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Abstract LetA be afinite subset ofNn andR[x]A be the space spanned bymonomials
xα with α ∈ A. Let K be a compact semialgebraic set of Rn such that a polynomial
in R[x]A is positive on K . Denote by PA(K ) the cone of polynomials in R[x]A
that are nonnegative on K . The dual cone of PA(K ) is RA(K ), the set of all trun-
cated moment sequences in R

A that admit representing measures supported in K .
First, we study geometric properties of the conesPA(K ) andRA(K ) (like interiors,
closeness, duality, memberships), and construct a convergent hierarchy of semidef-
inite relaxations for each of them. Second, we propose a semidefinite algorithm for
solving linear optimization problems with the conesPA(K ) andRA(K ), and prove
its asymptotic and finite convergence. Third, we show how to check whetherPA(K )

and RA(K ) intersect affine subspaces; if they do, we show how to get a point in the
intersections; if they do not, we prove certificates for the empty intersection.
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248 J. Nie

1 Introduction

Let N (resp., R) be the set of nonnegative integers (resp., real numbers), and let
R[x] := R[x1, . . . , xn] be the ring of real polynomials in x := (x1, . . . , xn). For
α := (α1, . . . , αn) ∈ N

n , denote xα := xα1
1 · · · xαn

n and |α| := α1 + · · · + αn . Let
R[x]d be the set of polynomials inR[x]with degrees≤ d, and K ⊆ R

n be a set.Denote

Pd(K ) = {p ∈ R[x]d : p(u) ≥ 0 ∀ u ∈ K },

the cone of polynomials in R[x]d that are nonnegative on K . Let

N
n
d = {α ∈ N

n : |α| ≤ d}.

The dual space of R[x]d is RN
n
d , the space of truncated moment sequences (tms’) of

degree d. A tms y = (yα) ∈ R
N
n
d defines a linear functional acting on R[x]d as

〈p, y〉 :=
∑

|α|≤d
pα yα for all p =

∑

|α|≤d
pαx

α.

It is said to admit a K -measure μ (i.e., μ is a Borel measure supported in K ) if
yα =

∫
xαdμ for all α ∈ N

n
d . Such μ is called a K-representing measure for y. In

applications, we are often interested in finitely atomic measures, i.e., their supports
are finite sets. Denote by δu the Dirac measure supported at u. A measure μ is called
r-atomic if μ = λ1δu1 + · · · + λrδur with each λi > 0 and ui ∈ R

n . Let meas(y, K )

be the set of all K -measures admitted by y. Denote

Rd(K ) = {y ∈ R
N
n
d : meas(y, K ) 	= ∅}.

When K is compact,Rd(K ) is the dual cone ofPd(K ) (cf. Tchakaloff [44] or Laurent
[28, Section 5.2]).

Linear optimization problems with cones Pd(K ) and Rd(K ) have wide applica-
tions. For instance, the minimum value of a polynomial f ∈ R[x]d on K can be found
by maximizing γ subject to f −γ ∈Pd(K ); the corresponding dual problem is min-
imizing a linear function over the coneRd(K ) (cf. Lasserre [19]). Generalized prob-
lems of moments (GPMs), proposed by Lasserre [22], are optimizing linear moment
functionals over the set of measures supported in a given set and satisfying some lin-
ear constraints. GPMs are equivalent to linear optimization problems with the cone
Rd(K ). Lasserre [22] proposed semidefinite relaxations for solving GPMs. We refer
to [12,25,27,28,37,38] for moment and polynomial optimization problems. Semidef-
inite programs are also very useful in representing convex sets and convex hulls, like in
[10,11,13–15,23,24,30,43], and in solving polynomial equations, like in [20,21,29].

Motivations In some applications and mathematical problems, we do not have all
entries of a truncated moment sequence, or we only require partial entries of a tms to
satisfy certain properties. For instance, does there exist a tms y that admits a measure
supported in the circle x21 + x22 = 1 and satisfy the linear equations
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Cones of moments and nonnegative polynomials 249

y22 = y40 + y04 = y60 + y06 = 1 ? (1.1)

This is a moment problem, but it only involves five moments y22, y40, y04, y60, y06.
As we will see in Example 5.4, such a tms y does not exist.

The above motivates us to consider more general settings of moment problems.
Sometimes, we need to work in the space of incomplete truncated moment sequences.
This leads to the A-truncated K -moment problem (A-TKMP), proposed and studied
in [36]. Let A ⊆ N

n
d be a subset. The space R

A is the set of all partially truncated
moment sequences, which only have moments indexed by α ∈ A. An element in
R
A is called an A-truncated moment sequence (A-tms). A basic concern for A-

TKMP is: does an A-tms have a K -representing measure? This issue was discussed
in [36]. A generalization of this question is the moment completion problem (MCP):
given an A-tms y, can we extend it to a tms z ∈ Rd(K ) such that it satisfies some
properties?

For the above observations, we consider generalizations of the cones Rd(K ) and
Pd(K ). LetA be a finite set in Nn , and R[x]A := span{xα : α ∈ A}. The dual space
of R[x]A is RA. Define deg(A) := max{|α| : α ∈ A}. The K -representing measures
for an A-tms y and the set meas(y, K ) can be defined same as before. Denote

PA(K ) = {p ∈ R[x]A : p(u) ≥ 0 ∀ u ∈ K },
RA(K ) = {y ∈ R

A : meas(y, K ) 	= ∅}.

Clearly, if A = N
n
d , then PA(K ) = Pd(K ) and RA(K ) = Rd(K ). An A-tms

y ∈ Rd(K ) if and only if it admits a r -atomic K -measure with r ≤ |A| (cf. [36,
Proposition 3.3]).

TheA-TKMP has applications in solving moment problems with noncompact sets
like R

n . A classical moment problem is checking the membership in Rd(R
n). This

question is harder than other moment problems because Rn is noncompact. However,
it can be transformed to a compact moment problem via homogenization (cf. [9]).

Note that a tms inRN
n
d can be thought of as anA-tms inRN

n+1
d withA = {β ∈ N

n+1 :
|β| = d}. Then, under some general assumptions, y ∈ Rd(R

n) if and only if y, as
an A-tms in R

A, belongs to RA(Sn) where S
n = {x̃ ∈ R

n+1 : ‖x̃‖2 = 1} is the
n-dimensional unit sphere. We refer to [9] for more details. The latter question is an
A-TKMP with the compact set Sn , and it can be solved by the method in [36].

TheA-TKMP has applications in sums of even powers (SOEP) of real linear forms.
A form (i.e., a homogeneous polynomial) f ∈ R[x]d (d is even) is said to be SOEP
if there exist L1, . . . , Lr ∈ R[x]1 such that f = Ld

1 + · · · + Ld
r (cf. [41]). Let Qn,d

be the cone of all SOEP forms of degree d. Each f can be written uniquely as

f =
∑

α=(α1,...,αn)∈Nn

|α|=d

(
d

α1, . . . , αn

)
f̌αx

α.

So, f can be identified as an A-tms f̌ ∈ R
A with A = {α ∈ N

n : |α| = d}. Indeed,
f ∈ Qn,d if and only if f̌ ∈ RA(Sn−1) (cf. [36,41]). Its dual cone PA(K ) is Pn,d ,
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250 J. Nie

the cone of nonnegative forms in n variables and of degree d. So, checking SOEP
forms is an A-TKMP with the compact set Sn−1.

Another application of A-TKMP is about completely positive (CP) matrices. A
symmetric matrix C ∈ R

n×n is CP if C = u1uT1 + · · · + uruTr for u1, . . . , ur ∈ R
n+

(the nonnegative orthant). Each symmetric matrix can be thought of an A-tms in R
A

with A = {α ∈ N
n : |α| = 2}. It can be shown that C is CP if and only if C , as

an A-tms, belongs to RA(K ) with K = {x ∈ R
n+ : x1 + · · · + xn = 1} (cf. [36]).

This is also an A-TKMP with a compact set. The dual cone is PA(K ), the cone of
n × n copositive matrices. (A symmetric matrix B is copositive if xT Bx ≥ 0 for
all x ≥ 0.) We refer to [2,8] for copositive and CP matrices. An important question
is the CP-completion problem is: given a partial symmetric matrix A (i.e., only its
partial entries are known), we want to assign values to its unknown entries so that A
is CP. This problem is recently investigated by Zhou and Fan [45]. They formulated
the CP-completion problem as an A-TKMP.

