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Abstract It is well known that the gap between the optimal values of bin packing
and fractional bin packing, if the latter is rounded up to the closest integer, is almost
always null. Known counterexamples to this for integer input values involve fairly large
numbers. Specifically, the first one was derived in 1986 and involved a bin capacity of
the order of a billion. Later in 1998 a counterexample with a bin capacity of the order
of a million was found. In this paper we show a large number of counterexamples
with bin capacity of the order of a hundred, showing that the gap may be positive
even for numbers which arise in customary applications. The associated instances are
constructed starting from the Petersen graph and using the fact that it is fractionally,
but not integrally, 3-edge colorable.
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1 Introduction

Given n items each having a non-negative integer weight w j ( j = 1, . . . , n) and
sufficiently many bins of identical integer capacity C , the Bin Packing Problem (BPP)
asks for the minimum number of bins that can accommodate all the items. The BPP is
strongly NP-hard and computationally challenging even for moderate-size instances.

It is one of the most important problems in combinatorial optimization, because
models a large variety of real-world applications. The associated literature is enormous.
We refer the interested reader to the following surveys: [1] (approximation algorithms),
[2] (linear programming models) and [3] (lower bounds).

1.1 Set partitioning formulation

Effective exact algorithms for the BPP are usually based on the classical formulation by
[4,5]. This method characterizes the BPP by using the set of all feasible combinations
of items inside a bin. Since this set is of exponential size, column generation techniques
are generally needed to solve the associated linear programming relaxation, which is
known as the Fractional BPP (FBPP). Then, branch-and-price is generally used to
achieve an integer solution.

We define a pattern P as a subset of items that fits into a bin. We describe the
pattern by a column (a1P , . . . , a j P , . . . , an P )T ∈ {0, 1}n , where a j P takes value 1 if
item j is in pattern P , 0 otherwise. Let P be the family of all valid patterns, i.e., the
set of patterns P for which

n∑

j=1

w j a j P ≤ C. (1)

Let also zP be a binary variable taking the value 1 if pattern P is used, 0 otherwise
(P ∈ P). The BPP can be modeled as the following Set Partitioning Problem:

min
∑

P∈P
zP (2)

∑

P∈P
a j P zP = 1, j = 1, . . . , n, (3)

zP ∈ {0, 1}, P ∈ P, (4)

where constraints (3) impose that each item j is packed in one bin. The FBPP is then
obtained by replacing (4) with 0 ≤ zP ≤ 1, P ∈ P .
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Friendly bin packing instances 7

It is well known that the FBPP can be solved by generating columns by solving a
Knapsack Problem. Indeed, the FBPP is the customary example of column generation
given in textbooks. Since the FBPP can be handled effectively despite the potentially
huge number of variables, model (2)–(4) is the mathematical programming formula-
tion of the BPP that is used in practice. It has two huge advantages over the descriptive
formulation with binary variables indicating if a bin is used and if an item is packed
in a bin. First of all, the descriptive formulation is widely symmetric, whereas in the
formulation (2)–(4) there is no symmetry at all. Second, while the optimal value of the
linear relaxation of the descriptive formulation is the trivial lower bound

∑n
j=1 w j/C ,

the optimal FBPP value is a very strong lower bound, as discussed in the next
section.

A variant of the FBPP studied in the literature, see, e.g., [6,7], is the one in which
patterns satisfy the capacity constraint but may contain an arbitrarily large number
of copies of each item. According to [8], we call this variant the Unbounded FBPP.
The optimal value of the Unbounded FBPP is a worse lower bound than the one of
the FBPP, see [8], and the only slight practical advantage for using this variant is
that generating columns, by the solution of Unbounded Knapsack Problems, is a bit
simpler.

1.2 The Integer Round-up Property and counterexamples

Anybody doing computational experiments with the formulation (2)–(4) would notice
that, basically in all cases, the optimal FBPP value, rounded up to the closest inte-
ger, yields the optimal BPP value. The latter property is called the Integer Round-up
Property.

