
Math. Program., Ser. A (2015) 150:423–457
DOI 10.1007/s10107-014-0774-0

FULL LENGTH PAPER

Tensor principal component analysis via convex
optimization

Bo Jiang · Shiqian Ma · Shuzhong Zhang

Received: 11 December 2012 / Accepted: 28 March 2014 / Published online: 13 April 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract This paper is concerned with the computation of the principal components
for a general tensor, known as the tensor principal component analysis (PCA) problem.
We show that the general tensor PCA problem is reducible to its special case where
the tensor in question is super-symmetric with an even degree. In that case, the tensor
can be embedded into a symmetric matrix. We prove that if the tensor is rank-one, then
the embedded matrix must be rank-one too, and vice versa. The tensor PCA problem
can thus be solved by means of matrix optimization under a rank-one constraint, for
which we propose two solution methods: (1) imposing a nuclear norm penalty in
the objective to enforce a low-rank solution; (2) relaxing the rank-one constraint by
semidefinite programming. Interestingly, our experiments show that both methods can
yield a rank-one solution for almost all the randomly generated instances, in which

Shiqian Ma: Research of this author was supported in part by a Direct Grant of the Chinese University of
Hong Kong (Project ID: 4055016) and the Hong Kong Research Grants Council (RGC) Early Career
Scheme (ECS) (Project ID: CUHK 439513). Shuzhong Zhang: Research of this author was supported in
part by the National Science Foundation under Grant Number CMMI-1161242. Bo Jiang: Research of this
author was supported in part by the National Science Foundation under Grant Number CMMI-1161242.

B. Jiang
Research Center for Management Science and Data Analytics,
School of Information Management and Engineering,
Shanghai University of Finance and Economics, Shanghai 200433, China

S. Ma (B)
Department of Systems Engineering and Engineering Management,
The Chinese University of Hong Kong, Shatin, NT, Hong Kong
e-mail: sqma@se.cuhk.edu.hk

S. Zhang
Department of Industrial and Systems Engineering,
University of Minnesota, Minneapolis, MN 55455, USA

123

424 B. Jiang et al.

case solving the original tensor PCA problem to optimality. To further cope with the
size of the resulting convex optimization models, we propose to use the alternating
direction method of multipliers, which reduces significantly the computational efforts.
Various extensions of the model are considered as well.

Keywords Tensor · Principal component analysis · Low rank · Nuclear norm ·
Semidefinite programming relaxation

Mathematics Subject Classification (2010) 15A69 · 15A03 · 62H25 · 90C22 ·
15A18

1 Introduction

Principal component analysis (PCA) plays an important role in applications arising
from data analysis, dimension reduction and bioinformatics etc. PCA finds a few
linear combinations of the original variables. These linear combinations, which are
called principal components (PCs), are orthogonal to each other and explain most
of the variance of the data. PCs provide a powerful tool to compress data along the
direction of maximum variance to reach the minimum information loss. Specifically,
let ξ = (ξ1, . . . , ξm) be an m-dimensional random vector. Then for a given data
matrix A ∈ R

m×n which consists of n samples of the m variables, finding the PC that
explains the largest variance of the variables (ξ1, . . . , ξm) corresponds to the following
optimization problem:

(
λ∗, x∗, y∗) := min

λ∈R,x∈Rm ,y∈Rn
‖A − λxy�‖. (1)

Problem (1) is well known to be reducible to computing the largest singular value (and
corresponding singular vectors) of A, and can be equivalently formulated as:

max
x,y

(
x
y

)� (0 A
A� 0

)(
x
y

)

s.t.

∥∥
∥∥

(
x
y

)∥∥
∥∥ = 1.

(2)

Note that the optimal value and the optimal solution of Problem (2) correspond to
the largest eigenvalue and the corresponding eigenvector of the symmetric matrix(

0 A
A� 0

)
.

Although the PCA and eigenvalue problem for matrix have been well studied in the
literature, the research of PCA for tensors is still lacking. Nevertheless, the tensor PCA
is of great importance in practice and has many applications in computer vision [56],
diffusion Magnetic Resonance Imaging (MRI) [2,19,50], quantum entanglement prob-
lem [27], spectral hypergraph theory [30] and higher-order Markov chains [37]. This
is mainly because in real life we often encounter multidimensional data, including
images, video, range data and medical data such as CT and MRI. A color image can

123

Tensor principal component analysis 425

be considered as 3D data with row, column, color in each direction, while a color video
sequence can be considered as 4D data, where time is the fourth dimension. Moreover,
it turns out that it is more reasonable to treat the multidimensional data as a tensor
instead of unfolding it into a matrix. For example, Wang and Ahuja [56] reported that
the images obtained by tensor PCA technique have higher quality than that by matrix
PCA. Similar to its matrix counterpart, the problem of finding the PC that explains the
most variance of a tensor A (with degree m) can be formulated as:

min ‖A − λx1 ⊗ x2 ⊗ · · · ⊗ xm‖
s.t. λ ∈ R, ‖xi‖ = 1, i = 1, 2, . . . , m,

(3)

which is equivalent to

max A(x1, x2, . . . , xm)

s.t. ‖xi‖ = 1, i = 1, 2, . . . , m,
(4)

where ⊗ denotes the outer product between vectors; viz.

(x1 ⊗ x2 ⊗ · · · ⊗ xm)i1i2...im =
m∏

k=1

(xk)ik .

Let us call the above solution the leading PC. Once the leading PC is found, the other
PCs can be computed sequentially via the so-called “deflation” technique. For instance,
the second PC is defined as the leading PC of the tensor subtracting the leading PC
from the original tensor, and so forth. The theoretical basis of such deflation procedure
for tensors is not exactly sound, although its matrix counterpart is well established
(see [44] and the references therein for more details). However, the deflation process
does provide a heuristic way to compute multiple PCs of a tensor, albeit approximately.
Thus in the rest of this paper, we focus on finding the leading PC of a tensor.

Problem (4) is also known as the best rank-one approximation of tensor A. As we
shall see later, problem (4) can be reformulated as

max F(x, x, . . . , x)

s.t. ‖x‖ = 1,
(5)

where F is a super-symmetric tensor. Problem (5) is NP-hard and is known as the
maximum Z-eigenvalue problem. Note that a variety of eigenvalues and eigenvectors
of a real symmetric tensor were introduced by Lim [38] and Qi [48] independently
in 2005. Since then, various methods have been proposed to find the Z-eigenvalues
[10,31–33,49], which however may correspond only to local optimums. In this paper,
we shall focus on finding the global optimal solution of (5).

Before proceeding let us introduce notations that will be used throughout the
paper. We denote Rn to be the n-dimensional Euclidean space. A tensor is a high
dimensional array of real data, usually in calligraphic letter, and is denoted as
A = (Ai1i2...im)n1×n2×···×nm . The space where n1 × n2 × · · · × nm dimensional

123

426 B. Jiang et al.

real-valued tensors reside is denoted by Rn1×n2×···×nm . We call A super-symmetric
if n1 = n2 = · · · = nm and Ai1i2...im is invariant under any permutation of
(i1, i2, . . . , im), i.e., Ai1i2...im = Aπ(i1,i2,...,im), where π(i1, i2, . . . , im) is any permu-
tation of indices (i1, i2, . . . , im). The space where n × n × · · · × n︸ ︷︷ ︸

m

super-symmetric

tensors reside is denoted by Snm
. Special cases of tensors are vector (m = 1) and

matrix (m = 2), and tensors can also be seen as a long vector or a specially arranged
matrix. For instance, the tensor space Rn1×n2×···×nm can also be seen as a matrix
space R(n1×n2×···×nm1)×(nm1+1×nm1+2×···×nm), where the row is actually an m1 array
tensor space and the column is another m − m1 array tensor space. Such connec-
tions between tensor and matrix re-arrangements will play an important role in this
paper. As a convention in this paper, if there is no other specification we shall adhere
to the Euclidean norm (i.e., the L2-norm) for vectors and tensors; in the latter case,
the Euclidean norm is also known as the Frobenius norm, and is sometimes denoted

as ‖A‖F =
√∑

i1,i2,...,im
A2

i1i2...im
. For a given matrix X , we use ‖X‖∗ to denote the

nuclear norm of X , which is the sum of all the singular values of X . Regarding the prod-
ucts, we use ⊗ to denote the outer product for tensors; that is, for A1 ∈ Rn1×n2×···×nm

and A2 ∈ Rnm+1×nm+2×···×nm+� ,A1 ⊗ A2 is in Rn1×n2×···×nm+� with

(A1 ⊗ A2)i1i2...im+�
= (A1)i1i2...im (A2)im+1...im+�

.

The inner product between tensors A1 and A2 residing in the same space Rn1×n2×···×nm

is denoted

A1 • A2 =
∑

i1,i2,...,im

(A1)i1i2...im (A2)i1i2...im .

Under this light, a multi-linear form A(x1, x2, . . . , xm) can also be written in
inner/outer products of tensors as

A • (x1 ⊗ · · · ⊗ xm) :=
∑

i1,...,im

Ai1i2...im (x1 ⊗ · · · ⊗ xm)i1...im

=
∑

i1,...,im

Ai1...im

m∏

k=1

xk
ik
.