Contributions Assume A ⊆ N
n is finite and K is a semialgebraic set as

K = {x ∈ R
n : h(x) = 0, g(x) ≥ 0

}
, (1.2)

defined by two polynomial tuples h = (h1, . . . , hm1) and g = (g1, . . . , gm2). Assume
K is compact and R[x]A contains a polynomial that is positive on K . In the recent
work [36] by the author, a method is given for checking whether or not a givenA-tms
y ∈ R

A belongs to the coneRA(K ). In particular, by themethod in [36], we can check
whether or not a given form f ∈ R[x]d (d is even) is a sum of even powers of real
linear forms, and we can check whether or not a given symmetric matrix is completely
positive. In [36], the A-tms y is assumed to be known, i.e., all the entries yα (α ∈ A)
are given. However, in some applications, we often do not know all the moment values
yα , but only know they satisfy some linear equations. For instance, how do we check
whether or not there exists an A-tms, which admits a measure supported in the circle
x21 + x22 = 1 and satisfies the linear equations (1.1)? In such occasions, we often need
to know whether or not there exists y ∈ RA(K ) satisfying the given equations. Such
questions were not discussed in [36].

Considering the above, we study more general linear optimization problems with
the cone RA(K ). That is, we discuss how to minimize a linear objective function in
y ∈ R

A, subject to linear equations in y and the membership constraint y ∈ RA(K ).
If the objective does not depend on y (i.e., it is a constant), then the problem is reduced
to checking whether or not there exists y ∈ RA(K ) satisfying a set of linear equations.
This is a feasibility question. Linear optimization problemswith the conePA(K )will
also be studied.

First, we study properties of the conesPA(K ) andRA(K ). We characterize their
interiors, prove their closeness and dual relationship, i.e., RA(K ) is the dual cone of
PA(K ). We construct a convergent hierarchy of semidefnite relaxations for each of
them. This will be shown in Sect. 3.

Second,we study how to solve linear optimization problemswith the conesPA(K )

and RA(K ). A semidefinite algorithm is proposed for solving them. Its asymptotic
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and finite convergence are proved. A stopping criterion is also given. This will be
shown in Sect. 4.

Third, we study how to check whether or not an affine subspace intersects the cone
PA(K ) orRA(K ). If they intersect, we show how to find a point in the intersection.
If they do not, we prove certificates for the empty inter-section. This will be shown in
Sect. 5.

We begin with a review of some basics in the field in Sect. 2.

2 Preliminaries

Notation For t ∈ R, �t (resp., �t�) denotes the smallest integer not smaller (resp.,
the largest integer not greater) than t . For k ∈ N, denote [k] := {1, . . . , k}. For a tms
z, denote by z|A the subvector of z whose indices are inA. WhenA = N

n
d , we simply

denote z|d := z|Nn
d
. For a set S ⊆ R

n , |S| denotes its cardinality, and int (S) denotes

its interior. The superscript T denotes the transpose of a matrix or vector. For u ∈ R
N

and r ≥ 0, denote ‖u‖2 :=
√
uT u and B(u, r) := {x ∈ R

n | ‖x − u‖2 ≤ r}. For
a polynomial p ∈ R[x], ‖p‖2 denotes the 2-norm of the coefficient vector of p. For
a matrix A, ‖A‖F denotes its Frobenius norm. If a symmetric matrix X is positive
semidefinite (resp., definite), we write X � 0 (resp., X � 0).

2.1 Riesz functionals, localizing matrices and flatness

Let A ⊆ N
n . An A-tms y defines a Riesz functional Ly acting on R[x]A as

Ly

(
∑

α∈A
pαx

α

)
:=
∑

α∈A
pα yα.

Denote 〈p, y〉 := Ly(p) for convenience. We say that Ly is K-positive if

Ly(p) ≥ 0 ∀ p ∈PA(K ),

and Ly is strictly K -positive if

Ly(p) > 0 ∀ p ∈PA(K ) : p|K 	≡ 0.

As is well known, Ly being K -positive is a necessary condition for y to admit a
K -measure. The reverse is also true if K is compact and R[x]A is K-full (i.e., there
exists p ∈ R[x]A such that p > 0 on K ) (cf. [9, Theorem 2.2]). We refer to the
“Appendix” for how to check whether R[x]A is K -full or not.

For q ∈ R[x]2k , define L(k)
q (z) to be the symmetric matrix such that

Lz(qp
2) = pT

(
L(k)
q (z)

)
p ∀p ∈ R[x] : deg(qp2) ≤ 2k. (2.1)

(For convenience, we still use p to denote the vector of coefficients of a polynomial
p, indexed by monomial powers α ∈ N

n .) The matrix L(k)
q (z) is called the kth order
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252 J. Nie

localizing matrix of q generated by z. When q = 1, the matrix

Mk(z) := L(k)
q (z)

is called the kth order moment matrix of z. The rows and columns of L(k)
q (z) are

indexed by α ∈ N
n . We refer to [25,28] for moment and localizing matrices.

Let K be as in (1.2) and g0 = 1. A necessary condition for z ∈ R2k(K ) is

L(k)
hi

(z) = 0 (i = 1, . . . ,m1), L(k)
g j

(z) � 0 ( j = 0, 1, . . . ,m2). (2.2)

(Cf. [7,36].) Define the integer dK as (hi , g j are from (1.2))

dK := max
i∈[m1], j∈[m2]

{1, �deg(hi )/2, �deg(g j )/2}. (2.3)

In addition to (2.2), if z also satisfies the rank condition

rankMk−dK (z) = rankMk(z), (2.4)

then z admits a unique K -measure, which is finitely atomic (cf. Curto and Fialkow
[7]). For convenience, throughout the paper, we simply say z is flat if (2.2) and (2.4)
hold for z. For a flat tms, its finitely atomic representing measure can be found by
solving some eigenvalue problems (cf. Henrion and Lasserre [17]). Flatness is very
useful for solving truncated moment problems, as shown by Curto and Fialkow [5–7].
A nice exposition for flatness can also be found in Laurent [26].

For z ∈ R
N
n
2k and y ∈ R

A, if z|A = y, we say that z is an extension of y, or
equivalently, y is a truncation of z. Clearly, if z is flat and y = z|A, then y admits a
K -measure. In such case, we say z is a flat extension of y. Thus, the existence of a
K -representing measure for y can be determined by investigating whether y has a flat
extension or not. This approach has been exploited in [16,36].

2.2 Ideals, quadratic modules and positive polynomials

A subset I ⊆ R[x] is called an ideal if I + I ⊆ I and I · R[x] ⊆ I . For a tuple
p = (p1, . . . , pm) of polynomials in R[x], denote by I (p) the ideal generated by
p1, . . . , pm , which is the set p1R[x]+ · · ·+ pmR[x]. A polynomial f is called a sum
of squares (SOS) if there exist f1, . . . , fk ∈ R[x] such that f = f 21 + · · · + f 2k . The
cone of all SOS polynomials in n variables and of degree d is denoted by �n,d . We
refer to Reznick [40] for a survey on SOS polynomials.

Let h = (h1, . . . , hm1) and g = (g1, . . . , gm2) be as in (1.2). Denote

I�(h) = h1R[x]�−deg(h1) + · · · + hm1R[x]�−deg(hm1 ), (2.5)

Qk(g) = �n,2k + g1�n,2k−deg(g1) + · · · + gm2�n,2k−deg(gm2 ). (2.6)

Clearly, I (h) = ∪k∈N I2k(h). The union Q(g) := ∪k∈NQk(g) is called the quadratic
module generated by g. Clearly, if f ∈ I (h)+ Q(g), then f |K ≥ 0. The converse is
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Cones of moments and nonnegative polynomials 253

also true if p|K > 0 and I (h) + Q(g) is archimedean (i.e., there exists R > 0 such
that R − ‖x‖22 ∈ I (h)+ Q(g)). This is called Putinar’s Positivstellensatz.

Theorem 2.1 (Putinar, [39]) Let K be as in (1.2). Suppose I (h) + Q(g) is
archimedean. If f ∈ R[x] is positive on K , then f ∈ I (h)+ Q(g).

Let h and g be as in (1.2). Denote

	k(g) :=
{
w ∈ R

N
n
2k

∣∣∣ L(k)
g j

(w) � 0, j = 0, 1, . . . ,m2

}
(2.7)

Ek(h) :=
{
w ∈ R

N
n
2k

∣∣∣ L(k)
hi

(w) = 0, i = 1, . . . ,m1

}
. (2.8)

The set I2k(h)+ Qk(g) is dual to 	k(g) ∩ Ek(h) (cf. [25,28,36]), i.e.,

〈p, z〉 ≥ 0 ∀ p ∈ I2k(h)+ Qk(g), ∀ z ∈ 	k(g) ∩ Ek(h). (2.9)

3 Properties of RA(K ) and PA(K )

This section studies geometric properties of the cones RA(K ) and PA(K ).

3.1 Interiors, closedness and duality

Recall that R[x]A is K-full if there exists p ∈ R[x]A such that p > 0 on K . The
interiors of RA(K ) and PA(K ) can be characterized as follows.

