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Abstract We consider a risk-averse multi-stage stochastic program using conditional
value at risk as the riskmeasure. The underlying randomprocess is assumed to be stage-
wise independent, and a stochastic dual dynamic programming (SDDP) algorithm is
applied.We discuss the poor performance of the standard upper bound estimator in the
risk-averse setting and propose a new approach based on importance sampling, which
yields improved upper bound estimators. Modest additional computational effort is
required to use our new estimators. Our procedures allow for significant improvement
in terms of controlling solution quality in SDDP-style algorithms in the risk-averse
setting. We give computational results for multi-stage asset allocation using a log-
normal distribution for the asset returns.

Keywords Multi-stage stochastic programming · Stochastic dual dynamic
programming · Importance sampling · Risk-averse optimization
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1 Introduction

We formulate and solve amulti-stage stochastic program,which uses conditional value
at risk (CVaR) as the measure of risk. Our solution procedure is based on stochastic
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276 V. Kozmík, D. P. Morton

dual dynamic programming (SDDP), which has been employed successfully in a range
of applications, exhibiting good computational tractability on large-scale problem
instances; see, e.g., [10,12,13,17,31,32].

There has been very limited application of SDDP to models with the type of risk
measure that we use, which involves a form of CVaR that is nested to ensure a notion
of time consistency. See Ruszczynski [36] and Shapiro [40] for discussions of time-
consistent riskmeasures inmulti-stage stochastic optimization. A standardmulti-stage
recourse formulation has an additive form of expected utility. In this case, the usual
upper bound estimator in SDDP algorithms is computed by solving subproblems along
linear sample paths through the scenario tree, and the resulting computational effort
is linear in the product of the number of stages and the number of samples. As we
describe below, this type of estimator performs poorly for a model with a nested CVaR
risk measure, and this has hampered application of SDDP to such time-consistent risk-
averse formulations.

We are aware of three solutions that have been proposed in the literature to circum-
vent the difficulty we have just described. First, we can solve a risk-neutral version
of the problem instance under some suitable termination criterion, and then fix the
number of iterations of SDDP to solve the risk-averse model under nested CVaR.
Philpott and de Matos [29] report good computational experience with this approach.
However, this leaves open the question of whether the same number of iterations
is always appropriate for both risk-neutral and risk-averse model instances. Second,
we can compute an upper bound estimator via the conditional sampling method of
Shapiro [41]. However, the associated computational effort grows exponentially in
the number of stages, and as Shapiro [41] discusses, the bound can be loose. Third, a
non-statistical deterministic upper bound is proposed in Philpott et al. [30] based on
using an inner approximation scheme. This approach is attractive in that it does not
have sampling-based error, but as discussed in [30] the upper bound does not scale
well as the number of state variables grows.

The purpose of this article is to propose, analyze, and computationally demonstrate
a new upper bound estimator for SDDP algorithms under a nested CVaR risk measure.
The computational effort required to form our bound grows linearly in the number of
time stages, is not limited to models with a modest number of state variables, and the
estimation procedure fits flawlessly in the standard SDDP framework. Moreover, our
bound is significantly tighter than the estimator based on conditional sampling, which
further facilities application of natural termination criteria, which are usually based
on comparing the difference between an upper bound estimator and the lower bound.
That said, our estimation procedure is not turnkey. Rather, it requires specification of
functions that can appropriately characterize the tail of the recourse function, as we
formalize in our main results and as we illustrate with an asset allocation model.

SDDP originated in the work of Pereira and Pinto [26], and inspired a number
of related algorithms [7,10,23,28], which aim to improve its efficiency. Nested Ben-
ders’ decomposition algorithm [5] applied to amulti-stage stochastic program requires
computational effort that grows exponentially in the number of stages. SDDP-style
algorithms have computational effort per iteration that instead grows linearly in the
number of stages. To achieve this, SDDP algorithms rely on the assumption of stage-
wise independence. That said, SDDP algorithms can also be applied in some special
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Risk-averse multi-stage stochastic programming 277

cases of additive interstage dependence, such as when an autoregressive process, or a
dynamic linear model, governs the right-hand side vectors [9,19]. SDDP-style algo-
rithms extend to handle other types of interstage dependency, such as combining the
usual finer grain SDDP dependency with a Markov chain governing a coarser grain
state of the system [25,29] or with a coarser grain scenario tree [32]. SDDP algorithms
can also be coupled with aMarkov decision process (MDP) and approximate dynamic
programming employed on a scenario lattice for the MDP [24]. The ideas we present
should be useful in these extensions of SDDP.

Other important algorithms designed to solve multi-stage stochastic programs
include extensions of stochastic decomposition to the multi-stage case [16,37] and
progressive hedging [33]. While these algorithms have been developed in the risk-
neutral setting, they extend in natural ways to handle the risk measure we consider
here, with the caveat that the nested CVaR expression can be exactly computed only
when the scenario tree is of modest size. When sampling is required, these algorithms
may also benefit from the type of estimator we propose.

Risk-averse stochastic optimization has received significant attention in recent years
because of its attractive properties for decision makers. The properties required of
coherent risk measures, introduced in Artzner et al. [2], are now widely accepted
for time-static risk-averse optimization. Many risk measures are known to satisfy
these properties; for an overview see, for instance, Krokhmal et al. [21]. A number
of proposals have been put forward to extend coherent risk measures to handle multi-
stage stochastic optimization. In the multi-stage case we seek a policy, which specifies
a decision rule at every stage t for any realization of the stochastic process up to time
t . While there are multiple approaches, in addition to coherency, time consistency
may be desired. This latter property states that optimal decisions at time t should not
depend on future states of the system, which we already know cannot be realized,
conditional on the state of the system at time t . Despite the natural statement of this
requirement, there are a variety of risk measures that fail to meet this condition. While
it is beyond the scope of this article, the ideas behind our proposed estimators may also
apply to models with CVaR-style risk measures that do not satisfy time consistency;
see Definition 3.29 of Pflug and Römisch [27], Example 6.43 of Shapiro et al. [38],
and Example 3.11 of Eichhorn and Römisch [11].

The main approach to construct time-consistent risk measures involves so-called
conditional risk measures, introduced in Ruszczynski and Shapiro [35]. The construc-
tion is based on nesting of the risk measures, conditional on the state of the system.
While this ensures time consistency, it leads to the computational difficulties that we
describe above. (See Philpott and de Matos [29] and Shapiro [41] for further dis-
cussion.) With time-consistent CVaR chosen as the risk measure, we propose a new
approach to upper bound estimation to overcome these computational difficulties.

We organize the remainder of this article as follows. We present our risk-averse
multi-stagemodel in Sect. 2 and briefly review theSDDPalgorithm inSect. 3. Section 4
extends this description to the risk-averse case. We develop and analyze the proposed
upper bound estimators in Sect. 5, and we provide computational results for two asset
allocation models, both with and without transaction costs, in Sect. 6. We conclude
and discuss ideas for future work in Sect. 7.
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278 V. Kozmík, D. P. Morton

2 Multi-stage risk-averse model

We formulate a multi-stage stochastic programwith a nested CVaR riskmeasure in the
samemanner as Shapiro [41], largely following his notation. Hence, we provide a brief
problem statement. Themodel has random parameters in stages t = 2, . . . , T , denoted
ξ t = (ct , At , Bt , bt ), which are stage-wise independent and governed by a known, or
well-estimated, distribution. The parameters of the first stage, ξ1 = (c1, A1, b1), are
assumed to be known when we make decision x1, but only a probability distribution
governing future realizations, ξ2, . . . , ξT , is assumed known. The realization of ξ2 is
known when decisions x2 must be made and so on to stage T . We denote the data
process up to time t by ξ[t], meaning ξ[t] = (ξ1, . . . , ξt ).