In the subsequent analysis, for convenience we assume m to be even; i.e., m = 2d in
(5), where d is a positive integer. As we will see later, this assumption is essentially
non-restrictive. Therefore, we will focus on the following problem of computing the
largest eigenvalue of an even order super-symmetric tensor:

max F(x, . . . , x︸ ︷︷ ︸
2d

)

s.t. ‖x‖ = 1,

(6)

123

Tensor principal component analysis 427

where F is a 2d-th order super-symmetric tensor. In particular, problem (6) can be
equivalently written as

max F • x ⊗ · · · ⊗ x︸ ︷︷ ︸
2d

s.t. ‖x‖ = 1.

(7)

Given any 2d-th order super-symmetric tensor form F , we call it rank one if F =
λ a ⊗ · · · ⊗ a︸ ︷︷ ︸

2d

for some a ∈ Rn and λ ∈ {1,−1}. Moreover, the CP rank of F is

defined as follows.

Definition 1.1 Suppose F ∈ Sn2d
, the CP rank of F denoted by rank(F) is the

smallest integer r satisfying

F =
r∑

i=1

λi ai ⊗ · · · ⊗ ai
︸ ︷︷ ︸

2d

, (8)

where ai ∈ Rn, λi ∈ {1,−1}.
The idea of decomposing a tensor into an (asymmetric) outer product of vectors was
first introduced and studied by Hitchcock [28,29]. This concept of tensor-rank became
popular after its rediscovery in the 1970s in the form of CANDECOMP (canonical
decomposition) by Carroll and Chang [7] and PARAFAC (parallel factors) by Harsh-
man [24]. Consequently, CANDECOMP and PARAFAC are further abbreviated as
‘CP’ in the context of ‘CP rank’ by many authors in the literature.

We remark that, the CP rank is theoretically associated with the complex number
field, while in Definition 1.1 decomposition (8) is performed in the real domain.
Though the choice of complex or real domain is immaterial for the matrices, it does
make a difference in the tensor case [11]. Since we only focus on the real tensors here,
throughout this paper we shall use the CP rank to denote the symmetric real rank of a
super-symmetric tensor.

In the following, to simplify the notation, we denote K(n, d)=
{

k = (k1, . . . , kn) ∈
Z

n+
∣∣∣∣
∑n

j=1 k j = d
}

and

X12k1 22k2 ...n2kn := X1 . . . 1
︸ ︷︷ ︸
2k1

2 . . . 2
︸ ︷︷ ︸
2k2

... n . . . n
︸ ︷︷ ︸
2kn

.

By letting X = x ⊗ · · · ⊗ x︸ ︷︷ ︸
2d

we can further convert problem (7) into:

max F • X
s.t.

∑

k∈K(n,d)

d!∏n
j=1 k j !X12k1 22k2 ...n2kn = 1,

X ∈ Sn2d
, rank(X) = 1,

(9)

123

428 B. Jiang et al.

where the first equality constraint is due to the fact that
∑

k∈K(n,d)
d!∏n

j=1 k j !
∏n

j=1 x
2k j
j =

‖x‖2d = 1.
The difficulty of the above problem lies in the dealing of the rank constraint

rank(X) = 1. Not only the rank function itself is difficult to deal with, but also
determining the rank of a specific given tensor is already a difficult task, which is
NP-hard in general [25]. To give an impression of the difficulty involved in computing
tensor ranks, note that there is a particular 9 × 9 × 9 tensor (cf. [34]) whose rank
is only known to be in between 18 and 23. One way to deal with the difficulty is to
convert the tensor optimization problem (9) into a matrix optimization problem. A
typical matricization technique is the so-called mode-n matricization [32]. Roughly
speaking, given a tensor A ∈ Rn1×n2×···×nm , its mode-n matricization denoted by
A(n) is to arrange the n-th index of A to be the row index of the resulting matrix and
merge all other indices of A as the column index of A(n). The precise definition of
the mode-n matricization is as follows.

Definition 1.2 For a given tensorA ∈ Rn1×n2×···×nm , the matrix A(n) is the associated
mode-n matricization. In particular

A(n)in j := Ai1i2...im , ∀ 1 ≤ ik ≤ nk, 1 ≤ k ≤ m,

where

j = 1 +
∑

k=1
k 	=n

m
(ik − 1)Jk, withJk =

∏

�=1
� 	=n

k
n�. (10)

The so-called n-rank of A is defined by the vector [rank(A(1)), rank(A(2)), . . . ,

rank(A(m))], where its n-th component corresponds to the column rank of the mode-
n matrix A(n). The notion of n-rank has been widely used in the problems of ten-
sor decomposition. Recently, Liu et al. [41] and Gandy et al. [18] considered the
low-n-rank tensor recovery problem, which were the first attempts to solve low-rank
tensor optimization problems. Along this line, Tomioka et al. [54] analyzed the sta-
tistical performance of nuclear norm relaxation of the tensor n-rank minimization
problem. Chandrasekaran et al. [8] proposed another interesting idea, in particular
they directly applied convex relaxation to the tensor rank and obtained a new norm
called tensor nuclear norm, which was numerically intractable. Thus, a further semi-
definite representable relaxation was introduced. However, the authors did not pro-
vide any numerical results for this relaxation. Therefore, in the following we shall
introduce a new scheme to unfold a tensor into a matrix, where we use half of the
indices of tensor to form the row index of a matrix and use the other half as the
column index. Most importantly, in the next section, we manage to establish some
connection between the CP rank of the tensor and the rank of the resulting unfolding
matrix.

Definition 1.3 For a given super-symmetric even-order tensor F ∈ Sn2d
, we define

its square matricization, denoted by M (F) ∈ Rnd×nd
, as the following:

123

Tensor principal component analysis 429

M (F)k� := Fi1...id id+1...i2d , 1 ≤ i1, . . . , id , id+1, . . . , i2d ≤ n,

where

k =
d∑

j=1

(i j − 1)nd− j + 1, and � =
2d∑

j=d+1

(i j − 1)n2d− j + 1.

Similarly we introduce below the vectorization of a tensor.

Definition 1.4 The vectorization, V (F), of tensor F ∈ Rnm
is defined as

V (F)k := Fi1...im ,

where

k =
m∑

j=1

(i j − 1)nm− j + 1, 1 ≤ i1, . . . , im ≤ n.

In the same vein, we can convert a vector or a matrix with appropriate dimensions to
a tensor. In other words, the inverse of the operators M and V can be defined in the
same manner. In the following, we denote X = M (X), and so

Tr (X) =
∑

�

X�� with � =
d∑

j=1

(i j − 1)nd− j + 1.

If we assume X to be of rank one, then

Tr (X) =
∑

i1,...,id

Xi1...id i1...id =
∑

i1,...,id

Xi2
1 ...i2

d
.

In the above expression, (i1, . . . , id) is a subset of (1, 2, . . . , n). Suppose that j appears
k j times in (i1, . . . , id) with j = 1, 2, . . . , n and

∑n
j=1 k j = d. Then for a fixed out-

come (k1, k2, . . . , kn), the total number of permutations (i1, . . . , id) that can achieve
such combination is
(

d
k1

)(
d − k1

k2

)(
d − k1 − k2

k3

)
· · ·
(

d − k1 − · · · − kn−1
kn

)
= d!
∏n

j=1 k j ! .

Consequently,

Tr (X) =
∑

i1,...,id

Xi2
1 ...i2

d
=

∑

k∈K(n,d)

d!
∏n

j=1 k j !X12k1 22k2 ...n2kn . (11)

In light of the above discussion, if we further denote F = M (F), then the objective in
(9) is F •X = Tr (F X), while the first constraint

∑
k∈K(n,d)

d!∏n
j=1 k j !X12k1 22k2 ...n2kn =

123

430 B. Jiang et al.

1 ⇐⇒ Tr (X) = 1. The hard constraint in (9) is rank(X) = 1. It is straightforward to
see that if X is of rank one, then by letting X = λ x ⊗ · · · ⊗ x︸ ︷︷ ︸

2d

for some λ ∈ {1,−1}

and Y = x ⊗ · · · ⊗ x︸ ︷︷ ︸
d

, we have M (X) = λV (Y)V (Y)�, which is to say that matrix

M (X) is of rank one too. In the next section we shall continue to show that the other
way around is also true.

2 Equivalence under the rank-one hypothesis

We first present some useful observations below.

Lemma 2.1 Suppose A ∈ Rnd
is an n dimensional d-th order tensor and A ⊗ A ∈

Sn2d
. Then we have:

(i) A ∈ Snd ;
(i i) the n-rank of A is [1, 1, . . . , 1].

Proof We denote F = A ⊗ A ∈ Sn2d
. For any d-tuples {i1, . . . , id}, and one of its

permutations { j1, . . . , jd} ∈ π(i1, . . . , id), it holds that

(
Ai1...id − A j1... jd

)2 = A2
i1...id

+ A2
j1... jd − 2Ai1...id A j1... jd

= Fi1...id i1...id + F j1... jd j1... jd − 2Fi1...id j1... jd = 0,

where the last equality is due to the fact that F is super-symmetric. Therefore, A is
super-symmetric.

To prove the second statement, we first observe that for any two d-tuples {i1, . . . , id}
and {i ′1, . . . , i ′d}, due to the super-symmetry of F , we have

Ai1...id Ai ′1...i ′d = Fi1...id i ′1...i ′d = Fi ′1i2...id i1i ′2...i ′d = Ai ′1i2...id
Ai1i ′2...i ′d .

Now consider the mode-1 unfolding, which is the matrix A(1). For any two components
A(1)i1 j and A(1)i ′1 j ′ with j = 1 +∑m

k=2(ik − 1)Jk, j ′ = 1 +∑m
k=2(i

′
k − 1)Jk and

Jk is defined in (10), the equation above implies that

A(1)i1 j A(1)i ′1 j ′ = Ai1...id Ai ′1...i ′d = Ai ′1i2...id
Ai1i ′2...i ′d = A(1)i ′1 j A(1)i1 j ′ .