The fact that the Integer Round-up Property cannot hold in general follows if one
assumes P �= NP , given that the BPP is strongly NP-hard and the FBPP solvable in
pseudo-polynomial time by the ellipsoid algorithm (this fact is mentioned explicitly,
e.g., in [8]).

Nevertheless, the first explicit BPP instance without the Integer Round-up Property
was presented by Marcotte [9], and had C = 3,397,386,255 (see Table 1). Such a
large number was derived by making use of a strong NP-completeness reduction of
4-Partition, in which the numbers are defined in a complicated way. In [9], it is stated
that “in any counterexample to the Integer Round-up Property, the numbers are likely
to be of the same order of magnitude”. This is in fact not the case, as shown already
by Chan et al. [10], where a counterexample with C = 1,111,139 is given. Moreover,
while for the instance given in [9] the optimal BPP solution value is 6 and the optimal
FBPP solution value is 5 (even before rounding), the instance given in Chan et al. [10]
is best possible in terms of relative integrality gap as these values are respectively 4
and 3 (and it is easy to see that, in case the optimal FBPP value is at most 2 the same
holds for the optimal BPP value, see, e.g., [8]). Specifically, the instance in Chan et al.
[10] is used within the proof of the main result in that paper, namely that the worst-case
absolute ratio between the optimal BPP and FBPP value is 4/3.

Note that for the Unbounded FBPP it is much easier to construct examples with-
out the Integer Round-up Property, e.g., for the instance with C = 132, n = 11
and (w j ) = (44, 44, 33, 33, 33, 12, 12, 12, 12, 12, 12), mentioned in [11], the opti-
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mal BPP solution value is 3 and the optimal Unbounded FBPP solution value (after
rounding) is 2.

We conclude this short review by mentioning the main open problem related with
the Integer Round-up Property, namely the so-called Modified Integer Round-up Con-
jecture, stating that the maximum difference between the optimal BPP and the optimal
rounded-up FBPP solution values is 1. This is open also if the FBPP is replaced by
its Unbounded version. For the state-of the-art on this conjecture see [12] and the
references therein.

1.3 Edge coloring: a well-understood counterpart

A natural counterpart of the BPP is the Edge Coloring Problem (ECP). Consider an
undirected graph G = (V, E), and for each vertex i ∈ V let δ(i) denote the set of
edges incident to i . G is called k-regular if |δ(i)| = k for all i ∈ V . Recall that M ⊆ E
is called a matching if |M ∩ δ( j)| ≤ 1 for all j ∈ V . Given a weight w j associated
with each edge j ∈ E and a subset of edges M ⊆ E , we let w(M) := ∑

j∈M w j .
The ECP calls for a partition of the edge set E into the minimum number of match-

ings. Its Fractional ECP (FECP) counterpart can be formulated as the LP relaxation
of the Set Partitioning Problem (2)–(4), where now P denotes the collection of all
the matchings of G and, for P ∈ P and j ∈ E , a j P = 1 if edge j is in matching
P .

For simple graphs, without parallel edges, a lot is known about the relation between
ECP and FECP. It is elementary to see that the optimal FECP value is at least the
maximum degree maxi∈V |δ(i)|. Then, Vizing’s theorem, which states that the optimal
ECP value is at most the maximum degree plus 1, implies that the difference between
the ECP and FECP optimal values is at most one. The smallest example (in all respects:
ECP optimal value, number of vertices, number of edges) for which this happens is
the famous Petersen Graph, which is 3-regular. In other words, the Petersen Graph is
the smallest counterexample to the Integer Round-up Property for the ECP.

2 Much simpler counterexamples from edge coloring

Instances with the numbers as in the counterexamples in Marcotte [9] and Chan et al.
[10] appear to be unlikely to arise in practice. In this paper we show that the Integer
Round-up Property does not hold for instances involving much smaller numbers.
Indeed, the smallest instance that we could find, in terms of capacity, has C = 100,
24 items and weights ranging form 22 to 61. The smallest instance in terms of number
of items has 13 items, C = 146 and weights ranging form 5 to 65. In addition, we
found several thousands such instances, associated with the solution of suitable Integer
Linear Programs. We call these instances friendly because of their very small size.

