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Abstract Motivated by some applications in signal processing and machine learning,
we consider two convex optimization problems where, given a cone K , a norm ‖ · ‖
and a smooth convex function f , we want either (1) to minimize the norm over the
intersection of the cone and a level set of f , or (2) to minimize over the cone the
sum of f and a multiple of the norm. We focus on the case where (a) the dimension
of the problem is too large to allow for interior point algorithms, (b) ‖ · ‖ is “too
complicated” to allow for computationally cheap Bregman projections required in
the first-order proximal gradient algorithms. On the other hand, we assume that it
is relatively easy to minimize linear forms over the intersection of K and the unit
‖ · ‖-ball. Motivating examples are given by the nuclear norm with K being the entire
space ofmatrices, or the positive semidefinite cone in the space of symmetric matrices,
and the Total Variation norm on the space of 2D images. We discuss versions of the
Conditional Gradient algorithm capable to handle our problems of interest, provide
the related theoretical efficiency estimates and outline some applications.
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1 Introduction

We consider two norm-regularized convex optimization problems as follows:

[norm minimization]min
x∈K ‖x‖, subject to f (x) ≤ 0, (1)

[penalized minimization]min
x∈K f (x)+ κ‖x‖ (2)

where f is a convex function with Lipschitz continuous gradient, K is a closed convex
cone in a Euclidean space E, ‖·‖ is some norm, and κ is a positive parameter. Problems
such as (1) and (2) are of definite interest for signal processing andmachine learning. In
these applications, f (x) quantifies the discrepancy between the observed noisy output
of some parametric model and the output of the model with candidate vector x of
parameters. Most notably, f is the quadratic penalty: f (x) = 1

2‖Ax− y‖22− δ, where
Ax is the predicted output of the linear regression model x �→ Ax , and y = Ax∗ + ξ ,
where x∗ is the vector of true parameters, ξ is the observation error, and δ is an a priori
upper bound on 1

2‖ξ‖22. The cone K sums up a priori information on the parameter
vectors (e.g., K = E—no a priori information at all, or E = Rp, K = Rp

+, or E = Sp,
the space of symmetric p× pmatrices, and K = Sp

+, the cone of positive semidefinite
matrices, as is the case of covariance matrices recovery). Finally, ‖ · ‖ is a regularizing
norm “promoting” a desired property of the recovery, e.g., the sparsity-promoting
norm �1 on E = Rn , or the low rank promoting nuclear norm on E = Rp×q , or the
Total Variation (TV) norm, as in image reconstruction.

In the large-scale case, first-order algorithms of proximal-gradient type are popular
to tackle such problems, see [34] for a recent overview. Among them, the celebrated
Nesterov optimal gradient methods for smooth and composite minimization [26–28],
and their stochastic approximation counterparts [21], are now state-of-the-art in com-
pressive sensing and machine learning. These algorithms enjoy the best known so far
theoretical estimates (and in some cases, these estimates are the best possible for the
first-order algorithms). For instance, Nesterov’s algorithm for penalized minimization
[27,28] solves (2) to accuracy ε in O(D0

√
L/ε) iterations, where L is the properly

defined Lipschitz constant of the gradient of f , and D0 is the initial distance to the
optimal set, measured in the norm ‖ · ‖. However, applicability and efficiency of
proximal-gradient algorithms in the large-scale case require from the problem to pos-
sess “favorable geometry” (for details, see [28, Section A.6]). To be more specific,
consider proximal-gradient algorithm for convex minimization problems of the form

min
x
{ f (x) : ‖x‖ ≤ 1, x ∈ K }. (3)

The comments to follow, with slight modifications, are applicable to problems such
as (1) and (2) as well. In this case, a proximal-gradient algorithm operates with a
“distance generating function” (d.g.f.) defined on the domain of the problem and 1-
strongly convexw.r.t. the norm ‖·‖. Each step of the algorithm requiresminimizing the
sum of the d.g.f. and a linear form. The efficiency estimate of the algorithm depends on
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Conditional gradient algorithms 77

the variation of the d.g.f. on the domain and on regularity of f w.r.t. ‖ · ‖.1 As a result,
in order for a proximal-gradient algorithm to be practical in the large scale case, two
“favorable geometry” conditions should be met: (a) the outlined sub-problems should
be easy to solve, and (b) the variation of the d.g.f. on the domain of the problem
should grow slowly (if at all) with problem’s dimension. Both these conditions indeed
are met in many applications; see, e.g., [2,20] for examples. This explains the recent
popularity of this family of algorithms.

However, sometimes conditions (a) and/or (b) are violated, and application of prox-
imal algorithms becomes questionable. For example, for the case of K = E , (b) is
violated for the usual ‖ · ‖∞-norm on Rp or, more generally, for ‖ · ‖2→∞ norm on
the space of p × q matrices given by

‖x‖2→∞:= max
u∈Rq :‖u‖2≤1

‖xu‖∞ = max
1≤ j≤p

‖Row j (x)‖2,

whereRowT
j (x)denotes the j th rowof x .Here the variation of (any) d.g.f. on problem’s

domain is at least p. As a result, in the case in question the theoretical iteration
complexity of a proximal algorithm grows rapidly with the dimension p. Furthermore,
for some high-dimensional problemswhich do satisfy (b), solving the sub-problem can
be computationally challenging. Examples of such problems include nuclear-norm-
based matrix completion, Total Variation-based image reconstruction, and multi-task
learning with a large number of tasks and features. This corresponds to ‖ · ‖ in (1) or
(2) being the nuclear norm [11,14] or the TV-norm.

These limitations recentlymotivated alternative approaches, which do not rely upon
favorable geometry of the problem domain and/or do not require to solve hard sub-
problems at each iteration, and triggered a renewed interest in theConditional Gradient
(CndG) algorithm. This algorithm, also known as the Frank–Wolfe algorithm, which
is historically the first method for smooth constrained convex optimization, originates
from [9], and was extensively studied in the 70-s (see, e.g., [6,8,29] and references
therein). CndG algorithmswork byminimizing a linear form on the problem domain at
each iteration; this auxiliary problemclearly is easier, and inmany cases—significantly
easier than the auxiliary problem arising in proximal-gradient algorithms. Conditional
gradient algorithms for collaborative filtering were studied recently [17,18], some
variants and extensions were studied in [7,11,33]. Those works consider constrained
formulations of machine learning or signal processing problems, i.e., minimizing the
discrepancy f (x) under a constraint on the norm of the solution, as in (3). On the other
hand, CndG algorithms for other learning formulations, such as norm minimization
(1) or penalized minimization (2) remain open issues. An exception is the work of
[7,11], where a Conditional Gradient algorithm for penalized minimization was stud-
ied, although the efficiency estimates obtained in that paper were suboptimal. In this
paper (for its conference version, see [12]) we present CndG-type algorithms aimed

1 i.e., the Lipschitz constant of f w.r.t. ‖ · ‖ in the nonsmooth case, or the Lipschitz constant of the gradient
mapping x �→ f ′(x) w.r.t. the norm ‖ · ‖ on the argument and the conjugate of this norm on the image
spaces in the smooth case.
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78 Z. Harchaoui et al.

at solving norm minimization and penalized minimization problems2 and provide
theoretical efficiency guarantees for these algorithms.

The main body of the paper is organized as follows. In Sect. 2, we present detailed
setting of problems (1), (2) along with basic assumptions on the “computational envi-
ronment” required by theCndG-based algorithmswe are developing. These algorithms
and their efficiency bounds are presented in Sect. 3 (problem (1)) and 5 (problem (2).
In Sect. 6 we outline some applications, and in Sect. 7 present preliminary numerical
results. All proofs are relegated to the “Appendix”.

2 Problem statement

Throughout the paper, we shall assume that K ⊂ E is a closed convex cone in
Euclidean space E ; we loose nothing by assuming that K linearly spans E .We assume,
further, that ‖ · ‖ is a norm on E , and f : K → R is a convex function with Lipschitz
continuous gradient, so that

‖ f ′(x)− f ′(y)‖∗ ≤ L f ‖x − y‖ ∀x, y ∈ K ,

where ‖ · ‖∗ denotes the norm dual to ‖ · ‖3

∀x, y ∈ K : f (y) ≤ f (x)+ 〈 f ′(x), y − x〉 + L f

2
‖y − x‖2. (4)

We consider two kinds of problems, detailed below.

Norm-minimization. Such problems correspond to

ρ∗ = min
x
{‖x‖ : x ∈ K , f (x) ≤ 0} . (5)

To tackle (5), we consider the following parametric family of problems

Opt(ρ) = min{ f (x) : ‖x‖ ≤ ρ, x ∈ K } . (6)

Note that whenever (5) is feasible, which we assume from now on, we have

ρ∗ = min{ρ ≥ 0 : Opt(ρ) ≤ 0}, (7)

and both problems (5), (7) can be solved.
Given a tolerance ε > 0, we want to find an ε-solution to the problem, that is,

xε ∈ K such that
‖xε‖ ≤ ρ∗ and f (xε) ≤ ε. (8)

2 The penalized minimization problem, with a similar type of algorithm, was independently of and simul-
taneously with [12] considered in [38].
3 Recall that the dual, a.k.a. conjugate, to a norm ‖ · ‖ on a Euclidean space E is the norm on E defined as
‖ξ‖∗ = maxx∈E,‖x‖≤1〈ξ, x〉, where 〈·, ·〉 is the inner product on E .
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Conditional gradient algorithms 79

Getting back to the problem of interest (5), xε is then “super-optimal” and ε-feasible.

Penalized norm minimization. These problems write as

Opt = min
x
{ f (x)+ κ‖x‖ : x ∈ K } . (9)

A equivalent formulation is

Opt = min
x,r
{F([x; r ]) = κr + f (x) : x ∈ K , ‖x‖ ≤ r} . (10)

We shall refer to (10) as the problem of composite optimization (CO). Given a
tolerance ε > 0, our goal is to find an ε-solution to (10), defined as a feasible solution
(xε, rε) to the problem satisfying F([xε; rε]) − Opt ≤ ε. Note that in this case xε is
an ε-solution, in the similar sense, to (9).

Special case. In many applications where problems (5) and (9) arise, the function f
enjoys a special structure:

f (x) = φ(Ax − b),

where x �→ Ax − b is an affine mapping from E to Rm , and φ(·) : Rm → R is a
convex function with Lipschitz continuous gradient; we shall refer to this situation
as to special case. In such case, the quantity L f can be bounded as follows. Let π(·)
be some norm on Rm, π∗(·) be the conjugate norm, and ‖A‖‖·‖,π be the norm of the
linear mapping x �→ Ax induced by the norms ‖ · ‖, π(·) on the argument and the
image spaces:

‖A‖‖·‖,π(·) = max
x∈E {π(Ax) : ‖x‖ ≤ 1}.

Let also Lπ(·)[φ] be the Lipschitz constant of the gradient of φ induced by the norm
π(·), so that

π∗(φ′(y)− φ′(y′)) ≤ Lπ(·)[φ]π(y − y′) ∀y, y′ ∈ Rm .

Then, one can take as L f the quantity

L f = Lπ(·)[φ]‖A‖2‖·‖,π(·). (11)

Example 1 Quadratic fit. Inmany applications, we are interested in ‖·‖2-discrepancy
between Ax and b; the related choice of φ(·) is φ(y) = 1

2 y
T y. Specifying π(·) as

‖ · ‖2, we get L‖·‖2 [φ] = 1.

Example 2 Smoothed �∞ fit. When interested in ‖ · ‖∞ discrepancy betweenAx and
b, we can use as φ the function φ(y) = 1

2‖y‖2β , where β ∈ [2,∞). Taking π(·) as
‖ · ‖∞, we get
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L‖·‖∞[φ] ≤ (β − 1)m2/β .

Note that

1

2
‖y‖2∞ ≤ φ(y) ≤ m2/β

2
‖y‖2∞,

so that for β = O(1) ln(m) andm large enough (specifically, such that β ≥ 2), φ(y) is
within absolute constant factor of 1

2‖y‖2∞. The latter situation can be interpreted as φ

behaving as 1
2‖·‖2∞. At the same time, with β = O(1) ln(m), L‖·‖∞[φ] ≤ O(1) ln(m)

grows with m logarithmically.

Anotherwidely used choice ofφ(·) for this type of discrepancy is “logistic” function

φ(y) = 1

β
ln

(
m∑
i=1

[
eβyi + e−βyi

])
.