Our model allows specification of a different risk aversion coefficient and confi-
dence level, denoted λt , αt ∈ [0, 1], respectively, at each time stage, t = 2, . . . , T .
In order to provide the nested formulation of the model we introduce the following
operator, which forms a weighted sum of expectation and risk associated with random
loss Z :

ρt,ξ[t−1] [Z ] = (1 − λt ) E
[
Z

∣∣ξ[t−1]
] + λt CVaRαt

[
Z

∣∣ξ[t−1]
]
. (1)

In Eq. (1), CVaR penalizes losses in the upper α tail of Z with a typical value of α

being 0.05.
We can write the risk-averse multi-stagemodel with T stages in the following form:

min
x1

c�
1 x1 + ρ2,ξ[1]

[
min

x2
c�
2 x2 + · · · + ρT,ξ[T−1]

[
min
xT

c�
T xT

]]
, (2)

where the first-, second-, and final stage minimizations are constrained by A1x1 =
b1, x1 ≥ 0; A2x2 = b2 − B2x1, x2 ≥ 0; and, AT xT = bT − BT xT−1, xT ≥ 0,
respectively. We assume model (2) is feasible, has relatively complete recourse, and
has a finite optimal value. The special case with λt = 0, t = 2, . . . , T , is risk-neutral
because we then minimize expected cost.

Model (2) is distinguished from other possible approaches to characterizing risk,
by taking the risk measure as a function of the recourse value at each stage.
This ensures time consistency of the risk measure. See Rudloff et al. [34] and
Ruszczynski [36] for discussions of a conditional certainty-equivalent interpretation
from utility theory for such nested formulations. A solution to model (2) is a pol-
icy, and time consistency means that the resulting policy has a natural interpretation
that lends itself to implementation along a sample path with realizations that unfold
sequentially.

Our model, with the nested risk measure, allows a dynamic programming formula-
tion to be developed, as is described in [29,41]. Using as the definition of conditional
value at risk,

CVaRα [Z ] = min
u

(
u + 1

α
E [Z − u]+

)
,

123
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where [ · ]+ ≡ max{ · , 0}, we can write

min
x1,u1

c�
1 x1 + λ2u1 + Q2(x1, u1)

s.t. A1x1 = b1 (3)

x1 ≥ 0.

The recourse value Qt (xt−1, ξt ) at stage t = 2, . . . , T is given by:

Qt (xt−1, ξt ) = min
xt ,ut

c�
t xt + λt+1ut + Qt+1(xt , ut )

s.t. Atxt = bt − Btxt−1 (4)

xt ≥ 0,

where

Qt+1(xt , ut )=E
[
(1 − λt+1)Qt+1(xt , ξt+1)+ λt+1

αt+1

[
Qt+1(xt , ξt+1)−ut

]
+

]
. (5)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0 so that the objective function of model (4)
reduces to c�

T xT when t = T .
In contrast to a multi-stage formulation rooted in expected utility, our multi-stage

model with CVaR has an additional decision variable, ut , which estimates the value-
at-risk level. The recourse value at stage t depends on ξt rather than ξ[t], because
we assume the process to be stage-wise independent. After introducing the auxiliary
variables, ut , the problem seems to be converted to the simpler case, involving only
expectations of an additive utility. This impression may lead to the false conclusion
that a traditional SDDP-style algorithm can be applied. The nested nonlinearity arising
from the positive-part function precludes this, as we illustrate in the next example.

Example 1 Suppose we incur random costs Z2 in the second stage and Z3 in the third
stage. Then under an additive utility with contribution ut (·) in stage t , we have:

E
[
u2(Z2) + E

[
u3(Z3)

∣∣ξ[2]
]] = E [u2(Z2)] + E [u3(Z3)] .

However, this additive form does not hold under CVaR. While we can write the com-
posite risk measure as:

CVaRα

[
Z2 + CVaRα

[
Z3

∣∣ξ[2]
]] = CVaRα

[
CVaRα

[
Z2 + Z3

∣∣ξ[2]
]]

,

the composite risk measure does not lend itself to further simplification. Subadditivity
of CVaR yields

CVaRα

[
Z2 + CVaRα

[
Z3

∣∣ξ[2]
]] ≤ CVaRα [Z2] + CVaRα

[
CVaRα

[
Z3

∣∣ξ[2]
]]

,

which only bounds the risk measure and, even then, the composite measure still
requires evaluation.
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280 V. Kozmík, D. P. Morton

It is for the reasons illustrated in Example 1 that Philpott and de Matos [29] and
Shapiro [41] point to the lack of a good upper bound estimator for model (2) when the
problemhasmore than a very small number of stages. The natural conditional sampling
estimator, discussed in [29,41], has computational effort that grows exponentially in
the number of stages. The following example points to a second issue associated with
estimating CVaR.

Example 2 Consider the following estimator of CVaRα [Z ], where Z1, Z2, . . . , ZM

are independent and identically distributed (i.i.d.) from the distribution of Z :

min
u

⎛

⎝u + 1

αM

M∑

j=1

[
Z j − u

]

+

⎞

⎠ .

If α = 0.05 only about 5% of the samples contribute nonzero values to this estimator
of CVaR.

The inefficiency pointed to in Example 2 compounds the computational challenges
of forming a conditional sampling estimator of CVaR in the multi-stage setting. When
forming an estimator of our riskmeasure fromEq. (1), this inefficiencymeans that, say,
95%of the samples are devoted to only estimating expected cost and the remaining 5%
contribute to estimating both CVaR and expected cost. In what follows we propose
an approach to upper bound estimation in the context of SDDP that rectifies this
imbalance and has computational requirements that grow gracefully with the number
of stages. Before turning to our estimator, we discuss SDDP and its application to our
risk-averse formulation in the next two sections.

3 Stochastic dual dynamic programming

We use stochastic dual dynamic programming to approximately solve model (2).
SDPP does not operate directly on model (2). Instead, we first form a sample average
approximation (SAA) of model (2), and SDDP approximately solves that SAA. Thus
in our context SDDP forms estimators by sampling within an empirical scenario tree.
We describe below how we form the empirical scenario tree. Then in the remainder
of this article we restrict attention to solving that SAA via SDDP. See Shapiro [39]
for a discussion of asymptotics of SAA for multi-stage problems, Philpott and Guan
[28] for convergence properties of SDDP, and Chiralaksanakul and Morton [8] for
procedures to assess the quality of SDDP-based policies.

Again, we assume ξt , t = 2, . . . , T , to be stage-wise independent. We further
assume that for each stage t = 2, . . . , T there is a known (possibly continuous)
distribution Pt of ξt and that we have a procedure to sample i.i.d. observations from
this distribution.Using this procedurewe obtain a single empirical distribution for each
stage, denoted P̂t , t = 2, . . . , T , and the associated empirical scenario tree is interstage
independent. The scenarios generated by this procedure are equally probable, but this
is not required by SDDP.
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Risk-averse multi-stage stochastic programming 281

Distribution P̂t has Dt realizations and stage t has Nt scenarios, where Nt =∏t
i=2 Di . Fully general forms of interstage dependency lead to inherent computational

intractability as even the memory requirements to store a general sampled scenario
tree grow exponentially in the number of stages, but several tractable dependency
structures are discussed in Sect. 1.

We let Ω̂t denote the stage t sample space, where |Ω̂t | = Nt . We use jt ∈ Ω̂t

to denote a stage t sample point, which we call a stage t scenario. We define the
mapping a( jt ) : Ω̂t → Ω̂t−1, which specifies the unique stage t − 1 ancestor for

the stage t scenario jt . Similarly, we use Δ( jt ) : Ω̂t → 2Ω̂t+1 to denote the set of
descendant nodes for jt , where |Δ( jt )| = Dt+1. The empirical scenario tree therefore
has stage t realizations denoted ξ

jt
t , jt ∈ Ω̂t . At the last stage, we have ξ

jT
T , jT ∈ Ω̂T ,

and each stage T scenario corresponds to a full path of observations through each
stage of the scenario tree. That is, given jT , we recursively have jt−1 = a( jt ) for
t = T, T − 1, . . . , 2. For this reason and for notational simplicity, when possible, we
suppress the stage T subscript and denote jT ∈ Ω̂T by j ∈ Ω̂.