Table 1 gives a brief overview of the state of the art before and after our work. For
most of our instances, the optimal BPP and FBPP solution values are, respectively, 4
and 3. The key idea to construct these instances is to start from ECP counterexamples.
Their structure allows one to easily check that the Integer Round-up Property does not
hold.
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Friendly bin packing instances 9

Table 1 BPP instances for which the Integer Round-up Property does not hold

Paper Smallest C Smallest n No. of instances proposed

Marcotte [9] 3,397,386,255 24 1

Chan et al. [10] 1,111,139 15 1

This work 100 13 Several thousands

2.1 The key idea

Proposition 1 Consider a k-regular graph G = (V, E) for which the optimal ECP
and FECP solution values are respectively k + 1 and k. Suppose there exist a positive
integer C and a positive integer weight w j for each edge j ∈ E such that, for each
M ⊆ E, w(M) = C if and only if M is a perfect matching. Then, the BPP instance
with capacity C and one item of weight w j for each edge j ∈ E does not have the
Integer Round-up Property.

Proof All the positive variables in the optimal FECP solution z∗ must correspond
to perfect matchings, i.e., each must correspond to a subset of |V |/2 edges, since:
(i)

∑n
j=1 a j P ≤ |V |/2 holds for all P ∈ P; (ii) the FECP constraints imply∑n

j=1
∑

P∈P a j P z∗
P = ∑

P∈P (
∑n

j=1 a j P )z∗
P = |E | = k|V |/2; and (iii) the objec-

tive function is such that
∑

P∈P z∗
P = k, which is possible only if

∑n
j=1 a j P = |V |/2

for all z∗
P > 0. (Observe that this also implies that |V | is even for the graphs we

consider.) The FECP solution also defines an optimal FBPP solution for the instance
defined in the statement, since the sum of the item weights is exactly kC , implying a
lower bound of k on the FBPP solution.

If there was an optimal BPP solution of value k, all associated bins would be exactly
filled to their capacity. By the property in the statement, the set of items in each bin
would then correspond to a perfect matching M of G, i.e., E could be partitioned into
perfect matchings, i.e., the optimal ECP solution would have value k, which is not the
case by the choice of G. This implies that the optimal BPP solution has value at least
k + 1, i.e., the instance defined does not have the Integer Round-up Property.

The simplest example of weights that meet the requirement in Proposition 1 is
probably the following.

Proposition 2 Consider a k-regular graph G = (V, E) and number its vertices from
0 to |V | − 1 in an arbitrary way. Let C := ∑|V |−1

i=0 ki , and, for each edge (i, h) ∈ E,
let w(i,h) := ki + kh. Then, for each M ⊆ E, w(M) = C if and only if M is a perfect
matching.

Proof The if part is implied by the definition of C . In order to show the only if one,
note that C is equal to 1, . . . , 1 (with |V | digits) in base k. Given M ⊆ E with
w(M) = C , we prove by induction on i that M contains exactly one edge incident
with each vertex i ∈ V . The basis of the induction, i = 0, follows from the fact that
the least significant digit of w(M) (in base k) is equal to |M ∩ δ(0)| modulo k, and
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can be 1 only if |M ∩ δ(0)| = 1, since |δ(0)| = k. The main induction step is proved
similarly, considering that, at iteration i , M contains exactly one edge incident on
vertices 0, . . . , i − 1, and the i−th digit of w(M) can be 1 only if |M ∩ δ(i)| = 1.

The idea in Proposition 1 guides our computational search of counterexamples with
small C , so eventually it is the one leading to our best result in terms of minimum
number of items. However, if the aim is to construct on the paper such counterexamples,
we can relax the fairly tight requirement that w(M) = C only if M is a perfect
matching, and assign weights as in Proposition 2 with the powers of k replaced by
powers of 2.