Lemma 3.1 Let K ⊆ R
n be a nonempty compact set. Suppose A ⊆ N

n is finite and
R[x]A is K -full. Then we have:

(i) A polynomial f ∈ R[x]A lies in the interior of PA(K ) if and only if f > 0 on
K .

(ii) AnA-tms y ∈ R
A lies in the interior ofRA(K ) if and only if the Riesz functional

Ly is strictly K -positive.

Proof (i) If f > 0 on K , then f ∈ int
(
PA(K )

)
. This is because f + q > 0 on K for

all q ∈ R[x]A with sufficiently small coefficients (the set K is compact). Conversely,
suppose f ∈ int

(
PA(K )

)
. SinceR[x]A is K -full, there exists p ∈ R[x]A with p > 0

on K . Then f − εp ∈PA(K ) for some ε > 0. So, f ≥ εp > 0 on K .
(ii) Let τ be a probability measure on R

n whose support equals K . (Because K is
nonempty and compact, such a measure always exists, as shown in Rogers [42].) For
all p ∈PA(K ), p|K 	≡ 0 if and only if

∫
pdτ > 0. Let

z =
∫
[x]Adτ ∈ R

A, PA(K , τ ) =
{
p ∈PA(K ) :

∫
pdτ = 1

}
.

(The symbol [x]A denotes the vector of monomials xα with α ∈ A.) Note that an
A-tms w is K -positive (resp., strictly K -positive) if and only if Lw(p) ≥ 0 (resp.,
> 0) for all p ∈PA(K , τ ). So, z is strictly K -positive.
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254 J. Nie

“ ⇒′′ Suppose y ∈ int (RA(K )). Then w := y − εz ∈ RA(K ) for some ε > 0
and

Ly(p) = Lw(p)+ εLz(p) ≥ εLz(p) > 0

for all p ∈PA(K , τ ). So, Ly is strictly K -positive.
“⇐′′ Suppose Ly is strictly K -positive. The set PA(K , τ ) is compact. Let

ε = min
{
Ly(p) : p ∈PA(K , τ )

}
> 0,

M = max
{
|〈z, p〉| : z ∈ R

A, ‖z‖2 = 1, p ∈PA(K , τ )
}

.

For all w ∈ R
A with ‖w − y‖2 < ε

2M , it holds that for all p ∈PA(K , τ ),

Lw(p) = Ly(p)+Lw−y(p) ≥ (ε − ‖w − y‖2M) > 0.

This means that all such w are K -positive. Because R[x]A is K -full, by Theorem 2.2
of [9], every such w belongs toRA(K ). So, y is an interior point of RA(K ). ��

The dual cone of PA(K ) is defined as

PA(K )∗ := {y ∈ R
A : 〈p, y〉 ≥ 0 ∀ p ∈PA(K )}.

When A = N
n
d and K is compact, Pd(K )∗ = Rd(K ) (cf. Tchakaloff [44], Lau-

rent [28, Section 5.2]). For more general A, a similar result holds.

Proposition 3.2 Let K ⊆ R
n be a nonempty compact set. Suppose A ⊆ N

n is finite
and R[x]A is K -full. Then, the cones RA(K ) and PA(K ) are convex, closed and
have nonempty interior. Moreover, it holds that

RA(K ) =PA(K )∗. (3.1)

Proof Clearly,RA(K ) andPA(K ) are convex, andPA(K ) is closed. The K -fullness
of R[x]A implies that there exists p ∈ PA(K ) with p > 0 on K . So, PA(K ) has
nonempty interior, since p is an interior point, by Lemma 3.1.

We show that RA(K ) is closed. Let {yk} ⊆ RA(K ) be a sequence such that
yk → y∗ ∈ R

A as k →∞. Note that each Lyk is K -positive, i.e.,

Lyk (p) = 〈p, yk〉 ≥ 0 ∀ p ∈PA(K ).

Letting k →∞ in the above, we get

Ly∗(p) = 〈p, y∗〉 ≥ 0 ∀ p ∈PA(K ).

So, Ly∗ is K -positive. Since R[x]A is K -full, by Theorem 2.2 of [9], we have y∗ ∈
RA(K ). This implies that RA(K ) is closed.
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Next, we show thatRA(K ) has nonempty interior. Let z be the tms in the proof of
Lemma 3.1(i). The Riesz functionalLz is strictly K -positive. By Lemma 3.1, z is an
interior point of RA(K ).

Last, we show that (3.1) is true. Clearly,RA(K ) ⊆PA(K )∗. For all y ∈PA(K )∗,
Ly is K -positive. SinceR[x]A is K -full, by Theorem 2.2 of [9], we have y ∈ RA(K ).
So, (3.1) holds. ��

3.2 Semidefinite relaxations

First, we consider semidefinite relaxations for the cone RA(K ). Recall the notation
	k(g), Ek(h) from Sect. 2.2. For each k ∈ N, denote

S k
A(K ) = {z|A : z ∈ 	k(g) ∩ Ek(h)

}
. (3.2)

(If k < deg(A)/2, S k
A(K ) is defined to be R

A, by default.) Clearly, RA(K ) ⊆
S k

A(K ) for all k. This is because for every y ∈ RA(K ), we can always extend y to
a tms z ∈ R2k(K ) with z|A = y (cf. [36, Prop. 3.3]). Each S k

A(K ) is a semidef-
inite relaxation of RA(K ), since it is defined by linear matrix inequalities. Clearly,
S k+1

A (K ) ⊆ S k
A(K ) for all k. This results in the nesting relation:

S 1
A(K ) ⊇ · · · ⊇ S k

A(K ) ⊇ S k+1
A (K ) ⊇ · · · ⊇ RA(K ). (3.3)

Proposition 3.3 Let K 	= ∅ be as in (1.2). Suppose I (h) + Q(g) is archimedean,
A ⊆ N

n is finite and R[x]A is K -full. Then, it holds that

RA(K ) =
∞⋂

k=1
S k

A(K ). (3.4)

Proof We already know that RA(K ) ⊆ S k
A(K ) for all k. So, RA(K ) is contained

in the intersection of the right hand side of (3.4). To prove they are indeed equal,
it is enough to show that for all y /∈ RA(K ), we have y /∈ S k

A(K ) if k is big
enough. Choose such an arbitrary y. By (3.1), we know y /∈ PA(K )∗, and there
exists p1 ∈ PA(K ) with 〈p1, y〉 < 0. Let p0 ∈ R[x]A be such that p0 > 0 on K .
Then, for ε > 0 small, p2 := p1+ εp0 > 0 on K and 〈p2, y〉 < 0. Since I (h)+Q(g)
is archimedean, we have p2 ∈ Qk1(g) + I2k1(h) for some k1, by Theorem 2.1. If
y ∈ S k1

A (K ), then y = z|A for some z ∈ 	k1(g) ∩ Ek1(h), and we get

0 > 〈p2, y〉 = 〈p2, z〉 ≥ 0,

a contradiction. The latter inequality is because p2 ∈ Qk1(g)+ I2k1(h) and 	k1(g)∩
Ek1(h) is dual to Qk1(g)+ I2k1(h) (cf. (2.9)). So, y /∈ S k1

A (K ), and (3.4) holds. ��
Proposition 3.3 shows that the semidefinite relaxations S k

A(K ) can approximate
RA(K ) arbitrarily well. Indeed, we can prove S k

A(K ) converges to RA(K ) if we
measure their distance by normalization. For f ∈ R[x]A, define
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S k
A(K , f ) = {y ∈ S k

A(K ) : 〈 f, y〉 = 1},
RA(K , f ) = {y ∈ RA(K ) : 〈 f, y〉 = 1}.

Define the distance

dist
(
S k

A(K , f ),RA(K , f )
)
= max

z∈S k
A(K , f )

min
y∈RA(K , f )

‖z − y‖2. (3.5)

Proposition 3.4 Let K 	= ∅ be as in (1.2) andA ⊆ N
n be finite. Suppose I (h)+Q(g)

is archimedean. If f ∈ R[x]A is positive on K , then

dist
(
S k

A(K , f ),RA(K , f )
)
→ 0 as k →∞. (3.6)

Proof Since f > 0 on K , there exists ε > 0 with f −ε > 0 on K . Since I (h)+Q(g)
is archimedean, by Theorem 2.1, we have f − ε ∈ QN1(g) + I2N1(h) for some N1.
Similarly, there exist R > 0 and N2 ≥ N1 such that for all α ∈ A

R ± xα ∈ QN2(g)+ I2N2(h).

For all y ∈ S k
A(K , f )with k ≥ N2, there exists z ∈ 	k(g)∩Ek(h) such that z|A = y.