We briefly describe SDDP to give sufficient context for our results. For further
details on SDDP, see [26,41]. The simplest SDDP algorithm applies to the risk-neutral
version of our model, which means setting λt = 0 for t = 1, . . . , T in Eq. (1) and
model (2) or equivalently in (3–5). We denote the recourse value for the risk-neutral
version of our model by QN

t (xt−1, ξt ), which for t = 2, . . . , T , is given by:

QN
t (xt−1, ξt ) = min

xt
c�
t xt + QN

t+1(xt )

s.t. Atxt = bt − Btxt−1 (6)

xt ≥ 0,

where
QN

t+1(xt ) = E
[
QN

t+1(xt , ξt+1)
]
, (7)

and where QN
T+1(·) ≡ 0. The risk-neutral formulation is completed via model (3) with

λ2 = 0 and Q2(x1, u1) replaced by QN
2 (x1).

During a typical iteration of SDDP, cuts have been accumulated at each stage. These
represent a piecewise linear outer approximation of the expected future cost function,
QN

t+1(xt ). On a forward pass we sample a number of linear paths through the tree.
As we solve a sequence of master programs (which we specify below) along these
forward paths, the cuts are used to form decisions at each stage. Solutions found along
a forward path in this way form a policy, which does not anticipate the future. The
sample mean of the costs incurred along all the forward sampled paths through the
tree forms an estimator of the expected cost of the current policy.

In the backward pass of the algorithm, we add cuts to the collection defining the
current approximation of the expected future cost function at each stage. We do this
by solving subproblems at the descendant nodes of each node in the linear paths from
the forward pass, except in the final stage, T . The cuts collected at any node in stage
t apply to all the nodes in that stage, and hence we maintain a single set of cuts for
each stage. We let Ct denote the number of cuts accumulated so far in stage t .
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282 V. Kozmík, D. P. Morton

Model (8) acts as a master program for its stage t + 1 descendant scenarios and
acts as a subproblem for its stage t − 1 ancestor:

Q̂t = min
xt ,θt

c�
t xt + θt (8a)

s.t. Atxt = bt − Btxt−1 : πt (8b)

θt ≥ Q̂ j
t+1 +

(
g j
t+1

)� (
xt − x j

t

)
, j = 1, . . . ,Ct (8c)

xt ≥ 0. (8d)

Decision variable θt in the objective function (8a), coupled with cut constraints
in (8c), forms the outer linearization of the recourse function QN

t+1(xt ) from model
(6) and Eq. (7). The structural and nonnegativity constraints in (8b) and (8d) simply
repeat the same constraints from model (6). In the final stage T , we omit the cut
constraints and the θT variable. While we could append an “N” superscript on terms
like Q̂t , Q̂

j
t+1,g

j
t+1, etc. we suppress this index for notational simplicity.

As we indicate in constraint (8b), we use πt to denote the dual vector associated
with the structural constraints. Let jt denote a stage t scenario from a sampled forward
path. With xt−1 = xa( jt )

t−1 and with ξt = ξ
jt
t in model (8), we refer to that model as

sub( jt ). Given model sub( jt ) and its solution xt , we form one new cut constraint at
stage t for each backward pass of the SDDP algorithm as follows. We form and solve
sub( jt+1), where jt+1 ∈ Δ( jt ) indexes all descendant nodes of jt . This yields optimal
values Q̂ jt+1

t+1 (xt ) and dual solutions π
jt+1
t+1 for jt+1 ∈ Δ( jt ). We then form

g jt+1
t+1 = −

(
B jt+1
t+1

)�
π

jt+1
t+1 , (9)

where g jt+1
t+1 = g jt+1

t+1 (xt ) is a subgradient of Q̂
jt+1
t+1 = Q̂ jt+1

t+1 (xt ). The cut is then obtained
by averaging over the descendants:

Q̂t+1 = 1

Dt+1

∑

jt+1∈Δ( jt )

Q̂ jt+1
t+1 (10)

gt+1 = 1

Dt+1

∑

jt+1∈Δ( jt )

g jt+1
t+1 . (11)

As we indicate above, Q̂t+1 = Q̂t+1(xt ) and gt+1 = gt+1(xt ), and hence Q̂t+1 =
Q̂t+1(xt ) and gt+1 = gt+1(xt ) but we suppress this dependency for notational sim-
plicity. We also suppress the jt index on Q̂t+1 and gt+1 because we append a new
cut to the stage t collection of cuts, and do not associate it with a particular stage t
subproblem. For simplicity in stating the SDDP algorithm below, we assume we have
known lower bounds Lt on the recourse functions.

Algorithm 1 Stochastic dual dynamic programming algorithm

1. Let iteration k = 1 and append lower bounding cuts θt ≥ Lt , t = 1, . . . , T − 1.
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2. Solve the stage 1 master program (t = 1) and obtain xk1, θ
k
1 .

Let zk = c�
1 xk1 + θk1 .

3. Forward pass: sample i.i.d. paths from Ω̂ and index them by Sk .

For all j ∈ Sk {
For t = 2, . . . , T {

Form and solve sub( jt ) to obtain
(

x jt
t

)k
;

}
}

Form the upper bound estimator:

zk = c�
1 xk1 + 1

|Sk |
∑

j∈Sk

T∑

t=2

(c jt
t )�

(
x jt
t

)k
. (12)

4. If a stopping criterion, given zk and zk , is satisfied then stop and output first stage
solution x1 = xk1 and lower bound z = zk .

5. Backward pass:

For t = T − 1, . . . , 1 {
For all j ∈ Sk {

For all descendant nodes jt+1 ∈ Δ( jt ) {

Form and solve sub( jt+1) to obtain Q̂ jt+1
t+1 and π

jt+1
t+1 ;

Calculate g jt+1
t+1 using formula (9);

}
Calculate optimal value Q̂t+1 using equation (10);
Calculate cut gradient gt+1 using equation (11);
Append the resulting cut to the collection (8c) for stage t ;

}
}

6. Let k = k + 1 and goto step 2.

See Bayraksan and Morton [4] and Homem-de-Mello et al. [17] for stopping rules
that can be employed in step 4.

4 Risk-averse approach

We must modify the SDDP algorithm of Sect. 3 to handle the risk-averse model of
Sect. 2. The auxiliary variables ut now play a role both in computing the cuts and in
determining the policy from the master programs. In the modified SDDP algorithm
we select the VaR level, ut , along with our stage t decisions, xt , and then solve
the subproblems at the descendant nodes. The VaR level influences the value of the
recourse function estimate and therefore is included in the cuts, in the same way as
any another decision variable. Extending the development from the previous section,
the stage t subproblem in the risk-averse case is given by:
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284 V. Kozmík, D. P. Morton

Q̂t = min
xt ,ut ,θt

c�
t xt + λt+1ut + θt

s.t. Atxt = bt − Btxt−1 : πt
(13)

θt ≥ Q̂ j
t+1 +

(
g j
t+1

)� [
(xt , ut ) −

(
x j
t , u

j
t

)]
, j = 1, . . . ,Ct

xt ≥ 0.

While Q̂t+1 = Q̂t+1(xt ), we now have Q̂t+1 = Q̂t+1(xt , ut ) and gt+1 =
gt+1(xt , ut ) as a function of both the stage t decision and the VaR level. The subgradi-

ent of Q̂t+1(xt ) is still computed by Eq. (9). However, the function value Q̂t+1(xt , ut )
and its subgradient have to be adjusted to respect the differences between the risk-
neutral and risk-averse cases. See Shapiro [41] for the formulas that replace Eqs. (10)
and (11) to obtain Q̂t+1 and gt+1. In modifying the SDDP algorithm for the risk-
averse formulation, these new cut computations are used in the backward pass of step
5 of Algorithm 1 to provide the piecewise linear outer approximation of Qt+1(xt , ut ).
Shapiro et al. [42] describe an approach in which the VaR level does not appear explic-
itly in model (13). However, as we describe below our upper bound estimators require
explicit VaR levels.

