesses a certain continuity property; see [10] and [7, Section 2.6].

This makes clear that superquantiles are basic to the foundations of risk theory and
further explains why we are intent here on positioning them prominently in view.

Although the defining formulas for superquantiles might raise a perception of them
being troublingly complicated or even intractable in comparison to quantiles, quite
the opposite is true. A double formula due to Rockafellar and Uryasev [22,23] brings
them together in a way that supports practical methods of computation while bypassing
technical issues in the defining formulas (1.5) and (1.6):

Ox(p) = minx{x + V(X — x)}, where V,(X) = ﬁE[max{O, X1].

Ox(p) = argmin, {x + V,(X — x)} (left endpoint, if not a singleton), ~ (1.11)

The “argmin,” consisting of the x values for which the minimum is attained, is, in this
formula, a nonempty, closed, bounded interval which typically reduces to a single x.
The functional V), satisfies

Vp(X) < V,(X) when X < X' almost surely,
Vp(X +X') < Vp(X) + VY, (X),
V(A X) = AVp(X) for A >0,
V,(X) > E[X], with equality holding only when X =0. (1.12)

Such properties are associated with regular “measures of regret” (rather than risk) in
the terminology of [24], and it is appropriate therefore, in view of (1.11) to refer to
V, as quantile regret. The functional £, (X) = V,(X) — E[X] paired with VV,, by [24]
as its associated “measure of error” is normalized Koenker-Basset error. It underlies
quantile regression as a statistical methodology offering an alternative to least-squares
regression [8,9].

In models of stochastic optimization that incorporate superquantiles in constraints
or objectives, the superquantile formula in (1.11) can be substituted in each instance
with an associated auxiliary variable in the overall minimization. This greatly simpli-
fies computations and simultaneously yields values for the corresponding quantiles in
the solution; cf. [22,23]. No such computational help is available for constraints and
objectives expressed in quantiles instead of superquantiles. As the formulas in (1.11)
underscore for anyone familiar with the relative behavior of “min” and “argmin” in
numerical optimization, quantiles are inherently less stable than superquantiles in
circumstances where random variables depend on decision parameters.

A byproduct of the connections explored here between distributions, monotone
relations, and the convex functions associated with them subdifferentially, will be an
explanation—for the first time—of how (1.11) was discovered in the background of
[22,23]. It came from recognition of the consequences of applying the Legendre—
Fenchel transformation to those convex functions.
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A further goal of this article is to develop, in Sect. 4, a formula along the lines of
(1.11) in which the argmin gives the superquantile instead of the quantile:

Ox(p) = argmin, {x + V,(X —x)}

for the right choice of a “regret” functional Vp. Such a formula is needed for the
purpose of generalizing “quantile regression” to “superquantile regression” in the
framework of [25] and [24]. Specifically, from V,, (X) as “superquantile regret,” the
functional EP(X ) = VP(X ) — E[X] will be the right substitute for Koenker-Basset
error in that generalization. Expressions for superquantile regret and superquantile
error that serve in this manner have not previously been identified.

2 Monotone relations in convex analysis

In this section we review facts about monotone relations and the convex functions
associated with them in order to lay a foundation for analyzing the connections indi-
cated in Sect. 1. In that analysis, carried out in Sect. 3, the x variable will have a
quantile role and the p variable will be associated with probability, but for now both
are abstract variables with roles completely interchangeable.

Definition (monotonicity and maximal monotonicity) A set I' of pairs (x, p) € RxR
is said to give a monotone relation if

(x1 —x2)(p1 — p2) = 0 forall (x1, p1)and (x2, p2) in T, 2.1

so that either (x1, p1) < (x2, p2) or (x1, p1) > (x2, p2) in the usual coordinatewise
ordering of vectors in R x R. In other words, a monotone relation is a subset of R x R
that is totally ordered in that partial ordering. A monotone relation I" is maximal if it
cannot be enlarged without destroying the total ordering; there is no monotone relation
I'>rCwithI #T.

Any monotone relation can be extended to a maximal monotone relation (not nec-
essarily in only one way). Maximal monotonicity was introduced in 1960 by Minty
[13] in the study of relations between variables like current and voltage in electrical
networks and their analogs in other kinds of networks.

The symmetry in the roles of the two variables in monotonicity has the consequence
that if I is a monotone relation, then the inverse relation I !, defined by

r~'={p.x |« per}, (2.2)

is likewise monotone. Maximality passes over in this manner as well.

A maximal monotone relation has the graphical appearance of an unbounded con-
tinuous curve that “trends from southwest to northeast”” and may incorporate horizontal
and vertical segments. It may even begin or end with such a segment of infinite length.
As extreme cases, an entire horizontal line gives a maximal monotone relation and so
does an entire vertical line. The union of the nonnegative x-axis with the nonpositive
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p-axis is likewise a maximal monotone relation, moreover one which very commonly
arises in applications (not tied to probability). It is the “infinite gamma” shape of that
relation that earlier suggested the notation I.

A noteworthy feature of a maximal monotone relation is its Minty parameterization
by an auxiliary variable #:

For a maximal monotone relation I and any ¢ € (—o0, 00),
the line x + p = ¢ intersects I in a unique point (x(¢), p(t)), 2.3)

and x(¢) and p(t) are Lipschitz continuous as functions of ¢.

Put in another way, the graph of a maximal monotone relation is a sort of manifold
that is globally “lipeomorphic” to the real line. This striking property, so function-
like, makes up for the disadvantage, to classical eyes, of allowing the graph to contain
vertical segments.

An exposition of the theory of maximal monotone relations which covers (2.3) and
other properties yet to be mentioned is available in [26, Chapter 12], where the subject
is extended beyond subsets of R x R to subsets of R” x R”. (In the higher dimensional
setting, monotonicity becomes a generalization of positive-semidefiniteness.) Some
aspects are also in the earlier book [17, Section 24]. A version of the subject dedicated
to extending the original network ideas of Minty, and offering many examples, is in
[19, Chapter 8].

Some basic convexity properties are obvious from the Minty parameterization (2.3).
For instance, the domain and range of a maximal monotone relation I”, namely

dom I" = {x | (x, p) € I" for some p},rge I' = {p| (x, p) € I for some x},
2.4)

are nonempty intervals, although not necessarily closed, while the sets
ro={plaxper}, r'pe={x|exper} 2.5)

are closed intervals with I'(x) # ¥ when x € dom I, and I"'"'(p) # ¥ when
p erge . Clearly dom I' ! =rge I" and rge ' ! = dom I".

The connection between maximal monotone relations I" and nondecreasing func-
tions y on (—o00, 00) is elementary and closely reflects the special case of distribution
functions considered in Sect. 1. Suppose y : (—00, 00) — [—00, oo] is nondecreasing
and not identically —oo or identically co. Then there are left and right limits

Yy (x) = lim y(x), yT(x) = lim yx), (2.6)

x' Jx XN x
with y7(x) < y(x) < y*t(x). They define functions ¥y~ and y* which are left-
continuous and right-continuous, respectively. A maximal monotone relation I is

obtained by taking

r={GpeRxRly () =p=y'@}h 2.7)

@ Springer



308 R. T. Rockafellar, J. O. Royset

The original y has no direct role in this and could be replaced by either y* or y~
from the start, because (y*)” = y~ and (y*)™ = yT, whereas (y~)” = y~ and
(y7)* = y*. Conversely, given a maximal monotone relation I" one can define

y~(x) =min{p | (x, p) € I'} and

y*(x) = max{p| (x, p) € '} for x € domT,

y~(x) = yT(x) = —oo at points x to the left of dom I' (if any),

y~(x) = yT(x) = 0o at points x to the right of dom I" (if any), (2.8)

to get a pair of nondecreasing functions ¥~ and y*, one continuous from the left and
one continuous from the right, which produce I" through (2.7).