For π(·) = ‖ · ‖∞ we easily compute L‖·‖∞[φ] ≤ β and ‖y‖∞ ≤ φ(y) ≤ ‖y‖∞ +
ln(2m)/β.

Note that in some applications we are interested in “one-sided” discrepan-
cies quantifying the magnitude of the vector [Ax − b]+ = [max[0, (Ax −
b)1]; . . . ;max[0, (Ax − b)m]] rather than the the magnitude of the vector Ax − b
itself. Here, instead of using φ(y) = 1

2‖y‖2β in the context of examples 1 and 2, one
can use the functions φ+(y) = φ([y]+). In this case the bounds on Lπ(·)[φ+] are
exactly the same as the above bounds on Lπ(·)[φ]. The obvious substitute for the two-
sided logistic function is its “one-sided version:” φ+(y) = 1

β
ln
(∑m

i=1
[
eβyi + 1

])
which obeys the same bound for Lπ(·)[φ+] as its two-sided analogue.

First-order and linear optimization oracles. We assume that f is represented by a
first-order oracle—a routine which, given on input a point x ∈ K , returns the value
f (x) and the gradient f ′(x) of f at x . As about K and ‖ · ‖, we assume that they are
given by a Linear Optimization (LO) oracle which, given on input a linear form 〈η, ·〉
on E , returns a minimizer x[η] of this linear form on the set {x ∈ K : ‖x‖ ≤ 1}. We
assume w.l.o.g. that for every η, x[η] is either zero, or is a vector of the ‖ · ‖-norm
equal to 1. To ensure this property, it suffices to compute 〈η, x[η]〉 for x[η] given
by the oracle; if this inner product is 0, we can reset x[η] = 0, otherwise ‖x[η]‖ is
automatically equal to 1.

Note that an LO oracle for K and ‖ · ‖ allows to find a minimizer of a linear form
of z = [x; r ] ∈ E+:=E × R on a set of the form K+[ρ] = {[x; r ] ∈ E+ : x ∈
K , ‖x‖ ≤ r ≤ ρ} due to the following observation:

Lemma 1 Let ρ ≥ 0 and η+ = [η; σ ] ∈ E+. Consider the linear form �(z) = 〈η+, z〉
of z = [x; r ] ∈ E+, and let

z+ =
{

ρ[x[η]; 1], 〈η+, [x[η]; 1]〉 ≤ 0,
0, otherwise

.
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Conditional gradient algorithms 81

Then z+ is aminimizer of �(z) over z ∈ K+[ρ],When σ = 0, one has z+ = ρ[x[η]; 1].
Indeed, by the definition of x[η], for all z = [x; r ] ∈ K+[ρ] we have �(r [x[η]; 1]) ≤
�(z). Now, let z∗ = [x∗; r∗] be a minimizer of �(·) over K+[ρ], then �(z∗) ≤ �(z∗),
where z∗:=r∗[x[η]; 1] ∈ K+[ρ]. We conclude that any minimizer of �(·) over the
segment {s[x[η]; 1] : 0 ≤ s ≤ ρ} is also a minimizer of �(·) over K+[ρ]. It remains
to note that the vector z+ in the lemma premise clearly is a minimizer of �(·) on the
above segment.

3 Conditional gradient algorithm

In this section, we present an overview of the properties of the standard Conditional
Gradient algorithm, and highlight some memory-based extensions. These properties
are not new. However, since they are key for the design of our proposed algorithms in
the next sections, we present them for further reference.

3.1 Conditional gradient algorithm

Let E be a Euclidean space and X be a closed and bounded convex set in E which
linearly spans E . Assume that X is given by a LO oracle—a routine which, given on
input η ∈ E , returns an optimal solution xX [η] to the optimization problem

min
x∈X 〈η, x〉

(cf. Sect. 2). Let f be a convex differentiable function on X with Lipschitz continuous
gradient f ′(x), so that

∀x, y ∈ X : f (y) ≤ f (x)+ 〈 f ′(x), y − x〉 + 1

2
L‖y − x‖2X , (12)

where ‖ · ‖X is the norm on E with the unit ball X − X .4 We intend to solve the
problem

f∗ = min
x∈X f (x). (13)

A generic CndG algorithm is a recurrence which builds iterates xt ∈ X, t = 1, 2, . . .,
in such a way that

f (xt+1) ≤ f (̃xt+1), (14)

where

x̃t+1 = xt + γt [x+t − xt ], with x+t = xX [ f ′(xt )] and γt = 2
t+1 . (15)

4 Note being a special case of (4), (12) provides a description of regularity properties of f in terms which
are “invariant with respect to the geometry of X”.
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82 Z. Harchaoui et al.

As a byproduct of running generic CndG, after t steps we have at our disposal the
quantities

f∗,τ = min
x∈X

[
f (xτ )+ 〈 f ′(xτ ), x − xτ 〉

]
= f (xτ )− 〈 f ′(xτ ), xτ − xX [ f ′(xτ )]〉, 1 ≤ τ ≤ t, (16)

which, by convexity of f , are lower bounds on f∗. Consequently, at the end of step t
we have at our disposal a lower bound

f t∗ := max
1≤τ≤t f∗,τ ≤ f∗, t = 1, 2, . . . (17)

on f∗.
Finally, we define the approximate solution x̄t found in course of t = 1, 2, . . . steps

as the best—with the smallest value of f—of the points x1, . . . , xt . Note that x̄t ∈ X .
The following statement summarizes the well known properties of CndG [6,8,17,

29] (to make the presentation self-contained, we provide in “Appendix” the proof).

Theorem 1 For a generic CndG algorithm we have

f (x̄t )− f∗ ≤ f (x̄t )− f t∗ ≤ f (xt )− f t∗ ≤
2L

t + 1
, t ≥ 2. (18)

Some remarks regarding the conditional algorithm are in order.

Certifying quality of approximate solutions. An attractive property of CndG is the
presence of online lower bound f t∗ on f∗ which certifies the theoretical rate of con-
vergence of the algorithm. This accuracy certificate, first established in a different
form in [6], see also [17], also provides a valuable stopping criterion when running
the algorithm in practice.

CndG algorithm with memory. When computing the next search point xt+1, the sim-
plest CndG algorithm defined by the recursion xt+1 = xt + 2

2+1 [x+t − xt ] only uses
the latest answer x+t = xX [ f ′(xt )] of the LO oracle. Meanwhile, the CndGalgorithm
can be modified to make use of information supplied by previous oracle calls; we
refer to this modification as CndG with memory (CndGM).5 Assume that we have
already carried out t − 1 steps of the algorithm and have at our disposal current iter-
ate xt ∈ X (with x1 selected as an arbitrary point of X ) along with previous iterates
xτ , τ < t and the vectors f ′(xτ ), x+τ = xX [ f ′(xτ )]. At the step, we compute f ′(xt )
and x+t = xX [ f ′(xt )]. Thus, at this point in time we have at our disposal 2t points
xτ , x+τ , 1 ≤ τ ≤ t , which belong to X . Let Xt be subset of these points, with the only
restriction that the points xt , x

+
t are selected, and let us define the next iterate xt+1 as

5 Note that in the context of “classical” Frank–Wolfe algorithm—minimization of a smooth function over
a polyhedral set—such modification is referred to as Restricted Simplicial Decomposition [15,16,36].
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xt+1 ∈ Argmin
x∈Conv(Xt )

f (x), (19)

that is,

xt+1 =
∑
x∈Xt

λtx x, λt ∈ Argmin
λt={λx }x∈Xt

⎧⎨
⎩ f

⎛
⎝∑

x∈Xt

λx x

⎞
⎠ : λ ≥ 0,

∑
x∈Xt

λx = 1

⎫⎬
⎭ . (20)

Clearly, it is again a generic CndG algorithm, so that conclusions in Theorem 1 are
fully applicable to CndGM. Note that the “classical” CndG algorithm per se is nothing
but CndGM with Xt = {xt , x+t } and M = 2 for all t .

In the above description of CndGMwe assumed that the set Xt is a subset of points
xτ , x+τ , 1 ≤ τ ≤ t , containing xt and x

+
t . Note that we can try to improve the accuracy

of the algorithm by adding to Xt , along with xt , x
+
t , some other points of X . Recall,

that after t iterations of the method we have at our disposal, along with t iterates
xτ ∈ X , the corresponding values f (xτ ) and gradients f ′(xτ ), 1 ≤ τ ≤ t . Let Xb

t be
a subset of {x1, . . . , xt } of cardinality m, and let us define xbt as a minimizer

xbt ∈ Argmin
u∈X

{
f bt (u):= max

x∈Xb
t

[ f (x)+ 〈 f ′(x), u − x〉]
}

,

of the current “bundle approximation” f bt of f ; note that the quantity f bt (xbt ) bounds
from below the optimal value f∗ of (13). One can include the point xbt into Xt and
replace the current lower bound f t∗ on f∗ with max{ f t∗ , f bt (xbt )}.6

It remains to notice that if the cardinality m of the “bundle” is small the price of
computing xbt is comparable to that of x+t . Indeed, when denoting xτ1 , . . . , xτm the
elements of Xb

t and � = {λ ∈ Rm : λi ≥ 0,
∑m

i=1 λi = 1}, one has

6 In fact, xbt may be substituted for x+t in the recurrence (15), and the resulting approximate solutions xt
along with the lower bounds f t∗ ≥ max1≤τ≤t f bτ (xbτ )will still satisfy the bound (18) of Theorem 1. Indeed,
the analysis of the proof of the theorem reveals that a point ξ ∈ X can be substituted for x+t = xX [ f ′(xt )]
as soon as the inequality

〈 f ′(xt ), xt − ξ〉 ≥ f (xt )− f t∗ , (21)

holds, where f t∗ is the best currently available lower bound for the optimal value f∗ of (13). In other words,
for the result of Theorem 1 to hold, one can substitute x+t = xX [ f ′(xt )] with any vector ξ satisfying
(21). Now assume that xt ∈ Xb

t . By convexity of f bt (obviously, f ′(xt ) ∈ ∂ f bt (xt ), where ∂ f bt (x) is the
subdifferential of f bt at x), we have

〈 f ′(xt ), xt − xbt 〉 ≥ f bt (xbt )− f (xt ) ≥ f t∗ − f (xt ),

what is (21).
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84 Z. Harchaoui et al.

min
u∈X f bt (u) = min

u∈X

{
max
λ∈�

m∑
i=1

λi [ f (xτi )+ 〈 f ′(xτi ), u − xτi 〉]
}

= max
λ∈�

{
F(λ):=min

u∈X

m∑
i=1

λi [ f (xτi )+ 〈 f ′(xτi ), u − xτi 〉]
}

.

When m is small, one can find high accuracy approximate solutions λ̂ to the prob-
lem of maximizing F over the standard simplex using (linearly converging) cutting
plane algorithms, for which LO oracle will readily supply first order information.
Then corresponding “primal” approximate solutions x̂bt can be recovered using dual
certificates, as described in [5,24].

CndGM: implementation issues. Assume that the cardinalities of the sets Xt in
CndGM are bounded by some M ≥ 2. In this case, implementation of the method
requires solving at every step an auxiliary problem (20) of minimizing over the stan-
dard simplex of dimension ≤ M − 1 a smooth convex function given by a first-order
oracle induced by the first-oracle for f . When M is a once for ever fixed small integer,
the arithmetic cost of solving this problem within machine accuracy by, say, the Ellip-
soid algorithm is dominated by the arithmetic cost of just O(1) calls to the first-order
oracle for f . Thus, CndGM with small M can be considered as implementable.7

Note that in the special case (Sect. 2), where f (x) = φ(Ax − b), assuming φ(·)
and φ′(·) easy to compute, as is the case in most of the applications, the first-order
oracle for the auxiliary problems arising in CndGM becomes cheap (cf. [39]). Indeed,
in this case (20) reads

min
λt

⎧⎨
⎩gt (λ

t ) := φ

⎛
⎝∑

x∈Xt

λtx Ax − b

⎞
⎠ : λt = {λtx }x∈Xt ≥ 0,∑

x∈Xt

λtx = 1

⎫⎬
⎭ . (22)

It follows that all we need to get a computationally cheap access to the first-order
information on gt (λt ) for all values of λt is to have at our disposal the matrix-vector
products Ax, x ∈ Xt . With our construction of Xt , the only two “new” elements in
Xt (those which were not available at preceding iterations) are xt and x+t , so that
the only two new matrix-vector products we need to compute at iteration t are Axt
(which usually is a byproduct of computing f ′(xt )) and Ax+t . Thus, we can say that the
“computational overhead,” as compared to computing f ′(xt ) and x+t = xX [ f ′(xt )],
needed to get easy access to the first-order information on gt (·) reduces to computing
the single matrix-vector product Ax+t .