Since 〈 f − ε, z〉 ≥ 0, we get εz0 ≤ 〈 f, z〉 = 〈 f, y〉 = 1 and

0 ≤ 〈R ± xα, z〉 = Rz0 ± yα.

(Here 0 denotes the zero vector in N
n .) This implies that |yα| ≤ R/ε for all α ∈ A.

Hence, the sets S k
A(K , f ), with k ≥ N2, are uniformly bounded.

By (3.3),weknowdist
(
S k

A(K , f ),RA(K , f )
)
ismonotonically decreasing. Sup-

pose otherwise (3.6) is not true. Then there exists τ such that

dist
(
S k

A(K , f ),RA(K , f )
)
≥ τ > 0

for all k. We can select yk ∈ S k
A(K , f ) for each k such tat

dist
(
yk,RA(K , f )

)
≥ τ/2.

The sequence {yk} is bounded, because the sets S k
A(K , f ) (k ≥ N2) are uniformly

bounded, as shown in the above. It has a convergent subsequence, say, yki → ŷ as
i →∞. Clearly, 〈 f, ŷ〉 = 1 and dist

(
ŷ,RA(K , f )

)
> 0. So, ŷ /∈ RA(K , f ). This

implies ŷ /∈ RA(K ) = PA(K )∗, by (3.1). So, there exists p0 ∈ PA(K ) such that
〈p0, ŷ〉 < 0. For a small ε0 > 0, we have

p1 := p0 + ε0 f > 0 on K , 〈p1, ŷ〉 < 0.
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By Theorem 2.1, we have p1 ∈ QN3(g)+ I2N3(h) for some N3. So, 〈p1, yki 〉 ≥ 0 for
all ki ≥ N3. This results in

〈p1, ŷ〉 = lim
i→∞〈p1, y

ki 〉 ≥ 0,

which is a contradiction. Thus, (3.6) must be true. ��
Second, we consider semidefinite relaxations for the cone RA(K ). Denote

Qk
A(K ) = {p ∈ R[x]A : p ∈ Qk(g)+ E2k(h)}. (3.7)

Clearly, Qk
A(K ) ⊆PA(K ) for all k. Suppose K is compact and R[x]A is K -full. If

p is in the interior of PA(K ), then p > 0 on K by Lemma 3.1, and p ∈ Qk
A(K )

for some k by Theorem 2.1, if I (h)+ Q(g) is archimedean. So, we get the following
proposition.

Proposition 3.5 Let K 	= ∅ be as in (1.2) and A ⊆ N
n be finite. Suppose R[x]A is

K -full and I (h)+ Q(g) is archimedean. Then, we have

int (PA(K )) ⊆
∞⋃

k=1
Qk

A(K ) ⊆PA(K ). (3.8)

The second containment inequality in (3.8) generally cannot be strengthened to an
equality. For instance, when K = B(0, 1) and A = N

3
6, the Motzkin polynomial

x21 x
2
2 (x

2
1 + x22 − 3x23 ) + x63 ∈ PA(K ) but it does not belong to Qk

A(K ) for any k
(cf. [33, Example 5.3]).

3.3 Checking memberships

First, checking whether y ∈ RA(K ) or not can be done by Algorithm 4.2 of [36]. It
is based on solving a hierarchy of semidefinite relaxations about moment sequences.
That algorithm has the following properties: i) If R[x]A is K -full and y ∈ R

A admits
no K -measures, then a semidefinite relaxation is infeasible. The infeasibility gives a
certificate for the non-membership y /∈ RA(K ). ii) If y admits a K -measure, then we
can asymptotically get a finitely atomic K -representing measure for y, which certifies
the membership y ∈ RA(K ); moreover, under some general conditions, we can get
such a measure within finitely many steps.

Second, we discuss how to check memberships in the cone PA(K ). Clearly, a
polynomial f ∈ R[x]A belongs toPA(K ) if and only if its minimum fmin over K is
nonnegative. A standard approach for computing fmin is to apply Lasserre’s hierarchy
of semidefinite relaxations (k = 1, 2, . . .):

fk = max γ s.t. f − γ ∈ I2k(h)+ Qk(g). (3.9)

Clearly, if fk ≥ 0 for some k, then f ∈PA(K ). Suppose I (h)+Q(g) is archimedean.
For all f ∈ int (PA(K )), we have fk > 0 for some k, by Proposition 3.5. For f lying
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generically on the boundary of PA(K ) (e.g., some standard optimality conditions
hold), we have fk ≥ 0 for some k (cf. [35]). For the remaining non-generic cases, it
is possible that fk < fmin for all k (cf. [33, Examples 5.3, 5.6]).

Another method for computing fmin is the Jacobian SDP relaxation proposed in
[33]. Its basic idea is to add new polynomial equalities, by using the Jacobian of
polynomials f, hi , g j . Suppose ϕ := (ϕ1, . . . , ϕL) = 0 is added (cf. [33, Section 2]).
Under some generic conditions on K but not on f (cf. Assumption 2.2 of [33]), fmin

equals the optimal value of

min f (x) s.t. ϕ(x) = 0, h(x) = 0, g(x) ≥ 0. (3.10)

This leads to the hierarchy of stronger semidefinite relaxations (k = 1, 2, . . .):

f jac
k := max γ s.t. f − γ ∈ I2k(h)+ I2k(ϕ)+ Qk(g). (3.11)

An advantage of this approach is that { f jac
k } always have finite convergence to fmin

(cf. [33, Section 4]). So, we can check whether f ∈PA(K ) or not by solving finitely
many semidefinite relaxations.

4 Linear optimization problems

Let K be as in (1.2) andA ⊆ N
n be finite. Given a1, . . . , am, c ∈ R[x]A and b ∈ R

m ,
we consider the linear optimization problem

{
cmin := min 〈c, y〉

s.t. 〈ai , y〉 = bi (i = 1, . . . ,m), y ∈ RA(K ).
(4.1)

The dual problem of (4.1) is

{
bmax := max bT λ

s.t. c(λ) := c −∑m
i=1 λi ai ∈PA(K ).

(4.2)

The conesRA(K ) andPA(K ) are hard to describe, but they can be approximated as
close as possible by the semidefinite relaxationsS k

A(K ) in (3.2) andQk
A(K ) in (3.7),

respectively (cf. Propositions 3.3, 3.5). If we relax RA(K ) by S k
A(K ), then (4.1) is

relaxed to

⎧
⎪⎨

⎪⎩

ck := min
y,w

〈c, y〉
s.t. 〈ai , y〉 = bi , i = 1, . . . ,m

y = w|A, w ∈ 	k(g) ∩ Ek(h).

(4.3)

If y is feasible in (4.3), then y ∈ S k
A(K ). The integer k in (4.3) is called a relaxation

order. The dual problem of (4.3) is
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{
bk := max

λ=(λ1,...,λm )
bT λ

s.t. c(λ) ∈ Qk(g)+ I2k(h).
(4.4)

Clearly, λ is feasible in (4.4) if and only if c(λ) ∈ Qk
A(K ). Recall the notation 	k(g),

Ek(h), Qk(g), I2k(h) from Sect. 2.2.
Clearly, we have ck ≤ cmin and bk ≤ bmax for all k. Let (y∗,k, w∗,k) be a minimizer

of (4.3), and let λ∗,k be a maximizer of (4.4). If y∗,k ∈ RA(K ), then ck = cmin and
y∗,k is a minimizer of (4.1), i.e., the relaxation (4.3) is exact for solving (4.1). In such
case, if bk = ck also holds, then bk = bmax and λ∗,k is a maximizer of (4.2). If the
relaxation (4.3) is infeasible, then (4.1) must also be infeasible. Combining the above,
we get the following algorithm.

Algorithm 4.1 A semidefinite algorithm for solving (4.1)–(4.2).
Input: c, a1, . . . , am ∈ R[x]A, b ∈ R

m and K as in (1.2).
Output: A minimizer y∗ of (4.1) and a maximizer λ∗ of (4.2), or an answer that (4.1)
is infeasible.
Procedure:

Step 0: Let k = �deg(A)/2.
Step 1: Solve the primal-dual pair (4.3)–(4.4). If (4.3) is infeasible, stop and
output that (4.1) is infeasible; otherwise, compute an optimal pair (y∗,k, w∗,k) for
(4.3) and a maximizer λ∗,k for (4.4).
Step 2: If y∗,k ∈ RA(K ), then y∗,k is a minimizer of (4.1); if in addition bk = ck ,
thenλ∗,k is amaximizer of (4.2); stop and output y∗ = y∗,k ,λ∗ = λ∗,k . Otherwise,
let k := k + 1 and go to Step 1.