2.1 Subdifferentiation

The connection between maximal monotone relations and the subdifferentiation of
convex functions will be explained next. A proper convex function on (—o00, 00) is a
function f : (—o0, 00) — (—00, 00] that is not = oo and satisfies

fF=Dx+tx)<A=1)f(x)+tf(x)) forall 7 e (0,1)andallx,x’.
2.9)

In terms of the effective domain and epigraph of f, defined by
dom f = {x| f(x) <oo}, epif={(xv)|fx) <v<oo}, (2.10)

the definition is equivalent to saying that the proper convex functions are the functions
f: (—00, 00) = (—00, oo] for which epi f is a nonempty convex subset of R x R, or
equivalent on the other hand to taking a nonempty interval /, a finite convex function
f on I, and then defining f(x) = oo for x ¢ I; then dom f = 1I.

A proper convex function f is said to be closed when it is lower semicontinuous,
i.e., has its lower level sets {x | fx) < c} closed, for all ¢ € R. This holds if and only
if epi f is closed in R x R. Because a finite convex function on an open interval is
necessarily continuous, a proper convex function has to be continuous except perhaps
at the endpoints of dom f. Closedness thus refers only to behavior at those endpoints.
It requires that f(x;x) — f(x) when x is an endpoint and a sequence of points xj in
dom f tends to x.

For a proper convex function f and any x € dom f, the left-derivative and the
right-derivatives of f, namely,

= tim LSO @) =)

/ . @11
x' Jx X' —Xx X'\ x X=X
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exist with f/~(x) < f'*(x). The “set-valued” mapping df defined by

peR|f~(x)<p<f*kx)} forxedom f,
0f (x) = [ { | } for x ¢ dom f, (2.12)
is called the subdifferential of f.When f'~(x) = f’*(x), thiscommon value (if finite)
is the derivative f’(x). That holds for all but countably many points in the interior
of dom f because of the convexity of f: The one-sided derivatives, as functions of
x, are nondecreasing and, respectively left-continuous and right-continuous, having
(fr=fFand (f)” = f".
The key fact about subdifferentials df in general, going beyond the case of single-
valuedness, is this:

for a proper convex function f'that is closed, the graph ofdf,

namely
gphof = {(x, p)| p € of (1)},
is a maximal monotone relation I"; moreover every maximal (2.13)

monotone relation I is the graph of df for some closed proper
convex function f, and such a function f is uniquely determined

up to an additive constant.

The first part of this statement stems from the observation that if the one-sided
derivatives in (2.12) are extended outside of dom f by taking

f~(x) = f(x) = —oo at points x to the left of dom f (if any),
f~(x) = f"(x) = oo atpoints x to the right of dom f(if any),  (2.14)

one gets as y~ = f’~ and y© = f’* a left-continuous/right-continuous pair on
all of (—o0, co) for which the I" associated by (2.7) is gph df. The second part is
established by taking for a given maximal monotone relation I" the corresponding
left-continuous/right-continuous pair ¥, y*, and for any y between them and any
xo € dom I" defining

X
fx) = / y(t)dt + ¢ for an arbitrary constant c. (2.15)
X

0
It turns out then that f is a closed proper convex function having y~ = f’~ and

yt=r"

2.2 Dualization through the Legendre—Fenchel transform

Duality is the topic reviewed next. Its central feature is a one-to-one correspondence
among closed proper convex functions which unites them in pairs. Here we only
look at it in the one-dimensional setting, but in multi-dimensional and even infinite-
dimensional convex analysis it is the repository of virtually every duality property that
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is known; see [17,18,26].

For any closed proper convex function f on (—oo, co) the formula

f*(p) = sup, {xp — f(x)}

defines a closed proper convex function f* on (—o0, 00) such that (2.16)

f) =sup,{xp— (P} = (fH*).

The passage from f to f* is the Legendre—Fenchel transform. Accompanying these
formulas are the subdifferential rules that

df*(p) = argmax, {xp — f()},  9f(x) = argmax,, {xp — f*(p)}.

(2.17)
A major consequence for purposes here is that
For any conjugate pair of closed proper convex functions,
f and f*, one has 3f* = (3f)”' meaning that
x €3f"(p) &= p €df (x). (2.18)

Thus, the maximal monotone relations associated with f and f* are inverse to each
other. Note that as special cases of (2.17) and (2.18) one has

inf f = —f*(0), argmin f = 9f*(0),
inf f* = — f(0), argmin f* = 3f(0). (2.19)

2.3 Set convergence and its variants

Finally, notions of convergence that are natural to convex analysis need to be explained,
particularly because they hardly enter the standard frame of analysis (although they
should). We keep to the context of R? because that is all we require, but a full theory
in finite dimensions is provided in [26, Chapter 4].

For a nonempty closed subset S of R?, the associated distance function is

ds(u) = mil; |lu — w]|| for the Euclidean norm || - |].
we

(Any norm would do equally well.) This function dg is nonnegative with S =
{u ] ds(u) = 0} and it is Lipschitz continuous with Lipschitz constant 1. We are con-
cerned with a sequence of nonempty closed subsets Sy in R? and the issue of whether
Sk “converges” to S as k — oo, with set-convergence in the Kuratowski/Painlevé
sense intended. Although there are numerous characterizations of such convergence
(cf. [26, Chapter 4]), it suffices here to concentrate on a description that is easy to
visualize:

lim $; = 8§ < klim ds, (u) = ds(u) forevery u.
— 00

k— 00
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Because of the Lipschitz continuity, such pointwise convergence entails uniform con-
vergence of the distance functions on all bounded sets.

Two convergence notions more closely tuned to our present discussion are built
around such set convergence. First,

graphical convergence to I'of a sequence of maximal monotone

relations Iy refers to their convergence as subsets of R x R. (2.20)

Second,

epigraphical convergence to fof a sequence of closed proper
convex functions f; on (—o0, 00) refers to the set-convergence
ofepi fi to epi f in R x R. (2.21)

Two celebrated results about these notions underscore their fundamental significance.

A sequence of closed proper convex functions fj epi-converges to
fif and only if the maximal monotone relations [} = gph dfx
converge graphically to I" = gph df, while fi(xx) — f(x) for (2.22)

some sequence x; — x € dom f.

On the other hand,

A sequence of closed proper convex functions fj epi-converges to
such an f if and only if their conjugate functions f;" epi-converge  (2.23)
to the conjugate f*.

In other words, the Legendre—Fenchel transform is continuous with respect to epi-
convergence.

In general, it is possible for a sequence of functions to epi-converge without con-
verging pointwise everywhere, and conversely. However, in the applications we will
make involving random variables some degree of pointwise convergence can be uti-
lized. This comes from the following characterization.