7 Assuming possibility to solve (20) exactly, while being idealization, is basically as “tolerable” as the
standard in continuous optimization assumption that one can use exact real arithmetic or compute exactly
eigenvalues/eigenvectors of symmetric matrices. The outlined “real life” considerations can be replaced
with rigorous error analysis which shows that in order to maintain the efficiency estimates from Theorem 1,
it suffices to solve t-th auxiliary problem within properly selected positive inaccuracy, and this can be
achieved in O(ln(t)) computations of f and f ′.
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4 Conditional gradient algorithm for parametric optimization

In this section,wedescribe amulti-stage algorithm to solve the parametric optimization
problem (6), (7), using the conditional algorithm to solve inner sub-problems (6),
(7). The idea, originating from [22] (see also [19,26,28]), is to use a Newton-type
method for approximating from below the positive root ρ∗ of Opt(ρ), with (inexact)
first-order information on Opt(·) yielded by approximate solving the optimization
problems defining Opt(·); the difference with the outlined references is that now we
solve these problems with the CndG algorithm.

Our algorithm works stagewise. At the beginning of stage s = 1, 2, . . ., we have at
hand a lower bound ρs on ρ∗, with ρ1 defined as follows:

We compute f (0), f ′(0) and x[ f ′(0)]. If f (0) ≤ ε or x[ f ′(0)] = 0, we are
done—the pair (ρ = 0, x = 0) is an ε-solution to (7) in the first case, and is an
optimal solution to the problem in the second case (since in the latter case 0 is a
minimizer of f on K , and (7) is feasible). Assume from now on that the above
options do not take place (“nontrivial case”), and let

d = −〈 f ′(0), x[ f ′(0)]〉.

Due to the origin of x[·], d is positive, and f (x) ≥ f (0)+〈 f ′(0), x〉 ≥ f (0)−
d‖x‖ for all x ∈ K , which implies that ρ∗ ≥ ρ1:= f (0)

d > 0.

At stage s we apply a generic CndG algorithm to the auxiliary problem

Opt(ρs) = min
x
{ f (x) : x ∈ K [ρs]}, K [ρ] = {x ∈ K : ‖x‖ ≤ ρ}, (23)

Note that the LO oracle for K , ‖ · ‖ induces an LO oracle for K [ρ]; specifically,
for every η ∈ E , the point xρ[η]:=ρx[η] is a minimizer of the linear form 〈η, x〉 over
x ∈ K [ρ], see Lemma 1. xρ[·] is exactly the LO oracle utilized by CndG as applied
to (23).

As explained above, after t steps of CndG as applied to (23), the iterates being
xτ ∈ K [ρs], 1 ≤ τ ≤ t ,8 we have at our disposal current approximate solution
x̄t ∈ {x1, . . . , xt } such that f (x̄t ) = min1≤τ≤t f (xτ ) along with a lower bound f t∗ on
Opt(ρs). Our policy is as follows.

1. When f (x̄t ) ≤ ε, we terminate the solution process and output ρ̄ = ρs and x̄ = x̄t ;
2. When the above option is not met and f t∗ < 3

4 f (x̄t ), we specify xt+1 according to
the description of CndG and pass to step t + 1 of stage s;

3. Finally, when neither one of the above options takes place, we terminate stage s
and pass to stage s + 1, specifying ρs+1 as follows:

8 The iterates xt , same as other indexed by t quantities participating in the description of the algorithm,
in fact depend on both t and the stage number s. To avoid cumbersome notation when speaking about a
particular stage, we suppress s in the notation.

123



86 Z. Harchaoui et al.

We are in the situation f (x̄t ) > ε and f t∗ ≥ 3
4 f (x̄t ). Now, for τ ≤ t the quantities

f (xτ ), f ′(xτ ) and x[ f ′(xτ )] define affine function of ρ ≥ 0

�τ (ρ) = f (xτ )+ 〈 f ′(xτ ), ρx[ f ′(xτ )] − xτ 〉.

By Lemma 1 we have for every ρ ≥ 0

�τ (ρ) = min
x∈K [ρ]

[
f (xτ )+ 〈 f ′(xτ ), x − xτ 〉

] ≤ min
x∈K [ρ] f (x) = Opt(ρ),

where the inequality is due to the convexity of f . Thus, �τ (ρ) is an affine in
ρ ≥ 0 lower bound on Opt(ρ), and we lose nothing by assuming that all these
univariate affine functions are memorized when running CndG on (23). Note that
by construction of the lower bound f t∗ (see (16), (17) and take into account that
we are in the case of X = K [ρs], xX [η] = ρs x[η]) we have

f t∗ = �t (ρs), �t (ρ) = max
1≤τ≤t �τ (ρ).

Note that �t (ρ) is a lower bound on Opt(ρ), so that �t (ρ) ≤ 0 for ρ ≥ ρ∗, while
�t (ρs) = f t∗ is positive. It follows that

r t :=min
{
ρ : �t (ρ) ≤ 0

}
is well defined and satisfies ρs < r t ≤ ρ∗. We compute r t (which is easy) and
pass to stage s + 1, setting ρs+1 = r t and selecting, as the first iterate of the new
stage, any point known to belong to K [ρ] (e.g., the origin, or x̄t ). The first iterate
of the first stage is 0.

The description of the algorithm is complete.
The complexity properties of the algorithm are given by the following statement

(proved in Sect. 8.2)

Theorem 2 When solving a PO problem (6), (7) by the outlined algorithm,

(i) the algorithm terminates with an ε-solution, as defined in Sect. 2 [cf. (8)];
(ii) The number Ns of steps at every stage s of the method admits the bound

Ns ≤ max

[
6,

72ρ2∗L f

ε
+ 3

]
.

(iii) The number of stages before termination does not exceed the quantity

max

[
1.2 ln

(
f (0)+ 1

2 L f ρ
2∗

ε2

)
+ 2.4, 3

]
.
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Comment. Astraightforward alternative to the proposed approach is obtained by using
bisection instead of the Newton-type algorithm when localizing the smallest root ρ∗
of Opt(ρ). Though the theoretical complexity bound for bisection-based algorithm is,
essentially, the same as that in Theorem 2, one would expect the Newton scheme to
significantly outperform the bisection “in practice”. The reasons for this are twofold.
First, we can hope for quadratic, rather than linear, convergence of the Newton root
finding. Second, and perhaps more important, with Newton-type algorithm, we all
the time are “super-optimal” in terms of the objective of the problem ρ∗ = min{ρ :
Opt(ρ) ≤ 0}, that is, the approximates ρs are ≤ ρ∗, and all we need is to become “ε-
feasible”—to ensure Opt(ρs) ≤ ε. Numerical experience shows that when Opt(ρs) =
min‖x‖≤ρs f (x) is “large,” the algorithm rapidly recognizes this situation, and usually
only last 2-3 stages of the algorithm are “long”—require evaluating Opt(ρs) within
accuracy of order of ε. In contrast to this, bisection “works on both sides of ρ∗” and
should recognize the fact that the current approximate ρs is “essentially larger” than
ρ∗ (this indeed will be the case at some of the bisection steps). When Opt(ρs) is
only marginally negative, recognizing the situation in question requires to evaluate
Opt(ρs) within accuracy ε, so that we should expect more “long” iterations. This
“common sense” explanation is fully supported by numerical experimentation: in
dedicated experiments with relatively small matrix completion problems (problem
(32) in Sect. 7.1) Newton-based algorithm consistently outperformed the bisection-
based one, both in terms of the iteration count and in terms of the running time (e.g.,
by factor of 3 for matrices of size 2,000× 2,000).

5 Conditional gradient algorithm for composite optimization

In this section, we present a modification of the CndG algorithm capable of solving
composite minimization problem (10). We assume in the sequel that ‖ · ‖, K are
represented by an LO oracle for the set {x ∈ K : ‖x‖ ≤ 1}, and f is given by a first
order oracle. In order to apply CndG to the composite optimization problem (10), we
make the assumption as follows:

Assumption A: There exists D <∞ such that κr + f (x) ≤ f (0) together with
‖x‖ ≤ r, x ∈ K , imply that r ≤ D.

We define D∗ as the minimal value of D satisfying Assumption A, and assume
that we have at our disposal a finite upper bound D̄ on D∗. An important property of
the algorithm we are about to develop is that its efficiency estimate depends on the
induced by problem’s data quantity D∗, and is independent of our a priori upper bound
D̄ on this quantity, see Theorem 3 below.

Thealgorithm. Weare about to present an algorithm for solving (10). Let E+ = E×R,
and K+ = {[x; r ] : x ∈ K , ‖x‖ ≤ r}. From now on, for a point z = [x; r ] ∈ E+ we
set x(z) = x and r(z) = r . Given z = [x; r ] ∈ K+, let us consider the segment

�(z) = {ρ[x[ f ′(x)]; 1] : 0 ≤ ρ ≤ D̄}.

and the linear form
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ζ = [ξ ; τ ] → 〈 f ′(x), ξ 〉 + κτ = 〈F ′(z), ζ 〉

(here F([x; r ]) = κr + f (x), as defined in (10)). Observe that by Lemma 1, for every
0 ≤ ρ ≤ D̄, the minimum of this form on K+[ρ] = {[x; r ] ∈ E+, x ∈ K , ‖x‖ ≤ r ≤
ρ} is attained at a point of �(z) (either at [ρx[ f ′(x)]; ρ] or at the origin). A generic
Conditional Gradient algorithm for composite optimization (COCndG) is a recurrence
which builds the points zt = [xt ; rt ] ∈ K+, t = 1, 2, . . ., in such a way that

z1 = 0; F(zt+1) ≤ min
z
{F(z) : z ∈ Conv (�(zt ) ∪ {zt })}, t = 1, 2, . . . (24)

Let z∗ = [x∗; r∗] be an optimal solution to (10) (which under Assumption A clearly
exists), and let F∗ = F(z∗) (i.e., F∗ is nothing but Opt, see (9)).

Theorem 3 A generic COCndG algorithm (24) maintains the inclusions zt ∈ K+
and is a descent algorithm: F(zt+1) ≤ F(zt ) for all t . Besides this, we have

F(zt )− F∗ ≤ 8L f D2∗
t + 14

, t = 2, 3, . . . (25)

COCndGwithmemory. The simplest implementation of a genericCOCndGalgorithm
is given by the recurrence

z1 = 0; zt+1 ≡ [xt+1; rt+1] ∈ Argmin
z

{F(z) : z ∈
Conv (�(zt ) ∪ {zt })}, t = 1, 2, . . . . (26)

Denoting ẑτ :=D̄[x[ f ′(xτ )]; 1], the recurrence can be written

zt+1 = λt ẑt + μt zt , where

(λt , μt ) ∈ Argmin
λ,μ

{
F(λ̂zt + μzt ) : λ+ μ ≤ 1, λ ≥ 0, μ ≥ 0

}
.

(27)

As for the CndG algorithm in Sect. 3, the recurrence (26) admits a version with
memory COCndGM still obeying (24) and thus satisfying the conclusion of Theorem
3. Specifically, assume that we already have built t iterates zτ = [xτ ; rτ ] ∈ K+, 1 ≤
τ ≤ t , with z1 = 0, along with the gradients f ′(xτ ) and the points x[ f ′(xτ )]. Then we
have at our disposal a number of points from K+, namely, the iterates zτ , τ ≤ t , and the
points ẑτ = D̄[x[ f ′(xτ )]; 1]. Let us select a subset Zt of the set {zτ , ẑτ , 1 ≤ τ ≤ t},
with the only restriction that Zt contains the points zt , ẑt , and set

zt+1 ∈ Argmin
z∈Ct

F(z), Ct = Conv{{0} ∪ Zt }}. (28)

Since zt , ẑt ∈ Zt , we have Conv (�(zt ) ∪ {zt })} ⊂ Ct , whence the procedure we
have outlined is an implementation of generic COCndG algorithm. Note that the basic
COCndG algorithm is the particular case of the COCndGM corresponding to the case
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where Zt = {zt , ẑt } for all t . The discussion of implementability of CndGM in Sect. 3
fully applies to COCndGM.

Let us outline several options which can be implemented in COCndGM; while
preserving the theoretical efficiency estimates stated in Theorem 3 they can improve
the practical performance of the algorithm. For the sake of definiteness, let us focus
on the case of quadratic f : f (x) = ‖Ax − b‖22, with KerA = {0}; extensions to a
more general case are straightforward.