Remark 4.2 Checking if y∗,k ∈ RA(K ) or not is a stopping criterion for Algo-
rithm 4.1. If there exists t ≥ deg(A)/2 such that w∗,k |2t is flat, then y∗,k ∈ RA(K ).
This gives a convenient way to terminate the algorithm. It is possible that y∗,k belongs
to RA(K ) while w∗,k |2t is not flat for all t (cf. Example 4.9). In such case, we can
apply Algorithm 4.2 of [36] to check if y∗,k ∈ RA(K ) or not.

Feasibility and infeasibility issues of (4.1)–(4.2) are more delicate. They will be
studied separately in Sect. 5. In Sect. 4.1, we prove the asymptotic and finite conver-
gence of Algorithm 4.1. In Sect. 4.2, we present some examples.

4.1 Convergence analysis

First, we prove the asymptotic convergence of Algorithm 4.1.

Theorem 4.3 Let K be as in (1.2) and A ⊆ N
n be finite. Suppose (4.1) is feasible,

(4.2) has an interior point, R[x]A is K -full, and Q(g)+ I (h) is archimedean. Then,
we have:

(i) For all k sufficiently large, (4.4) has an interior point and (4.3) has a minimizing
pair (y∗,k, w∗,k).

(ii) The sequence {y∗,k} is bounded, and eachof its accumulation points is aminimizer
of (4.1).
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(iii) The sequence {bk} converges to the maximum bmax of (4.2).

Remark 4.4 For the classical case A = N
n
d , if one of c, a1, . . . , am is positive on K ,

Lasserre [22, Theorem 1] proved ck → cmin as k → ∞. This can also be implied
by the item (ii) of Theorem 4.3, because ck = 〈c, y∗,k〉. The conclusion that each
accumulation point of {y∗,k} is a minimizer of (4.1) is a stronger property. Moreover,
the assumption that (4.2) has an interior point is weaker than that one of c, a1, . . . , am
is positive on K . Theorem 4.3 discusses more general cases of A.

Proof (of Theorem 4.3)

(i) Let λ0 be an interior point of (4.2). Then c(λ0) = c −∑m
i=1 λ0i ai > 0 on K , by

Lemma 3.1. The archimedeanness of I (h)+Q(g) implies that K is compact. So,
there exist ε0 > 0 and θ > 0 such that

c(λ)− ε0 > ε0 ∀ λ ∈ B(λ0, θ).

By Theorem 6 of [31], there exists N0 > 0 such that

c(λ)− ε0 ∈ I2N0(h)+ QN0(g) ∀ λ ∈ B(λ0, θ).

So, (4.4) has an interior point for all k ≥ N0, and the strong duality holds between
(4.3) and (4.4). Since (4.1) is feasible, the relaxation (4.3) is also feasible and has
a minimizing pair (y∗,k, w∗,k) (cf. [1, Theorem 2.4.I]).

(ii) First, we show that {y∗,k} is a bounded sequence. Let c(λ0) and ε0 be as in the
proof of (i). The set I2N0(h) + QN0(g) is dual to E2N0(h) ∩ 	N0(g). For all
k ≥ N0, we have w∗,k ∈ EN0(h) ∩	N0(g) and

0 ≤ 〈c(λ0)− ε0, w
∗,k〉 = 〈c(λ0), w∗,k〉 − ε0〈1, w∗,k〉,

〈c(λ0), w∗,k〉 = 〈c, w∗,k〉 −
m∑

i=1
λ0i 〈ai , y∗,k〉 = 〈c, w∗,k〉 − bT λ0.

Since 〈c, w∗,k〉 ≤ cmin , it holds that

〈c(λ0), w∗,k〉 ≤ T0 := cmin − bT λ0.

Combining the above, we get (denote by 0 the zero vector in Nn)

0 ≤ 〈c(λ0)− ε0, w
∗,k〉 ≤ T0 − ε0(w

∗,k)0,

(w∗,k)0 ≤ T1 := T0/ε0.

Since I (h)+ Q(g) is archimedean, there exist ρ > 0 and k1 ∈ N such that

ρ − ‖x‖22 ∈ I2k1(h)+ Qk1(g).
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So, for all k ≥ k1, we get

0 ≤ 〈ρ − ‖x‖22, w∗,k〉 = ρ(w∗,k)0 −
∑

|α|=1
(w∗,k)2α,

∑

|α|=1
(w∗,k)2α ≤ ρT1.

For each t = 1, . . . , k − k1, we have

‖x‖2t−22 (ρ − ‖x‖22) ∈ I2k(h)+ Qk(g).

The membership w∗,k ∈ 	k(g) ∩ Ik(h) implies that

ρ〈‖x‖2t−22 , w∗,k〉 − 〈‖x‖2t2 , w∗,k〉 ≥ 0, t = 1, . . . , k − k1.

The above then implies that

〈‖x‖2t2 , w∗,k〉 ≤ ρt T1, t = 1, . . . , k − k1.

Let zk := w∗,k |2k−2k1 , then the moment matrix Mk−k1(zk) � 0 and

‖zk‖2 ≤ ‖Mk−k1(zk)‖F ≤ Trace(Mk−k1(zk)) =
k−k1∑

i=0

∑

|α|=i
(w∗,k)2α,

∑

|α|=i
(w∗,k)2α =

〈
∑

|α|=i
x2α, zk

〉
≤ 〈‖x‖2i2 , zk〉 ≤ ρi T1.

The above then implies that

‖zk‖2 ≤ (1+ ρ + · · · + ρk−k1)T1.

Fix k2 > k1 such that y∗,k is a subvector of zk |k2−k1 . From y∗,k = zk |A, we get

‖y∗,k‖2 ≤ ‖zk‖2 ≤ (1+ ρ + · · · + ρk2−k1)T1.

This shows that the sequence {y∗,k} is bounded.
Second, we show that every accumulation point of {y∗,k} is a minimizer of (4.1).
Let y∗ be such an arbitrary one. We can generally further assume y∗,k → y∗ as
k → ∞. We need to show that y∗ is a minimizer of (4.1). Since K is compact,
by the archimedeanness of I (h)+ Q(g), we can generally assume K ⊆ B(0, ρ)

with ρ < 1, up to a scaling. In the above, we have shown that

‖zk‖2 ≤ T1/(1− ρ).

This implies that the sequence {zk} is bounded. Each tms zk can be extended to
a vector in R

Nn∞ by adding zero entries to the tailing. The set RNn∞ is a Hilbert
space, equipped with the inner product
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〈u, v〉 :=
∑

α∈Nn

uαvα, ∀ u, v ∈ R
Nn∞ .

So, the sequence {zk} is also bounded inRNn∞ . ByAlaoglu’s Theorem (cf. [3, The-
orem V.3.1] or [25, Theorem C.18]), it has a subsequence {zk j } that is convergent
in the weak-∗ topology. That is, there exists z∗ ∈ R

Nn∞ such that

〈 f, zk j 〉 → 〈 f, z∗〉 as j →∞

for all f ∈ R
Nn∞ . Clearly, this implies that for each α ∈ N

n

(zk j )α → (z∗)α. (4.5)

Since zk |A = y∗,k → y∗, we get z∗|A = y∗. Note that zk j ∈ 	k j (g) ∩ Ek j (h)

for all j . For each r = 1, 2, . . ., if k j ≥ 2r , then (cf. Sect. 2.1)

L(r)
hi

(z(k j )) = 0 (1 ≤ i ≤ m1), L(r)
gi (z(k j )) � 0 (0 ≤ i ≤ m2).

Hence, (4.5) implies that for all r = 1, 2, . . .

L(r)
hi

(z∗) = 0 (1 ≤ i ≤ m1), L(r)
gi (z∗) � 0 (0 ≤ i ≤ m2).

This means that z∗ ∈ R
Nn∞ is a full moment sequence whose localizing matrices

of all orders are positive semidefinite. By Lemma 3.2 of Putinar [39], z∗ admits
a K -measure. Clearly, 〈ai , y∗〉 = bi for all i . So, y∗ = z∗|A is feasible for (4.1)
and cmin ≤ 〈c, y∗〉. Because (4.3) is a relaxation of (4.1) and w∗,k is a minimizer
of (4.3), it holds that

cmin ≥ 〈c, y∗,k〉, k = 1, 2, . . .

Hence, we get

cmin ≥ lim
k→∞〈c, y

∗,k〉 = 〈c, y∗〉.

Therefore, cmin = 〈c, y∗〉 and y∗ is a minimizer of (4.1).
(iii) For each ε > 0, there exists λε such that c(λε) ∈PA(K ) and

bmax − ε < bT λε ≤ bmax .