One issue that remains concerns evaluation of an upper bound; i.e., an analog of
estimator (12) for the risk-averse setting. As we illustrate in Example 1, we cannot
expect an analogous additive estimator to be appropriate for the risk-averse setting.
Example 1 suggests that to compute the conditional riskmeasure, we should start at the
last stage and recurse back to the first stage to obtain an estimator of the risk measure
evaluated at a policy. This differs significantly from the risk-neutral case, where the
costs incurred at any stage can be estimated just by averaging costs at sampled nodes.
Starting at the final stage, T , our cost under scenario jT is (c jT

T )�x jT
T . For the stage

T − 1 ancestor scenario jT−1 = a( jT ) we must calculate

(c jT−1
T−1 )

�x jT−1
T−1 + λT u

jT−1
T−1 + QT (x jT−1

T−1 , u
jT−1
T−1).

The question that remains is how to estimate QT (x jT−1
T−1 , u

jT−1
T−1). We maintain a

parallel with the estimator in the risk-neutral version of the SDDP algorithm in the
sense that we estimate this term using the value of one descendant scenario along the
corresponding forward path in step 3 of Algorithm 1. This means that based on Eq.
(5) we estimate QT (x jT−1

T−1 , u
jT−1
T−1) by

(1 − λT ) (c jT
T )�x jT

T + λT

αT

[
(c jT

T )�x jT
T − u jT−1

T−1

]

+ .

Removing the expectation operator in Eq. (5), the associated recursion of the objec-
tive function in model (4) and Eq. (5) yields the following recursive estimator of
Qt (x

jt−1
t−1 , u jt−1

t−1 ) for t = 2, . . . , T :
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v̂t (ξ
jt−1
t−1 ) = (1 − λt )

(
(c jt

t )�x jt
t + v̂t+1(ξ

jt
t )

)

+ λt u
jt−1
t−1 + λt

αt

[
(c jt

t )�x jt
t + v̂t+1(ξ

jt
t ) − u jt−1

t−1

]

+ , (14)

where v̂T+1(ξ
jT
T ) ≡ 0. We denote the estimator for sample path j by

v̂(ξ j ) = c�
1 x1 + v̂2. (15)

Because the first stage parameters, ξ j1
1 , are deterministicwe simplywrite v̂2 = v̂2(ξ

j1
1 ),

dropping its argument.
Having selected scenario j and solved all node subproblems (13) associated with

realizations ξ
j1
1 , . . . , ξ

jT
T along the sample path, we form the estimator recursively

as follows. We start at the stage T − 1 node, compute v̂T (ξ
jT−1
T−1 ), substitute it into

formula (14) for t = T − 1 to obtain v̂T−1(ξ
jT−2
T−2 ) and so on until we obtain v̂2 and

hence can compute the value of v̂(ξ j ) via Eq. (15). Then if ξ j , j = 1, . . . , M , are
i.i.d. sample paths, sampled from the scenario tree’s empirical distribution as in step
3 in Algorithm 1, the corresponding upper bound estimator is given by:

Un = 1

M

M∑

j=1

v̂(ξ j ). (16)

We use the “n” superscript to indicate that we use naive Monte Carlo sampling here,
and to distinguish it from estimators we develop below.

We can attempt to use estimator (16), which is the natural analog of (12), to solve
the risk-averse problem. Unfortunately, this estimator has large variance. The main
shortcoming of this estimator lies in the imbalance in sampled scenarios we point
to in Example 2 coupled with the policy now specifying an approximation of the
value-at-risk level via ut−1. If the descendant node has value less than ut−1 then
the positive-part term in Eq. (14) is zero. When the opposite occurs, the difference
between the node value and ut−1 is multiplied by α−1

t , which can lead to a large value
of the estimator because a typical value of α−1

t is 20. When v̂t (ξ
jt−1
t−1 ) is large, this

increases the likelihood that preceding values are also large and hence multiplied by
α−1
t−1, α

−1
t−2, . . . many more times in the backward recursion. This leads to a highly

variable estimator which is of little practical use, particularly when T is not small.
To overcome the issues we have just discussed, Shapiro [41] describes an esti-

mator which uses more nodes to estimate the recourse value. This estimator for a
3-stage problem is obtained by sampling, and solving subproblems associated with
i.i.d. realizations ξ12 , . . . , ξ

M2
2 from the second stage and for each of these solving

subproblems to estimate the future risk measure using i.i.d. realizations ξ13 , . . . , ξ
M3
3

from the third stage. This requires solving subproblems at a total of M2M3 nodes.
More generally under this approach, given a stage T − 1 scenario ξ

jT−1
T−1 we estimate

the recourse function value by:

123



286 V. Kozmík, D. P. Morton

v̂e
T (ξ

jT−1
T−1 )= 1

MT

MT∑

jT =1

[
(1−λT ) (c jT

T )�x jT
T + λT u

jT−1
T−1 + λT

αT

[
(c jT

T )�x jT
T − u jT−1

T−1

]

+

]
.

For stages t = 2, . . . , T − 1 we have:

v̂e
t (ξ

jt−1
t−1 ) = 1

Mt

Mt∑

jt=1

[
(1 − λt )

(
(c jt

t )�x jt
t + v̂e

t+1(ξ
jt
t )

)

+λt u
jt−1
t−1 + λt

αt

[
(c jt

t )�x jt
t + v̂e

t+1(ξ
jt
t ) − u jt−1

t−1

]

+

]
. (17)

and finally for the upper bound estimator we compute:

U e = c�
1 x1 + v̂e

2. (18)

Shapiro [41] discusses two significant problems with the upper bound estimator
(18). First, the estimator requires solving an exponential number,

∏T
t=2 Mt , of sub-

problems in the number of stages (Thus the “e” superscript.) and hence is impractical
unless T is small. Second, as we examine further in Sect. 6, even when we can afford
to compute the bound provided by (18), the bound is not very tight. For these reasons,
estimator (18) is not typically used in practice.

Philpott and de Matos [29] mention another approach. They avoid computing an
upper bound for the risk-averse model by first solving the risk-neutral version of the
problem, in which we can compute reliable upper bound estimators and hence employ
a reasonable termination criterion.When the SDDP algorithm stops we fix the number
of iterations needed to satisfy the termination criterion. We then form the risk-averse
model and run the SDDP algorithm, without evaluating an upper bound estimator. The
solution and corresponding lower bound obtained after that fixed number of iterations
are considered the algorithm’s output. However, this approach has some pitfalls. It
is unclear that the number of iterations for the risk-averse model should be the same
as in the risk-neutral case, because the shape of the cost-to-go functions differs. This
approach gives us no guarantees on the quality of the solution and requires that we
run the SDDP algorithm twice.

To our knowledge, the most effective procedure currently available to compute an
upper bound is proposed by Philpott et al. [30]. They develop an inner approxima-
tion scheme that provides a candidate policy and a deterministic upper bound on the
policy’s value, using a convex combination of feasible policies. This bound provides
significantly better results than estimator (18), and it does not have sampling error.
However, as Philpott et al. [30] discuss, its main drawback is that the computational
effort increases rapidly in the dimension of the decision variables. Applicability of
the type of Monte Carlo estimators we propose, tends to scale more gracefully with
dimension. We further discuss the approach of [30] in Sect. 6.

When we restrict attention to statistical upper bound estimators, we have three
possible approaches at this point. The two upper bound estimators (16) and (18) are
available in the risk-averse case, and there is also a heuristic based on solving the
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risk-neutral model to determine the stopping iteration. In our view, all three of these
approaches are unsatisfactory. We are either forced to use loose upper bounds that
lead to very weak guarantees on solution quality and scale poorly. Or, we are forced to
use an approach which provides no guarantees on solution quality, even if reasonable
empirical performance has been reported in the literature. In the next section we
propose a new upper bound estimator to overcome these difficulties. Our estimator
scales better with the number of stages and can yield greater precision than previous
approaches.