A. We lose nothing (and potentially gain) when extending Ct in (28) to the conic hull

C+t =
⎧⎨
⎩w =

∑
ζ∈Zt

λζ ζ : λζ ≥ 0, ζ ∈ Zt

⎫⎬
⎭

of Zt .9 When K = E , we can go further and replace (28) with

zt+1 ∈ Argmin
z=[x;r ],λ

⎧⎨
⎩ f (x)+ κr : x =

∑
ζ=[η;ρ]∈Zt

λζ η, r ≥
∑

ζ=[η;ρ]∈Zt

|λζ |ρ
⎫⎬
⎭ (29)

(note that
∑

ζ=[η;ρ]∈Zt
ρ|λζ | is an easy-to-compute upper bound on ‖x‖). Note

that the preceding “conic case” is obtained from (29) by adding to the constraints
of the right hand side problem the inequalities λζ ≥ 0, ζ ∈ Zt . Finally, when ‖ · ‖
is easy to compute, we can improve (29) to

zt+1 =
[ ∑

ζ=[η;ρ]∈Zt

λ∗ζ η;
∥∥∥∥∥ ∑

ζ=[η;ρ]∈Zt

λ∗ζ η
∥∥∥∥∥
]

,

λ∗ ∈ Argmin{λζ ,ζ∈Zt }

{
f

( ∑
ζ=[η;ρ]∈Zt

λζ η

)
+ κ

∑
ζ=[η;ρ]∈Zt

|λζ |ρ
} (30)

(the definition of λ∗ assumes that K = E , otherwise the constraints of the problem
specifying λ∗ should be augmented by the inequalities λζ ≥ 0, ζ ∈ Zt ).

B. In the case of quadratic f and moderate cardinality of Zt , optimization problems
arising in (29) (with or without added constraints λζ ≥ 0) are explicitly given
low-dimensional “nearly quadratic” convex problems which can be solved to high
accuracy “in no time” by interior point solvers. With this in mind, we could solve
these problems for the given value of the penalty parameter κ and also for several
other values of the parameter. Thus, at every iteration we get feasible approximate
solution to several instances of (9) for different values of the penalty parame-
ter. Assume that we keep in memory, for every value of the penalty parameter
in question, the best, in terms of the respective objective, of the related approxi-
mate solutions found so far. Then upon termination we will have at our disposal,
along with the feasible approximate solution associated with the given value of

9 We recover this way the Atom-Descent algorithm of [7,11].
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the penalty parameter, provably obeying the efficiency estimates of Theorem 3, a
set of feasible approximate solutions to the instances of (9) corresponding to other
values of the penalty.

C. In the above description, Zt was assumed to be a subset of the set Zt = {zτ =
[xτ ; rτ ], ẑτ , 1 ≤ τ ≤ t} containing zt and ẑt . Under the latter restriction, we
lose nothing when allowing for Zt to contain points from K+\Zt as well. For
instance, when K = E and ‖ · ‖ is easy to compute, we can add to Zt the point
z′t = [ f ′(xt ); ‖ f ′(xt )‖]. Assume, e.g., thatwefix in advance the cardinalityM ≥ 3
of Zt and define Zt as follows: to get Zt from Zt−1, we eliminate from the latter set
several (the less, the better) points to get a set of cardinality≤ M−3, and then add to
the resulting set the points zt , ẑt and z′t . Eliminating the points according to the rule
“first in—first out,” the projection of the feasible set of the optimization problem in
(30) onto the space of x-variableswill be a linear subspace of E containing, starting
with step t = M , at least �M/3� (here �a� stands for the largest integer not larger
than a) of gradients of f taken at the latest iterates, so that the method, modulo
the influence of the penalty term, becomes a “truncated” version of the Conjugate
Gradient algorithm for quadraticminimization.Due to nice convergence properties
of Conjugate Gradient in the quadratic case, one can hope that a modification of
this type will improve significantly the practical performance of COCndGM.

6 Application examples

In this section, we detail how the proposed conditional gradient algorithms apply to
several examples. In particular, we detail the corresponding LO oracles, and how one
could implement these oracles efficiently.

6.1 Regularization by nuclear/trace norm

The first example where the proposed algorithms seem to be more attractive than the
proximal methods are large-scale problems (5), (9) on the space of p × q matrices
E = Rp×q associated with the nuclear norm ‖σ(x)‖1 of a matrix x , where σ(x) =
[σ1(x); . . . ; σmin[p,q](x)] is the vector of singular values of a p×q matrix x . Problems
of this type with K = E arise in various versions of matrix completion, where the
goal is to recover a matrix x from its noisy linear image y = Ax + ξ , so that f =
φ(Ax − y), with some smooth and convex discrepancy measure φ(·), most notably,
φ(z) = 1

2‖z‖22. In this case, ‖ · ‖ minimization/penalization is aimed at getting a
recovery of low rank ([3,4,10,18,23,30,31,33,35,37] and references therein).Another
series of applications relates to the case when E = Sp is the space of symmetric
p × p matrices, and K = Sp

+ is the cone of positive semidefinite matrices, with f
and φ as above; this setup corresponds to the situation when one wants to recover a
covariance (and thus positive semidefinite symmetric) matrix from experimental data.
Restricted from Rp×p onto Sp, the nuclear norm becomes the trace norm ‖λ(x)‖1,
where λ(x) ∈ Rp is the vector of eigenvalues of a symmetric p × p matrix x , and
regularization by this norm is, as above, aimed at building a low rank recovery.

With the nuclear (or trace) norm in the role of ‖ · ‖, all known proximal algorithms
require, at least in theory, computing at every iteration the complete singular value
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decomposition of p × q matrix x (resp., complete eigenvalue decomposition of a
symmetric p × p matrix x), which for large p, q may become prohibitively time
consuming. In contrast to this, with K = E and ‖ · ‖ = ‖σ(·)‖1, LO oracle for
(K , ‖ · ‖ = ‖σ(·)‖1) only requires computing the leading right singular vector e of a
p×q matrix η (i.e., the leading eigenvector of ηT η): x[η] = − f̄ ēT , where ē = e/‖e‖2
and f̄ = ηe/‖ηe‖2 for nonzero η and f̄ = 0, ē = 0 when η = 0. Computing
the leading singular vector of a large matrix is, in most cases, much cheaper than
computing the complete eigenvalue decomposition of the matrix. Similarly, in the
case of E = Sp, K = Sp

+ and the trace norm in the role of ‖ · ‖, LO oracle requires
computing the leading eigenvector e of a matrix η ∈ Sp: x[−η] = ēēT , where ē = 0
when eT ηe ≥ 0, and ē = e/‖e‖2 otherwise. Here again, for a large symmetric
p × p matrix, the required computation usually is much easier than computing the
complete eigenvalue decomposition of such amatrix.As a result, in the situations under
consideration, algorithms based on the LO oracle remain “practically implementable”
in an essentially larger range of problem sizes than proximal methods.

An additional attractive property of the CndG algorithms we have described stems
from the fact that since in the situations in question the matrices x[η] are of rank 1, t-th
approximate solution xt yielded by the CndG algorithms for composite minimization
from Sect. 5 is of rank at most t . Similar statement holds true for t-th approximate
solution xt built at a stage of a CndG algorithm for parametric optimization from
Sect. 3, provided that the first iterate at every stage is the zero matrix.10

6.2 Regularization by total variation

Given integer n ≥ 2, consider the linear space Mn :=Rn×n . We interpret elements x of
Mn as images—real-valued functions x(i, j) on the n× n grid �n,n = {[i; j]) ∈ Z2 :
0 ≤ i, j < n}. The (anisotropic) Total Variation (TV) of an image x is the �1-norm of
its (discrete) gradient field (∇i x(·),∇ j x(·)):

TV(x) = ‖∇i x‖1+‖∇ j x‖1,
∇i x(i, j) = x(i + 1, j)− x(i, j) : �n−1,n :={[i; j]∈Z2 : 0 ≤ i < n − 1, 0 ≤ j < n},
∇ j x(i, j) = x(i, j + 1)−x(i, j) : �n,n−1:={[i; j] ∈ Z2 : 0≤i < n, 0 ≤ j < n − 1}

Note that TV(·) is a norm on the subspace Mn
0 of Mn comprising zero mean images

x (those with
∑

i, j x(i, j) = 0) and vanishes on the orthogonal complement to Mn
0 ,

comprised of constant images.
Originating from the celebrated paper [32] and extremely popular Total Variation-

based image reconstruction in its basic version recovers an image x from its noisy
observation b = Ax + ξ by solving problems (5) or (9) with K = E = Mn, f (x) =
φ(Ax − b) and the seminorm TV(·) in the role of ‖ · ‖. In the sequel, we focus on the
versions of these problems where K = E = Mn is replaced with K = E = Mn

0 , thus
bringing the T V -regularized problems into our framework. This restriction is basically

10 This property is an immediate corollary of the fact that in the situation in question, by description of the
algorithms xt is a convex combination of t points of the form x[·].
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harmless; for example, in themost popular case of f (x) = 1
2‖Ax−b‖22 reduction to the

case of x ∈ Mn
0 is immediate—it suffices to replace (A, b)with (PA, Pb), where P is

the orthoprojector onto the orthogonal complement to the one-dimensional subspace
spanned by Ae, where e is the all-ones image.11 Now, large scale problems (5), (9)
with K = E = Mn

0 and TV(·) in the role of ‖ · ‖ are difficult to solve by proximal
algorithms. Indeed, in the situation in question a proximal algorithm would require at
every iteration either minimizing function of the form TV(x) + 〈e, x〉 + ω(x) over
the entire E , or minimizing function of the form 〈e, x〉 +ω(x) on a TV-ball,12 where
ω(x) is albeit simple, but nonlinear convex function (e.g., ‖x‖22, or ‖∇i x‖22+‖∇ j x‖22).
Auxiliary problems of this type seem to be difficult in the large scale case, especially
taking into account that when running a proximal algorithm we need to solve at least
tens, and more realistically—hundreds of them.13 In contrast to this, an LO oracle
for the unit ball T V = {x ∈ Mn

0 : TV(x) ≤ 1} of the TV norm is relatively cheap
computationally—it reduces to solving a specific maximum flow problem. It should
be mentioned here that the relation between flow problems and TV-based denoising
(problem (9) with A = I ) is well known and is utilized in many algorithms, see [10]
and references therein. While we have no doubt that the simple fact stated Lemma 2
below is well-known, for reader convenience we present here in detail the reduction
mechanism.

Consider the network (the oriented graph) G with n2 nodes [i; j] ∈ �n,n and
2n(n−1) arcs as follows: the first n(n−1) arcs are of the form ([i+1; j], [i; j]), 0 ≤
i < n − 1, 0 ≤ j < n, the next n(n − 1) arcs are ([i; j + 1], [i; j]), 0 ≤ i < n, 0 ≤
j < n − 1, and the remaining 2n(n − 1) arcs (let us call them backward arcs) are
the inverses of the just defined 2n(n − 1) forward arcs. Let E be the set of arcs of
our network, and let us equip all the arcs with unit capacities. Let us treat vectors
from E = Mn

0 as vectors of external supplies for our network; note that the entries
of these vectors sum to zero, as required from external supply. Now, given a nonzero
vector η ∈ Mn

0 , let us consider the network flow problemwhere we seek for the largest
multiple sη of η which, considered as the vector of external supplies in our network,
results in a feasible capacitated network flow problem. The problem in question reads

s∗ = max
s,r
{s : Pr = sη, 0 ≤ r ≤ e} , (31)

11 When f is more complicated, optimal adjustment of the mean t of the image reduces by bisection in t
to solving small series of problems of the same structure as (5), (9) where the mean of the image x is fixed
and, consequently, the problems reduce to those with x ∈ Mn

0 by shifting b.
12 Which one of these two options takes place depends on the type of the algorithm.
13 On a closest inspection, “complex geometry” of the TV-norm stems from the fact that after parameter-
izing a zero mean image by its discrete gradient field and treating this field (g = ∇i x, h = ∇ j x) as our new
design variable, the unit ball of the TV-norm becomes the intersection of a simple set in the space of pairs
(g, h) ∈ F = R(n−1)×n ×Rn×(n−1) (the �1 ball � given by ‖g‖1 + ‖h‖1 ≤ 1) with a linear subspace P
of F comprised of potential vector fields ( f, g)—those which indeed are discrete gradient fields of images.
Both dimension and codimension of P are of order of n2, which makes it difficult to minimize over �∩ P
nonlinear, even simple, convex functions, which is exactly what is needed in proximal methods.
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where P is the incidence matrix of our network14 and e is the all-ones vector. Now,
problem (31) clearly is feasible, and its feasible set is bounded due to η �= 0, so that
the problem is solvable. Due to its network structure, this LP program can be solved
reasonably fast even in the large scale case (say, when n = 512 or n = 1024, which
already is of interest for actual imaging). Further, an intelligent network flow solver as
applied to (31) will return not only the optimal s = s∗ and the corresponding flow, but
also the dual information, in particular, the optimal vector z of Lagrange multipliers
for the linear equality constraints Pr − sη = 0. Let z̄ be obtained by subtracting from
the entries of z their mean; since the entries of z are indexed by the nodes, z̄ can be
naturally interpreted as a zero mean image. It turns out that this image is nonzero, and
the vector x[η] = −z̄/TV(z̄) is nothing than a desired minimizer of 〈η, ·〉 on T V:

Lemma 2 Letη be a nonzero imagewith zeromean. Then (31) is solvablewith positive
optimal value, and the image x[η], as defined above, is well defined and is a maximizer
of 〈η, ·〉 on T V .