Therefore, every 2 × 2 minor of matrix A(1) is zero and so A(1) is of rank one.
Moreover, since A is super-symmetric, the mode-unfolded matrices are all the same.
Thus, we conclude that the n-rank of A is [1, 1, . . . , 1]. �

The following lemma tells us if a super-symmetric tensor is of rank one in the sense
of nonsymmetric CP, then the symmetric CP rank of the tensor is also one.

123

Tensor principal component analysis 431

Lemma 2.2 If a d-th order tensor A = a1 ⊗ a2 ⊗ · · · ⊗ ad is super-symmetric, then
we have ai = ±a1 for i = 2, . . . , d and A = λ a1 ⊗ a1 ⊗ · · · ⊗ a1

︸ ︷︷ ︸
d

for some λ = ±1.

Proof Since A is super-symmetric, from Theorem 4.1 in [10], we know that

max‖x‖=1
|A
(

x, . . . , x︸ ︷︷ ︸
d

)
| = max

‖xi ‖=1,i=1,...,d
A(x1, . . . , xd)=‖a1‖ × ‖a2‖ × · · · × ‖ad‖.

So there must exist an x∗ with ‖x∗‖ = 1 such that |(ai)�x∗| = ‖ai‖ for all i , which
implies that ai = ±a1 for i = 2, . . . , d, and thus the conclusion follows. �

We have the following proposition as the immediate consequence of the above
lemmas.

Proposition 2.3 Suppose A ∈ Rnd
is an n dimensional d-th order tensor. The follow-

ing two statements are equivalent:

(i) A ∈ Snd
, and rank(A) = 1;

(i i) A ⊗ A ∈ Sn2d
.

Proof We shall first show (i) �⇒ (ii). Suppose A ∈ Snd
with rank(A) = 1. Then there

exists a vector a ∈ Rn and a scalar λ ∈ {1,−1} such that A = λ a ⊗ a ⊗ · · · ⊗ a︸ ︷︷ ︸
d

.

Consequently, A ⊗ A = a ⊗ a ⊗ · · · ⊗ a︸ ︷︷ ︸
2d

∈ Sn2d
.

Now we prove (ii) �⇒ (i). From Lemma 2.1, we know that A is super-symmetric
and the n-rank of A is [1, 1, . . . , 1]. It is well known that the n-rank of a tensor
corresponds to the size of the core tensor associated with the smallest exact Tucker
decomposition [32]. Consequently, the n-rank of A is [1, 1, . . . , 1] means that the
core tensor associated with the exact Tucker decomposition of A is a scalar, thus the
nonsymmetric real CP rank of A is also one. Finally, due to Lemma 2.2 and the fact
that A is super-symmetric, we conclude that the symmetric CP rank of A is one, i.e.
rank(A) = 1. �
Now we are ready to present the main result of this section.

Theorem 2.4 Suppose X ∈ Sn2d
and X = M (X) ∈ Rnd×nd

. Then we have

rank(X) = 1 ⇐⇒ rank(X) = 1.

Proof As remarked earlier, that rank(X) = 1 �⇒ rank(X) = 1 is evident. To see
this, suppose rank(X) = 1 and X = x ⊗ · · · ⊗ x︸ ︷︷ ︸

2d

for some x ∈ Rn . By constructing

Y = x ⊗ · · · ⊗ x︸ ︷︷ ︸
d

, we have X = M (X)= V (Y)V (Y)�, which leads to rank(X)=1.

123

432 B. Jiang et al.

To prove the other implication, suppose that we have X ∈ Sn2d
and M (X) is of

rank one, i.e., M (X) = yy� for some vector y ∈ Rnd
. Then X = V −1(y)⊗V −1(y),

which combined with Proposition 2.3 implies V −1(y) is supper-symmetric and of rank
one. Thus there exists x ∈ Rn such that V −1(y) = x ⊗ · · · ⊗ x︸ ︷︷ ︸

d

and X = x ⊗ · · · ⊗ x︸ ︷︷ ︸
2d

.

�

3 A nuclear norm penalty approach

According to Theorem 2.4, we know that a super-symmetric tensor is of rank one, if
and only if its matrix correspondence obtained via the matricization operation defined
in Definition 1.3, is also of rank one. As a result, we can reformulate Problem (9)
equivalently as the following matrix optimization problem:

max Tr (F X)

s.t. Tr (X) = 1, M −1(X) ∈ Sn2d
,

X ∈ Snd×nd
, rank(X) = 1,

(12)

where X = M (X), F = M (F), and Snd×nd
denotes the set of nd × nd symmetric

matrices. Note that the constraints M −1(X) ∈ Sn2d
requires the tensor correspondence

of X to be super-symmetric, which essentially correspond to O(n2d) linear equality
constraints. The rank constraint rank(X) = 1 makes the problem intractable. In fact,
Problem (12) is NP-hard in general, due to its equivalence to problem (6).

There have been a large amount of work that deal with the low-rank matrix opti-
mization problems. Research in this area was mainly ignited by the recent emergence
of compressed sensing [5,12], matrix rank minimization and low-rank matrix comple-
tion problems [4,6,51]. The matrix rank minimization seeks a matrix with the lowest
rank satisfying some linear constraints, i.e.,

min
X∈Rn1×n2

rank(X), s.t., C(X) = b, (13)

where b ∈ Rp and C : Rn1×n2 → Rp is a linear operator. The results in [4,6,51]
show that under certain randomness hypothesis on the linear operator C, with high
probability the NP-hard problem (13) is equivalent to the following nuclear norm
minimization problem, which is a convex programming problem:

min
X∈Rn1×n2

‖X‖∗, s.t., C(X) = b. (14)

In other words, the optimal solution to the convex problem (14) is also the optimal
solution to the original NP-hard problem (13).

Motivated by the convex nuclear norm relaxation, one way to deal with the rank
constraint in (12) is to introduce the nuclear norm term of X , which penalizes high-
ranked X ’s, in the objective function. This yields the following convex optimization
formulation:

123

Tensor principal component analysis 433

max Tr (F X) − ρ‖X‖∗
s.t. Tr (X) = 1, M −1(X) ∈ Sn2d

,

X ∈ Snd×nd
,

(15)

where ρ > 0 is a penalty parameter. It is easy to see that if the optimal solution of
(15) (denoted by X̃) is of rank one, then ‖X̃‖∗ = Tr (X̃) = 1, which is a constant. In
this case, the term −ρ‖X‖∗ added to the objective function is a constant, which leads
to the fact the solution is also optimal with the constraint that X is rank-one. In fact,
Problem (15) is the convex relaxation of the following problem

max Tr (F X) − ρ‖X‖∗
s.t. Tr (X) = 1, M −1(X) ∈ Sn2d

,

X ∈ Snd×nd
, rank(X) = 1,

which is equivalent to the original problem (12) since ρ‖X‖∗ = ρTr (X) = ρ.
After solving the convex optimization problem (15) and obtaining the optimal solu-

tion X̃ , if rank(X̃) = 1, we can find x̃ such that M −1(X̃) = x̃ ⊗ · · · ⊗ x̃︸ ︷︷ ︸
2d

, according

to Theorem 2.4. In this case, x̃ is the optimal solution to Problem (6). The original
tensor PCA problem, or the Z-eigenvalue problem (6), is thus solved to optimality.

Interestingly, we found from our extensive numerical tests that the optimal solution
to Problem (15) is a rank-one matrix almost all the time. In the following, we will
show this interesting phenomenon by some concrete examples. The first example is
taken from [31].

Example 3.1 We consider a super-symmetric tensor F ∈ S34
defined by

F1111 = 0.2883, F1112 = −0.0031, F1113 = 0.1973,F1122 = −0.2485, F1123 = −0.2939,

F1133 = 0.3847, F1222 = 0.2972, F1223 = 0.1862,F1233 = 0.0919, F1333 = −0.3619,

F2222 = 0.1241, F2223 = −0.3420, F2233 = 0.2127,F2333 = 0.2727, F3333 = −0.3054.

We want to compute the largest Z-eigenvalue of F .

Since the size of this tensor is small, we used CVX [23] to solve Problem (15)
with F = M (F) and ρ = 10. It turned out that CVX produced a rank-one solution
X̃ = aa� ∈ R32×32

, where

a = (0.4451, 0.1649,−0.4688, 0.1649, 0.0611,−0.1737,−0.4688,

−0.1737, 0.4938)�.

Thus we get the matrix correspondence of a by reshaping a into a square matrix A:

A = [a(1 : 3), a(4 : 6), a(7 : 9)] =
⎡

⎣
0.4451 0.1649 −0.4688
0.1649 0.0611 −0.1737

−0.4688 −0.1737 0.4938

⎤

⎦ .

123

434 B. Jiang et al.

It is easy to check that A is a rank-one matrix with the nonzero eigenvalue being 1.
This further confirms our theory on the rank-one equivalence, i.e., Theorem 2.4. The
eigenvector that corresponds to the nonzero eigenvalue of A is given by

x̃ = (−0.6671,−0.2472, 0.7027)�,

which is the optimal solution to Problem (6).
The next example is from a real MRI application studied by Ghosh et al. [19].