For closed proper convex functions f; and f on (—oo, co) with

the same nonempty open interval / as interior of dom f and

dom fi, the epi-convergence of fi to f is equivalent to the

pointwise convergence of fi to f on the interval I, or for that (2.24)
matter on a dense subset of /, in which case the convergence

is uniform on all compact subsets of /.
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Graphical convergence of maximal monotone relations can likewise be furnished
with characterizations based on pointwise convergence:

for maximal monotone I'; and I" associated with nondecreasing

functions yx and y, graphical convergence of I to I corresponds

to pointwise convergence of yj to y at all continuity points of y, (2.25)
or equivalently, to pointwise convergence of y, to y almost

everywhere.

On an open interval I where the functions y, and y are finite, such pointwise conver-
gence almost everywhere is furthermore equivalent to having

b
/ [Ve(x) — y(x)|dx — 0 forall [a,b] C I, (2.26)

as seen through application of Lebesgue dominated convergence in the context of
these functions being nondecreasing.

2.4 Second derivatives

Convex functions are known generally to be twice differentiable almost everywhere.
Where does this enter our picture? Monotone relations provide a helpful graphical
view.

For a closed proper convex function f the twice differentiability of f at x €
dom f means that the one-sided derivative functions f'~ and f'* agree at x and are
differentiable there. Graphically in terms of the monotone relation I" giving df, an
equivalent statement is that there is a unique p such that (x, p) € I, and furthermore
anonvertical tangent line to I" at (x, p).8 Here f/(x) = p and the slope of the tangent
is f”(x). This slope must of course be nonnegative.

Let us call (x, p) a nonsingular point of I'" if there is a tangent line there which is
nonvertical and also nonhorizontal. This corresponds to f having a nonzero second
derivative at x. The symmetry in this notion provides us then with the following
equivalences:

f has f/'(x) = p and second derivative f”(x) > 0
<> (x, p) is a nonsingular point of I"
<= (p, x) is anonsingular pointof A = r- (2.27)
&= f* has f*'(p) = x and second derivative f*"(p) > 0,
in which case the second derivatives are reciprocal,

[ (p)y=1/f"(0).

8 For tangency in general terms, see [26, Chapter 6].
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Beyond passing to second derivatives in this manner, one can think of the maximal
monotone relation I” as directly associated with a measure “dI"” defined in Lebesgue-
Stieltjes manner through the nondecreasing functions associated with it. (Vertical
segments in I” correspond to atoms in this measure, and the continuous nondecreasing
function obtained by shrinking them out gives the rest of the measure in the usual way.)
Likewise, the inverse relation A yields a measure “d A.” These measures are reciprocal
in a certain sense that encompasses (2.27). They can be construed as the generalized
second derivatives of f and f*.

3 Back to random variables

We turn now to applying the general results in Sect. 2 to random variables in the
setting of Sect. 1. We start with monotonicity and go on to duality. Then we see where
this leads us with convergence issues. Supporting facts about expectations need to be
recorded beforehand. To avoid complications that are inessential for our purposes, we
make the assumption that

hence forth all random variables X have E[|X|] < oo. 3.1

Then E[X] is well defined and finite, in particular.

Expectations with respect to the probability measure on (—o0, co) induced by a
random variable X take the form of Lebesgue-Stieltjes integrals with respect to Fy.
One has

o0

g(x)d Fx(x) (3.2

Elg(X)] = /

for any (measurable) function g such that the integrand g(x) is integrable with respect
to the probability measure in question, or at least is bounded from below by something
integrable; cf. Billingsley [3, Section 21].” An expression of the same expectation in
terms of the quantile function Qy instead of the distribution function Fy is

1
E[g(X)] = /0 g(Ox(p)dp, (3.3)

again as long as g(Q x (p)) is bounded from below by something integrable. This holds
because the integrals on the right of (3.2) and (3.3) agree through a change-of-variable

9 Recall that the integral of a nonnegative (measurable) function is always well defined but might be co. A
function is “integrable” if its absolute value has finite integral. The integral of any function that is bounded
below by an integrable function is likewise well defined as a finite value or co.
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rule; cf. Billingsley [3, Theorem 16.13].10 In particular,

[e%e) 1
E[X] = / xdFy(x) = /0 Ox(p)dp (finite),

—00

00 1
E[IXI’]=/ IXI’de(X)=/0 |Ox(p)|"dp for r>1. (3.4)

—00

Also conforming to this rule is the equivalence of the alternative definitions in
(1.5) and (1.6) of the superquantile Q x(p) for p € (0, 1). This equivalence can be
identified with the version of the first equation in (3.4) that results from replacing Fx

by the p-tail distribution function F )[(p I described right after (1.5) and replacing Qx
accordingly by the quantile function Q[)f] for F)[(p], with Q[;] ) =0x(p+t(1—p))
fort € (0, 1). Since Q[}f](t) > Qx(p) > —oo, the integrand in the quantile integral is

bounded from below by an integrable function on (0, 1), and the equivalence between
(1.5) and (1.6) is thereby justified.

3.1 Maximal monotonicity from distributions and quantiles

The distribution function Fy, which is nondecreasing right-continuous, has a left-
continuous counterpart F'y. The monotonicity construction in Sect. 2, when applied to
this pair, yields the relation Iy described in Sect. 1 in terms of “filling in the vertical

gaps”:
Iy ={(x,p) e RxR| Fy(x) < p < Fx(x)}. (3.5)
Hence I'x is a maximal monotone relation. One can proceed similarly with the nonde-
creasing left-continuous function Q x by extending it in the natural way beyond (0, 1)
with
Ox (1) = ,}l}nl Ox(p), @x(p) =00 for p>1,0x(p)=—o0 for p =0,
(3.6)
so as to get a nondecreasing left-continuous function on (—oo, 00). Its extended right-

continuous counterpart Q% has Q% (0) = lim,~ o Ox(p) and Q3 (1) = oo. The
relation Ay described in Sect. 1 is then

Ax ={(p.x) e RxR| Ox(p) <x < 0% ()} (3.7

and it, too, is therefore a maximal monotone relation. Moreover these relations are
inverse to each other through the reciprocal formulas (1.2) and (1.3) for passing
between Fx and Qx:

(x,p) € I'x &= (p,x) € Ax, ie ,Ax=Ty'andI'x =4y (3.8

10 The d Fy measure on (—00, 00) is the one induced from the dp measure on (0, 1) by the function Q.
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This recalls the setting in (2.18) in which a pair of maximal monotone relations
that are the inverses of each other are the graphs of the subdifferentials of two convex
functions that are conjugate to each other. The construction of such functions are where
we are now headed.

3.2 Superexpectation functions

A basic choice confronts us right away. We can pass from 'y to a convex function f
having it as the graph of df, but an additive constant is thereby left undetermined. An
idea coming straight to mind is to look at f(x) = [ Fx(x")dx’, but that has a big
disadvantage for applications, as will be explained below. Another choice with a lot
behind it is taking f to be the function!!