Let λ0 be as in the proof of item (i), and let λ(ε) = (1 − ε)λε + ελ0. Then
c(λ(ε)) > 0 on K and

bT λ(ε) = (1− ε)bT λε + εbT λ0 > (1− ε)(bmax − ε)+ εbT λ0.
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By Theorem 2.1, if k is big enough, then c(λ(ε)) ∈ I2k(h)+ Qk(g) and

bk > (1− ε)(bmax − ε)+ εbT λ0.

Since bk ≤ bmax for all k, we get bk → bmax as k →∞. ��
Second, we prove the finite convergence of Algorithm 4.1 under a general assump-

tion.

Assumption 4.5 Suppose λ∗ is a maximizer of (4.2) and c∗ := c(λ∗) satisfies:

(i) There exists k1 ∈ N such that c∗ ∈ I2k1(h)+ Qk1(g);
(ii) The optimization problem

min c∗(x) s.t. h(x) = 0, g(x) ≥ 0 (4.6)

has finitely many KKT points u on which c∗(u) = 0.

Theorem 4.6 Let K be as in (1.2). Suppose (4.1) is feasible, (4.2) has an interior
point, R[x]A is K -full and Assumption 4.5 holds. If w∗,k is optimal for (4.3), then
w∗,k |2t is flat for all k > t big enough.

Remark 4.7 If c∗ is generic on the boundary of the conePA(K ), thenAssumption 4.5
holds (cf. [32,35]). For instance, if some standard optimality conditions are satisfied
for the optimization problem (4.6), then Assumption 4.5 is satisfied. Theorem 4.6
implies that Algorithm 4.1 generally converges in finitely many steps. This fact has
been observed in numerical experiments.

Proof (of Theorem 4.6) The existence of a minimizer (y∗,k, w∗,k) is shown in Theo-
rem 4.3. Because (4.1) is feasible and (4.2) has an interior point, (4.1) has a minimizer
y∗ and there is no duality gap between (4.1) and (4.2), i.e.,

0 = 〈c, y∗〉 − bT λ∗ = 〈c∗, y∗〉.

Clearly, c∗ ≥ 0 on K . Let μ∗ be a K -representing measure for y∗. Then, every point
in supp(μ∗) is a minimizer of (4.6), and the minimum value is 0. The k-th Lasserre’s
relaxation for (4.6) is (cf. [19,34])

γk := max γ s.t. c∗ − γ ∈ I2k(h)+ Qk(g). (4.7)

Then, γk = 0 for all k ≥ k1. The sequence {γk} has finite convergence. The relaxation
(4.7) achieves its optimal value for all k ≥ k1, byAssumption 4.5 (i). The dual problem
of (4.7) is

min
w

〈c∗, w〉 s.t. w ∈ 	k(g) ∩ Ek(h), w0 = 1. (4.8)
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By Assumption 4.5(ii), (4.6) has only finitely many critical points on which c∗ = 0.
So, Assumption 2.1 in [34] for the problem (4.6) is satisfied.1 Supposew∗,k is optimal
for (4.3).

If (w∗,k)0 = 0, then vec(1)T Mk(w
∗,k)vec(1) = 0 and Mk(w

∗,k)vec(1) = 0,
because Mk(w

∗,k) � 0. (Here vec(p) denotes the coefficient vector of a polynomial
p.) This implies that Mk(w

∗,k)vec(xα) = 0 for all |α| ≤ k− 1 (cf. [28, Lemma 5.7]).
For all |α| ≤ 2k − 2, we can write α = β + η with |β|, |η| ≤ k − 1, and get

(w∗,k)α = vec(xβ)T Mk(w
∗,k)vec(xη) = 0.

So, the truncation w∗,k |2k−2 is flat.
If (w∗,k)0 > 0, we can scale w∗,k such that (w∗,k)0 = 1. Then w∗,k is a minimizer

of (4.8) because 〈c∗, w∗,k〉 = 0 for all k ≥ k1. By Theorem 2.2 of [34], w∗,k has a flat
truncation w∗,k |2t for some t ≥ deg(A)/2, for all k sufficiently large. ��

4.2 Some examples

Semidefinite relaxations (4.3) and (4.4) can be solved by GloptiPoly 3 [18].

Example 4.8 Let K be the simplex �n = {x ∈ R
n+ : x1 + · · · + xn = 1} and

A = {α ∈ N
n : |α| = 2}. Then PA(�n) is the cone of n × n copositive matrices

(denoted as Co(n)), and RA(�n) is the cone of n × n completely positive matrices
(denoted as Cp(n)). The simplex �n is defined by the tuples h = (x1 + · · · + xn − 1)
and g = (x1, . . . , xn), as in (1.2).

(i) Let c = (x1 + · · · + x6)2 and a1 = x1x2 − x2x3 + x3x4 − x5x6 + x6x1. We want
to know the maximum λ such that c − λa1 ∈ Co(6). We formulate this problem
in the form (4.2) and then solve it by Algorithm 4.1. For k = 2, y∗,2 ∈ Cp(6)
(because it admits the measure 4δ(1/2,1/4,0,0,0,1/4)) and λ∗,2 = 4. Since ck = bk

for k = 2, we know the maximum λ for the above is 4.
(ii) Consider the matrix

C =

⎡

⎢⎢⎢⎢⎣

∗ 1 2 3 4
1 ∗ 1 2 3
2 1 ∗ 1 2
3 2 1 ∗ 1
4 3 2 1 ∗

⎤

⎥⎥⎥⎥⎦

where each ∗ means the entry is not given. We want to know the smallest trace
of C such that C ∈ Cp(5). We formulate this problem in the form (4.1) and then
solve it by Algorithm 4.1. For k = 2, y∗,2 ∈ RA(�5) (verified by Algorithm 4.2

1 In [34], optimization problems with only inequalities were discussed. If there are equality constraints,
Assumption 2.1 in [34] can be naturallymodified to include all equalities, and the conclusion of Theorem 2.2
of [34] is still true, with the same proof.
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of [36]). So, the minimum trace of C ∈ Cp(5) is 20.817217,2 while the diago-
nal entries C11, . . . ,C55 are 6.031873, 3.968627, 0.816217, 3.968627, 6.031873,
respectively.

��
Example 4.9 Let K = B(0, 1) be the unit ball in R

2 and A = N
4
6. We want to know

the maximum λ1 + λ2 such that

x41 x
2
2 + 6x21 x

2
2 + 4x1x

4
2 + x62 + x22 − λ1(x

3
1 x

2
2 + x1x

2
2 )− λ2(x

2
1 x

4
2 + x42 ) ∈PA(K ).

We formulate this problem in the form (4.2) and then solve it by Algorithm 4.1. When
k = 3, y∗,3 ∈ RA(K ) (verified by Algorithm 4.2 of [36]), and λ∗,3 = (4, 2). Since
ck = bk for k = 2, the optimal (λ1, λ2) in the above is (4, 2). ��
Example 4.10 Let K = S

2 and A = {α ∈ N
3 : |α| = 6}. Then, PA(K ) = P3,6 and

RA(K ) is the cone of sextic tms’ admitting measures supported in S2.

(i) The form c = x61 + x62 + x63 lies in the interior of P3,6. Let

a1 = x21 x
4
2 + x22 x

4
3 + x23 x

4
1 , a2 = x31 x

3
2 + x32 x

3
3 + x33 x

3
1 , a3 = x51 x2 + x52 x3 + x53 x1.

We want to know the maximum λ1 + λ2 + λ3 such that

c − λ1a1 − λ2a2 − λ3a3 ∈ P3,6.

We formulate this problem in the form (4.2) and then solve it by Algorithm 4.1.
When k = 3, y∗,3 ∈ RA(K ) (it admits the measure 9δ(1,1,1)/

√
3), and

λ∗,3 = (−1.440395, 2.218992, 0.221403).

Since ck = bk for k = 2, we know λ∗,3 is optimal for the above.
(ii) We want to know the minimum value of

∫
(x61 + x62 + x63)dμ for all measures μ

supported in S2 such that
∫

x31 x
3
2dμ =

∫
x32 x

3
3dμ =

∫
x33 x

3
1dμ,

∫
x21 x

2
2 x

2
3dμ = 1,

∫
(x41 x

2
2 + x42 x

2
3 + x43 x

2
1 )dμ = 3.

We formulate the problem in the form (4.1) and then solve it by Algorithm 4.1.
When k = 3, y∗,3 ∈ RA(K ) because it admits the measure

27

4

(
δ(1,1,1)/

√
3 + δ(−1,1,1)/√3 + δ(1,−1,1)/√3 + δ(1,1,−1)/√3

)
.

So, the minimum of
∫
(x61 + x62 + x63)dμ for μ satisfying the above is 3.