5 Improved upper bound estimation

We overcome the shortcomings of the upper bound estimators (16) and (18) by first
focusing on the main issue causing the estimators to be poor: A relatively small frac-
tion of the sampled scenario-tree nodes contribute to estimating CVaR, for reasons
we illustrate in Example 2. To sample in a better manner we assume that for every
stage, t = 2, . . . , T , we can cheaply evaluate a real-valued approximation function,
ht (xt−1, ξt ), which estimates the recourse value of our decisions xt−1 after the random
parameters ξt have been observed.

The functions ht play a central role in our proposal for sampling descendant nodes.
Rather than solving linear programs at a large number of descendant nodes, as is done
in estimator (18), we instead evaluate ht at these nodes and then sort the nodes based
on their values. This guides sampling of the nodes to estimate CVaR. Having such a
function ht indicates that once we observe the random outcome for stage t + 1, we
have some means of distinguishing “good” and “bad” decisions at stage t without
knowledge of subsequent random events in stages t + 2, . . . , T . Sometimes this is
possible via an approximation of the recourse value associated with the system’s state.
For example, when dealing with some asset allocation models, we may use current
wealth to define ht .

Our sampling procedure forms an empirical scenario tree with equally-weighted
scenarios and discrete empirical distributions P̂t , t = 2, . . . , T . The probability mass
function (pmf) governing the conditional probability of the descendant nodes from
any stage t − 1 node is given by:

ft (ξt ) = 1

Dt
I
[
ξt ∈

{
ξ1t , . . . , ξ

Dt
t

}]
, (19)

where the indicator function I[·] takes value 1 if its argument is true and 0 otherwise.
Wepropose a sampling schemebased on importance sampling. The schemedepends

on the current state of the system, giving rise to a new pmf, which we denote
gt (ξt |xt−1). This pmf is tailored specifically for use with CVaR. Alternative pmfs
would be needed to apply the proposed ideas to other risk measures. Given the current
state of the system we can compute the value at risk for our approximation function,
uh = VaRαt

[
ht (xt−1, ξt )

]
, and partition the nodes corresponding to ξ1t , . . . , ξ

Dt
t into

two groups by comparing their approximate value to uh . In particular, the importance
sampling pmf is:
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gt (ξt |xt−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

1

�αt Dt	 I
[
ξt ∈

{
ξ1t , . . . , ξ

Dt
t

}]
, if ht (xt−1, ξt ) ≥ uh

1

2

1

Dt − �αt Dt	 I
[
ξt ∈

{
ξ1t , . . . , ξ

Dt
t

}]
, if ht (xt−1, ξt ) < uh ,

(20)

where the �·	 operator rounds down to the nearest integer. The factor of 1
2 in the

pmf gt (ξt |xt−1) modifies the probability masses so that we are equally likely to draw
sample observations above and below uh = VaRαt

[
ht (xt−1, ξt )

]
. We choose 1

2 for
simplicity, but in general a good choice of this factor could be tailored to the values
of the confidence levels, αt , and risk aversion coefficients, λt .

In accordance with importance sampling schemes, we can compute the required
expectation under our new measure via

E ft [Z ] = Egt

[
Z

ft
gt

]
,

for any random variable Z for which the expectations exist. If the expectation is taken
across the distributions for all T stages we denote the analogous operators by E f [·]
and Eg [·].

We can form an estimator similar to (16), except that we employ our importance
sampling distributions, gt , in place of the empirical distributions, ft , in the forward
pass of SDDP when selecting the sample paths. In particular, given a single sample
path from stage 1 to stage T, ξ j , we form estimator (15), which uses recursion (14)
and preserves the good scalability of the estimator with the number of stages.We carry
out this for a set of samples drawn using the newmeasure gt to select the sample paths.

Thus we have weights for each stage of

wt (ξt |xt−1) = ft (ξt )

gt (ξt |xt−1)
,

which yields weights along a sample path of

w(ξ j ) =
T∏

t=2

wt (ξ
jt
t |xt−1),

and an estimator of the form

1

M

M∑

j=1

w(ξ j )v̂(ξ j ).

This estimator is a weighted sum of the upper bounds (15) for the sampled scenarios.
Normalizing the weights reduces the variability of the estimator (see Hesterberg [15])
and yields:
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U i = 1
∑M

j=1 w(ξ j )

M∑

j=1

w(ξ j )v̂(ξ j ), (21)

where “i” indicates that the estimator uses importance sampling. We summarize the
development so far in the following proposition.

Proposition 1 Assumemodel (2) has relatively complete recourse and interstage inde-
pendence. Let z∗ denote the optimal value of model (2) under the empirical distrib-
utions, P̂t , t = 2, . . . , T , generated by i.i.d. sampling. Let ξ denote a sample path
selected under the empirical distribution, and let v̂(ξ ) be defined by (15) for that
sample path. Then E f

[
v̂(ξ )

] ≥ z∗. Furthermore if ξ j , j = 1, . . . , M, are i.i.d. and
generated by the pmfs (20) and U i is defined by (21) then U i → E f

[
v̂(ξ )

]
, w.p.1, as

M → ∞.

Proof The optimal value of model (2) as reformulated in model (3) yields z∗. Along
sample path ξ , under the assumption of relatively complete recourse, the cuts in sub-
problems (13) generate a feasible policy in the space of the (xt , ut ) variables. Remov-
ing the expectation operator in equation (5), the associated recursion of the objective
function in model (4) and equation (5) coincides with the recursion in equation (14).
Taking expectations yields E f

[
v̂(ξ )

] ≥ z∗.
By the law of large numbers we have that

lim
M→∞

1

M

M∑

j=1

w(ξ j ) = 1,w.p.1. (22)

For ξ generated by the empirical pmfs (19) and for each ξ j , generated by the pmfs
(20), we have

Eg

[
w(ξ j )v̂(ξ j )

]
= E f

[
v̂(ξ )

]
.

Thus by the law of large numbers we have

lim
M→∞

1

M

M∑

j=1

w(ξ j )v̂(ξ j ) = E f
[
v̂(ξ )

]
,w.p.1. (23)

From the definition of U i from (21) we have

U i = 1

M−1
∑M

j=1 w(ξ j )

1

M

M∑

j=1

w(ξ j )v̂(ξ j ).

Using a converging-together result with Eqs. (22) and (23) we then have

U i → E f
[
v̂(ξ )

]
,w.p.1,

as M → ∞. �
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In the sense made precise in Proposition 1, estimator (21) provides an asymptotic
upper bound on the optimal value of model (2). The naive estimator Un of (16) is an
unbiased and consistent estimator of E f

[
v̂(ξ )

]
. However, if the functions ht provide

a good approximation, in the sense that they order the state of the system in the same
way as the recourse function, we anticipate thatU i will have smaller variance thanUn.
That said, we view estimator (21) as an intermediate step to an improved estimator.
Under an additional assumption, the estimator can be improved significantly. We now
consider a stricter assumption, with the simplified notation, Qt = Qt (xt−1, ξt ) and
ht = ht (xt−1, ξt ).

Assumption 1 For every stage t = 2, . . . , T and decision xt−1 the approximation
function ht satisfies:

Qt ≥ VaRαt

[
Qt

]
if and only if ht ≥ VaRαt [ht ] .