FP (x) = E[max{0, x — X}] = / ' Fx(x)dx, (3.9)

—00

which is finite'> and convex with right-derivative Fy. Ogryczak and Rusczynski

showed in [16, Theorem 3.1] that the conjugate of F' )((2) is the convex function given
on [0, 1] by!3

P
Fy2(p) = /0 Ox(p)dp'. (3.10)

but equalling co outside of [0, 1]. It has QO as its left derivative on (0, 1). In statistics,
F )((2) and F )((_2) have long standing, but they emphasize the lower tail of X instead of
the upper tail.

Desiring something tuned instead to upper tail properties, Dentcheva and Martinez
in [4] introduced in parallel to (3.9) the “excess function”

Hx(x) = E[max{0, X — x}] =/ [1— Fx(x)]dx, 3.11)

which likewise is finite and convex. They showed that its conjugate Hy can be
expressed on [0, 1] in terms of (although not directly as) the function!*

1
Lx(p) =/ Ox(phdp'. (3.12)
p

However, Ly is concave, not convex, and it has —Qx (p) as its left-derivative at p,
while Hy has Fx(x) — 1 as its right-derivative at x. Thus, this adaptation to a “cost”
orientation of X does not sit comfortably in our duality framework.

1 This function is traditionally important in “stochastic dominance,” to be taken up in Sect. 4.
12 The finiteness of the integral is assured under (3.1).
13 This gives the “Lorenz curve” [11] associated with X.

14 This is the “upper Lorenz function” in their terminology, although the format of notation is ours.
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A different choice will therefore be made here instead. It is dictated in part by our
interest in coordinating with the “superquantiles” of random variables described in
Sect. 1, as will be apparent when we come to duality.

We define the superexpectation function Ex associated with a random variable X
by

o] 1
Ex(x) = E[max{x, X}] = / max{x, x'}dFx(x) = / max{x, Ox(p)}dp,
—00 0

(3.13)

with the value Ex (x) being termed the superexpectation of X at level x."

Theorem 1 (characterization of superexpectations). The superexpectation function
Ex for a random variable X having E[|X|] < 00 is a finite convex function on
(—00, 00) which corresponds subdifferentially to the monotone relation I'y and the
distribution function Fx through

Iy =gphdEx, Fx(x) = EY(x). (3.14)
It is nondecreasing with

Ex(x) =x =0, lim[Ex(x)-x]=0, lim Ex(x)=E[X] (.15

and has the additional convexity property that

Ex(x) < (1 —=M2MEx,(x) +AEx,(x) when
X=0-XMNXo+rX; with 0 <A < 1. (3.16)

On the other hand, any convex function f on (—00, 00) with the properties that

f(x)—x=>0, li/m [f(x) —x]=0, {{r{l f(x) = afinite value, (3.17)

is Ex for a random variable X having E[|X|] < oc.

Proof The asymptotics in (3.15) are evident from max{x, x'} —x = max{0, x’ — x} >
0, where the expressions as functions of x’ decrease pointwise to 0 as x tends to co
but increase pointwise to x” as x tends to —oo. To connect with Fy giving the right
derivative, observe for x’ > x that

1 ift < x,
0 ift > x/,
Y (0,1) ifr e (x,x)),

x'—

max{x’, t} — max{x, t}

x'—x

15 Relative to the excess function Hy in (3.11), we have clearly have Ex (x) = Hy (x) + x.
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and therefore

Ex(x) — Ex(x)

/

prob{X < x} < < prob {X < x'},

X' —x
where the left side equals Fy(x) and the right side equals Fy(x’). In taking the
limit on both sides as x"\,x and utilizing the right-continuity of Fy, we confirm that
EY (x) = Fx(x).

The additional property in (3.16) is a consequence of the convexity of max{x, X}
with respect to X in the definition (3.13) of Ex(x).

If a convex function f has the properties in (3.17), it must be finite on (—o00, 00)
and nondecreasing. Moreover its left-derivatives f’~(x) and right-derivatives f'~(x)
must lie in [0, 1] and increase to 1 as x tends to oo but decrease to 0 as x tends to
—00. Thus in particular, the right-continuous function f’* meets the requirements of
a distribution function Fy for a random variable X. O

The properties in (3.17) say that the graph of Ex is above, but asymptotic to, the
45-degree line y = x. The additional convexity property in (3.16) is valuable for
applications in stochastic optimization, which often involve random variables X (u)
that depend linearly or convexly on a parameter vector u. It is also a signal of the
aptness of Ex as our designated choice of a convex function f having Fy as its right-
derivative. This property also holds for F ,((2) as an antecedent of F, but that choice
concentrates on the lower tail instead of the upper tail. It is absent for other seemingly
natural choices, such as f(x) = fax Fx (x")dx’. In that case,

/ Fx(x)dx' = Ex(x) — Ex(a) forany a € (—00,0),
a

since both sides have the same right-derivatives in x and both vanish at a. Although
Ex(a), like Ex(x), is convex with respect to X, the difference Ex (x) — Ex(a) lacks
that property.

3.3 Conjugate superexpectations

Dualization of the superexpectation function Ex through the Legendre—Fenchel trans-
form will be addressed next. This is where the superquantiles Q x (p) of (1.5) and (1.6)
come on stage.

The conjugacy claim in the following theorem is new only in its formulation, in
view of the conjugacy between (3.9) and (3.10) already established by Ogrychak
and Ruszczynski in [16], and the result of Dentcheva and Martinez in [4] about the
relationship between the functions in (3.11) and (3.12). However, the proof we supply
takes a different route.

Theorem 2 (dualization of superexpectations). The closed proper convex function E
on (—o0, 00) that is conjugate to the superexpectation function Ex on (—oo, 00) is
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given by

—(1—p) Qx(p) for p € (0, 1),
—E[X] for p =0,

* _
Ex(p) = 0 for p = 1. (3.18)
00 for p ¢ [0, 1].
1t is continuous relative to [0, 1], entailing
lim (1 —p) Q0 =0, lim Q = E[X], 3.19)
lim (1= p) Qx(p) lim Ox(p) (

and it corresponds subdifferentially to the maximal monotone relation Ax = I'y !
and the quantile function Qx through

Ax =gphdEY.,  Ox(p) = EX"(p). (3.20)

On the other hand, any function g on (—o0, 00) that is finite convex and continuous on
[0, 1] with g(1) = O, but g(p) = oo for p ¢ [0, 1], is E%, for some random variable
X.

Proof Let g denote the function of p € (—o0, 00) described by the right side of (3.18).
It will be demonstrated in steps that g is a closed proper convex function having Ex
as its conjugate g*. That will tell us through (2.16) that g is in turn the conjugate
E%. It will also confirm the limits in (3.19), since a closed proper convex function
on (—o0, 00) is always continuous relative to an interval on which it is finite, cf. [17,
Corollary 7.5.1].

From the expression for Qx(p) in (1.6), already justified as being equivalent to
the one in (1.5), we have g(p) = — f; Ox(pHdp' for p € (0, 1). This implies that

g~ (p) = Ox(p) and g (p) = Q(p) on (0, 1). Since the limit of — [ Qx (p')dp’
as p ~ 1 is 0, while the limit as p\,0 is —fol Ox(pHdp = —E[X] by (3.4), g is
continuous relative to [0, 1]. Since Qyx is nondecreasing, g is also convex on [0, 1]
and hence, in its extension outside of [0, 1] by oo, is a closed proper convex function
on (—o0, 00). Furthermore, the left- and right-derivative functions for g, as extended
in the manner of (2.14), are the functions Qx and Q7 as extended in (3.6). The graph
of dg, as determined by definition from g’~ and g’*, is therefore the relation Ay in
3.7).