Proposition 3 Consider a k-regular graph G = (V, E) for which the optimal ECP
and FECP solution values are respectively k +1 and k, and number its vertices from 0
to |V | − 1 in an arbitrary way. Let C := ∑|V |−1

i=0 2i , and, for each edge (i, h) ∈ E, let
w(i,h) := 2i + 2h. Then, the BPP instance with capacity C and one item j of weight
w j = w(i,h) for each edge (i, h) ∈ E does not have the Integer Round-up Property.

Proof With respect to the proof of Proposition 1, we have to exclude the existence
of a BPP solution of value k by a different argument. If such a solution existed, there
would be a partition of E into k edge subsets M1, . . . , Mk such that w(Mi ) = C
for i = 1, . . . , k. Reasoning as in the proof of Proposition 2, each of these subsets
would contain at least one edge incident with 0, which implies that each of them would
contain exactly one such edge, since |δ(0)| = k. Again, induction on i shows that each
of M1, . . . , Mk would be a perfect matching, and the optimal ECP solution would have
value k, a contradiction.

Since our aim is to find instances with small values of C , we can improve upon
Proposition 3 as follows.

Proposition 4 Consider a k-regular graph G = (V, E) for which the optimal ECP
and FECP solution values are respectively k + 1 and k, and number its vertices
from 0 to |V | − 1 in an arbitrary way. Assign weight ρ(i) := 2i−1 to each vertex
i in 1, . . . , |V | − 1, and set ρ(0) = 0. Let C := ∑|V |−1

i=1 2i−1, and, for each edge
(i, h) ∈ E, let w(i,h) := ρ(i) + ρ(h). Then, the BPP instance with capacity C and
one item j of weight w j = w(i,h) for each edge (i, h) ∈ E does not have the Integer
Round-up Property.

Proof Reasoning as in the proof of Proposition 3, we exclude, by contradiction, the
existence of a BPP solution M1, . . . , Mk . Using an induction on vertices 1, . . . , |V |−1,
we can show that each edge subset Mi contains exactly one edge incident with these
vertices. From the proof of Proposition 1 we know that |V | is even in the graph we
are considering, and hence each edge subset must contain at least one edge incident
with 0. Since |δ(0)| = k, each subset Mi is a perfect matching, and hence the optimal
ECP solution would have value k, a contradiction.

We conclude this part by observing that the edge weights in the statement of Propo-
sition 4 are in some sense as small as possible.
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Fig. 1 The Petersen graph and a counterexample derived from Proposition 4. a Vertex indices, b vertex
weights, c edge weights

Observation 1 If P �= NP , for every fixed k ≥ 3, there does not exist an alternative
version of Proposition 4 in which the edge weights are polynomial in |V | and |E |.
Proof Note first of all that, by assigning weights to the edges of a generic k-regular
graph G as in Proposition 4, we can test if the optimal ECP value for G is k by testing
if the associated optimal BPP value is k. More precisely, if the BPP value is k, then all
bins in an optimal solution correspond to perfect matchings of G and the associated
ECP solution has value k. Otherwise, the BPP value is larger than k and the edges of
G cannot be partitioned into perfect matchings, so the ECP solution value is larger
than k.

Now, testing if the optimal ECP value for a generic k-regular graph is k is strongly
NP-complete for every fixed k ≥ 3. On the other hand, testing if the optimal BPP
value is k, for k fixed and not part of the input, can be done in pseudopolynomial
time (i.e., in time polynomial in n and C), by dynamic programming, where a generic
state indicates the total weight in each bin after having packed the items up to j (there
are O(nCk) states in total). Therefore, if there existed the alternative version in the
statement, we could check in polynomial time if the optimal ECP value is k.

2.2 Counterexamples derived from the Petersen graph

The smallest graph fulfilling the requirements in Propositions 1 and 3 is the Petersen
Graph, a very famous 3-regular graph that is depicted in Fig. 1. By applying Proposition
3 we get C = 1, 023 and n = 15. By applying Proposition 4 we get the edge weights
in Fig. 1c, which is the smallest counterexample that we could construct by hand,
with C = 511 and n = 15. In fact, we get a few counterexamples by considering
non-isomorphic vertex numberings.

The instance of Fig. 1c can be improved by removing the item of size 1, thus leading
to a counterexample with 14 items.