Bounding L f . When applying CndG algorithms to the TV-based problems (5), (9)
with E = Mn

0 and f (x) = φ(Ax−b), the efficiency estimates depend linearly on the
associated quantity L f , which, in turn, is readily given by the norm ‖A‖TV(·),π(·) of
the mapping x �→ Ax , see the end of Sect. 2. Observe that in typical applications A
is a simple operator (e.g., the discrete convolution), so that when restricting ourselves
to the case when π(·) is ‖ · ‖2 (quadratic fit), it is easy to find a tight upper bound on
‖A‖‖·‖2,‖·‖2 . To convert this bound into an upper bound on ‖A‖TV(·),‖·‖2 , we need to
estimate the quantity

Qn = max
x
{‖x‖2 : x ∈ Mn

0 ,TV(x) ≤ 1}.

Bounding Qn is not a completely trivial question, and the answer is as follows:

Proposition 1 Qn is nearly constant, specifically, Qn ≤ O
(√

ln(n)
)
.

Note that the result of Proposition 1 is in sharp contrast with one-dimensional case,
where the natural analogy of Qn grows with n as

√
n. We do not know whether it is

possible to replace in Proposition 1 O(1)
√
ln(n)with O(1), as suggested by Sobolev’s

inequalities.15 Note that on inspection of the proof, the proposition extends to the case
of d-dimensional, d > 2, images with zero mean, in which case Qn ≤ C(d) with
appropriately chosen C(d).

14 That is, the rows of P are indexed by the nodes, the columns are indexed by the arcs, and in the column
indexed by an arc γ there are exactly two nonzero entries: entry 1 in the row indexed by the starting node
of γ , and entry −1 in the row indexed by the terminal node of γ .
15 From the Sobolev embedding theorem it follows that for a smooth function f (x, y) on the unit square
one has ‖ f ‖L2 ≤ O(1)‖∇ f ‖1, ‖∇ f ‖1:=‖ f ′x‖1+‖ f ′y‖1, provided that f has zero mean. Denoting by f n

the restriction of the function onto a n× n regular grid in the square, we conclude that ‖ f n‖2/TV( f n)→
‖ f ‖L2/‖∇ f ‖1 ≤ O(1) as n → ∞. Note that the convergence in question takes place only in the
2-dimensional case.
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7 Numerical examples

We present here some very preliminary simulation results.

7.1 CndG for parametric optimization: sparse matrix completion problem

The goal of the first series of our experiments is to illustrate how the performance
and requirements of CndG algorithm for parametric optimization, when applied to the
matrix completion problem [4], scale with problem size. Specifically, we apply the
algorithm of Sect. 4 to the problem of nuclear norm minimization

min ‖σ(x)‖1, subject to
∑

(i, j)∈�

(yi j − xi j )
2 − δ ≤ 0, (32)

where σ(x) is the singular spectrum of a p × q matrix x . In our experiments, the set
� of observed entries (i, j) ∈ {1, . . . , p} × {1, . . . , q} of cardinality m � pq was
selected at random.

To meet the memory requirements of the CndGM, when running the algorithm, at
iteration t , we store in memory rank-one updates x+τ , τ = 1, . . . , t , the coefficients
νtτ , τ = 1, . . . , t , of the decomposition

xt =
t∑

τ=1
νtτ x

+
τ (33)

of the current approximate solution xt , along with m-dimensional vectors ζτ=[[x+τ ]i j , (i, j) ∈ �
]
, matrices Qt = [〈x+r , x+s 〉�

]t
r,s=1, and vectors qt=[〈x+τ ,

y〉�]tτ=1, where 〈u, v〉� = ∑
(i, j)∈� ui jvi j . When implementing, for instance, the

“full memory” version of CndGM (19), (20), in which the set Xt contains xt and all
the points x+τ for 1 ≤ τ ≤ t , at an iteration t we need to solve problem (22) which
in our situation is a convex quadratic problem with M ≤ t + 1 variables {λtx }x∈Xt .
Such a problem can be efficiently solved using existing software [1], provided we
have at our disposal the coefficients of the quadratic objective of the problem. These
coefficients are readily given by the reals νtτ , see (33), and the entries of Qt , qt , with
updating (Qt−1, qt−1) �→ (Qt , qt ) reducing to computing t + 1 inner products of
m-dimensional vectors, namely, the products 〈x+t , x+τ 〉�, 1 ≤ τ ≤ t , and 〈x+t , y〉�.
As a consequence, assembling and solving auxiliary problems (22) represents only a
small part of the total numerical effort, dominated by cost of computing x+t (that is,
the leading singular vectors of a sparse p×q matrix, which requires few tens of sparse
matrix-vector multiplications), and extracting ζt from x+t .

We compare the performance of CndGMalgorithms and of a “memoryless” version
of the CndG. To this end we have conducted the following experiment:

1. For matrix sizes p, q ∈ [1, 2, 4, 8, 16, 32] × 103 we generate n = 10 sparse
p × q matrices y with density d = 0.1 of non-vanishing entries as follows:
we generate p × r matrix U and q × r matrix V with independent Gaussian
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entries ui j ∼ N (0,m−1), vi j ∼ N (0, n−1), and a r × r diagonal matrix D =
diag[d1, . . . , dr ]withdi drawn independently fromauniformdistributionon [0, 1].
The non-vanishing entries of the sparse observation matrix y are obtained by
sampling at random with probability d the entries of x∗ = UDV T , so that for
every i, j, yi j is, independently over i, j , set to x∗i j with probability d and to 0 with
probability 1−d. Thus, the number of non-vanishing entries of y is approximately
m = dpq. This procedure results inm ∼ 105 for the smallest matrices y (1,000×
1,000), and in m ∼ 108 for the largest matrices (32,000× 32,000).

2. We apply to parametric optimization problem (32) MATLAB implementations
of the CndGM with memory parameter M = 2 (“memoryless” CndG), CndGM
with M = 6 and full memory CndGM. The parameter δ of (32) is chosen to be

δ = 0.001‖y‖2f (here ‖y‖f =
(∑

i, j y
2
i j

)1/2
stands for the Frobenius norm of y).

The optimization algorithm is tuned to the relative accuracy ε = 1/4, what means
that it outputs an ε-solution x̂ to (32), in the sense of (8), with absolute accuracy
ε = δε.

For each algorithm (memoryless CndG, CndGM with memory M = 6 and full
memory CndGM) we present in Table 1 the average, over algorithm’s runs on the
(common for all algorithms) sample of n = 10 matrices y we have generated, (1) total
number of iterations Nit necessary to produce an ε-solution (it upper-bounds the rank
of the resulting ε-solutuion), (2) CPU time in seconds Tcpu and (3) MATLABmemory
usage in megabytes Smem. This experiment was conducted on a Dell Latitude 6430
laptop equipped with Intel Core i7-3720QM CPU@2.60GHz and 16GB of RAM.
Because of high memory requirements in our implementation of the full memory
CndGM, this method was unable to complete the computation for the two largest
matrix sizes.

We canmake the following observation regarding the results summarized inTable 1:
CndG algorithmwith memory consistently outperforms the standard—memoryless—
version of CndG. The full memory CndGM requires the smallest number of iteration
to produce an ε-solution, which is of the smallest rank, as a result. On the other hand,
the memory requirements of the full memory CndGM become prohibitive (at least,
for the computer we used for this experiment and MATLAB implementation of the
memory heap) for large matrices. On the other hand, a CndGM with memory M = 6
appears to be a reasonable compromise in terms of numerical efficiency and memory
demand.

7.2 CndG for composite optimization: multi-class classification with nuclear-norm
regularization

We present here an empirical study of the CndG algorithm for composite optimization
as applied to the machine learning problem of multi-class classification with nuclear-
normpenalty.Abrief description of themulti-class classification problem is as follows:
we observe N “feature vectors” ξi ∈ Rq , each belonging to exactly one of p classes
C1, . . . ,Cp. Each ξi is augmented by its label yi ∈ {1, . . . , p} indicating to which
class ξi belongs. Our goal is to build a classifier capable to predict the class to which
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Table 1 Memoryless CndG versus CndGM with memory M = 6 versus full memory CndGM

Matrix size Memory-less CndG CndGM with memory M = 6 Full memory CndG

p × q Nit Tcpu Smem Nit Tcpu Smem Nit Tcpu Smem

1,000× 1,000 271.6 9.35 17.11 149.7 5.01 17.63 78.4 4.71 78.98

1,000× 2,000 292.1 12.14 31.67 162.8 7.76 32.57 93.5 10.89 156.22

2,000× 2,000 246.8 17.01 54.45 139.1 11.19 61.57 71.9 13.31 248.13

2,000× 4,000 259.3 33.94 105.09 152.3 24.50 120.22 57.7 25.54 410.02

4,000× 4,000 321.8 79.20 207.26 162.9 50.59 235.59 74.6 93.22 1014.7

4,000× 8,000 360.1 169.8 399.16 147.3 88.81 464.68 63.3 135.6 1766.4

8,000× 8,000 323.4 302.8 754.46 111.8 134.1 905.98 53.6 191.3 3061.5

8,000× 16,000 324.1 614.3 1485.6 118.2 286.5 1800.7 50.5 329.4 5826.7

16,000× 16,000 258.7 995.4 2898.5 99.7 495.5 3577.8 50.8 595.2 11,696

16,000× 32,000 276.7 2,572 5721.7 70.3 859.2 7109.0 NA NA NA

32,000× 32,000 305.4 5,028 11,352 57.6 2,541 14,186 NA NA NA

Nit : total number of method iterations; Tcpu: CPU usage (sec), and Smem: memory usage (MB) reported
by MATLAB

a new feature vector ξ belongs. This classifier is given by a p× q matrix x according
to the following rule: given ξ , we compute the p-dimensional vector xξ and take, as
the guessed class of ξ , the index of the largest entry in this vector.

In some cases (see [7,11]), when, for instance, one is dealing with a large number of
classes, there are good reasons “to train the classifier”—to specify x given the training
sample (ξi , yi ), 1 ≤ i ≤ N—as the optimal solution to the nuclear norm penalized
minimization problem

Opt(κ) = min
x∈Rp×q Fκ(x):=

f (x)︷ ︸︸ ︷
1

N

N∑
i=1

log

{ p∑
�=1

exp
(
(xT� − xTyi )ξi

)}
+κ‖σ(x)‖1,

(34)
where xT� is the �-th row in x .

Below, we report on some experiments with this problem. Our goal was to compare
two versions of CndG for composite minimization: the memoryless version defined
in (24) and the version with memory defined in (28). To solve the corresponding sub-
problems, we used the Center of Gravity method in the case of (24) and the Ellipsoid
method in the case of (28) [25,26]. In the version with memory we set M = 6, as
it appeared to be the best option from empirical evidence. We have considered the
following datasets:

1. Simulated data: for matrix of sizes p, q ∈ 103 × {2s}4s=1, we generate random
matrices x� = USV , with p× p factorU, q×q factor V , and diagonal p×q factor
S with random entries sampled, independently of each other, from N (0, p−1)
(for U ), N (0, q−1) (for V ), and the uniform distribution on [0, 1] (for diagonal
entries in S). We use N = 20q, with the feature vectors ξ1, . . . , ξN sampled,
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independently of each other, from the distribution N (0, Iq), and their labels yi
being the indexes of the largest entries in the vectors x�ξi + εi , where εi ∈ Rp

were sampled, independently of each other and of ξ1, . . . , ξN , from N (0, 1
2 Ip).