In [19], Ghosh et al. studied a fiber detection problem in diffusion MRI, where they
tried to extract the geometric characteristics from an antipodally symmetric spherical
function (ASSF), which can be described equivalently in the homogeneous polynomial
basis constrained to the sphere. They showed that it is possible to extract the maxima
and minima of an ASSF by computing the stationary points of a problem in the form
of (6) with d = 2 and n = 4.

Example 3.2 The objective function F(x, x, x, x) in this example is given by

0.74694x4
1 − 0.435103x3

1 x2 + 0.454945x2
1 x2

2 + 0.0657818x1x3
2 + x4

2

+ 0.37089x3
1 x3 − 0.29883x2

1 x2x3 − 0.795157x1x2
2 x3 + 0.139751x3

2 x3 + 1.24733x2
1 x2

3

+ 0.714359x1x2x2
3 + 0.316264x2

2 x2
3 − 0.397391x1x3

3 − 0.405544x2x3
3 + 0.794869x4

3 .

Again, we used CVX to solve problem (15) with F = M (F) and ρ = 10, and a
rank-one solution was found with X̃ = aa�, where

a = (0.0001, 0.0116, 0.0004, 0.0116, 0.9984, 0.0382, 0.0004, 0.0382, 0.0015)�.

By reshaping vector a, we get the following expression of matrix A:

A = [a(1 : 3), a(4 : 6), a(7 : 9)] =
⎡

⎣
0.0001 0.0116 0.0004
0.0116 0.9984 0.0382
0.0004 0.0382 0.0015

⎤

⎦ .

It is easy to check that A is a rank-one matrix with 1 being the nonzero eigen-
value. The eigenvector corresponding to the nonzero eigenvalue of A is given by

x̃ = (0.0116, 0.9992, 0.0382)�,

which is also the optimal solution to the original problem (6).
Henceforth we conduct some numerical tests on randomly generated examples.

We constructed 4-th order tensor T with its components drawn randomly from i.i.d.
standard normal distribution. The super-symmetric tensorF in the tensor PCA problem
was obtained by symmetrizing T . All the numerical experiments in this paper were
conducted on an Intel Core i5-2520M 2.5 GHz computer with 4 GB of RAM, and all
the default settings of Matlab 2012b and CVX 1.22 were used for all the tests. We
chose d = 2 and the dimension of F in the tensor PCA problem from n = 3 to n = 9.

123

Tensor principal component analysis 435

Table 1 Frequency of nuclear
norm penalty problem (15)
having a rank-one solution

n rank-1 CPU

3 100 0.21

4 100 0.56

5 100 1.31

6 100 6.16

7 100 47.84

8 100 166.61

9 100 703.82

We chose ρ = 10. For each n, we tested 100 random instances. In Table 1, we report
the number of instances that produced rank-one solutions. We also report the average
CPU time (in seconds) using CVX to solve the problems.

Table 1 shows that for these randomly created tensor PCA problems, the nuclear
norm penalty problem (15) always gives a rank-one solution, and thus always solves
the original problem (6) to optimality.

4 Semidefinite programming relaxation

In this section, we study another convex relaxation for Problem (12). Note that the
constraint

X ∈ Snd×nd
, rank(X) = 1

in (12) actually implies that X is positive semidefinite. To get a tractable convex
problem, we drop the rank constraint and impose a semidefinite constraint to (12) and
consider the following SDP relaxation:

(SDR) max Tr (F X)

s.t. Tr (X) = 1,

M −1(X) ∈ Sn2d
, X � 0.

(16)

Remark that replacing the rank-one constraint by SDP constraint is by now a common
and standard practice; see, e.g., [1,21,55]. The next theorem shows that the SDP
relaxation (16) is actually closely related to the nuclear norm penalty problem (15).

Theorem 4.1 Let X∗
SDR and X∗

P N P (ρ) be the optimal solutions of problems (16)
and (15) respectively. Suppose Eig+(X) and Eig−(X) are the summations of non-
negative eigenvalues and negative eigenvalues of X respectively, i.e.,

Eig+(X) :=
∑

i : λi (X)≥0

λi (X), Eig−(X) :=
∑

i : λi (X)<0

λi (X).

It holds that

2(ρ − v)
∣∣Eig−(X∗

P N P (ρ))
∣∣ ≤ v − F0,

123

436 B. Jiang et al.

where F0 := max1≤i≤n Fi2d and v is the optimal value of the following optimization
problem

max Tr (F X)

s.t. ‖X‖∗ = 1,

X ∈ Snd×nd
.

(17)

As a result, limρ→+∞ Tr (F X∗
P N P (ρ)) = Tr (F X∗

SDR).

Proof Observe that M (ei ⊗ · · · ⊗ ei
︸ ︷︷ ︸

2d

), where ei is the i-th unit vector, is a feasible

solution for problem (15) with objective value Fi2d − ρ for all 1 ≤ i ≤ n. Moreover,
by denoting r(ρ) = ∣∣Eig−(X∗

P N P (ρ))
∣∣, we have

‖X∗
P N P (ρ)‖∗ = Eig+(X∗

P N P (ρ)) + ∣∣Eig−(X∗
P N P (ρ))

∣∣

= (Eig+(X∗
P N P (ρ)) + Eig−(X∗

P N P (ρ))
)+ 2

∣∣Eig−(X∗
P N P (ρ))

∣∣

= 1 + 2r(ρ).

Since X∗
P N P (ρ) is optimal to problem (15), we have

Tr (F X∗
P N P (ρ)) − ρ (1 + 2r(ρ)) ≥ max

1≤i≤n
Fi2d − ρ ≥ F0 − ρ. (18)

Moreover, since X∗
P N P (ρ)/‖X∗

P N P (ρ)‖∗ is feasible to problem (17), we have

Tr (F X∗
P N P (ρ)) ≤ ‖X∗

P N P (ρ)‖∗ v = (1 + 2r(ρ)) v. (19)

Combining (19) and (18) yields

2(ρ − v) r(ρ) ≤ v − F0. (20)

Notice that ‖X‖∗ = 1 implies ‖X‖∞ is bounded for all feasible X ∈ Snd×nd
, where

‖X‖∞ denotes the largest entry of X in magnitude. Thus the set {X∗
P N P (ρ) | ρ > 0} is

bounded. Let X∗
P N P be one cluster point of sequence {X∗

P N P (ρ) | ρ > 0}. By taking
the limit ρ → +∞ in (20), we have r(ρ) → 0 and thus X∗

P N P � 0. Consequently,
X∗

P N P is a feasible solution to problem (16) and Tr (F X∗
SDR) ≥ Tr (F X∗

P N P). On
the other hand, it is easy to check that for any 0 < ρ1 < ρ2,

Tr (F X∗
SDR) ≤ Tr (F X∗

P N P (ρ2)) ≤ Tr (F X∗
P N P (ρ1)),

which implies Tr (F X∗
SDR)≤Tr (F X∗

P N P). Therefore, limρ→+∞ Tr (F X∗
P N P (ρ)) =

Tr (F X∗
P N P) = Tr (F X∗

SDR). �
Theorem 4.1 shows that when ρ goes to infinity in (15), the optimal solution of the

nuclear norm penalty problem (15) converges to the optimal solution of the SDP relax-
ation (16). As we have shown in Table 1 that the nuclear norm penalty problem (15)
returns rank-one solutions for all the randomly created tensor PCA problems that we

123

Tensor principal component analysis 437

Table 2 Frequency of SDP
relaxation (16) having a
rank-one solution

n rank-1 CPU

3 100 0.14

4 100 0.25

5 100 0.55

6 100 1.16

7 100 2.37

8 100 4.82

9 100 8.89

tested, it is expected that the SDP relaxation (16) will also be likely to give rank-one
solutions. In fact, this is indeed the case as shown through the numerical results in
Table 2. As in Table 1, we tested 100 random instances for each n. In Table 2, we
report the number of instances that produced rank-one solutions for d = 2. We also
report the average CPU time (in seconds) using CVX to solve the problems. As we see
from Table 2, for these randomly created tensor PCA problems, the SDP relaxation
(16) always gives a rank-one solution, and thus always solves the original problem (6)
to optimality.

5 Alternating direction method of multipliers

The computational times reported in Tables 1 and 2 suggest that it can be time-
consuming to solve the convex problems (15) and (16) when the problem size is large
[especially for the nuclear norm penalty problem (15)]. In this section, we propose
an alternating direction method of multipliers (ADMM) for solving (15) and (16) that
fully takes advantage of the structures. ADMM is closely related to some operator-
splitting methods, known as Douglas–Rachford and Peaceman–Rachford methods,
that were proposed in 1950s for solving variational problems arising from PDEs
(see [13,47]). These operator-splitting methods were extensively studied later in the
literature for finding the zeros of the sum of monotone operators and for solving convex
optimization problems (see [14–16,20,40]). The ADMM we will study in this sec-
tion was shown to be equivalent to the Douglas–Rachford operator-splitting method
applied to convex optimization problem (see [17]). ADMM was revisited recently as
it was found to be very efficient for many sparse and low-rank optimization prob-
lems arising from the recent emergence of compressed sensing [59], compressive
imaging [22,57], robust PCA [53], sparse inverse covariance selection [52,60], sparse
PCA [42] and SDP [58] etc. For a more complete discussion and list of references
on ADMM, we refer to the recent survey paper by Boyd et al. [3] and the references
therein.