Observation 2 Given a BPP instance without the Integer Round-up Property and
with optimal value z∗, it is possible to remove up to z∗ − 1 items of size 1 without
affecting the property.
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12 A. Caprara et al.

Table 2 Size of the BPP
instances derived from Snark
graphs using Proposition 4 and
Observation 2

Name n C

Petersen 14 511

Tietze 17 2,047

Blanuša 26 131,071

Flower (J3) 17 2,047

Flower (J5) 29 524,287

Flower (J7) 41 134,217,727

Proof We use a simple argument by contradiction. If the reduced BPP instance has the
Integer Round-up Property, it must have an optimal solution consisting of z∗ − 1 bins.
Moreover it must be impossible to accommodate all the removed items in the z∗ − 1
bins (otherwise the original problem would have a smaller optimal solution). Since the
removed items have size 1, the empty space in the bins used by the optimal solution to
the reduced problem is strictly smaller than the number of removed items. It follows
that the total item size of the original instance is strictly greater than C(z∗ − 1) and
the trivial continuous bound gives the lower bound value z∗ for BPP, a contradiction.

We can obtain more counterexamples by using other 3-regular graphs for which
the FECP and ECP solution values are respectively 3 and 4, e.g., using the Snark
Graphs. In Table 2 we show the values of n and C for the BPP instances without
Integer Round-up Property derived from some of these graphs by using Proposition 4
and Observation 2.

2.3 Defining item weights by integer linear programming

In order to try to find counterexamples with C smaller than those provided in the
previous section, we formulated the problem of assigning weights to the edges in the
Petersen Graph so as to meet the requirements in Proposition 1 as an optimization
problem. Let M denote the family of all perfect matchings of the graph and N the
family of all other edge subsets. Let w j be a variable indicating the weight to be
assigned to edge j ∈ E . An Integer Linear Programming (ILP) formulation of the
problem of finding an instance with smallest C is the following:

min C (5)∑

j∈M

w j = C, M ∈ M, (6)

∑

j∈N

w j ≥ C + 1 − Δ(1 − tN ), N ∈ N , (7)

∑

j∈N

w j ≤ C − 1 + ΔtN , N ∈ N , (8)

w j ∈ Z+, j ∈ E, (9)

tN ∈ {0, 1}, N ∈ N . (10)
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Friendly bin packing instances 13

Here, the binary variables tN and the “big M” constant Δ are introduced to express
by linear constraints the disjunction

∑
j∈N w j ≤ C − 1 ∨ ∑

j∈N w j ≥ C + 1 for
N ∈ N . As one may expect, this is a tough problem for a general-purpose solver. We
run CPLEX 12.1 for about one CPU month on a Pentium Intel 3 GHz, using depth-first
strategy and a callback to keep track of all the integer solutions found. We could obtain
just three integer solutions, the smallest one having C = 863.

In order to try to obtain smaller instances, we relaxed the requirement of Proposition
1, which imposes that w(M) = C only if M is a perfect matching. The problem can be
modeled with the following Mixed ILP, in which the integer variables w j have been
replaced by real variables x j , for j ∈ E , and the bin size is normalized to one.

max γ (11)
∑

j∈M

x j = 1, M ∈ M, (12)

∑

j∈N

x j ≥ 1 + γ − Δ(1 − tN ), N ∈ N , (13)

∑

j∈N

x j ≤ 1 − γ + ΔtN , N ∈ N , (14)

x j ≥ 0, j ∈ E, (15)

γ ≥ 0, (16)

tN ∈ {0, 1}, N ∈ N . (17)

The model maximizes the minimum distance γ that separates the sum of the x j from
1 for all N ∈ N . Whenever a feasible solution is found, we can easily convert it into a
solution of model (5)–(10), by finding the smallest integer C such that Cx j is integer
for all j ∈ E . If γ is strictly positive no set N ∈ N can have weight 1 and all the
requirements of Proposition 1 are satisfied, but if γ = 0 there may be one or more
sets N ∈ N with the same weight of the matchings. In this case the solution can still
give a counterexample to the Integer Round-up Property if one can prove that all sets
N ∈ N with weight 1 are not used in any optimal ECP solution.