The regularization parameter κ is set to 10−3Tr(x�xT� ).
2. Real-world data: we follow a setting similar to [11]. We consider the Pascal

ILSVRC2010 ImageNet dataset and focus on the “Vertebrate-craniate” subset,
yielding 1,043 classes with 20 examples per class. The goal here is to train a multi-
class classifier in order to be able to predict the class of each image (example) of
the dataset. Each example is converted to a 65,536-dimensional feature vector
of unit �1-norm using state-of-the-art visual descriptors known as Fisher vector
representation [11]. To summarize, we have p = 1, 043, q = 65, 536, N =
20, 860. We set the regularization parameter to κ = 10−4, which was found
to result in the best predictive performance as estimated by cross-validation, a
standard procedure to set the hyper parameters in machine learning [13].

In both sets of experiments, the computations are terminatedwhen the “ε-optimality
conditions”

‖σ( f ′(xt ))‖∞ ≤ κ + ε

〈 f ′(xt ), xt 〉 + κ‖σ(xt )‖1 ≤ ε‖σ(xt )‖1 (35)

were met, where ‖σ(·)‖∞ denotes the usual operator norm (the largest singular value).
These conditions admit transparent interpretation as follows. For every x̄ , the function

φκ(x) = f (x̄)+ 〈 f ′(x̄), x − x̄〉 + κ‖σ(x)‖1

underestimates Fκ(x), see (34), whence Opt(κ ′) ≥ f (x̄)− 〈 f ′(x̄), x̄〉 whenever κ ′ ≥
‖σ( f ′(x̄))‖∞. Thus, whenever x̄ = xt satisfies the first relation in (35), we have
Opt(κ + ε) ≥ f (xt )− 〈 f ′(xt ), xt 〉, whence

Fκ(xt )− Opt(κ + ε) ≤ 〈 f ′(xt ), xt 〉 + κ‖σ(xt )‖1.

We see that (35) ensures that Fκ(xt )−Opt(κ + ε) ≤ ε ‖σ(xt )‖1, which, for small ε,
is a reasonable substitute for the actually desired termination when Fκ(xt )− Opt(κ)

becomes small. In our experiments, we use ε = 0.001.
InTable 2 for each algorithm (memorylessCndG,CndGMwithmemoryM = 6)we

present the average, over 20 collections of simulated data coming from 20 realizations
of x�, of: (1) total number of iterations Nit necessary to produce an ε-solution, (2)
CPU time in seconds Tcpu. The last row of the table corresponds to the real-world
data. Experiments were conducted on a Dell R905 server equipped with four six-core
AMD Opteron 2.80GHz CPUs and 64GB of RAM. A maximum of 32GB of RAM
was used for the computations.

We draw the following conclusions from Table 1: CndG algorithm with memory
routinely outperforms the standard—memoryless—version of CndG. However, there
is a trade-off between the algorithm progress at each iteration and the computational
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Table 2 memoryless CndG versus CndGM with memory M = 6

Matrix size Memory-less CndG CndGM with memory M = 6

p × q Nit Tcpu Smem Nit Tcpu Smem

2,000× 2,000 174.3 355.8 135.3 102.7 226.1 177.5

4,000× 4,000 157.1 1,042 549.7 88.3 726.9 714.5

8,000× 8,000 195.5 2,793 2,210 123.6 2,201 2,885

16,000× 16,000 236.6 6,775 9,082 138.0 4,963 11,798

32,000× 32,000 277.3 26,803 30,660 143.8 18,990 31,327

1,043× 65,536 185 2,133 2,110 111 1343 2,781

Nit : total number of method iterations; Tcpu: CPU usage (sec) reported by MATLAB

load of each iteration. Note that, for large M , solving the sub-problem (28) can be
challenging.

7.3 CndG for composite optimization: TV-regularized image reconstruction

Here we report on experiments with COCndGM as applied to TV-regularized image
reconstruction. Our problem of interest is of the form (9) with quadratic f , namely,
the problem

min
x∈Mn

0

φκ(x):= 1

2
‖PAx − Pb‖22︸ ︷︷ ︸

f (x)

+κTV(x); (36)

for notation, see Sect. 6.2.

Test problems. In our experiments, the mapping x �→ Ax is defined as follows: we
zero-pad x to extend it from �n,n to get a finitely supported function on Z2, then
convolve this function with a finitely supported kernel α(·), and restrict the result onto
�n,n . The observations b ∈ Mn were generated at random according to

bi j = (Ax)i j + σ‖x‖∞ξi j , ξi j ∼ N (0, 1), 1 ≤ i, j ≤ n, (37)

with mutually independent ξi j . The relative noise intensity σ > 0, same as the con-
volution kernel α(·), are parameters of the setup of an experiment.

The algorithm. We used the COCndGwith memory, described in section 5; we imple-
mented the options listed in A—C at the end of the section. Specifically,

1. We use the updating rule (30) with Zt evolving in time exactly as explained in item
C: the set Zt is obtained from Zt−1 by adding the points zt = [xt ;TV(xt )], ẑt =
[x[∇ f (xt )]; 1] and z′t = [∇ f (xt );TV(∇ f (xt ))], and deleting from the resulting
set, if necessary, some “old” points, selected according to the rule “first in—first
out,” to keep the cardinality of Zt not to exceed a given M ≥ 3 (in our experiments
we use M = 48). This scheme is initialized with Z0 = ∅, z1 = [0; 0].
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2. We use every run of the algorithm to obtain a set of approximate solutions to (36)
associated with various values of the penalty parameter κ , as explained in B at the
end of Sect. 5. Precisely, when solving (36) for a given value of κ (in the sequel,
we refer to it as to the working value, denoted κw), we also compute approximate
solutions xκ(κ ′) to the problems with the values κ ′ of the penalty, for κ ′ = κγ ,
with γ running through a given finite subset G � 1 of the positive ray. In our
experiments, we used the 25-point grid G = {γ = 2�/4}12�=−12.
The LO oracle for the TV norm onMn

0 utilized in COCndGMwas the one described
in Lemma 2; the associated flow problem (31) was solved by the commercial interior
point LP solvermosekopt version 6 [1]. Surprisingly, in our application this “general
purpose” interior point LP solver was by orders of magnitude faster than all dedicated
network flow algorithms we have tried, including simplex-type network versions of
mosekopt and CPLEX. With our solver, it becomes possible to replace in (31) every
pair of opposite to each other arcs with a single arc, passing from the bounds 0 ≤ r ≤ e
on the flows in the arcs to the bounds −e ≤ r ≤ e.

The termination criterion we use relies upon the fact that in COCndGM the (non-
negative) objective decreases along the iterates: we terminate a run when the progress
in terms of the objective becomes small, namely, when the condition

φκ(xt−1)− φκ(xt ) ≤ ε max[φκ(xt−1), δφκ(0)]

is satisfied. Here ε and δ are small tolerances (we used ε = 0.005 and δ = 0.01).

Organization of the experiments. In each experiment we select a “true image”
x∗ ∈ Mn , a kernel α(·) and a (relative) noise intensity σ . Then we generate a related
observation b, thus ending up with a particular instance of (36). This instance is
solved by the outlined algorithm for working values κw of κ taken from the set
G+ = {γ = 2�/4}∞�=−∞, with the initial working value, selected in pilot runs, of
the penalty underestimating the best—resulting in the best recovery—penalty.

As explained above, a run of COCndGM, the working value of the penalty being
κw, yields 25 approximate solutions to (36) corresponding to κ along the grid κw · G.
These sets are fragments of the grid G+, with the ratio of the consecutive grid points
21/4 ≈ 1.19. For every approximate solution x we compute its combined relative error
defined as

ν(x) =
(‖x̄ − x∗‖1‖x̄ − x∗‖2‖x̄ − x∗‖∞

‖x∗‖1‖x∗‖2‖x∗‖∞
)1/3

;

here x̄ is the easily computable shift of x by a constant image satisfying ‖Ax̄ −b‖2 =
‖PAx − Pb‖2. From run to run, we increase the working value of the penalty by
the factor 21/4, and terminate the experiment when in four consecutive runs there
was no progress in the combined relative error of the best solution found so far. Our
primary goals are (a) to quantify the performance of the COCndGM algorithm, and
(b) to understand by which margin, in terms of φκ(·), the “byproduct” approximate
solutions yielded by the algorithm (those which were obtained when solving (36) with
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Table 3 Setups of the experiments

# Image n α(·) Cond(A∗A) σ

A lenna† 256 fspecial(′gaussian′,7,1)
1 (7× 7) ≈2.5e7 0.05

B cameraman‡ 512 fspecial(’gaussian’,7,1) (7× 7) ≈2.5e7 0.05

C lenna 256 fspecial(’unsharp’) (3× 3) ≈40 0.15

D cameraman 512 fspecial(’unsharp’) (3× 3) ≈40 0.40

† http://en.wikipedia.org/wiki/Lenna
‡ http://en.wikipedia.org/wiki/Camera_operator
1 http://www.mathworks.com/help/images/ref/fspecial.html

Table 4 Performance of COCndGM; platform: T410 Lenovo laptop, Intel Core i7 M620 CPU@2.67GHz,
8GB RAM

# Image size Runs Iterations per run CPU per run, sec CPU per iteration, sec

Min Mean Max Mean Max Mean

A 256× 256 6 4 9.00 12 83.4 148.7 8.3

B 512× 512 9 4 7.89 11 212.9 318.2 25.9

C 256× 256 6 17 17.17 18 189.7 214.7 10.3

D 512× 512 6 16 16.00 16 615.9 768.3 36.0

Flow solver: interior point method mosekopt 6.0 [1]

the working value of penalty different from κ) are worse than the “direct” approximate
solution obtained for the working value κ of the penalty.

Test instances and results. We present below the results of four experiments with two
popular images; these results are fully consistent with those of other experiments we
have conducted so far. The corresponding setups are presented in Table 3. Table 4
summarizes the performance data. Our comments are as follows.

• In accordance to the above observations, using “large” memory (with the cardi-
nality of Zt allowed to be as large as 48) and processing “large” number (25) of
penalty values at every step are basically costless: at an iteration, the single call to
the LO oracle (which is a must for CndG) takes as much as 85% of the iteration
time.

• The COCndGM iteration count as presented in Table 4 is surprisingly low for
an algorithm with sublinear O(1/t) convergence, and the running time of the
algorithm appears quite tolerable16 Seemingly, the instrumental factor here is that
by reasons indicated in C, see the end of Sect. 5, we include into Zt not only
zt = [xt ;TV(xt )] and ẑt = [x[∇ f (xt )]; 1], but also z′t = [∇ f (xt );TV(∇ f (xt ))].
To illustrate the difference, this is what happens in experiment A with the lowest

16 For comparison: solving on the same platform problem (36) corresponding to Experiment A (256×256
image) by the state-of-the-art commercial interior point solver mosekopt 6.0 took as much as 3,727
sec, and this—for a single value of the penalty (there is no clear way to get from a single run approximate
solutions for a set of values of the penalty in this case).
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Fig. 1 a–d Lower and upper envelopes of {φκ (xκw (κ)) : κw ∈ G} versus κ , experiments A–D. Asterisks
on the κ-axes: penalties resulting in the smallest combined relative recovery errors. e values of φ1/8(xt )
versus iteration number t with z′t included (asterisks) and not included (circles) into Zt

(0.125) working value of penalty. With the outlined implementation, the run takes
12 iterations (111 sec), with the ratio φ1/8(xt )/φ1/8(x1) reduced from 1 (t = 1)
to 0.036 (t = 12). When z′t is not included into Zt , the termination criterion is not
met even in 50 iterations (452s), the maximum iteration count we allow for a run,
and in course of these 50 iterations the above ratio was reduced from 1 to 0.17,
see plot e) on Fig. 1.

• An attractive feature of the proposed approach is the possibility to extract from a
single run, the working value of the penalty being κw, suboptimal solutions xκw(κ)

for a bunch of instances of (9) differing from each other by the values of the penalty
κ . The related question is, of course, how good, in terms of the objective φκ(·),
are the “byproduct” suboptimal solutions xκw(κ) as compared to those obtained
when κ is the working value of the penalty. In our experiments, the “byproduct”
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Fig. 2 Experiments C, D

solutions were pretty good, as can be seen from plots (a)—(c) on Fig. 1, where
we see the upper and the lower envelopes of the values of φκ at the approximate
solutions xκw(κ) obtained from different working values κw of the penalty. In spite
of the fact that in our experiments the ratios κ/κw could be as small as 1/8 and
as large as 8, we see that these envelopes are pretty close to each other, and, as
an additional bonus, are merely indistinguishable in a wide neighborhood of the
best (resulting in the best recovery) value of the penalty (on the plots, this value is
marked by asterisk).