It follows then from (2.18) that the convex function g* conjugate to g has the
relation I" = A~ as the graph of dg*. Since Ey is already known from Theorem 1 to
have I as the graph of d Ey, the functions g* and E x can differ at most by a constant,
Ex = g*+c.Ontaking conjugates again, we get E}, = (g*+4¢)* = (g*)*—c = g—c.
Thus, to verify that ¢ = 0, confirming that E} = g, it will suffice to show that
E% (1) = 0. For this we apply the formula for the Legendre—Fenchel transform:
E%(p) = sup, {px - Ex(x)} at p = 1. This gives us

—E%(1) = infx{— x + E[max{x, X}]} = ian{E[max{O, X — x}]},
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where the expectation of max{0, X — x} is always > 0 but approaches 0 as x — oo.

For the last part of the theorem, we note that for any g as described there the function
q = g~ on (0, 1) is left-continuous and nondecreasing, with g(p) = — f; q(pHdp'.
In other words, g meets the requirement of being a quantile function Qx for which
the right side of (3.18) can be identified with g. Then g must be the corresponding
function E%. O

Corollary (superquantile functions). The conjugate E, is uniquely determined by the
superquantile function Q x. Not only it, but also Ex, Fx and Qx, along with I'y and
Ay, can be reconstructed from knowledge of Q . Moreover the following properties
of a function g on (0, 1) are necessary and sufficient to have § = Qx for a random
variable X with E[ |X|] < oo:

(1 — p)g(p) is concave in p with 11}1'11(1 —p)g(p) =0,
p

lim g(p) = a finite value. (3.21)
P\0

Proof Once Q y has determined E% from (3.18), we get Ex as the conjugate (E%)*.
These functions yield Fx and Q x through one-sided differentiation, and we then have
the monotone relations I'y and Ay as well. The conditions listed for a function g
correspond to the conditions on g at the end of Theorem 2. O

Besides this characterization, it is interesting to observe as a consequence of the
formula (1.6) for superquantiles Q y (x) that

Oy is a continuous increasing function of p € (0, 1) with

Ox(p) = Qx(p) _ Ox(p) — Qx(p)
1—p - 1—p

0% (p) = =05 (. (322

In contrast, Q x is only nondecreasing, not (strictly) increasing, and can be discontinu-
ous. There is no assurance that Q x has left-derivatives or right-derivatives apart from
the general dictum that a nondecreasing function is differentiable almost everywhere.

Example (exponential distributions). Let X be exponentially distributed with parame-
ter A > 0. Then the distribution function is Fy(x) = 1 — exp(—AXx), the superexpec-
tation function is

x4+ (1/)) exp(—Ax) forx >0,

Ex®) =11, for x < 0,

and the conjugate superexpectation functionhas E% (p) = (1/A)(p—1)(1—-log(1—p))
for p € [0, 1). Quantiles and superquantiles are thus given on (0, 1) by

Ox(p) =—(1/M)log(1 = p),  Ox(p) = (1/V[1 —log(l = p)].

Our results further make available new estimates for work with superquantiles.
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Theorelﬂ 3 (supeguantile estimates). For p € [0, 1), one has
@ [Qx(p) — Qy(p)| < T EIX — Y| when E[|X|] < 00, E[|Y|] < o0,

(b) E[X] < Qx(p) < E[X]+Jf_—pa(X) when E[X?] < oo, 0(X) = standard

deviation.

Proof Observe first that | max{x, a} —max{x, b}| < |a — b|. For the superexpectation
functions corresponding to X and Y, this gives us

|Ex(x) — Ey(x)| = E[| max{x, X} —max{x, Y}|] < E[|X - Y[].

orinotherwords,both Ey < Ex+E[|X—Y|]and Ex < Ey+E[|X—Y|]. Applying
the Legendre—Fenchel transform, which reverses functional inequalities, we see that

Ey > Ex —E[IX—Y|l, Eyx=Ey—E[IX-Y]],

and consequently |E% (p) — Ey(p)| < E[|X —Y|]for p € [0, 1). Then (3.18) yields
().

For (b), we note that —E%(p) = f[} Ox(pHhdp = fol Ox(pNIip1(pHdp' for
the characteristic function of the interval [1, p], while recalling that E[X] = inf ax-

Then, by way of (3.18), we have 0 < (I — p)(Ox(p) — EIX]) = [y (Qx(p) —
E[XD1Ip,11(p")dp’. The Cauchy-Schwartz inequality provides now that

21 : / ’ 2 /1/2
(1= p)(@x(p) — EIXD < [/0 (0x (PP = EIX1)dp']

1 1/2
X[/ I[p,l](l?/)zdp/] ,
0

where the first factor on the right is (E[ |X — E[X]*])!/? = ¢(X) by (3.3) and the
second is 4/1 — p. In dividing through by 1 — p, one gets the upper bound in (b). O

3.4 Convergence in distribution

Convergence of a sequence of random variables X to a random variable X can now
be brought into focus. There are several concepts of importance, but the one we
concentrate on is convergence in distribution, which is customarily defined by'®

X, — X in distribution when Fy, (x) — Fx(x)
at all continuity points x of Fyx. (3.23)

16 15 probability theory, random variables are generally presented as functions on a probability space.
The convergence of a sequence is viewed then with all the random variables regarded as functions on the
same probability space. Here we are working directly with distributions and only nominally with particular
random variables giving rise to them, which are not unique. However, Skorohod’s theorem reconciles these
points of view; cf. [3, Theorem 25.6]. It says that when distribution functions Fj converge to a distribution
function F in the manner of (3.23), it is possible to construct random variables X; and X on a common
probability space such that Fy = F, ., F = Fx, and the functions X converge pointwise to X.
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This classical property has various characterizations, for instance

Xy — X indistribution <= E[g(Xx)] — E[g(X)]
for bounded continuous g, (3.24)

which is recorded in Billingsley [3, Theorem 25.8]. Here we provide characterizations
beyond such classical theory.

Theorem 4 (characterizations of convergence in distribution). For a sequence of ran-
dom variables Xy, convergence in distribution to a random variable X is equivalent
also to each of the following conditions:

(a) I'x, converges graphically to I,

(b) Ay, converges graphically to Ay,

(¢) Ox.(p) — Qx(p) at all continuity points p of Qx in (0, 1),

(d) Ex,(x) = Ex(x) forall x € (—00, 00),

(e) Ox,(p) > Qx(p) forall p € (0, 1).

Proof The equivalence with (a) is evident from the description of graphical conver-
gence in (2.25). The equivalence with (b) then follows because graphical convergence
is preserved when taking inverses. Application of (2.25) to the convergence in (b)
gives the equivalence with (c).