From a computational point of view we preferred to run CPLEX 12.1 on model
(11)–(17), store each feasible solution found during the search with a callback, and
check if the corresponding BPP solution has or not the property by solving directly
the BPP instance to the optimum. After about one CPU month, we obtained several
thousand instances and got C down to 146. The best solutions we found are illustrated
in Table 3, noting that we are also storing different solutions with the same value of C .

All the instances in the table have 13 items, that is our best result in terms of number
of items. Originally these instances had two items of weight 1, that were then removed
by using Observation 2 (this was not the case for the majority of larger-size instances,
where all items typically have weights larger than 1). The complete list of instances
is available from the authors upon request.

As a final remark, note that we also checked that each of these instances is no longer
a counterexample if any further item is deleted, or if any two items are merged into a
single one whose weight is their sum.
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14 A. Caprara et al.

Table 3 Some counterexamples with C ≤ 300 found by solving the Mixed ILP (11)–(17)

C w j

146 65 53 53 51 45 34 34 34 34 11 10 7 5

146 64 53 53 50 46 34 34 34 34 11 10 8 5

147 65 53 53 51 46 34 34 34 34 11 10 8 6

158 65 65 63 53 46 45 34 34 34 11 10 7 5

158 65 65 63 52 46 45 34 34 34 10 10 8 6

158 65 64 62 53 46 45 34 34 34 11 10 8 6

158 64 65 62 53 46 45 34 34 34 11 10 8 6

159 65 65 63 53 46 46 34 34 34 10 11 8 6

160 65 65 63 55 47 46 34 34 34 12 11 7 5

160 65 65 63 54 47 46 34 34 34 11 11 8 6

160 65 65 63 54 47 46 34 34 34 12 10 8 6

161 65 55 65 46 63 48 34 34 34 12 11 8 6

161 65 55 65 63 46 48 34 34 34 12 11 8 6

178 82 65 63 72 63 48 34 34 34 12 11 8 6

203 122 105 103 57 48 48 34 34 19 12 11 8 6

206 110 93 91 72 63 48 34 34 34 12 11 8 6

212 116 99 97 72 63 48 34 34 34 12 11 8 6

217 122 104 103 72 63 47 34 34 34 11 11 8 6

218 122 103 34 105 72 63 48 34 34 12 11 8 6

218 122 105 103 72 63 48 34 34 34 12 11 8 6

236 140 121 123 34 72 63 48 34 34 12 11 8 6

247 151 132 63 105 72 63 48 34 34 12 11 8 6

249 153 134 65 105 72 63 48 34 34 12 11 8 6

255 159 140 71 105 72 63 48 34 34 12 11 8 6

266 170 151 82 105 72 63 48 34 34 12 11 8 6

267 171 152 123 65 72 63 48 34 34 12 11 8 6

277 181 162 93 105 72 63 48 34 34 12 11 8 6

281 185 166 97 105 72 63 48 34 34 12 11 8 6

283 187 168 99 105 72 63 48 34 34 12 11 8 6

289 193 174 105 105 72 63 48 34 34 12 11 8 6

294 198 179 110 105 72 63 48 34 34 12 11 8 6

295 199 180 111 105 72 63 48 34 34 12 11 8 6

296 200 181 112 105 72 63 48 34 34 12 11 8 6

300 204 185 116 105 72 63 48 34 34 12 11 8 6

3 Finding counterexamples by contraction

Given a BPP instance and two items i and j such that wi + w j ≤ C , the item-
contraction of i and j (contraction for short in the following) amounts to replacing
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Friendly bin packing instances 15

these two items by a new item of size wi + w j . A special class of BPP instances is
the following.

Definition 1 A BPP instance is Integer Round-up Perfect if the instance itself and
all the instances obtained from it by any sequence of contractions have the Integer
Round-up Property.

The following result is fairly simple but we could not find it mentioned in the
literature.