Finally, we remark that in experiments A, B, where the mapping A is heavily
ill-conditioned (see Table 3), TV regularization yields moderate (just about 25%)
improvement in the combined relative recovery error as compared to the one of the
trivial recovery (“observations as they are”), in spite of the relatively low (σ = 0.05)
observation noise. In contrast to this, in the experiments C, D, where A is well-
conditioned, TV regularization reduces the error by 80% in experiment C (σ = 0.15)
and by 72% in experiment D (σ = 0.4), see Fig. 2.

8 Appendix

8.1 Proof of Theorem 1

Define εt = f (xt )− f t∗ . When invoking convexity of f and the definition (16), (17)
of f t∗ , we have

〈 f ′(xt ), x+t − xt 〉 = f∗,t − f (xt ) ≤ f t∗ − f (xt ) (≤ f∗ − f (xt )). (38)
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Observing that for a generic GC algorithm we have (cf. (14), (15)) f (xt+1) ≤
f (xt + γt (x

+
t − xt )), γt = 2

t+1 , and invoking (12), we have

f (xt+1) ≤ f (xt )+ γt 〈 f ′(xt ), x+t − xt 〉 + L

2
γ 2
t ‖x+t − xt‖2X

≤ f (xt )− γt ( f (xt )− f t∗)+
1

2
Lγ 2

t , (39)

where the concluding ≤ is due to (38). Since f t+1∗ ≥ f t∗ , it follows that

εt+1 ≤ f (xt+1)− f t∗ ≤ (1− γt )εt + 1

2
Lγ 2

t ,

whence

εt+1 ≤ ε1

t∏
i=1

(1− γi )+ 1

2
L

t∑
i=1

γ 2
i

t∏
k=i+1

(1− γk)

= 2L
t∑

i=1
(i + 1)−2

t∏
k=i+1

(1− 2

k + 1
),

where, by convention,
∏t

k=t+1 = 1. Noting that
∏t

k=i+1(1− 2
k+1 ) =

∏t
k=i+1 k−1

k+1 =
i(i+1)
t (t+1) , i = 1, . . . , t, we get

εt+1 ≤ 2L
t∑

i=1

i(i + 1)

(i + 1)2t (t + 1)
≤ 2Lt

(t + 1)2
≤ 2L(t + 2)−1, (40)

what is (18). ��

8.2 Proof of Theorem 2

The proof, up to minor modifications, goes back to [22], see also [19,26]; we provide
it here to make the paper self-contained. W.l.o.g. we can assume that we are in the
nontrivial case (see description of the algorithm).

10. As it was explained when describing the method, whenever stage s takes place,
we have 0 < ρ1 ≤ ρs ≤ ρ∗, and ρs−1 < ρs , provided s > 1. Therefore by the
termination rule, the output ρ̄, x̄ of the algorithm, if any, satisfies ρ̄ ≤ ρ∗, f (x̄) ≤
ε. Thus, (i) holds true, provided that the algorithm does terminate. Thus, all we
need is to verify (ii) and (iii).

20. Let us prove (ii). Let s ≥ 1 be such that stage s takes place. Setting X = K [ρs],
observe that X − X ⊂ {x ∈ E : ‖x‖ ≤ 2ρs}, whence ‖ · ‖ ≤ 2ρs‖ · ‖X , and
therefore the relation (4) implies the validity of (12) with L = 4ρ2

s L f . Now,
if stage s does not terminate in course of some number t steps, then, in the
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notation from the description of the algorithm, f (x̄t ) > ε and f t∗ < 3
4 f (x̄t ),

whence f (x̄t ) − f t∗ > ε/4. By Theorem 1.ii, the latter is possible only when

4.5L/(t − 2) > ε/4. Thus, t ≤ max
[
5, 2+ 72ρ2

s L f
ε

]
. Taking into account that

ρs ≤ ρ∗, (ii) follows.
30. Let us prove (iii). This statement is trivially true when the number of stages is 1.

Assuming that it is not the case, let S ≥ 1 be such that the stage S+1 takes place.
For every s = 1, . . . , S, let ts be the last step of stage s, and let us, �s(·) be what in
the notation from the description of stage s was denoted f (x̄ts ) and �ts (ρ). Thus,
us > ε is an upper bound on Opt(ρs), �s :=�s(ρs) is a lower bound on Opt(ρs)
satisfying �s ≥ 3us/4, and �s(·) is a piecewise linear convex in ρ lower bound on
Opt(ρ), ρ ≥ 0, and ρs+1 > ρs is the smallest positive root of �s(·). Let also −gs
be a subgradient of �s(·) at ρs . Note that gs > 0 due to ρs+1 > ρs combined with
�s(ρs) > 0, �s(ρs+1) = 0, and by the same reasons combined with convexity of
�s(·) we have

ρs+1 − ρs ≥ �s/gs, (41)

and, as we have seen,

1 ≤ s ≤ S ⇒
⎧⎨
⎩

(a) us > ε,

(b) us ≥ Opt(ρs) ≥ �s ≥ 3
4us,

(c) �s − gs(ρ − ρs) ≤ Opt(ρ), ρ ≥ 0.
. (42)

Assuming 1 < s ≤ S and applying (41), we get ρs − ρs−1 ≥ 3
4us−1/gs−1, whence,

invoking (42),

us−1 ≥ Opt(ρs−1) ≥ �s + gs[ρs−1 − ρs] ≥ 3

4
us + 3

4
us−1

gs
gs−1

.

The resulting inequality implies that us
us−1 +

gs
gs−1 ≤ 4

3 , whence
us gs

us−1gs−1 ≤
(1/4)(4/3)2 = 4/9. It follows that

√
usgs ≤ (2/3)s−1√u1g1, 1 ≤ s ≤ S. (43)

Now, since the first iterate of the first stage is 0, we have u1 ≤ f (0), while (42)
applied with s = 1 implies that f (0) = Opt(0) ≥ �1+ ρ1g1 ≥ ρ1g1, whence u1g1 ≤
f (0)/ρ1 = d. Further, by (41) gs ≥ �s/(ρs+1 − ρs) ≥ �s/ρ∗ ≥ 3

4us/ρ∗, where the
concluding inequality is given by (42). We see that usgs ≥ 3

4u
2
s/ρ∗ ≥ 3

4ε
2/ρ∗. This

lower bound on usgs combines with the bound u1g1 ≤ d and with (43) to imply that

ε ≤ √
4/3(2/3)s−1

√
dρ∗, 1 ≤ s ≤ S.

Finally observe that by the definition of ρ∗ and due to the fact that ‖x[ f ′(0)]‖ = 1
in the nontrivial case, we have
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0 ≤ f (ρ∗x[ f ′(0)]) ≤ f (0)+ ρ∗〈 f ′(0), x[ f ′(0)]〉 + 1

2
L f ρ

2∗

= f (0)− ρ∗d + 1

2
L f ρ

2∗

(we have used (4) and the definition of d), whence ρ∗d ≤ f (0)+ 1
2 L f ρ

2∗ and therefore

ε ≤ √
4/3(2/3)s−1

√
f (0)+ 1

2
L f ρ2∗, 1 ≤ s ≤ S.

Since this relation holds true for every S ≥ 1 such that the stage S+ 1 takes place,
(iii) follows. ��

8.3 Proof of Theorem 3

By definition of zt we have zt ∈ K+ for all t and F(0) = F(z1) ≥ F(z2) ≥ . . .,
whence rt ≤ D∗ for all t by Assumption A. Besides this, r∗ ≤ D∗ as well. Let now
εt = F(zt ) − F∗, zt = [xt ; rt ], and let z+t = [x+t , r+t ] be a minimizer, as given by
Lemma 1, of the linear form 〈F ′(zt ), z〉 of z ∈ E+ over the set K+[r∗] = {[x; r ] :
x ∈ K , ‖x‖ ≤ r ≤ r∗}. Recalling that F ′(zt ) = [ f ′(xt ); κ] and that rt ≤ D∗ ≤ D̄,
Lemma 1 implies that z+t ∈ �(zt ). By definition of z+t and convexity of F we have

〈[ f ′(xt ); κ], zt − z+t 〉 = 〈 f ′(xt ), xt − x+t 〉 + κ(rt − r+t )

≥ 〈 f ′(xt ), xt − x∗〉 + κ(rt − r∗)
= 〈F ′(zt ), zt − z∗〉 ≥ F(zt )− F(z∗) = εt .

Invoking (12), it follows that for 0 ≤ s ≤ 1 one has

F(zt + s(z+t − zt )) ≤ F(zi )+ s〈[ f ′(xt ); κ], z+t − zt 〉 + L f s2

2
‖x(z+t )− x(zt )‖2

≤ F(zt )− sεt + 1

2
L f s

2(rt + D∗)2

using that ‖x(z+t )‖ ≤ r+t and ‖x(zt )‖ ≤ rt due to z+t , zt ∈ K+, and that r+t ≤ r∗ ≤
D∗. By (24) we have

F(zt+1) ≤ min
0≤s≤1 F(zt + s(z+t − zt )) ≤ F(zt )+ min

0≤s≤1

{
−sεt + 1

2
L f s

2(rt + D∗)2
}

,

and we arrive at the recurrence

εt+1 ≤ εt −
{

ε2t
2L f (rt+D∗)2 , εt ≤ L f (rt + D∗)2

εt − 1
2 L f (rt + D∗)2, εt > L f (rt + D∗)2

, t = 1, 2, . . . (44)

When t = 1, this recurrence, in view of z1 = 0, implies that ε2 ≤ 1
2 L f D2∗ . Let us

show by induction in t ≥ 2 that
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εt ≤ ε̄t :=8L f D2∗
t + 14

, t = 2, 3, . . . (45)

thus completing the proof. We have already seen that (45) is valid for t = 2. Assuming
that (45) holds true for t = k ≥ 2, we have εk ≤ 1

2 L f D2∗ and therefore εk+1 ≤
εk − 1

8L f D2∗
ε2k by (44) combined with 0 ≤ rk ≤ D∗. Now, the function s − 1

8L f D2∗
s2

is nondecreasing on the segment 0 ≤ s ≤ 4L f D2∗ which contains ε̄k and εk ≤ ε̄k ,
whence

εk+1 ≤ εk − 1

8L f D2∗
ε2k ≤ ε̄k − 1

8L f D2∗
ε̄2k =

[
8L f D2∗
k + 14

]
− 1

8L f D2∗

[
8L f D2∗
k + 14

]2

= 8L f D2∗(k + 13)

(k + 14)2
≤ 8L f D2∗

(k + 1)+ 14
,

so that (45) holds true for t = k + 1. ��

8.4 Proofs for Section 6

As we have already explained, (31) is solvable, so that z is well defined. Denoting by
(s∗, r∗) an optimal solution to (31) produced, along with z, by our solver, note that the
characteristic property of z is the relation

(s∗, r∗) ∈ Argmax
s,r

{s + 〈z, Pr − sη〉 : 0 ≤ r ≤ e}.

Since the column sums in P are zeros and the sum of entries in η is zero, the
above characteristic property of z is preserved when passing from z to z̄, so that
we may assume from the very beginning that z = z̄ is a zero mean image. Now,
P = [Q,−Q], where Q is the incidence matrix of the network obtained from G by
eliminating backward arcs. Representing a flow r as [r f ; rb], where the blocks are
comprised, respectively, of flows in the forward and backward arcs, and passing from
r to ρ = r f − rb, our characteristic property of z clearly implies the relation

(s∗, ρ∗:=r∗ f − r∗ b) ∈ Argmax
s,ρ

{s + 〈z, Qρ − sη〉︸ ︷︷ ︸
ψ(s,ρ)

: ‖ρ‖∞ ≤ 1}. (46)

By the optimality conditions in linear programming it follows that

(a) 〈z, η〉 = 1,
(b) ‖ρ∗‖∞ ≤ 1,

(c) (QT z)γ =
⎧⎨
⎩
≤ 0, [ρ∗]γ = −1,
= 0, [ρ∗]γ ∈ (−1, 1),
≥ 0, [ρ∗]γ = 1,

for all forward arcs γ,

(d) Qρ∗ = s∗η.