Under Assumption 1, we can strengthen the estimator through a reformulation.
Given a sample path ξ we modify the recursive estimator (14) for t = 2, . . . , T as:

v̂h
t (ξ

jt−1
t−1 ) = (1 − λt )

(
(c jt

t )�x jt
t + v̂h

t+1(ξ
jt
t )

)
(24a)

+λt u
jt−1
t−1 + I

[
ht ≥ VaRαt [ht ]

]λt

αt

[
(c jt

t )�x jt
t + v̂h

t+1(ξ
jt
t ) − u jt−1

t−1

]

+ , (24b)

where v̂h
T+1(ξ

jT
T ) ≡ 0, and we let

v̂h(ξ ) = c�
1 x1 + v̂h

2 . (25)

Like the estimators Un and U i, which are based on (14) and (15), we note that the
estimator we propose next, based on Eqs. (24) and (25), requires explicit estimation
of the VaR-level by the ut−1 decision variables. With ξ j , j = 1, . . . , M , i.i.d. from
the pmfs (20) we form the upper bound estimator:

Uh = 1
∑M

j=1 w(ξ j )

M∑

j=1

w(ξ j )v̂h(ξ j ). (26)

Proposition 2 Assume the hypotheses of Proposition 1, let ξ denote a sample path
selected under the empirical distribution, let v̂h(ξ ) be defined by (25) for that sample
path, and let Assumption 1 hold. Then E f

[
v̂h(ξ )

] ≥ z∗. If ξ j , j = 1, . . . , M, are i.i.d.
and generated by the pmfs (20) and Uh is defined by (26) then Uh → E f

[
v̂h(ξ )

]
,

w.p.1, as M → ∞. Furthermore if subproblems (13) induce the same policy for both
v̂(ξ ) and v̂h(ξ ) then E f

[
v̂(ξ )

] ≥ E f
[
v̂h(ξ )

]
.

Proof Let (x1, u1), . . . , (xT−1, uT−1), xT be the feasible sequence to models (3) and
(4) for t = 2, . . . , T , specified by (13) along sample path ξ . The result E f

[
v̂(ξ )

] ≥
E f

[
v̂h(ξ )

]
holds because I

[
ht ≥ VaRαt [ht ]

]
can preclude some positive terms in the

recursion (24) that are included in (14).
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The terms in (24b) are used to estimate CVaR. Thus to establish the rest of the
proposition it suffices to show:

VaRαt

[
Qt

] + 1

αt
E

[[
Qt − VaRαt

[
Qt

]]
+
]

≤ ut−1 + 1

αt
E

[
I
[
ht ≥ VaRαt [ht ]

] [
Qt − ut−1

]
+
]

because the rest of the proof then follows in the same fashion as that of Proposition 1.
First consider the case in which ut−1 ≥ VaRαt

[
Qt

]
. We have:

VaRαt

[
Qt

] + 1

αt
E

[[
Qt − VaRαt

[
Qt

]]
+
]

≤ ut−1 + 1

αt
E

[[
Qt − ut−1

]
+
]

= ut−1 + 1

αt
E

[
I
[
Qt ≥ VaRαt

[
Qt

]] [
Qt − ut−1

]
+
]

= ut−1 + 1

αt
E

[
I
[
ht ≥ VaRαt [ht ]

] [
Qt − ut−1

]
+
]
,

where the inequality follows from CVaR’s definition as the optimal value of a min-
imization problem, the first equality holds because the indicator has no effect when
ut−1 ≥ VaRαt

[
Qt

]
, and the last equality follows from Assumption 1.

For the case when ut−1 < VaRαt

[
Qt

]
we first drop the positive part operator,

because that is handled by the indicator, and write:

VaRαt

[
Qt

] + 1

αt
E

[[
Qt − VaRαt

[
Qt

]]
+
]

= VaRαt

[
Qt

] + 1

αt
E

[
I
[
Qt ≥ VaRαt

[
Qt

]] (
Qt − ut−1 + ut−1 − VaRαt

[
Qt

])]

=
(

1 − P
[
Qt ≥ VaRαt

[
Qt

]]

αt

)

VaRαt

[
Qt

] +
(

P
[
Qt ≥ VaRαt

[
Qt

]]

αt

)

ut−1

+ 1

αt
E

[
I
[
Qt ≥ VaRαt

[
Qt

]]
(Qt − ut−1)

]

≤ ut−1 + 1

αt
E

[
I
[
Qt ≥ VaRαt

[
Qt

]] [
Qt − ut−1

]
+
]

= ut−1 + 1

αt
E

[
I
[
ht ≥ VaRαt [ht ]

] [
Qt − ut−1

]
+
]
,

where the inequality holds because P
[
Qt ≥ VaRαt

[
Qt

]] ≥ αt and ut−1 <

VaRαt

[
Qt

]
. (Note that we would instead have P

[
Qt ≥ VaRαt

[
Qt

]] = αt if we were
in the continuous case.) This completes the proof as the desired result holds in both
cases. �
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As Proposition 2 indicates, Uh provides an asymptotic upper bound estimator for
the optimal value of model (2). It also provides a tighter upper bound in expectation
than estimators Un and U i. We also anticipate that estimator Uh will have smaller
variance than U i provided the “induce the same policy” hypothesis holds. Note the
same-policy hypothesis is not needed for the proposition’s consistency result. As we
discuss in Sect. 4, when a sample path is such that the positive-part term in (14) is
positive that term ismultiplied byα−1

t = 20 (say), and this increases the likelihood that
as we decrement t we obtain large values that are repeatedly multiplied by α−1

t−1, α
−1
t−2,

etc. This repeated multiplication should occur for some samples, but it can also occur
when it should not. The indicator function inUh helps avoid this issue and hence tends
to reduce variance.

Under Assumption 1, the approximation function, ht , characterizes the recourse
value in that it fully classifies whether a realization is in the upper α tail of the recourse
values. We now weaken Assumption 1 to incorporate the notion of what we call
a margin function, mt (xt−1, ξt ), in order for our type of upper bound estimator to
address a broader class of stochastic programs. Under Assumption 2, given below, the
margin function is sufficient to classify a realization as not being in the upper α tail
of the recourse values. It accomplishes this by effectively lowering the threshold that
approximates the upper tail and has the effect of increasing the number of descendant
scenarios that contribute to the positive-part CVaR term.

Assumption 2 For every stage t = 2, . . . , T and decision xt−1 we have real-valued
functions ht (xt−1, ξt ) and mt (xt−1, ξt ) which satisfy:

if ht < mt then Qt < VaRαt

[
Qt

]
.

Given a sample path ξ we modify the recursive estimators (14) and (24) for t =
2, . . . , T as:

v̂m
t (ξ

jt−1
t−1 ) = (1 − λt )

(
(c jt

t )�x jt
t + v̂m

t+1(ξ
jt
t )

)

+ λt u
jt−1
t−1 + I[ht ≥ mt ]

λt

αt

[
(c jt

t )�x jt
t + v̂m

t+1(ξ
jt
t ) − u jt−1

t−1

]

+ , (27)

where v̂m
T+1(ξ

jT
T ) ≡ 0, and we let

v̂m(ξ ) = c�
1 x1 + v̂m

2 . (28)

With ξ j , j = 1, . . . , M , i.i.d. and from the pmfs (20), which use functions ht , we
form the upper bound estimator:

Um = 1
∑M

j=1 w(ξ j )

M∑

j=1

w(ξ j )v̂m(ξ j ). (29)

Again, note that we do not modify the importance sampling procedure here to use
the margin value. The sampling scheme still relies on the VaRαt [ht ] level of the
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approximation function via the pmfs (20). However, the estimator based on (28) is
more generally applicable than the estimator based on (25) because we can drop
Assumption 1 and instead require only the weaker implication of Assumption 2.

Proposition 3 Assume the hypotheses of Proposition 1, let ξ denote a sample path
selected under the empirical distribution, let v̂m(ξ ) be defined by (28) for that sample
path, and let Assumption 2 hold. ThenE f

[
v̂m(ξ )

] ≥ z∗. If ξ j , j = 1, . . . , M, are i.i.d.
and generated by the pmfs (20) and Um is defined by (29) then Um → E f

[
v̂m(ξ )

]
,

w.p.1, as M → ∞. Furthermore if subproblems (13) induce the same policy for
both v̂(ξ ) and v̂m(ξ ) then E f

[
v̂(ξ )

] ≥ E f
[
v̂m(ξ )

]
. Finally, if Assumption 1 also

holds and subproblems (13) induce the same policy for both v̂m(ξ ) and v̂h(ξ ) then
E f

[
v̂m(ξ )

] ≥ E f
[
v̂h(ξ )

]
.