When the defining property in (3.23) holds, the integrals | xoo[l — Fx, (x")]dx’
converge to fxoo [1— Fx]1(x")]dx" (inasmuch as the integrands are uniformly bounded).
This yields the property in (d) through the fact that Ex (x) = Hx (x)+x for the function
Hy in (3.11). For the opposite implication, if (d) holds we can use derivative estimates
for convex functions in the form

Ex(x) — Ex(x —¢€)
€

< By (0 = By (o < XETDZ B 5

for any € > 0 and in parallel

Ex,(x) — Ex, (x —¢€)
€

Ex, (x +¢€) — Exk(X). (3.26)

< Ey (x) < Ei (x) <

where E;;; (x) = Fx, (x) and E}" (x) = Fx(x). Ata continuity point x of Fx we also
have E;{ (x) = Fx(x). Since the outer bounds in (3.25) approach those in (3.26) as
k — oo by (d), we conclude that

Ex(x) — Ex(x — E —E
XC) = Ex@ =) _ i in Fy, (x) < lim sup Fy, (x) < x(te) = Ex(x)
k—o0 k—o00 €

€
(3.27)

The upper and lower bounds in (3.27) both converge to E 3( (x) = Fx(x) at the conti-

nuity point x, and therefore Fy, (x) — Fx(x). Thus, (d) is equivalent to the defining
property in (3.23) for convergence in distribution.
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Next we observe that, since (d) concerns finite convex functions, the pointwise
convergence there is equivalent to the epi-convergence of Ex, to Ex; recall (2.24).
Applying (2.23) we get the epi-convergence of the conjugate functions E}}k to E%,
and then the equivalence with (e), once more via (2.24). O

By taking advantage of (2.24), the everywhere pointwise convergence in (d) and (e)
can be replaced by pointwise convergence on a dense subset or uniform convergence
on compact intervals of (—oo, oo) and (0, 1), respectively. On the other hand, the
pointwise convergence property in (c) can be elaborated in terms of the alternative
descriptions in (2.25) and (2.26).

It is apparent from (e) that a superquantile is stable under perturbations of the
underlying probability distribution. This has importance consequences for optimiza-
tion problems with superquantiles of parametric random variables as objective func-
tions and constraints. If the superquantiles remain convex and finite as functions of the
parameters, then Theorem 4 with (2.24) ensures epiconvergence of approximations
obtained by replacing true probability distributions with approximating ones. More-
over, optimal solutions of problems with approximations will tend to those of the true
problems, justifying the use of approximate probability distributions in applications.

Other useful implications of convergence in distribution, which relax the bound-
edness of g in (3.24), can be derived from conditions on moments. Let us say, for
r > 1, that a continuous function g : (—o0, 00) — (—00, 00) has growth rate at
most r when lim|y|—o |g(x)|/|x]" < oc. This is equivalent to having ¢ > 0 such that
lg(x)] < c(l 4+ |x|") everywhere.

Theorem S (further properties of convergence in distribution). If Xy converges in
distribution to X and limsup,, E|[ | X" ) < oo for some r > 1 and € > 0, then

E[g(Xr)] — E[g(X)] (finite) for continuous g
having growth rate at most r. (3.28)

Proof Consider Y (p) = g(Qx,(p)) and Y (p) = g(Qx(p)) as random variables on
the probability space (0, 1). We have E[Y;] = E[g(Xy)], E[Y] = E[g(X)], by (3.3)
and know from Theorem 4 that the convergence in distribution of X to X entails Yj
as a function on (0, 1) converging pointwise to Y almost everywhere. Our aim is to
show that the growth assumptions imply E[Y;] — E[Y] with E(Y] finite. For that
it suffices to confirm that those assumptions guarantee uniform integrability of the
functions Yy in the sense that

lim sup/ |[Yr(p)ldp = 0, (3.29)
[Yi|=a

a—> o0 k
see Billingsley [3, Theorem 25.12]. Because g has growth rate < r, there exists ¢ > 0

such that [Yx(p)| < c(14[Qx, (p)I") for all k. It will be enough therefore to confirm
that

lim SUP/Z , Zi(p)dp =0 for Zi(p) = 10x,(p)I". (3.30)
=

b—oo
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We have (via Billingsley [3, (25.13)]) the estimate for any € > 0 that

1

1 /! 1
/ Zilp)dp = 7c / Z (pydp = - / |0x, (I Vdp
Zr>b b 0 b 0

1
—_ (1+€)
= CELX 0

Under our assumption that the expectations E[ | X| 7] are uniformly bounded from
above (for k sufficiently large), we obtain (3.30) and the desired uniform integrability.
O

As a particular case of Theorem 5 one can take g(x) = |x|" in (3.28) to get
convergence of moments: E[|Xi|"] — E[|X]|"]. Note that even E[X;] — E[X]
is not assured by convergence in distribution of Xj; to X without something extra,
despite having EX;( (p) — Qx(p) almost everywhere with E[X}] = inf axk and
E[X] = inf @X. Here the sufficient condition given for E[X;] — E[X] is the
boundedness of E|[ |Xk|1+€] as k — oo for some € > 0.

3.5 Distribution densities and quantile densities

The symmetric view of second derivatives of convex functions and their conjugates,
built at the end of Sect. 3 around the maximal monotone relations associated with
them, will now be applied to random variables.

If a distribution function F is differentiable, its derivative F' )/( gives the distribution
density function fx for X. Then!’

/ g(X)de(X)=/ 8(x) fx (x)dx. (3.31)

—00 —00

What is new now is the perspective from Theorem 1 that fx (x) is the second derivative
E% (x), and that a sort of duality lies in the background.

The measure d 'y = d Fx has a counterpart d Ax = d Qx, the Lebesgue-Stieltjes
measure associated with the quantile function Q x as a nondecreasing left-continuous
function on (0, 1). We can equally contemplate the differentiability of Q x, interpreting
it as yielding a quantile density function gx on (0, 1), with gx (p) being the second
derivative E¥’(p) according to Theorem 2. Then!®

1 1
/0 h(p)dQx(p) = /O h(p)gx(p)dp. (3.32)

17 For measurable functions g that are integrable with respect to the d Fy measure.

18 For measurable functions 4 that are integrable with respect to the d Q x measure.
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It is interesting in this respect to note that, through change of variables,'® one has

1 sup X
/0 h(p)d Ox (p) = / h(Fx (0)dx. (333)

nf X

This is the quantile version of the distribution rule in the equivalence between (3.2)
and (3.3).

Full differentiability of Fx and Q x is not a prerequisite to all insights. The available
facts can be specialized without that, although full differentiability does produce the
nicest picture.

Theorem 6 (duality of densities). The following relations hold in general:

Fx at x has derivative F)’((x) >0and Fx(x)=p
<= (x, p) is a nonsingular point of I'x
<= (p, x) is a nonsingular point of Ax = FX_I, (3.34)
<= Qxat phas derivative Q/X(p) >0and Ox(p) =x

in which case the derivatives are reciprocal, Q’X (p) = 1/F)’( (x).