��

2 Throughout the paper, six decimal digits are shown for numerical results.

123



266 J. Nie

If a linear optimization problem with coneRA(K ) is given in the form (4.2), it can
also be equivalently formulated in the form (4.1). For instance, given z0, . . . , zm ∈ R

A
and � = (�1, . . . , �m) ∈ R

m , consider the problem

{
max �1λ1 + · · · + �mλm
s.t. z0 − λ1z1 − · · · − λmzm ∈ RA(K ).

(4.9)

Let {p1, . . . , pr } be a basis of the orthogonal complement of span{z1, . . . , zm}. Then,
y ∈ z0 + span{z1, . . . , zm} if and only if

pT1 y = pT1 z0, . . . , p
T
m y = pTmz0.

We can consider each pi as a polynomial in R[x]A. Let Z = [
z1 · · · zm

]
. Assume

rank(Z) = m. If y = z0 − Zλ, then

λ = (ZT Z)−1ZT (z0 − y).

Let p0 be a polynomial in R[x]A such that

〈p0, y〉 = �T (ZT Z)−1ZT y = �T λ.

Then (4.9) is equivalent to

{
min 〈p0, y〉
s.t. 〈pi , y〉 = pTi z0 (i = 1, . . . ,m), y ∈ RA(K ).

(4.10)

If y∗ is a minimizer of (4.10), then

λ∗ = (ZT Z)−1ZT (z0 − y∗)

is a maximizer of (4.9). Similarly, every linear optimization problem with cone
PA(K ), which is given in the form (4.1), can also be formulated like (4.2).

Example 4.11 Let K = S
n−1 andA = {α ∈ N

n : |α| = d} (d is even). ThenRA(K )

is equivalent to Qn,d , the cone of sums of d-th powers of real linear forms in n variables
(cf. [36, Sec. 6.2]).

(i) The sextic form (x21 + x22 + x23 )
3 belongs to Q3,4 (cf. [41]). We want to know the

maximum λ such that

(x21 + x22 + x23 )
3 − λ(x61 + x62 + x63) ∈ Q3,6.

The problem is equivalent to finding the biggest λ such that z0 − λz1 ∈ RA(K ),

where z0, z1 are tms’ whose entries are zeros except

(z0)(6,0,0) = (z0)(0,6,0) = (z0)(0,0,6) = 1, (z0)(2,2,2) = 1/15,

(z0)(4,2,0) = (z0)(2,4,0) = (z0)(0,4,2) = (z0)(0,2,4)=(z0)(4,0,2)=(z0)(2,0,4)=1/5,

(z1)(6,0,0) = (z1)(0,6,0) = (z1)(0,0,6) = 1.
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We formulate this problem in the form (4.10) and then solve it by Algorithm 4.1.
For k = 4, y∗,4 ∈ RA(K ) (verified by Algorithm 4.2 of [36]), and λ∗,4 = 2/3.
Since ck = bk for k = 4, the maximum λ in the above is 2/3, which confirms the
result of Reznick [41, p. 146].

(ii) We want to know the maximum λ1 + λ2 such that

(x21 + x22 + x23 )
3 − λ1(x

3
1 x

3
2 + x32 x

3
3 + x33 x

3
1)− λ2x

2
1 x

2
2 x

2
3 ∈ Q3,6.

The problem is equivalent to

max λ1 + λ2 s.t. z0 − λ1z1 − λ2z2 ∈ RA(K )

where z0 is same as in (i) and z1, z2 are tms’ whose entries are zeros except

(z1)(3,3,0) = (z1)(3,0,3) = (z1)(0,3,3) = 1/20, (z2)(2,2,2) = 1/90.

We formulate this problem in the form (4.10) and solve it by Algorithm 4.1. For
k = 3, y∗,3 ∈ RA(K ) (verified by Algorithm 4.2 of [36]), and λ∗,3 = (2, 6).
Since ck = bk for k = 3, we know the optimal λ in the above is (2, 6). The SOEP
decomposition of the polynomial (x21 + x22 + x23 )

3 − 2(x31 x
3
2 + x32 x

3
3 + x33 x

3
1)−

6x21 x
2
2 x

2
3 is

7

50

∑

1≤i< j≤3
(xi − x j )

6 +
∑

1≤i 	= j≤3

⎛

⎝
(

1√
10
−
√
2

5

)1/3

xi +
(

1√
10
+
√
2

5

)1/3

x j

⎞

⎠
6

.

��

5 Feasibility and infeasibility

A basic question in linear optimization is to check whether a cone intersects an affine
subspace or not. For the cones RA(K ) and PA(K ), this question is about checking
whether the optimization problems (4.1) and (4.2) are feasible or not. If they are
feasible, we want to get a feasible point; if they are not, we want a certificate for the
infeasibility.

5.1 Finding feasible points

First, we discuss how to check whether (4.1) is feasible or not. Suppose a1, . . . , am ∈
R[x]A and b ∈ R

m are given as in (4.1), while the objective c is not necessarily
given. Generally, we can assume R[x]A is K -full.

(
Otherwise, if R[x]A is not K -

full, let A′ := A ∪ {0}, then R[x]A′ is always K -full because 1 ∈ R[x]A′ . Since
a1, . . . , am ∈ R[x]A, (4.1) is feasible if and only if there exists w ∈ R

A′ satisfying

〈ai , w〉 = bi (1 ≤ i ≤ m), w ∈ RA′(K ). (5.1)
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This is because: (i) if y is feasible for (4.1), then y can be extended to a tms w ∈
RA′(K ), i.e., y = w|A (cf. [36, Prop. 3.3]), and such w satisfies (5.1); (ii) if w

satisfies (5.1), then the truncation y = w|A satisfies (4.1).
)

Choose c ∈ R[x]A such that c > 0 on K . Consider the resulting optimization
problems (4.1) and (4.2). For such c, the dual problem (4.2) has an interior point. We
can apply Algorithm 4.1 to solve (4.1)–(4.2). If (4.1) is feasible, we can get a feasible
point of (4.1).

Example 5.1 Let A = N
3
6 and K = [−1, 1]3 be the unit cube, which is defined by

h = (0) and g = (1 − x21 , 1 − x22 , 1 − x23 ). We want to know whether there exists a
measure μ supported in [−1, 1]3 such that

∫
(x1x2 + x2x3 + x3x1)dμ = 0,

∫
(x21 x

2
2 + x22 x

2
3 + x23 x

2
1 )dμ = 1,

∫
(x31 x

2
2 + x32 x

2
3 + x33 x

2
1 )dμ = 1.

Let a1, a2, a3 be the polynomials inside the above integrals, respectively. This problem
is equivalent to whether there exists y ∈ RA([−1, 1]3) satisfying

〈a1, y〉 = 0, 〈a2, y〉 = 1, 〈a3, y〉 = 1.

Choose c =∑0≤|α|≤3 x2α . For k = 3, y∗,3 admits the measure 1
2δ(0,1,−1)+ 1

6δ(1,1,1),

which satisfies the above. ��
Second, we discuss how to check whether (4.2) is feasible. Suppose c, a1, . . . , am ∈
R[x]A are given, while b is not necessarily. Let k = �deg(A)/2. Solve the semidef-
inite feasibility problem

c − λ1a1 − · · · − λmam ∈ Qk(g)+ I2k(h). (5.2)

If (5.2) is feasible, we can get a feasible point of (4.2); if not, let k := k + 1 and
solve (5.2) again. Repeat this process. If the affine subspace c + span{a1, . . . , am}
intersects the interior of PA(K ), we can always find a feasible point of (4.2) by
solving (5.2). This can be implied by Proposition 3.5, under the archimedeanness. If
c + span{a1, . . . , am} intersects a generic point of the boundary of PA(K ), we can
also get a feasible point of (4.2) by solving (5.2) (cf. [35]). In the remaining cases, it
is still an open question to find a feasible point of (4.2) by using SOS relaxations, to
the best of the author’s knowledge.

Example 5.2 We want to find λ1, λ2 such that c − λ1a1 − λ2a2 ∈ P3,6, where

c = x21 (x
4
1 + x22 x

2
3 − x21 (x

2
2 + x23 )), a1 = x22 (x

4
2 + x23 x

2
1 − x22 (x

2
3 + x21 )),

a2 = x23 (x
4
3 + x21 x

2
2 − x23 (x

2
1 + x22 )).

For k = 4, (5.2) is feasible with (λ1, λ2) = (−1,−1). ��
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5.2 Infeasibility certificates

First, we prove a certificate for the infeasibility of (4.1). Suppose a1, . . . , am ∈ R[x]A
and b ∈ R

m are given, while c is not necessarily.