Proof We have:

VaRαt

[
Qt

] + 1

αt
E

[[
Qt − VaRαt

[
Qt

]]
+
]

≤ ut−1 + 1

αt
E

[
I
[
Qt ≥ VaRαt

[
Qt

]] [
Qt − ut−1

]
+
]

≤ ut−1 + 1

αt
E

[
I[ht ≥ mt ]

[
Qt − ut−1

]
+
]

where the first inequality comes from following the steps of the proof of Proposition 2
(in both of the cases considered) and the second inequality follows fromAssumption 2.
From this we have E f

[
v̂m(ξ )

] ≥ z∗, and the consistency result for Um follows in
the same manner as in the proof of Proposition 1. Inequality E f

[
v̂(ξ )

] ≥ E f
[
v̂m(ξ )

]

holds because I[ht ≥ mt ] can preclude some positive terms in the recursion (27)
that are included in (14). Finally, E f

[
v̂m(ξ )

] ≥ E f
[
v̂h(ξ )

]
holds because under

Assumptions 1 and 2 the indicator I[ht ≥ mt ] allows inclusion of some positive terms
that the indicator I

[
ht ≥ VaRαt [ht ]

]
does not. �

In order to ensure thatUh is a valid upper bound estimator we require that we have
an approximation function that can fully order states of the system in the sense of
Assumption 1, and this limits applicability of the estimator in some cases. Assump-
tion 2weakens considerably this requirement, andwidens the applicability of estimator
Um. While Um again provides an asymptotic upper bound estimator for the optimal
value of model (2), the price we pay is that it is weaker than Uh as Proposition 3
indicates.

For the types of approximation and margin functions (ht and mt ) that we envision,
our importance-sampling estimators (U i,Uh, andUm) requiremodest additional com-
putation relative to estimator Un, which uses samples from the empirical pmfs (19).
In particular with Dt denoting the number of stage t descendant nodes formed in the
sampling procedure, the bulk of the additional computation requires evaluating ht
and mt at each of these Dt nodes and determining uh = VaRαt [ht ], which can be
done by sorting with effort O(Dt log Dt ) or in linear time in Dt (see [6]). This effort
is small compared to solving linear programs for modest values of Dt , particularly
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recalling that in SDDP’s backward pass we must solve linear programs at all Dt nodes
to compute a cut. Furthermore, in Sects. 3–5, we have simplified the presentation by
using an SDDP tree with equally-likely realizations. However, our ideas generalize
in a straightforward manner to handle general discrete distributions. For example, in
computing the quantile uh we should form the cumulative distribution function rather
than simply sorting.

6 Computational results

We present computational results for applying SDDP with the upper bound estimators
we describe in Sects. 4 and 5 to two asset allocation models under our CVaR risk
measure. We present results for our four new upper bound estimators: (i) Un from
equation (16); (ii) U i from Eq. (21); (iii) Uh from Eq. (26); and, (iv) Um from Eq.
(29). We compare their performance with that of the existing upper bound estimator
from the literature: U e from Eq. (18). The two asset allocation models we consider
differ only inwhether we include transaction costs or not.Without transaction costs we
can use estimatorUh, but we can only use estimatorUm when we include transaction
costs.

We beginwith a simple asset allocationmodel without transaction costs and empha-
size that our primary purpose is to compare the upper bound estimators as opposed
to building a high-fidelity model for practical use. At stage t the decisions xt denote
the allocations (in units of a multiple of a base currency, say USD), and pt denotes
gross return per stage; i.e., the ratio of the price at stage t to that in stage t − 1. These
represent the only random parameters in the model. Without transaction costs, model
(4) specializes to:

Qt (xt−1, ξt ) = min
xt ,ut

−1�xt + λt+1ut + Qt+1(xt , ut ) (30a)

s.t. 1�xt = p�
t xt−1 (30b)

xt ≥ 0, (30c)

except that in the first stage: (i) the right-hand side of (30b) is instead 1 and (ii) because
−1�x1 is then identically −1, we drop this constant from the objective function.

The assets in our allocation model consist of the stock market indices DJA, NDX,
NYA, and OEX. We used monthly data for these indices from September 1985 until
September 2011 to fit the multivariate log-normal distribution to the price ratios
observed month-to-month. An empirical scenario tree was then constructed by sam-
pling from the log-normal distribution, using the polar method [20] for sampling the
underlying normal distributions. The L’Ecuyer random generator [22] was used to
generate the required uniform random variables. We implemented the SDDP algo-
rithm in C++ software, using CPLEX [18] to solve the required linear programs and
the Armadillo [1] library for matrix computations. The confidence level was set to
αt = 5% and the risk coefficients were set to λt = t−1

T , t = 2, . . . , T so that risk
aversion increases in later stages. Table 1 shows the sizes of the empirical scenario
trees for our test problem instances.
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Table 1 Sizes of empirical
scenario trees for test problem
instances

Stages (T ) Descendants
per node (Dt )

Total scenarios
(|Ω̂|)

2 50,000 50,000

3 1,000 1,000,000

4 100 1,000,000

5 50 6,250,000

10 50 ≈1015

15 50 ≈1024

The approximation function, ht (xt−1, ξt ), that we use for the importance sampling
estimatorsU i andUh is simply our current wealth, within a sign, which is determined
by the previous stage decisions and the current price:

ht (xt−1, ξt ) = −p�
t xt−1.

Note that this function meets the requirements of Assumption 1, because when we
have no transaction costs the specific allocations in the vector xt−1 can be rebalanced
with no loss. This is captured mathematically in model (30) in that ht = −p�

t xt−1
acts as the sole state variable; i.e., the equality constraint of (30b) could be used to
replace the first term in the objective function of (30a). Hence, we seeQt also depends
solely on ht and that dependence is monotonic in ht due to monotonicity of CVaR.

Our primary purpose is to compare the upper bound estimators that we have devel-
oped. For this reason we ran the SDDP algorithm with each of the upper bound
estimators until the algorithm reached nearly the same optimal value as estimated by
the first stage master program’s objective function; i.e., the lower bound z from step 2
of Algorithm 1 for the risk-averse model. Specifically, SDDP was terminated when z
agreed across the four runs and did not improve by more than 10−6 over 10 iterations.
A total of 100 iterations of SDDP sufficed to accomplish this for problem instances
with T = 2, . . . , 5 and a total of 200 iterations sufficed for the larger instances with
T = 10 and 15. For estimatorsUn,U i, andUh on problem instances with T = 2, 3, 4,
and 5 we used respective sample sizes of M = 1,001, 501, 334, and 251. In this way,
forming the estimators required solving around 1,000 linear programming subprob-
lems in each case. For T = 10 and 15 we used M = 1112 and 3572 so that forming
the estimator required solving about 10,000 and 50,000 linear programs, respectively.
For the estimator U e we must specify a sample size Mt for each stage: For T = 2 we
used M2 = 1,000. For T = 3 we used M2 = M3 = 32 because this means forming
the estimator requires solving 322 ≈1,000 linear programs and this allows for a fair
comparison with the single-path estimators Un,U i, and Uh. With similar reasoning
for T = 4 we used Mt = 11∀t , and for T = 5 we used Mt = 6∀t . And for the largest
value of T for which we compute U e, T = 10, we used Mt = 3∀t .