In consequence,

Fx is differentiable on (—00, 00) with F)/((x) > 0 for x € (inf X, sup X),
<= Qy is differentiable on (0, 1) with Q’X (p) > 0 for p € (0, 1), (3.35)

in which case

Q% (p) = 1/Fx(Qx(p)) for p € (0,1),
Fy(x) = 1/Qx(Fx(x)) for x € (inf X, sup X). (3.36)

Proof All of this is immediate from (2.27) with F}, and Q’; being the second deriva-
tives of the convex functions Ex and E;‘( O

4 Applications to quantifying risk

The importance of Qx and Qy as so-called measures of risk has been recalled in
Sect. 1, but more can be said with the facts now at our disposal. An explanation of the
joint minimization formula (1.11) for Qx(p) and 0 (p) will be taken up First. An
extension to a parallel formula, in which Q y (p) gives the argmin instead of the min,
will follow.

19 Again applying the rule in Billingsley [3, Theorem 16.13]; the d Q x measure on (0, 1) is the one induced
from the dx measure on (inf X, sup X) by the function Fy.
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4.1 Derivation of the joint rule for quantiles and superquantiles

The proof of Theorem 2 took shortcuts by utilizing facts in convex analysis, but a
direct approach to calculating E% from Ey by the Legendre-Fenchel transform was
the original route to discovery of the minimization formula (1.11). The motivation in
the first place was to obtain a minimization formula for quantiles based on knowing
that I'y is the graph of d Ey, namely

[0x(p), Q% (p)) = DEX (p) = IE%(p)
= argminx{EX(x) — xp} forany p € (0, 1). “.1)

by (2.17) and (2.18). Here
Ex(x) — px = (1 — p)x + (E[max{x, X}] — x)

=(1-— p)(x + ;E[max{o X —x}])
1—p 7 ’

and consequently [Q x (p), Q} (p)] is the set of x’s that minimize x+ ﬁE[max{O,
X — x}]. The argmin part of (1.11) is just this. At the same time we see that the
Legendre-Fenchel formula E% (p) = sup, { px—Ex (x)}, with attainment guaranteed

for p € (0, 1), translates to

E%(p) . 1
_oxb mmx{x 4+ — E[max{0, X — x}]} for pe (0,1).

l—p l—p
The left side is Q x (p) by Theorem 2, and this clinches the other half of the rule in
(1.11).

4.2 Extension to “higher-order superquantiles”

We proceed now to look for an analog of (1.11) in which the superquantiles take the
place of quantiles in giving the minimum. The reason for wanting to do this is the
role of quantiles, and potentially superquantiles, in generalized regression of the kind
considered in [24] and [25], but explaining all that here would carry us far away from
the current theme. “Superquantile regression” is the subject introduced and developed
in our paper [21], with support from results secured here.

An observation to start from is that the main term E[max{0, X}]in (1.11) has the
additional expressions

00 1
E[max{0, X}] :/ max{0, x}d Fx (x) :/ max{0, Qx(p)}dp. “4.2)
—00 0

It turns out that all we need to do in order to build the right analog of (1.11) is to
replace Fy by a different but closely related distribution function Fx such that

the quantiles of F x are the superquantiles of Fx. 4.3)
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As indicated graphically in Sect. 1, this superdistribution function is obtained (for
nonconstant X) by “inverting” Q x, namely

_ 0y (1) for limys 0 0x(p) < x <lim, »1 Ox(p).
Fx(x)=70 for x <lim,~\ 0 Qx(p), (4.4)

1 forx > lim, 1 Qx(p).

It is the distribution function for the random variable X associated with X by (1.7), so
that

0%(p) = Ox(p).

Much that has already been worked out for Fx carries over to Fx,as longas E[ IX|] <
oo in accordance with the blanket assumption in (3.1) that we have been relying on.
That is the case when E[X?] < 0o, as seen through the estimate in Theorem 3(b). In
particular, then,

00 1
Fx = F/X for Ex(x) :/ max{x, x'}dF x (x) :/ max{x, Qx(p)}dp,
oo 0
4.5)

where the equivalence holds as an echo of (3.12) in the face of (4.3). The function E x
is finite and convex on (—o00, 00), again with Ex(x)—x positive and tending to 0 as
X — 00.

The conjugate function E ; can be determined by applying Theorem 2 in this setting.
The main ingredient in the resulting formula is the replacement of Q y (p) by a higher
analog, namely

= 1 00 _ 1 _
Ox(p) = 1= |- XdFy(x") = T / Ox(pHdp'. (4.6)
— P Jox(p —PJp

This “supersuperquantile” is the conditional expectation of X in its p-tail with respect
to the Fy = Fx distribution. The complications with the original definition of the
p-tail fall away because Fy has no jumps; the Fx distribution has no “probability
atoms.” With respect to Fy, the interval [Q x(p), o0) has probability 1 — p. As a

matter of fact, Oy = ay.
This suggests, through (4.2), that the analog of the expression V), in (1.11) as a
“measure of regret” might be taken to be

— 1 > — 1 ! —
Vp(X) = m/ max{0, x}d Fx(x) = m/o max{0, QX(P/)}dP/, 4.7

and this does indeed give us what we want.

Theorem 7 (supirquantiles as quantiles). Suppose E[ | X 2] < 0. Then, as a measure
of risk, R(X) = Q x (p) has the coherency properties in (1.10), like R(X) = Q x(p).
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In terms ofvp definedin (4.7), the two can be calculated simultaneously for p € (0, 1)
by

@X(p) = argminx{x ~|—1_ip(X — x)},
Ox(p) =miny{x +V,(X —x)}. 4.8)

The functional Vp retains the regret properties of Vp in (1.12):

Vp(X) <V,(X') when X < X' almost surely,

Vp(X +X) <V, (X) +V,(X),

Vp(AX) = AV, (X) for A >0, (4.9)
9,, (X) = E[X], with equality holding only when X = 0.

Proof The parallel structure suffices to confirm (4.8). The coherency properties of
R(X) = Qx(p)in(1.10) withrespectto X lead through_the second integral expression

in (4.6) to those same properties holding for R(X) = Q x (p). The properties in (4.9)
similarly come from invoking (1.10) for 'Oy (p) in the second formula for VP(X ) in
(4.7) and calling on the fact that Q x(p) is an increasing function with E[X] as its
infimum. o

The minimization in (4.8) may seem to demand too much knowledge of the regret
functional V p be practical, but properties of the superquantile integrand, such as the
estimates in Theorem 3, can come to the rescue. The elementary theory of integra-
tion (approximation of integrands by step functions or piecewise linear functions)
leads to approximating expressions for Vp (X) that come from linear combinations of
superquantiles Q x (px). The formula for Q x (p) in (1.11) for any p can be employed
to calculate the value of such an expression for any X. Upper and lower estimates can
be developed for the closeness of such an expression to V,(X). Such estimates are
worked out in our paper [21].

4.3 Stochastic dominance

Another notion that enters the study of risk is stochastic dominance. Two versions,
known as first-order and second-order, are especially important, but the issue of “usage
orientation” of a random variable again has to be respected. Most often, stochastic
dominance is articulated for the context of a random variable X being preferable to
a random variable Y when its outcomes are, by some quantification standard, gener-
ally higher. That is profit/gain/benefit orientation, but in this article we are treating
cost/loss/damage orientation, so some inequalities need to be reversed in identifying
the “dominance” of X over Y with X being “better” then Y.