Observation 3 BPP on Integer Round-Up Perfect instances can be solved in
pseudopolynomial time.

Proof The optimal solution of the problem can be obtained by solving the following
sequence of O(n3) FBPPs.

First of all, solve the FBPP associated with the initial instance, and let k be the
rounded-up value, which is also the optimal BPP value.

Then repeat the following as long as a contraction is possible (i.e., as long as there
are at least two items that would fit together in a bin): by trying all possible contractions,
find one such that the rounded-up value of the resulting FBPP instance is not larger
than k. At least one such contraction exists since at least two items are packed in the
same bin in the optimal BPP solution.

When no contraction is possible, we have k items each obtained by contract-
ing (in some sequence) the set of items in the same bin in an optimal solution of
the original BPP instance, i.e., we have such a solution. The number of contrac-
tions is O(n), since each of them decreases the number of items by 1, and the
number of candidates for each contraction is O(n2). The statement follows from
the well-known fact that the FBPP can be solved in pseudopolynomial time (see,
e.g., [8]).

The above proof gives us a method to construct new counterexamples to the Integer
Round-up Property by contraction. Indeed, if the starting instance is not integer Round-
up Perfect, at some iteration all the contractions we can perform on the current instance,

Table 4 Some counterexamples
with C ≤ 150 found by
contraction

C n min w j max w j 
z(FBPP)� z(BPP)

100 24 22 61 9 10

120 23 15 101 8 9

120 41 16 72 14 15

120 50 11 94 17 18

120 55 12 90 19 20

150 23 36 76 8 9

150 28 36 114 9 10

150 32 29 84 11 12

150 37 35 79 13 14

150 46 29 91 16 17
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16 A. Caprara et al.

lead to a FBPP solution of value k + 1. So the current instance is a counterexample to
the property.

We have applied this technique to the most well-known benchmark sets of instances
for the BPP (namely, set_1, set_2, set_3, t_60, t_120, t_249, t_501, u_120, u_250,
u_500, and u_1000) finding a few tens of small instances without the Integer Round-
up Property. The smallest of such instances has n = 24 and C = 100, that is our best
result in terms of bin size. In Table 4 we report the counterexamples with C ≤ 150.
The columns report, respectively, the bin capacity, the number of items, the minimum
and maximum item weight, the rounded up value of the optimal solution value for
FBPP, 
z(FBPP)�, and the optimal solution value for BPP, z(B P P). This last value
has been computed using the branch-and-price algorithm for the BPP described in
Section 5 of [13].

4 Conclusions and future research directions

The main result of this paper is a method for finding thousands of small-size Bin
Packing instances that do not have the Integer Round-up Property. The instance with
smallest capacity we found has 24 items and C = 100, the instance with the smallest
number of items has 13 items and C = 146. These instances disprove a long-termed
conjecture indicating that only artificial and very complicated instances do not have
this property. We have based our search on the fact that some graphs are fractionally,
but not integrally, 3-edge colorable, and on the fact that the BPP on Integer Round-Up
Perfect instances can be solved in pseudopolynomial time.

From this work several ideas for future research arise. First of all note that there
is no evidence that the optimal BPP value for an instance defined as in Section 2.1
will coincide with the optimal ECP solution value, i.e., in principle this instance may
be a counterexample to the Modified Integer Round-up Conjecture mentioned in the
introduction. However, for all the cases we considered, the optimal BPP value was of
course k + 1 as well, which is absolutely not surprising as the Conjecture appears to
be very hard to disprove. And even only finding BPP instances without the Integer
Round-up Property for which the optimal FBPP value is not integer (i.e., the additive
gap without rounding up is larger than one) is an interesting research direction, see,
e.g., [11,14].

Even less surprising is the fact that we completely failed when trying to prove that
conjecture from the Modified Integer Round-up Property for ECP by using some sort
of inverse of our construction, which would define an ECP instance starting from a
BPP one. Equally unsuccessful were the attempts to try to prove the equivalence of
the Modified Integer Round-up Conjecture for BPP and for ECP on multigraphs, that
remain two separate key open questions in Mathematical Programming.
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