Generally speaking, ADMM solves the following convex optimization problem,

minx∈Rn ,y∈R p f (x) + g(y)

s.t. Ax + By = b
x ∈ C, y ∈ D,

(21)

123

438 B. Jiang et al.

where f and g are convex functions, A ∈ Rm×n, B ∈ Rm×p, b ∈ Rm, C and D
are some simple convex sets. A typical iteration of ADMM for solving (21) can be
described as follows:

⎧
⎨

⎩

xk+1 := argminx∈C Lμ(x, yk; λk)

yk+1 := argminy∈D Lμ(xk+1, y; λk)

λk+1 := λk − (Axk+1 + Byk+1 − b)/μ,

(22)

where the augmented Lagrangian function Lμ(x, y; λ) is defined as

Lμ(x, y; λ) := f (x) + g(y) − 〈λ, Ax + By − b〉 + 1

2μ
‖Ax + By − b‖2,

with λ being the Lagrange multiplier and μ > 0 a penalty parameter. The following
theorem gives the global convergence of (22) for solving (21), and this has been well
studied in the literature (see, e.g., [14,16]).

Theorem 5.1 Assume both A and B are of full column rank, the sequence {(xk , yk, λk)}
generated by (22) globally converges to a pair of primal and dual optimal solutions
(x∗, y∗) and λ∗ of (21) from any starting point.

Because both the nuclear norm penalty problem (15) and SDP relaxation (16) can
be rewritten in the form of (21), we can apply ADMM to solve them.

5.1 ADMM for nuclear norm penalty problem (15)

Note that the nuclear norm penalty problem (15) can be rewritten equivalently as

min −Tr (FY) + ρ‖Y‖∗
s.t. X − Y = 0,

X ∈ C,

(23)

where C := {X ∈ Snd×nd | Tr (X) = 1, M −1(X) ∈ Sn2d }. A typical iteration of
ADMM for solving (23) can be described as
⎧
⎪⎨

⎪⎩

Xk+1 := argminX∈C −Tr (FY k) + ρ‖Y k‖∗ − 〈�k, X − Y k〉 + 1
2μ

‖X − Y k‖2
F

Y k+1 := argminY −Tr (FY) + ρ‖Y‖∗ − 〈�k, Xk+1 − Y 〉 + 1
2μ

‖Xk+1 − Y‖2
F

�k+1 := �k − (Xk+1 − Y k+1)/μ,

(24)

where � is the Lagrange multiplier associated with the equality constraint in (23) and
μ > 0 is a penalty parameter. Following Theorem 5.1, we know that the sequence
{(Xk, Y k,�k)} generated by (24) globally converges to a pair of primal and dual
optimal solutions (X∗, Y ∗) and �∗ of (23) from any starting point.

Next we show that the two subproblems in (24) are both easy to solve. The first
subproblem in (24) can be equivalently written as

Xk+1 := argmin
X∈C

1

2
‖X − (Y k + μ�k)‖2

F , (25)

123

Tensor principal component analysis 439

i.e., the solution of the first subproblem in (24) corresponds to the projection of
Y k + μ�k onto convex set C. We will elaborate how to compute this projection in
Sect. 5.2.

The second subproblem in (24) can be reduced to:

Y k+1 := argmin
Y

μρ‖Y‖∗ + 1

2
‖Y − (Xk+1 − μ(�k − F))‖2

F . (26)

This problem is known to have a closed-form solution that is given by the following
so-called matrix shrinkage operation (see, e.g., [43]):

Y k+1 := UDiag (max {σ − μρ, 0}) V �,

where UDiag (σ)V � is the singular value decomposition of matrix Xk+1−μ(�k −F).

5.2 The projection

In this subsection, we study how to solve (25), i.e., how to compute the following
projection for any given matrix Z ∈ Snd×nd

:

min ‖X − Z‖2
F

s.t. Tr (X) = 1,

M −1(X) ∈ Sn2d
.

(27)

For the sake of discussion, in the following we consider the equivalent tensor repre-
sentation of (27):

min ‖X − Z‖2
F

s.t.
∑

k∈K(n,d)

d!∏n
j=1 k j !X12k1 22k2 ...n2kn = 1,

X ∈ Sn2d
,

(28)

where X = M −1(X),Z = M −1(Z), and the equality constraint is due to (11). Now
we denote index set

I =
{
(i1 . . . i2d) ∈ π(12k1 . . . n2kn)

∣∣ k = (k1, . . . , kn) ∈ K(n, d)
}

.

Then the first-order optimality conditions of Problem (28) imply

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2

(

|π(i1 . . . i2d)| Xi1...i2d − ∑

j1... j2d ∈π(i1...i2d)

Z j1... j2d

)

=0, if (i1 . . . i2d) 	∈I,

2

⎛

⎝ (2d)!∏n
j=1 (2k j)!X12k1 ...n2kn − ∑

j1... j2d ∈π(12k1 ...n2kn)

Z j1... j2d

⎞

⎠− λ
(d)!∏n

j=1 (k j)! = 0, otherwise.

123

440 B. Jiang et al.

Denote Ẑ to be the super-symmetric counterpart of tensor Z , i.e.,

Ẑi1...i2d =
∑

j1... j2d∈π(i1...i2d)

Z j1... j2d

|π(i1 . . . i2d)|

and α(k, d) :=
(

(d)!∏n
j=1 (k j)!

)
/

(
(2d)!∏n

j=1 (2k j)!

)
. Then due to the first-order optimality

conditions for (28), the optimal solution X ∗ of Problem (28) satisfies

{
X ∗

i1...i2d
= Ẑi1...i2d , if (i1 . . . i2d) 	∈ I,

X ∗
12k1 ...n2kn

= λ
2 α(k, d) + Ẑ12k1 ...n2kn , otherwise .

(29)

Multiplying the second equality of (29) by (d)!∏n
j=1 (k j)! and summing the resulting equal-

ity over all k = (k1, . . . , kn) yield

∑

k∈K(n,d)

(d)!
∏n

j=1 (k j)!X
∗
12k1 ...n2kn = λ

2

∑

k∈K(n,d)

(d)!
∏n

j=1 (k j)!α(k, d)

+
∑

k∈K(n,d)

(d)!
∏n

j=1 (k j)! Ẑ12k1 ...n2kn .

It remains to determine λ. Noticing that X ∗ is a feasible solution for problem (28), we
have

∑
k∈K(n,d)

(d)!∏n
j=1 (k j)!X

∗
12k1 ...n2kn

= 1. As a result,

λ = 2

⎛

⎝1 −
∑

k∈K(n,d)

(d)!
∏n

j=1 (k j)! Ẑ12k1 ...n2kn

⎞

⎠
/ ∑

k∈K(n,d)

(d)!
∏n

j=1 (k j)!α(k, d),

and thus we derived X ∗ and X∗ = M (X ∗) as the desired optimal solution for (27).

5.3 ADMM for SDP relaxation (16)

Note that the SDP relaxation problem (16) can be formulated as

min −Tr (FY)

s.t. Tr (X) = 1, M −1(X) ∈ Sn2d

X − Y = 0, Y � 0.

(30)

A typical iteration of ADMM for solving (30) is

⎧
⎪⎨

⎪⎩

Xk+1 := argminX∈C −Tr (FY k) − 〈�k, X − Y k〉 + 1
2μ

‖X − Y k‖2
F

Y k+1 := argminY�0 −Tr (FY) − 〈�k, Xk+1 − Y 〉 + 1
2μ

‖Xk+1 − Y‖2
F

�k+1 := �k − (Xk+1 − Y k+1)/μ,

(31)

123

Tensor principal component analysis 441

where μ > 0 is a penalty parameter. Following Theorem 5.1, we know that the
sequence {(Xk, Y k,�k)} generated by (31) globally converges to a pair of primal and
dual optimal solutions (X∗, Y ∗) and �∗ of (30) from any starting point.

It is easy to check that the two subproblems in (31) are both relatively easy to solve.
Specifically, the solution of the first subproblem in (31) corresponds to the projection
of Y k + μ�k onto C. The solution of the second problem in (31) corresponds to the
projection of Xk+1 + μF − μ�k onto the positive semidefinite cone Y � 0, i.e.,

Y k+1 := UDiag (max{σ, 0}) U�,

where UDiag (σ)U� is the eigenvalue decomposition of matrix Xk+1 + μF − μ�k .

6 Numerical results

6.1 The ADMM for convex programs (15) and (16)

In this subsection, we report the results on using ADMM (24) to solve the nuclear
norm penalty problem (15) and ADMM (31) to solve the SDP relaxation (16). For
the nuclear norm penalty problem (15), we choose ρ = 10. For ADMM, we choose
μ = 0.5 and we terminate the algorithms whenever

‖Xk − Xk−1‖F

‖Xk−1‖F
+ ‖Xk − Y k‖F ≤ 10−6.

We shall compare ADMM and CVX for solving (15) and (16), using the default
solver of CVX—SeDuMi version 1.21. We report in Table 3 the results on randomly
created problems with d = 2 and n = 6, 7, 8, 9. For each pair of d and n, we
test ten randomly created examples. In Table 3, we use ‘Inst.’ to denote the num-
ber of the instance and use ‘Iter.’ to denote the number of iterations for ADMM
to solve a random instance. We use ‘Sol.Dif.’ to denote the relative difference of
the solutions obtained by ADMM and CVX, i.e., Sol.Dif. = ‖X ADM M −XCV X ‖F

max{1,‖XCV X ‖F } , and

we use ‘Val.Dif.’ to denote the relative difference of the objective values obtained
by ADMM and CVX, i.e., Val.Dif. = |vADM M −vCV X |

max{1,|vCV X |} . We use TADM M and TCV X

to denote the CPU times (in seconds) of ADMM and CVX, respectively. From
Table 3 we see that, ADMM produced comparable solutions compared to CVX;
however, ADMM were much faster than CVX, i.e., the interior point solver, espe-
cially for nuclear norm penalty problem (15). Note that when n = 10, ADMM
was about 500 times faster than CVX for solving (15), and was about 8 times faster
for solving (16).