Table 2 shows results for four estimators for the asset allocation model without
transaction costs. These results were computed using the sample sizes that we indicate
above, except that we formed 100 i.i.d. replicates of the estimators. For a particular
problem instance, all 100 replicates used the same single run of 100 or 200 iterations
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Table 2 Comparison of four upper bound estimators, including the point estimates and their standard
deviations (SD) for the model with no transaction costs

T z Un (SD) U i (SD) Uh (SD) U e (SD)

2 −0.9518 −0.9515 (0.0020) −0.9517 (0.0012) −0.9517 (0.0011) −0.9518 (0.0019)

3 −1.8674 −1.8300 (0.0145) −1.8285 (0.0108) −1.8656 (0.0060) −1.8013 (0.0302)

4 −2.7811 −2.4041 (0.1472) −2.3931 (0.1128) −2.7764 (0.0126) −2.6027 (0.0883)

5 −3.6794 −3.4608 (0.1031) −3.4963 (0.1008) −3.6731 (0.0303) −2.9031 (0.5207)

10 −7.6394 9.3×104 (1.4×104) 9.0×104 (8.7×104) −7.5465 (0.2562) 1.5×107 (1.3×106)

15 −11.5188 NA NA −11.0148 (0.6658) NA

of SDDP. Each cell in Table 2 reports the mean and standard deviation of the 100
replicates of the estimator. The table also shows the lower bound z for the models
obtained as we describe above. The estimators perform similarly for the two-stage
problem instance, but the advantages of the proposed estimator, Uh, are revealed as
the number of stages grows. Note that estimatorsUn,U i andU e degrade at T = 10 for
reasons we discuss above involving recursive multiplication by α−1

t = 20 along some
sample paths. Due to this degradation we do not report results for these estimators
for T = 15. We suspect it is for this same reason that the benefit of the importance
sampling scheme is only fully realized when we include the indicator functions shown
in Eq. (24); compare the performance ofU i andUh in the table. For T = 2, . . . , 5 the
variance reduction of Uh relative to U e grows from roughly 3 to 25 to 50 to 300. The
smaller standard deviations of Uh could facilitate its use in a sensible stopping rule.

For our second set of problem instances the model incorporates transaction costs.
This allows us to show how to implement our upper bound estimation procedure in a
more complexmodel.We consider the case in which transaction costs are proportional
to the value of the assets sold or bought, and in particular that the fee is ft = 0.3% of
the transaction value. We must modify the rebalancing equation between stage t − 1
and stage t to include the transaction costs of ft1�|xt − xt−1|, where the | · | function
applies component-wise. Linearizing we obtain the following special case of model
(4):

Qt (xt−1, ξt ) = min
xt ,zt ,ut

− 1�xt + λt+1ut + Qt+1(xt , ut )

s.t. 1�xt + ft1�zt = p�
t xt−1

zt − xt ≥ −xt−1

zt + xt ≥ xt−1

xt ≥ 0.

We again use the approximation function ht (xt−1, ξt ) = −p�
t xt−1. With nonzero

transaction costs the conditions of Assumption 1 are no longer satisfied: Suppose in
the third stage it is optimal to invest all money in stock A. Arriving at this point with
the second stage portfolio consisting only of stock A is convenient because we need
not rebalance and incur a transaction cost. A portfolio of less worth, in the sense of
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p�
t xt−1, consisting only of stock A may be preferred to another portfolio with larger

value of p�
t xt−1 but consisting of other stocks. Fortunately, we can still compare some

portfolios. Consider the worst case scenario in which we must rebalance the entire
portfolio; i.e., sell all our assets and buy some other assets at stage t . This would
increase the loss by a factor of 1+ ft

1− ft
. However, this portfolio is still better than any

other portfolio whose total loss exceeds this portfolio’s loss adjusted by the same
factor. This leads us to the margin function given by:

mt =
(
1 + ft
1 − ft

)
VaRαt [ht ] .

Functions ht and mt satisfy Assumption 2, and we can apply the upper bound
estimator Um. This construction, of course, increases the bias of the estimator as we
indicate in Proposition 3. However, if the transaction costs are modest compared to
market volatility, we may expect our estimator to provide reasonable results.

Table 3 reports results in the same manner as Table 2, now comparingUm andU e.
The value z is computed in the same way we describe above. From Table 2 we see
that the point estimate Uh as a percentage of z drops from 99.8 to 98.8 to 95.6% for
T = 5, 10, and 15, respectively. The analogous values forUm fromTable 3 are weaker
as expected, dropping from 99.6 to 98.7 to 90.5%. Note that these same values forU e

for T = 5 are 78.9% without transaction costs and 75.3% with transaction costs. For
T = 2, 3, 4, 5 the variance reduction of Um over U e grows from roughly 3 to 20 to
40 to 400, again indicating that our proposed upper bound estimator is superior to the
previously available estimator.

To assess the required computational effort, for the model instances without trans-
action costs for T = 5, 10, and 15 stages we ran 100 replications of estimators Un

and Uh. For each estimator we used a sample size of M =1,000 and the subproblems
in each stage had 1,000 cuts. The computations were performed using a single thread
on an Intel 2.53 GHz Core2 Duo with 4 GB of RAM and CPLEX version 12.2. The
average computation time for estimatorUn grew from 8.7 seconds to 31.6 sec. to 67.4
sec. for the respective model instances with T = 5, 10, and 15 stages. The computa-
tion times, again averaged over 100 replications of the estimators, for Uh grew from
6.8 s to 30.0 s to 66.5 s for the same instances. (The standard deviations associated with
the run times are at most 1% of the average.) Like estimator Un, the computational
effort we require to compute Uh scales well with the number of stages. We note that
the estimator Uh does have additional computational overhead, relative to Un, that

Table 3 Comparison of the
estimators for the model with
transaction costs

T z Um (SD) U e (SD)

2 −0.9518 −0.9517 (0.0011) −0.9518 (0.0019)

3 −1.8668 −1.8642 (0.0060) −1.8043 (0.0282)

4 −2.7697 −2.7555 (0.0138) −2.5878 (0.0858)

5 −3.6653 −3.6508 (0.0306) −2.7582 (0.6197)

10 −7.5579 −7.4562 (0.2339) 5.2 × 106 (7.8 × 105)

15 −11.3379 −10.2662 (0.8511) NA
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grew from an average 0.3 s to 1.2 s to 2.9 s for T = 5, 10, and 15 stages. However, for
these particular problem instances the linear programming master programs happen
to solve slightly more quickly for estimator Uh compared to Un. We obtained very
similar scaling results with T for the estimatorUm applied to problem instances with
transaction costs.

Although we stop short of a computational comparison, we discuss similarities and
differences between our estimators (Uh and Um) and the inner approximation bound
of Philpott et al. [30]. The computational work in [30] is on a hydro-thermal scheduling
model that maintains an inventory of water (or energy) in four aggregate reservoirs.
The analogous dimension for our first set of computational examples is one (current
wealth), and the dimension is five for our second set of problem instances. Our largest
models have 15 stages while those of Philpott et al. have 24 stages. The problems to
which the respective bounds are applied are quite different, but our point estimate with
the largest gap is about 10% (see T = 15 row of Table 3), and the gap reported in
Table 3 of [30] with 10,000 cuts is of similar magnitude. With 10,000 cuts the inner
approximation of [30] would require solving 150,000 linear programs for our 15-stage
models, while we report results for our estimators solving 50,000 linear programs.
We suspect that our approach will scale well with dimension, although we have yet
to investigate this computationally. We note that our estimators require specification
of functions that appropriately characterize the tail of the recourse function while
the inner approximation of Philpott et al. does not have this requirement. A final
distinction is that, like the SDDP algorithm for the risk-neutral model, our upper
bound estimators are for the policy dictated by the cuts, i.e., the policy associated
with the outer approximation. Philpott et al. do not provide an upper bound for this
cut-based policy. Rather their bound is for a policy associated with a set of points
employed in developing the inner approximation.

7 Conclusion

We have presented a new approach to compute upper bound estimators for multi-stage
stochastic programs that incorporate risk via CVaR. Under relatively mild conditions
our most widely applicable estimator provides much better results than an existing
estimator from the literature, in terms of reduced bias, smaller variance, and viability
in problems with more than a few stages. We believe this type of estimator could
be used to form better stopping rules for SDDP-style algorithms and possibly other
algorithms, too. Such stopping rules and upper bounds allow for quantification of the
quality of a proposed policy, which we see as important in practice.

Future research could include further characterization of the statistical properties
of the proposed estimators, parametric tuning of the importance sampling distribu-
tion, or could focus on the type of approximation functions useful for the importance
sampling schemes. Further future work could include application of the estimator in
other problem settings in which multi-stage stochastic programs see pervasive use,
such as hydroelectric scheduling under inflow uncertainty. We believe that other risk
measures will lend themselves to our ideas and developing and analyzing analogous
estimators is another topic for further research.
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