In profit/gain/benefit orientation, it is customary to define first-order stochastic
dominance X > Y as corresponding to Fy < Fy (the graph of Fx therefore being to
the right of the graph of Fy). Second-order stochastic stochastic dominance X >» Y
is taken as F ;2) < F)(,z); cf. (3.9). It is well known that these properties translate into
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having E[g(X)] > E[g(Y)] for a class of increasing functions in the first case and a
class of increasing concave functions in the second. Moreover some authors prefer to
take such expectation properties directly as the definition, since they provide the main
motivation for the concept in applications. We follow that pattern here in adapting to
cost/loss/damage orientation.

Definition (first- and second-order dominance, inverted) First-order stochastic dom-
inance of X over Y in cost/loss/damage orientation, to be denoted by X 5/1 Y here, 20
and second-order stochastic dominance, X 5/2 Y, mean the following:

X 5/1 Y < E[g(X)] < E[g(Y)] for continuous bounded increasing g, (4.12)
X <, Y < E[g(X)] < E[g(Y)] for finite convex increasing g.

Recall here that a finite convex function g is automatically continuous. Also, it
always has g(x) > ax +b forsomea > 0and b € (—o0, 00), so that the expectations
in (4.12) are sure to be well defined, although possibly oo, but not —oo (under our
blanket assumption (3.1) on finite expectations).

If g is interpreted as a penalty function, the inequalities in (4.12) concern expected
penalties under X and Y. The two conditions then describe situations involving a pair
of cost/loss random variables X and Y in which X is less risky than Y regardless of
the particular penalty function g that may have to be faced—within some category.>!
This is attractive in situations where a decision maker may have little knowledge of the
penalties. An important example for stochastic dominance in the profit/gain/benefit
orientation comes up in finance, where penalty functions are replaced by utility func-
tions and convexity in the second-order case by concavity.

The second property in (4.12) is also known as “increasing convex order,” <jc, cf.
[12], and was featured by Dentcheva and Martinez [4] in their adaptation to cost/loss
orientation.

Theorem 8 (stochastic dominance in cost/loss/damage orientation). First-order sto-
chastic dominance is characterized by

X <|Y & Fx > Fy < Qx < Qy. (4.13)
Second-order stochastic dominance is characterized by

X <h Y &= Ex < Ey <= Qx < Oy. (4.14)
Proof We rely here, in part, on characterizations in the gain orientation furnished
by Follmer and Schied [7] (and elsewhere). Their Theorem 2.70 covers (4.13) with a

slight difference coming from our focus on the left-continuous quantile function. (They
contemplate a class of “quantile functions” between these and their right-continuous

20 The prime is a reminder of the switch from the usual orientation as seen in textbooks.

21 This explains why we use < in (4.12). It signals “less risky”.
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partners, and accordingly replace the pointwise inequality Qx < Qy by an almost
everywhere inequality.)

For (4.14) the derivation is a bit more complicated and specialized toward the
concepts in this article. The loss version of one characterization of second-order dom-
inance in Theorem 2.70 of [7] is that

X <Y < E[max{0, X — c}] < E[max{0, Y — c}] forall c. (4.15)

Because Ex(c) = E[max{c, X}] = ¢ + E[max{0, X — c}] and similarly Ey(c), we
can translate (4.15) to saying that Ex(c) < Ey(c) for all c. The observation to make
next is that the Legendre—Fenchel transform converts Ex < Ey to E;‘( > F ’; The
formula in Theorem 2 lets us identify this with Qy < Qy. O

Stochastic dominance has important applications to constraint modeling in stochas-
tic optimization; see Dentcheva and Ruszczynski [5].

4.4 Comonotonicity

Another way that monotone relations enter the framework of risk is through the prop-
erty of comonotonicity.

Definition (comonotonicity of random variables) Two random variables X and X,
are said to be comonotone if the support of pair (X1, X») is a monotone relation I” in
R x R.22

This means roughly that the two random variables move in tandem; the risk in one
cannot hedge against the risk in the other. Indeed, it implies the existence of a third
random variable X along with increasing Lipschitz continuous functions f; and f>
such that X1 = f1(X) and X, = f>(X). For this, one can simply take X = X| + X»
and apply the Minty parameterization of a maximal extension of I"; cf. (2.3).

Besides the motivation for comotonicity as capturing this tandem behavior of a pair
of random variables, there are consequences for their quantiles and superquantiles. The
fact that comonotonicity of random variables leads to additivity of their quantiles, the
initial property below, is well known; cf. [7, Lemma 4.84]. We offer an argument for
the converse and indicate how this ties in with superquantiles and superexpectations.

Theorem 9 (characterizations of comonotonicity). The following properties of a pair
of random variables X| and X, are equivalent to comonotonicity:

(@) Ox,+x,(p) = Ox,(p) + Qx,(p) forall p € (0, 1),

(®) Ox,+x,(P) = Qx,(p) + Ox,(p) forall p € (0, 1),

(¢) Ex,+x,(x) = min {EX1 (x1) + Exz(xz)}for all x € (—oo, 00).
X1+x2=x

Proof First we suppose comonotonicity and show that then (a) holds. The monotonic-
ity of the essential range I" of (X1, X;) makes the function ¢ : (x1, x2) — x1+x2 = x

22 The closed essential range is the smallest closed set that, with probability 1, contains all outcomes.
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map I” monotonically one-to-one into the real line. The joint probability distribution
of X1 and X, on R x R, concentrated in I, is thereby transformed into the proba-
bility distribution of X = X + X», concentrated in ¢ (I"). For any p € (0, 1) the
quantile Qx(p) gives the highest point x of ¢ (I") such that Fx(x) < p. The unique
antecedent ¢! (x) = (x1(x), x2(x)) € I' then has to be (Qx,(p), Ox,(p)). Thus,
Ox(p) = Ox,(p) + Ox,(p), as claimed.

To demonstrate the converse, that (a) implies comonotonicity, we can make use of
the fact that the essential range of a random variable X is the closure of the range of
its quantile function Q. It is traced by QO x(p) as p goes from O to 1 in (0, 1), except
that where jumps occur the right limit Q% (p) needs also to be brought in. This can
be invoked for X, X» and X = X + X to see that, when (a) holds, the probability
parameter p traces the range of (X, X2) monotonically as (Qx, (p), Ox,(p)). This
range is then a monotone relation.

The equivalence between (a) and (b) is obvious from the formula (1.6) for
superquantiles in terms of quantiles. This yields a further equivalence through The-
orem 2 with having EY , . (p) = EX (p) + E%, (p) forall p. Applying the rule
in convex analysis that the conjugate of a sum is obtained by the operation # of “inf-

convolution” on the conjugate functions,? (E}"(I + E;z)*(x) = (E;”;#E}’?;)(x) =

infx]+x2=x[ E;‘{'I (x1) + E;‘(*; (x2) }, we arrive at (c). O

Theorem 9 relates also to an associated concept of comonotonicity for measures
of risk due to Ogryczak and Ruszczyniski [14-16], namely that R is comonotonic if
R(X1+ X2) = R(X1) + R(X2) when X1, X», are comonotone. The theorem says,
among other things, that the risk measure R(X) = @X( p) is comonotonic for every
p € (0,1). It is easy to see that this carries over also to the mixed superquantile
measures of risk consisting of weighted sums of superquantiles. More on this topic
can be found in the book of Follmer and Schied [7] in coordination with applications
in finance.
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