In Table 4, we report the results on larger problems, i.e., n = 14, 16, 18, 20. Because
it becomes time consuming to use CVX to solve the nuclear norm penalty prob-
lem (15) (our numerical tests showed that it took more than three hours to solve
one instance of (15) for n = 11 using CVX), we compare the solution quality and
objective value of the solution generated by ADMM for solving (15) with solution
generated by CVX for solving SDP problem (16). From Table 4 we see that, the

123

442 B. Jiang et al.

Table 3 Comparison of CVX and ADMM for small-scale problems

Inst. # Nuclear norm penalty (15) SDP (16)

Sol.Dif. Val.Dif. TADMM Iter. TCVX Sol.Dif. Val.Dif. TADMM Iter. TCVX

Dimension n = 6
1 1.77e−04 3.28e−06 1.16 464 18.50 1.01e−04 2.83e−06 0.50 367 1.98

2 1.25e−04 3.94e−07 0.71 453 13.43 4.99e−05 3.78e−06 0.38 355 1.68

3 1.56e−04 2.36e−07 0.89 478 12.20 4.59e−05 3.51e−06 0.39 370 1.33

4 3.90e−05 6.91e−07 0.59 475 14.10 8.00e−05 9.57e−07 0.44 364 2.63

5 1.49e−04 3.69e−06 0.58 459 15.08 4.74e−05 3.18e−06 0.60 355 1.98

6 8.46e−05 3.92e−06 1.07 463 13.23 1.02e−04 2.68e−07 0.76 362 1.46

7 5.59e−05 4.12e−06 0.86 465 12.62 4.91e−05 4.75e−06 0.37 344 1.54

8 5.24e−05 3.95e−06 0.61 462 14.07 1.63e−05 2.97e−06 0.55 368 1.90

9 9.30e−05 3.05e−06 0.85 471 11.41 1.05e−04 2.90e−06 0.39 380 1.39

10 1.36e−04 3.89e−08 0.56 465 11.04 3.38e−05 3.11e−06 0.30 319 1.69

Dimension n = 7

1 1.59e−04 4.62e−07 1.23 600 65.73 1.14e−04 4.09e−06 0.82 453 2.60

2 9.11e−05 3.93e−07 1.02 593 68.65 8.24e−05 2.87e−09 0.79 474 2.51

3 2.61e−04 4.19e−06 1.07 609 66.08 6.83e−05 4.01e−06 0.78 480 2.53

4 1.12e−04 4.44e−06 1.07 590 65.21 6.02e−05 3.88e−06 0.86 480 2.50

5 1.22e−04 4.34e−06 1.10 614 57.40 9.15e−05 4.15e−07 0.81 487 2.57

6 1.44e−04 8.81e−08 1.06 599 60.89 4.51e−05 4.46e−06 0.77 466 2.44

7 1.93e−04 3.81e−06 1.08 590 66.09 1.19e−04 2.82e−07 0.62 389 2.54

8 1.53e−04 4.59e−06 1.09 594 59.98 2.76e−05 3.73e−06 0.75 463 2.61

9 1.41e−04 4.29e−08 1.06 616 78.20 3.29e−04 4.21e−06 0.69 443 2.57

10 1.51e−04 3.94e−06 0.83 501 75.58 1.23e−04 3.52e−06 0.78 454 2.63

Dimension n = 8
1 2.86e−04 5.10e−06 2.15 728 342.25 1.12e−04 4.52e−06 1.59 592 5.34