Lemma 5.3 Let K be as in (1.2). Then, we have:

(i) The problem (4.1) is infeasible if (4.3) is infeasible for some order k; (4.3) is
infeasible if there exist λ and k such that

bT λ < 0, λ1a1 + · · · + λmam ∈ Qk(g)+ I2k(h). (5.3)

(ii) Suppose I (h)+ Q(g) is archimedean and there exists a ∈ span{a1, . . . , am} such
that a > 0 on K . If (4.1) is infeasible, then (5.3) holds for some λ, k and (4.3) is
infeasible.

Proof

(i) The problem (4.3) is a relaxation of (4.1), i.e., the set of feasible y in (4.1) is
contained in that of (4.3). Clearly, if (4.3) is infeasible, then (4.1) is also infeasible.
If (5.3) holds for some λ, k, then (4.3) must be infeasible, because any feasible y
in (4.3) would result in the contradiction

0 > bT λ =
m∑

i=1
λi 〈ai , y〉 =

〈
m∑

i=1
λi ai , y

〉
≥ 0.

(ii) Suppose (4.1) is infeasible. Consider the optimization problem

max 0 s.t. 〈ai , y〉 = bi (i = 1, . . . ,m), y ∈ RA(K ). (5.4)

Its dual problem is

min
λ∈Rm

bT λ s.t. λ1a1 + · · · + λmam ∈PA(K ). (5.5)

By the assumption, RA(K ) and PA(K ) are closed convex cones (cf. Proposi-
tion 3.2), and (5.5) has an interior point. So, the strong duality holds and (5.5) must
be unbounded from below (cf. [1, Theorem 2.4.I]), i.e., there exists λ̂ satisfying

bT λ̂ < 0, λ̂1a1 + · · · + λ̂mam ∈PA(K ).

By the assumption, there exists λ̄ such that λ̄1a1 + · · · + λ̄mam > 0 on K . For
ε > 0 small, λ := λ̂+ ελ̄ satisfies (5.3) for some k, by Theorem 2.1. By item (i),
we know (4.3) is infeasible.

��
Here is an example for the infeasibility certificate (5.3).
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Example 5.4 Let A = N
2
6 and K = S

1 be the unit circle in R
2, defined by h =

(x21+ x22−1) and g = (0) as in (1.2). We want to knowwhether there exists a measure
μ supported in S1 such that

∫
x21 x

2
2dμ = 1,

∫
(x41 + x42 )dμ = 1,

∫
(x61 + x62)dμ = 1.

This is equivalent to checking whether there exists y ∈ RA(S1) satisfying

〈a1, y〉 = 1, 〈a2, y〉 = 1, 〈a3, y〉 = 1,

with a1 = x21 x
2
2 , a2 = x41 + x42 , a3 = x61 + x62 . Indeed, such anA-tms y does not exist,

because (5.3) is satisfied for λ = (−3, 1, 1): λ1 + λ2 + λ3 < 0 and

−3a1 + a2 + a3 = 2(x21 − x22 )
2 + (x41 − x21 x

2
2 + x42)h ∈ I6(h)+ Q3(g).

By Lemma 5.3, the above measure μ does not exist. ��
Second, we give a certificate for the infeasibility of (4.2). Suppose c, a1, . . . , am ∈
R[x]A are given, while b is not necessarily.

Lemma 5.5 Let K be compact and c, a1, . . . , am ∈ R[x]A be given.

(i) Problem (4.2) is infeasible if there exists y satisfying

cT y < 0, 〈ai , y〉 = 0 (i = 1, . . . ,m), y ∈ RA(K ). (5.6)

(ii) Suppose there does not exist 0 	= a ∈ span{a1, . . . , am} such that a ≥ 0 on K . If
(4.2) is infeasible, then there exists y satisfying (5.6).

Remark 5.6 Clearly, if there exists a ∈ span{a1, . . . , am} such that a > 0 on K ,
then (4.2) must be feasible. Therefore, for (4.2) to be infeasible, none of polynomials
in span{a1, . . . , am} can be positive on K . So, the assumption in Lemma 5.5 (ii) is
almost necessary for (4.2) to be infeasible. Indeed, it cannot be removed. For instance,
consider K = S

1 and A = {|α| = 2}. Choose c, a1 such that c(λ) = x1x2 − λ1x21 .
Clearly, c(λ) /∈PA(S1) for all λ. For all y ∈ RA(S1), if 〈a1, y〉 = 0, then 〈c, y〉 = 0.
This is because

∣∣∣∣
∫

x1x2dμ

∣∣∣∣ ≤
(∫

x21dμ

)1/2 (∫
x22dμ

)1/2

for all nonnegative measure μ, by the Cauchy-Schwarz inequality. So, there is no y
satisfying (5.6), while (4.2) is infeasible.

Proof (of Lemma 5.5)

(i) Suppose (5.6) holds. If (4.2) has a feasible λ, then we get

0 ≤ 〈c(λ), y〉 = 〈c, y〉 − λ1〈a1, y〉 − · · · − λm〈am, y〉 = 〈c, y〉 < 0,

a contradiction. So (4.2) must be infeasible if (5.6) is satisfied.
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(ii) Without loss of generality, we can assume a1, . . . , am are linearly independent in
the quotient space R[x]/I (K ) (i.e., the space of polynomial functions defined on
K [4], where I (K ) is the ideal of all polynomials p such that p ≡ 0 on K ). We
show that there exists T > 0 such that

PA(K ) ∩ (c + span{a1, . . . , am}) ⊆ B(0, T ). (5.7)

(The left above intersection might be empty.) Suppose otherwise such T does
not exist, then there exists a sequence {λk} such that ‖λk‖2 → ∞ and c(λk) ∈
PA(K ) for all k. The sequence {λk/‖λk‖2} is bounded. We can generally assume
λk/‖λk‖2 → λ∗ 	= 0. Clearly, c(λk)/‖λk‖2 ∈PA(K ) for all k. So,

c(λk)/‖λk‖2 → a∗ := −(λ∗1a1 + · · · + λ∗mam) ∈PA(K ).

Since a1, . . . , am are linearly independent in R[x]/I (K ) and λ∗ 	= 0, we know
a∗|K 	≡ 0 and a∗|K ≥ 0. This contradicts the given assumption. So (5.7) must be
satisfied for some T > 0. Let

C1 = {p ∈PA(K ) | ‖p‖2 ≤ T }, C2 = c + span{a1, . . . , am}.

By (5.7), (4.2) is infeasible if and only if C1 ∩ C2 = ∅. Because K is compact,
the set C1 is compact convex, and C2 is closed convex. By the strict convex set
separation theorem, they do not intersect if and only if there exists y ∈ R

A and
τ ∈ R such that

〈p, y〉 > τ ∀ p ∈ C1,

〈p, y〉 < τ ∀ p ∈ C2.

The first above inequality implies τ < 0 and y ∈ RA(K ), and the second one
implies cT y < 0 and 〈ai , y〉 = 0 for all i . Thus, this y satisfies (5.6). ��
The certificate (5.6) can be checked by solving the feasibility problem:

cT y = −1, 〈ai , y〉 = 0 (i = 1, . . . ,m), y ∈ RA(K ). (5.8)

Example 5.7 Let K = S
2 and A = {α ∈ N

n : |α| = 6}. Then PA(K ) equals P3,6,
the cone of nonnegative ternary sextic forms. We want to know whether there exist
λ1, λ2, λ3 such that

x21 x
2
2 (x

2
1 + x22 − 4x23 )+ x63︸ ︷︷ ︸

c

−λ1 x
3
1 x

3
2︸︷︷︸

a1

−λ2 x
3
1 x

3
3︸︷︷︸

a2

−λ3 x
3
2 x

3
3︸︷︷︸

a3

∈ P3,6.

Indeed, there are no λ1, λ2, λ3 satisfying the above. To get a certificate for this, solve
the feasibility problem (5.8). It has a feasible tms y that admits the finitely atomic
measure 27

4

(
δ(1,1,1)/

√
3 + δ(−1,1,1)/√3 + δ(1,−1,1)/√3 + δ(1,1,−1)/√3

)
. ��
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6 Appendix: Checking K -fullness

Recall that R[x]A is K -full if there exists p ∈ R[x]A that is positive on K . We can
check whether R[x]A is K -full or not as follows. Clearly, R[x]A is K -full if and only
if there exists λ ∈ R

A such that

∑

α∈A
λαx

α − 1 ∈PA′(K ), (6.1)

where A′ = A ∪ {0}. Since 1 ∈ PA′(K ), R[x]A′ is always K -full. Thus, checking
K -fullness is reduced to solving a feasibility/infeasiblity issue. This question was
discussed in Sect. 5. Suppose K is a compact semialgebraic set as in (1.2). IfR[x]A is
K -full, we can get a λ satisfying (6.1) (cf. Sect. 5.1). IfR[x]A is not K -full, we can get
a certificate for nonexistence of such λ, under a general assumption (cf. Lemma 5.5).
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