(47)
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Indeed, (a) stems from the fact that ψ(s, ρ), which is affine in s, is above bounded, so
that the coefficient at s in ψ should be zero; (b) is the constraint in the maximization
problem in (46) to which (s∗, ρ∗) is an optimal solution; (c) is the optimality condition
for the same problem w.r.t. the ρ-variable; and (d) expresses the fact that (s∗, r∗) is
feasible for (31). (47.d) and (47.a) imply that 〈QT z, ρ∗〉 = s∗, while (47.c) says that
〈QT z, ρ∗〉 = ‖QT z‖1, and s∗ = ‖QT z‖1. By (47.a) z �= 0, and thus z is a nonzero
image with zero mean; recalling what Q is, the first n(n−1) entries in QT z form∇i z,
and the last n(n−1) entries form∇ j z, so that ‖QT z‖1 = TV(z). The gradient field of a
nonzero imagewith zeromeancannot be identically zero,whenceTV(z) = ‖QT z‖1 =
s∗ > 0. Thus x[η] = −z/TV(z) = −z/s∗ is well defined and TV(x[η]) = 1, while
by (47.a) we have 〈x[η], η〉 = −1/s∗. Finally, let x ∈ T V , implying that QT x is the
concatenation of∇i x and∇ j x and thus ‖QT x‖1 = TV(x) ≤ 1. Invoking (47.b, d), we
get −1 ≤ 〈QT x, ρ∗〉 = 〈x, Qρ∗〉 = s∗〈x, η〉, whence 〈x, η〉 ≥ −1/s∗ = 〈x[η], η〉,
meaning that x[η] ∈ T V is a minimizer of 〈η, x〉 over x ∈ T V . ��

In the sequel, for a real-valued function x defined on a finite set (e.g., for an image),
‖x‖p stands for the L p norm of the function corresponding to the counting measure
on the set (the mass of every point from the set is 1). Let us fix n and x ∈ Mn

0 with
TV(x) ≤ 1; we want to prove that

‖x‖2 ≤ C
√
ln(n) (48)

with appropriately selected absolute constant C.
10. Let ⊕ stand for addition, and  for subtraction of integers modulo n; p⊕ q =

(p+q)mod n ∈ {0, 1, . . . , n−1} and similarly for p q. Along with discrete partial
derivatives ∇i x,∇ j x , let us define their periodic versions ∇̂i x, ∇̂ j x :

∇̂i x(i, j) = x(i ⊕ 1, j)− x(i, j) : �n,n → R, ∇̂ j x(i, j)

= x(i, j ⊕ 1)− x(i, j) : �n,n → R,

same as periodic Laplacian �̂x :

�̂x = x(i, j)− 1

4
[x(i  1, j)+x(i ⊕ 1, j)+ x(i, j  1)+ x(i, j ⊕ 1)] : �n,n→R.

For every j, 0 ≤ j < n, we have
∑n−1

i=0 ∇̂i x(i, j) = 0 and ∇i x(i, j) = ∇̂i x(i, j)
for 0 ≤ i < n − 1, whence

∑n−1
i=0 |∇̂i (x)| ≤ 2

∑n−1
i=0 |∇i x(i, j)| for every j , and thus

‖∇̂i x‖1 ≤ 2‖∇i x‖1. Similarly, ‖∇̂ j x‖1 ≤ 2‖∇ j x‖1, and we conclude that

‖∇̂i x‖1 + ‖∇̂ j x‖1 ≤ 2. (49)

20. Now observe that for 0 ≤ i, j < n we have

x(i, j) = x(i  1, j)+ ∇̂i x(i  1, j)
x(i, j) = x(i ⊕ 1, j)− ∇̂i x(i, j)
x(i, j) = x(i, j  1)+ ∇̂ j x(i, j  1)
x(i, j) = x(i, j ⊕ 1)− ∇̂ j x(i, j)
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whence

�̂x(i, j) = 1

4

[∇̂i x(i  1, j)− ∇̂i x(i, j)+ ∇̂ j x(i, j  1)− ∇̂ j x(i, j)
]

(50)

Now consider the following linear mapping from Mn × Mn into Mn :

B[g, h](i, j) = 1

4
[g(i  1, j)− g(i, j)+ h(i, j  1)− h(i, j)] , [i; j] ∈ �n,n .

(51)
From this definition and (50) it follows that

�̂x = B[∇̂i x, ∇̂ j x]. (52)

Let for u ∈ Mn,DFT[u] stand for the 2D Discrete Fourier Transform of u:

DFT[u](p, q) =
∑

0≤r,s<n

u(r, s) exp{−2π ı(pr + qs)/n}, [p; q] ∈ �n,n .

Note that every image u with zero mean is the periodic Laplacian of another,
uniquely, defined, image X [u]with zeromean,with X [u]givenby its Fourier transform

DFT[X [u]](p, q) = Y [u](p, q):=
{
0, p = q = 0
DFT[u](p,q)

D(p,q)
, 0 �= [p; q] ∈ �n,n

, [p; q] ∈ �n,n,

D(p, q) = 1− 1

2
[cos(2πp/n)+ cos(2πq/n)], [p; q] ∈ �n,n . (53)

Indeed, representing an n × n image x(μ, ν), 0 ≤ μ, ν < n, as a Fourier sum

x(μ, ν) =
∑

0≤p,q<n

cp,q exp{2π ı[pμ/n + qν/n]},

we get

[
�̂x

]
(μ, ν) = ∑

0≤p,q<n
cp,q

[
exp{2π ı[ pμn + qν

n ]}
− 1

4 exp{2π ı[ p(μ 1)n + qν
n ]} − 1

4 exp{2π ı[ p(μ⊕1)n + qν
n ]}

− 1
4 exp{2π ı[ pμn + (q 1)ν

n ]} − 1
4 exp{2π ı[ pμn + q(ν⊕1)

n ]}
]

= ∑
0≤p,q<n

cp,q exp{2π ı[ pμn + qν
n ]}

[
1− 1

4 exp{−2π ı pn } − 1
4 exp{2π ı pn }

− 1
4 exp{−2π ı qn } − 1

4 exp{2π ı qn }
]

= ∑
0≤p,q<n

[
cp,q D(p, q)

]
exp{2π ı[ pμn + qν

n ]},
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where

D(p, q) =
[
1− 1

4
exp{−2π ı p

n
} − 1

4
exp{2π ı p

n
} − 1

4
exp{−2π ı q

n
} − 1

4
exp{2π ı q

n
}
]

= 1− 1

2
cos(2π

p

n
)− 1

2
cos(2π

q

n
), [p; q] ∈ �n,n .

In other words, in the Fourier domain passing from an image to its periodic
Laplacian means multiplication of Fourier coefficient cp,q by D(p, q). From the
expression for D(p, q) it is immediately seen that D(p, q) is nonzero whenever
(p, q) with 0 ≤ p, q < n is nonzero. In other words, the periodic Laplacian of
a whatever n × n zero mean image is an image with zero mean (zero Fourier
coefficient (0, 0)), and every image of this type is a periodic Laplacian of another
zero mean image described in (53).

In particular, invoking (52), we get

DFT[x] = Y [B[∇̂i x, ∇̂ j x]].

By Parseval identity, ‖DFT[x]‖2 = n‖x‖2, whence

‖x‖2 = n−1‖Y [B[∇̂i x, ∇̂ j x]]‖2.

Combining this observation with (49), we see that in order to prove (48), it suffices
to check that

(!) Whenever g, h ∈ Mn are such that

(g, h) ∈ G:={(g, h) ∈ Mn × Mn : ‖g‖1 + ‖h‖1 ≤ 2},

we have

‖Y [B[g, h]]‖2 ≤ nC
√
ln(n). (54)

40. The good news about (!) is that Y [B[g, h]] is linear in (g, h). Therefore, in order
to justify (!), it suffices to prove that (54) holds true for the extreme point of G, i.e., (a)
for pairs where h ≡ 0 and g is an image which is equal to 2 at some point of �n,n and
vanishes outside of this point, and (b) for pairs where g ≡ 0 and h is an image which
is equal to 2 at some point of �n,n and vanishes outside of this point. Task (b) clearly
reduces to task (a) by swapping the coordinates i, j of points from �n,n , so that we
may focus solely on task (a). Thus, assume that g is a cyclic shift of the image 2δ:

g(i, j) ≡ 2δ(i  r, j  s), δ(i, j) =
{
1, [i; j] = [0; 0]
0, [i; j] �= [0; 0] , [i; j] ∈ �n,n .

From (51) it follows that then B[g, 0] is a cyclic shift of B[2δ, 0], whence
|DFT[B[g, 0]](p, q)| = |DFT[B[2δ, 0]](p, q)| for all [p; q] ∈ �n,n , which, by (53),
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implies that |Y [B[g, 0]](p, q)| = |Y [B[2δ, 0]](p, q)| for all [p; q] ∈ �n,n . The bot-
tom line is that all we need is to verify that (54) holds true for g = 2δ, h = 0, or,
which is the same, that with

y(p, q) = (1− exp{2π ı p/n})
2[1− 1

2 [cos(2πp/n)+ cos(2πq/n)]] (55)

where the right hand side by definition is 0 at p = q = 0, it holds

Cn :=
n−1∑
p,q=0

|y(p, q)|2 ≤ n2C2 ln(n).

Now, (55) makes sense for all [p; q] ∈ Z2 (provided that we define the right hand
side as zero at all points of Z2 where the denominator in (55) vanishes, that is, at all
point where p, q are integer multiples of n) and defines y as a double-periodic, with
periods n in p and in q, function of [p; q]. Therefore, setting m = �n/2� ≥ 1 and
W = {[p; q] ∈ Z2 : −m ≤ p, q < n − m}, we have

Cn =
∑

0 �=[p;q]∈W
|y(p, q)|2 =

∑
[p;q]∈W

|1− exp{2π ı p/n}|2
4|1− 1

2 [cos(2πp/n)+ cos(2πq/n)]|2 .

Setting ρ(p, q) = √
p2 + q2, observe that when 0 �= [p; q] ∈ W , we have

|1 − exp{2π ı p/n}| ≤ C1n−1ρ(p, q) and 2[1 − 1
2 [cos(2πp/n) + cos(2πq/n)]] ≥

C2n−2ρ2(p, q) with positive absolute constants C1,C2, whence

Cn ≤ (C1/C2)
2

∑
0 �=[p;q]∈W

n2ρ−2(p, q).

With appropriately selected absolute constant C3 we have

∑
0 �=[p;q]∈W

ρ−2(p, q) ≤ C3

n∫
1

r−2rdr = C3 ln(n).

Thus, Cn ≤ (C1/C2)
2C3n2 ln(n), meaning that (54), and thus (48), holds true with

C = √C3C1/C2. ��
We are very grateful to Referees for their reading of the manuscript and thoughtful

comments.
We have included after Theorem 2 a comment on comparison of the proposed

parametric optimization algorithm with that based on bisection. However, we finally
decided not to include the numerical comparison. Note that including such experiment
would require explaining in some detail what the “bisection” algorithm is and how
is it implemented, what would make the manuscript which is already too long with
respect to the size requirements of the Mathematical Programming even longer.
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We would like to thank Referee 2 for detailed and clarifying explanations of his
comments on the initial manuscript. Some comments of Referee 2 concern notation
we have not modified in our revision. Since his requests do not seem to be compulsory
and the final decision is left to us, we have modified some (e.g., we replaced D+ with
D̄) but preferred to keep other unchanged.

In what follows we provide our answers to other questions raised in his detailed
report.

• 6.16∗…Iwould suggest that the authors simply say, when introducing (12), that is it
is implied by (4) but more general, to give some hint about why they are mentioning
it
We have added a small comment after display (12) to make clear the choice of the
norm ‖ · ‖X here

• 11.9∗ …some readers might be more familiar with a statement like “A has full
column rank,” or “A has a trivial nullspace,” etc.
We think that for a linear operator (which, in our case, may not be a matrix) a
commonly adopted terminology is indeed “A has a trivial nullspace,” or “A has a
trivial kernel”, what is the exact wording of Ker(A) = {0}.

• 11.19∗ …but I think it would suffice to simply note in the text that the given value∑ |λζ |ρ is an upper bound on ‖x‖ for x in the given form.
Thank you, we have added a comment in this sense after display (29).

• 30.5∗…I’ll say that the authors are practicing a false economy in not giving a more
complete explanation, and that at the least, “we immediately see” should be “one
can show”
Thank you for insisting, you are probably right—we have reproduced in the text our
answer to the corresponding comment on the previous version of the manuscript.
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