2 2.76e−04 3.95e−07 2.07 739 303.75 8.17e−05 4.78e−06 1.81 591 5.02

3 9.29e−05 4.78e−06 7.74 2,864 333.46 2.57e−05 5.00e−06 7.20 2,746 4.75

4 3.21e−04 4.65e−06 2.01 715 337.57 9.86e−05 4.01e−06 1.47 512 5.00

5 1.26e−04 7.05e−07 1.92 746 335.63 7.41e−05 4.36e−06 1.68 607 4.92

6 1.32e−04 1.63e−07 2.12 745 336.35 7.80e−05 5.00e−06 1.44 550 5.29

7 3.49e−04 7.19e−07 2.00 739 309.76 6.33e−05 4.55e−07 1.54 582 5.03

8 4.55e−05 4.72e−07 2.13 744 316.74 3.59e−05 7.27e−07 1.59 600 5.02

9 5.60e−04 4.99e−06 2.06 759 336.10 4.19e−05 4.97e−06 1.46 569 6.00

10 2.65e−04 1.36e−07 2.46 746 382.20 8.00e−05 4.14e−06 1.86 606 5.98

Dimension n = 9

1 1.41e−04 1.35e−07 4.35 910 1,370.60 7.29e−05 4.78e−06 3.26 715 12.61

2 1.83e−04 5.77e−06 3.60 872 1,405.46 1.77e−04 4.72e−06 2.86 732 9.63

3 4.00e−04 4.85e−06 3.24 807 1,709.30 3.12e−04 8.28e−07 2.73 702 9.99

4 3.34e−04 1.36e−07 3.06 747 1,445.57 6.13e−05 3.19e−07 2.91 707 10.19

5 2.63e−04 5.43e−06 3.62 904 1,307.60 2.34e−05 4.68e−06 2.82 729 10.20

6 8.01e−05 9.01e−08 3.78 906 1,353.45 9.33e−05 5.37e−06 2.49 597 9.31

7 2.30e−04 5.16e−06 3.77 900 1,434.71 8.14e−05 5.68e−06 2.75 676 9.52

8 3.27e−04 5.45e−06 3.71 908 1,314.14 1.98e−05 5.10e−06 2.91 730 9.98

9 9.53e−05 5.56e−06 3.66 888 1,575.16 1.69e−04 4.82e−06 2.85 714 9.64

10 2.73e−04 2.16e−07 4.50 1,136 1,628.80 2.73e−05 4.98e−06 3.39 882 9.90

123

Tensor principal component analysis 443

Table 4 Comparison of CVX and ADMM for large-scale problems

Inst. # NNP SDP

Sol.Dif.DS Val.Dif.DS TADMM Iter. Sol.Dif. Val.Dif. TADMM Iter. TCVX

Dimension n = 14

1 4.61e−04 8.41e−06 36.85 1,913 4.61e−04 8.35e−06 37.00 1,621 158.21

2 4.02e−04 2.94e−07 39.52 1,897 4.02e−04 7.93e−06 39.65 1,639 167.89

3 1.62e−04 2.68e−08 37.21 1,880 1.62e−04 8.23e−06 34.36 1,408 213.04

4 4.92e−04 7.74e−06 45.15 1,918 4.92e−04 4.70e−07 59.84 1,662 202.95

5 8.56e−04 8.15e−06 34.93 1,674 8.56e−04 8.14e−06 38.15 1,588 194.01

6 3.99e−05 4.05e−07 34.41 1,852 4.08e−05 7.48e−06 32.28 1,411 186.99

7 7.98e−05 7.90e−06 38.11 1,839 7.94e−05 3.76e−08 40.81 1,555 191.76

8 1.50e−04 8.10e−06 38.29 1,990 1.50e−04 8.30e−06 34.10 1,543 164.13

9 1.35e−04 8.54e−06 34.58 1,874 1.35e−04 2.62e−07 30.33 1,387 171.77

10 5.50e−04 8.59e−06 37.28 1,825 5.50e−04 7.71e−06 35.85 1,567 169.51

Dimension n = 16

1 5.22e−05 9.00e−06 125.24 2,359 5.21e−05 9.45e−06 102.85 2,035 582.19

2 1.02e−04 3.37e−07 92.37 2,244 1.02e−04 9.11e−06 63.02 1,427 606.70

3 2.02e−05 5.97e−07 96.21 2,474 2.01e−05 4.40e−07 83.92 1,910 566.92

4 8.53e−05 9.27e−06 90.83 2,323 8.54e−05 9.59e−06 93.44 2,048 560.54

5 2.14e−04 9.19e−06 86.22 2,359 2.14e−04 2.19e−07 80.06 1,961 523.15

6 3.12e−04 9.29e−06 88.82 2,304 3.12e−04 8.58e−06 88.31 2,042 498.55

7 9.69e−05 9.12e−06 88.29 2,431 9.65e−05 2.86e−07 88.05 2,067 520.82

8 3.34e−04 1.00e−05 85.32 2,271 3.34e−04 8.53e−06 85.04 2,043 515.85

9 2.61e−04 9.01e−06 93.13 2,475 2.61e−04 9.12e−06 88.85 2,034 505.71

10 2.06e−04 3.45e−07 103.92 2,813 2.05e−04 1.01e−05 94.41 2,269 527.50

Dimension n = 18

1 2.70e−04 1.01e−05 172.97 2,733 2.70e−04 1.87e−07 168.91 2,323 1,737.94

2 8.17e−04 1.11e−05 184.70 2,970 8.17e−04 1.99e−07 168.83 2,365 1,549.10

3 1.07e−04 3.22e−08 183.72 2,920 1.07e−04 1.14e−05 169.64 2,456 1,640.04

4 5.16e−04 1.01e−05 182.40 2,958 5.16e−04 1.02e−05 174.72 2,442 1,636.86

5 9.48e−04 1.03e−05 184.69 3,039 9.48e−04 1.04e−05 170.68 2,441 1,543.41

6 1.67e−04 1.03e−05 171.71 2,845 1.67e−04 9.96e−06 182.37 2,553 1,633.55

7 4.87e−05 3.77e−07 180.64 2,883 4.87e−05 2.79e−07 187.56 2,545 1,638.38

8 8.28e−05 1.07e−05 178.35 2,904 8.28e−05 1.04e−05 181.57 2,542 1,641.56

9 2.45e−04 1.06e−07 174.82 2,902 2.45e−04 9.97e−06 152.58 2,127 1,735.26

10 9.58e−05 7.61e−07 191.06 2,872 9.66e−05 1.11e−05 183.29 2,480 1,642.33

Dimension n = 20

1 1.23e−03 6.98e−08 414.62 3,415 1.23e−03 4.21e−08 388.36 2,810 6,116.02

2 7.93e−04 1.24e−05 401.54 3,383 7.93e−04 1.14e−05 347.27 2,689 6,182.56

3 3.11e−04 1.21e−05 426.91 3,498 3.11e−04 1.21e−05 399.92 2,845 6,808.99

4 7.16e−05 6.99e−07 397.69 3,312 7.40e−05 1.18e−05 366.82 2,758 7,701.91

5 6.24e−04 1.19e−05 435.05 3,564 6.25e−04 1.20e−05 419.23 2,903 7,419.43

6 1.09e−04 1.20e−05 393.25 3,376 1.09e−04 1.15e−05 397.43 2,869 8,622.19

7 4.58e−04 3.21e−05 429.38 3,536 4.58e−04 3.20e−05 422.72 2,938 9,211.37

8 6.15e−04 1.11e−05 273.33 2,330 6.15e−04 7.14e−07 205.49 1,511 5,166.66

9 4.92e−04 1.16e−05 344.99 3,017 4.92e−04 2.32e−07 259.18 1,896 5,063.00

10 3.45e−004 2.56e−004 395.63 3,357 1.14e−005 4.36e−007 359.13 2,713 6,559.39

123

444 B. Jiang et al.

nuclear norm penalty problem (15) and the SDP problem (16) indeed produce the
same solution as they are both close enough to the solution produced by CVX. We
also see that using ADMM to solve (15) and (16) were much faster than using CVX to
solve (16).

6.2 Comparison with SOS and MBI

Based on the results of the above tests, we may conclude that it is mostly efficient to
solve the SDP relaxation by ADMM. In this subsection, we compare this approach
with two competing methods: one is based on the Sum of Squares (SOS) approach
(Lasserre [35,36] and Parrilo [45,46]), and the other one is the Maximum Block
Improvement (MBI) method proposed by Chen et al. [10].

Theoretically speaking, the SOS can solve any general polynomial problems to any
given accuracy, but it requires to solve a sequence of (possibly large) semidefinite
programs, which limits the applicability of the method to solve large size problems.
Henrion et al. [26] developed a specialized Matlab toolbox known as GloptiPoly 3
based on SOS approach, which will be used in our tests. The MBI is tailored for
multi-block optimization problem, and the polynomial optimization can be treated as
multi-block problems, to which MBI can be applied. As we mentioned before, MBI
aims to finding a stationary point, which may or may not be globally optimal.

In Table 5 we report the results using ADMM to solve SDP relaxation of PCA
problem and compare them with the results of applying the SOS method as well as
the MBI method for the same problem. When using the MBI, as suggested in [10],
we actually work on an equivalent problem of (6): max‖x‖=1 F(x, . . . , x︸ ︷︷ ︸

2d

)+6(x�x)d ,

where the equivalence is due to the constraint ‖x‖ = 1. This transformation can help
the MBI avoid getting trapped in a local minimum.

We use ‘Val.’ to denote the objective value of the solution, ‘Status’ to denote optimal
status of GloptiPoly 3, i.e., Status = 1 means GloptiPoly 3 successfully identified
the optimality of current solution, ‘Sol.R.’ to denote the solution rank returned by
SDP relaxation and thanks to the previous discussion ‘Sol.R.=1’ means the current
solution is already optimal. From Table 5, we see that the MBI is the fastest among all
the methods but usually cannot guarantee global optimality, while GloptiPoly 3 is very
time consuming but can globally solve most instances. Note that when n = 20, our
ADMM was about 30 times faster than GloptiPoly 3. Moreover, for some instances
GloptiPoly 3 cannot identify the optimality even though the current solution is actually
already optimal (see instance 9 with n = 16 and instance 3 with n = 18).

6.3 Comparison with Z-eigenvalue methods

Qi et al. [49] proposed two heuristic methods to find the maximum Z-eigenvalue of the
third order super-symmetric tensors. We will show later in Sect. 8.2 that our method
can solve tri-linear (not necessary super-symmetric) tensor PCA problems. Thus in
this subsection, we report the results of using ADMM to solve SDP relaxation of the
third order tensor PCA problems and compare them with the results of applying the

123

Tensor principal component analysis 445

Table 5 Comparison of SDP relaxation by ADMM with GloptiPoly 3 and MBI

Inst. # MBI GLP SDP by ADMM

Val. Time Val. Time Status Val. Time Sol.R.

Dimension n = 14

1 5.17 0.23 5.28 143.14 1 5.28 14.29 1

2 5.04 0.22 5.65 109.65 1 5.65 32.64 1

3 5.08 0.13 5.80 119.48 1 5.80 34.30 1

4 5.94 0.16 5.95 100.39 1 5.95 30.64 1

5 4.74 0.48 5.88 122.19 1 5.88 33.13 1

6 5.68 0.54 6.38 122.44 1 6.38 33.30 1

7 4.61 0.12 5.91 104.68 1 5.91 30.17 1

8 5.68 0.23 6.31 141.52 1 6.31 41.73 1

9 5.93 0.22 6.40 102.73 1 6.40 37.32 1

10 5.09 0.36 6.03 114.35 1 6.03 35.68 1

Dimension n = 16

1 6.52 0.45 6.74 420.10 1 6.74 91.80 1

2 5.51 1.21 5.93 428.10 1 5.93 83.90 1

3 5.02 0.30 6.44 393.16 1 6.44 90.16 1

4 5.60 0.32 6.48 424.07 1 6.48 90.67 1

5 5.78 0.36 6.53 431.44 1 6.53 95.48 1

6 5.23 0.26 6.42 437.58 1 6.42 98.19 1

7 6.11 0.24 6.23 406.16 1 6.23 89.21 1

8 5.92 0.51 6.39 416.58 1 6.39 89.75 1

9 5.47 0.28 6.00 457.29 0 6.00 77.56 1

10 4.95 0.35 6.32 367.26 1 6.32 80.38 1

Dimension n = 18

1 6.16 0.57 7.38 1,558.00 1 7.38 199.44 1

2 5.94 0.25 6.65 1,388.45 1 6.65 190.52 1

3 7.42 0.22 7.42 1,500.05 0 7.42 193.27 1

4 5.85 0.94 7.21 1,481.34 1 7.21 195.02 1

5 7.35 0.43 7.35 1,596.00 1 7.35 117.44 1

6 5.91 1.05 6.79 1,300.82 1 6.78 193.36 1

7 5.80 0.85 6.84 1,433.50 1 6.84 182.58 1

8 5.72 0.54 6.96 1,648.63 1 6.96 231.88 1

9 6.15 0.17 7.07 1,453.82 1 7.07 212.50 1

10 6.01 1.11 6.89 1,432.06 1 6.89 199.26 1

Dimension n = 20

1 5.95 0.39 7.40 8,981.97 1 7.40 429.64 1

2 6.13 2.14 6.93 9,339.06 1 6.93 355.25 1

3 6.37 2.49 6.68 9,629.04 1 6.68 418.11 1

4 6.23 1.14 6.87 10,148.21 1 6.87 404.18 1

5 6.62 1.66 7.72 11,079.94 1 7.72 326.44 1

6 6.81 1.26 7.46 10,609.65 1 7.46 415.69 1

7 7.80 1.02 7.80 9,723.37 1 7.80 430.76 1

8 6.03 0.95 7.02 12,755.35 1 7.02 416.00 1

9 7.80 0.61 7.80 12,353.47 1 7.80 430.45 1

10 7.47 0.89 7.47 11,629.12 1 7.47 375.52 1

123

446 B. Jiang et al.

Table 6 Comparison with
Z-eigenvalue methods with data
generated by normal distribution

n SDP Z1 Z2

4 999 979 995

5 999 964 993

6 1,000 947 998

7 1,000 941 997

8 1,000 938 999

9 1,000 911 997

10 1,000 906 1,000

Table 7 Comparison with
Z-eigenvalue methods with data
generated by uninform
distribution

n SDP Z1 Z2

4 999 986 995

5 1,000 966 997

6 999 945 997

7 999 934 1,000

8 1,000 902 999

9 1,000 910 999

10 1,000 898 1,000

two Z-eigenvalue methods, which are referred as “Z1” and “Z2” in Tables 6 and 7. In
Table 6 we generate 1,000 tensors by normal distribution, while in Table 7, the 1,000
instances are generated by uniform distribution in the interval (−1, 1). We report, in
Tables 6 and 7, the number of instances that are globally solved by each algorithm.
According to these experiments, we can see that the performance of our approach is
better than that of Z1 and is comparable to Z2.

7 What if the solution is not rank-one?

Although our numerical results strongly indicate that problems (15) and (16) are
very likely to admit rank-one solutions (100 % for the randomly created problems we
tested), it is in principle possible that the solution X∗ = ∑r

i=1 ai (ai)� is not of rank
one, i.e., r > 1. In this situation, we can introduce a small perturbation to the original
tensor F and apply the proposed algorithms. If the newly obtained solution is rank-one,
we can say that this solution is a good approximation of the “true” solution. Another
way to proceed is to apply a post-processing procedure, which will be discussed below,
on X∗ to obtain a rank-one solution.

We denote X ∗ = M −1(X∗), and X ∗ = ∑r
i=1 Ai ⊗ Ai , where V (Ai) = ai .

Basically, we want to find the projection of X ∗ onto the rank-one tensor set {X ∈
S2d

∣
∣ rank(X) = 1, ‖X‖F = 1}:

min
X∈S2d ,‖X ‖F =1,rank(X)=1

‖X ∗ − X‖F ,

123

Tensor principal component analysis 447

which is equivalent to

max
‖x1‖=···=‖x2d‖=1

X ∗ (x1, x2, . . . , x2d
)

. (32)

This is a problem in the form of (6), but the difference is that X ∗ has a further structure
which plays an important role in the later discussion.

Proposition 7.1 For a tensor F =∑r
i=1 Ai ⊗ Ai ∈ Sn2d

, it holds that

F
(

x1, x1, x2, x2, . . . , xd , xd
)

≥ 0, ∀ x1, x2, . . . , xd . (33)

Proof Since F is super-symmetric, for any x1, x2, . . . , xd ,

F
(

x1, x1, x2, x2, . . . , xd , xd
)

= F
(

x1, x2, . . . , xd , x1, x2, . . . , xd
)

=
r∑

i=1

Ai ⊗ Ai
(

x1, x2, . . . , xd , x1, x2, . . . , xd
)

=
r∑

i=1

(
Ai
(

x1, x2, . . . , xd
))2 ≥ 0.

�
Inequality (33) is called co-quadratic positive semidefinite. In [9], it was proved

that if F is co-quadratic positive semidefinite then

F
(

x1, x2, . . . , x2d
)

≤ max
1≤i≤2d

⎧
⎨

⎩
F(xi , . . . , xi
︸ ︷︷ ︸

2d

)

⎫
⎬

⎭
.

As a result,

max‖x‖=1
F(x, . . . , x︸ ︷︷ ︸

2d

) = max
‖x1‖=···=‖x2d‖=1

F
(

x1, x2, . . . , x2d
)

. (34)

For a solution X∗, which is either optimal to (15) or (16), by Proposition 7.1 we know
that X ∗ = M −1(X∗) is co-quadratic positive semidefinite. So the problem (32) on
finding the rank-one projection of X ∗ is equivalent to

max
‖x1‖=···=‖x2d‖=1

X ∗ (x1, x2, . . . , x2d
)

due to equality (34). Essentially, we can resort to a multi-linear problem, which is easier
than (6) and can be solved, for instance, by the MBI method proposed in [10]. Note
that if we apply the MBI method directly to (6), relation (34) may not be guaranteed:
the MBI may get trapped in a local minimum instead of local maximum.

123

448 B. Jiang et al.

8 Extensions

In this section, we show how to extend the results in the previous sections for super-
symmetric tensor PCA problem to tensors that are not super-symmetric.

8.1 Bi-quadratic tensor PCA

A closely related problem to the tensor PCA problem (6) is the following bi-quadratic
PCA problem:

max G(x, y, x, y)

s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1,

(35)

where G is a partial-symmetric tensor defined as follows.

Definition 8.1 A 4-th order tensor G ∈ R(nm)2
is called partial-symmetric if Gi jk� =

Gk ji� = Gi�k j ,∀i, j, k, �. The space of all 4-th order partial-symmetric tensor is

denoted by
−→−→
S (mn)2

.

Various approximation algorithms for bi-quadratic PCA problem have been studied
in [39]. Problem (35) arises from the strong ellipticity condition problem in solid
mechanics and the entanglement problem in quantum physics; see [39] for more appli-
cations of bi-quadratic PCA problem.

We can unfold a partial-symmetric tensor G in a similar manner as in Definition 1.3.

Definition 8.2 For G ∈
−→−→
S (nm)2

, we define its square matrix rearrangement, denoted
by M (G) ∈ Rmn×mn , as the following:

M (G)k� := Gi1i2i3i4 ,

1≤ i1, i3 ≤n, 1 ≤ i2, i4 ≤ m where k =(i1 − 1)m + i2, and � = (i3 − 1)m + i4.

It is easy to check that for given vectors a ∈ Rn and b ∈ Rm, a⊗b⊗a⊗b ∈
−→−→
S (nm)2

.
Moreover, we say a partial-symmetric tensor G is of rank one if G = λ a ⊗ b ⊗ a ⊗ b
for some vectors a, b and scalar λ.

Since Tr (xy�yx�) = x�xy�y = 1, by letting X = x ⊗ y ⊗ x ⊗ y, problem (35)
is equivalent to

max G • X
s.t.

∑

i, j
Xi j i j = 1,

X ∈
−→−→
S (nm)2

, rank(X) = 1.

In the following, we group variables x and y together and treat x ⊗ y as a long
vector by stacking its columns. Denote X = M (X) and G = M (G). Then, we end
up with a matrix version of the above tensor problem:

123

Tensor principal component analysis 449

max Tr (G X)

s.t. Tr (X) = 1, X � 0,

M −1(X) ∈
−→−→
S (nm)2

, rank(X) = 1.

(36)

As it turns out, the rank-one equivalence theorem can be extended to the partial
symmetric tensors. Therefore the above two problems are actually equivalent.

Theorem 8.1 Suppose A is an n × m dimensional matrix. Then the following two
statements are equivalent:

(i) rank(A) = 1;

(ii) A ⊗ A ∈
−→−→
S (nm)2

.

In other words, suppose F ∈
−→−→
S (nm)2

, then rank(F) = 1 ⇐⇒ rank(F) = 1, where
F = M (F).

Proof (i) �⇒ (ii) is obvious. Suppose rank(A) = 1, say A = ab� for some a ∈ Rn

and b ∈ Rm . Then G = A ⊗ A = a ⊗ b ⊗ a ⊗ b is partial-symmetric.

Conversely, suppose G = A ⊗ A ∈
−→−→
S (nm)2

. Then

Ai1 j1 Ai2 j2 = Gi1 j1i2 j2 = Gi2 j1i1 j2 = Ai2 j1 Ai1 j2 , ∀1 ≤ i1, i2 ≤ n, 1 ≤ j1, j2 ≤ m,

implies Ai1 j1 Ai2 j2 − Ai2 j1 Ai1 j2 = 0. That is, every 2 × 2 minor of matrix A is zero.
Thus A is of rank one. �

By using the similar argument in Theorem 4.1, we can show that the following SDP
relaxation of (36) has a good chance to get a low-rank solution.

max Tr (G X)

s.t. Tr (X) = 1, X � 0,

M −1(X) ∈
−→−→
S (nm)2

.

(37)

Therefore, we used the same ADMM to solve (37). The frequency of returning rank-
one solutions for randomly created examples is reported in Table 8. As in Tables 1

Table 8 Frequency of
problem (37) having rank-one
solution

Dim (n, m) rank-1 CPU

(4,4) 100 0.12

(4,6) 100 0.25

(6,6) 100 0.76

(6,8) 100 1.35

(8,8) 98 2.30

(8,10) 100 3.60

(10,10) 96 5.77

123

450 B. Jiang et al.

and 2, we tested 100 random instances for each (n, m) and report the number of
instances that produced rank-one solutions. We also report the average CPU time (in
seconds) using ADMM to solve the problems. Table 8 shows that the SDP relaxation
(37) can give a rank-one solution for most randomly created instances, and thus is
likely to solve the original problem (35) to optimality.

8.2 Tri-linear tensor PCA

Now let us consider a highly non-symmetric case: tri-linear PCA.

max F(x, y, z)
s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1,

z ∈ R�, ‖z‖ = 1,

(38)

where F ∈ Rn×m×� is any 3-rd order tensor and n ≤ m ≤ �.
Recently, tri-linear PCA problem was found to be very useful in many practical

problems. For instance, Wang and Ahuja [56] proposed a tensor rank-one decomposi-
tion algorithm to compress image sequence, where they essentially solve a sequence
of tri-linear PCA problems.

By the Cauchy–Schwarz inequality, the problem (38) is equivalent to

max ‖F(x, y, ·)‖
s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1,

⇐⇒
max ‖F(x, y, ·)‖2

s.t. x ∈ Rn, ‖x‖ = 1,

y ∈ Rm, ‖y‖ = 1.

We further notice

‖F(x, y, ·)‖2 = F(x, y, ·)�F(x, y, ·) =
n∑

i,u=1

m∑

j,v=1

�∑

k=1

Fi jk Fuvk xi y j xu yv

=
n∑

i,u=1

m∑

j,v=1

�∑

k=1

Fivk Fu jk xi yvxu y j .

Therefore,

‖F(x, y, ·)‖2 =
∑n

i,u=1
∑m

j,v=1

(∑�
k=1 Fi jk Fuvk +∑�

k=1 Fivk Fu jk

)

2
xi y j xu yv,

and we can find a partial symmetric tensor G with

Gi juv =
�∑

k=1

(
Fi jk Fuvk + Fivk Fu jk

)
/2, ∀ i, j, u, v,

123

Tensor principal component analysis 451

such that ‖F(x, y, ·)‖2 = G (x, y, x, y). Hence, the tri-linear problem (38) can be
equivalently formulated in the form of problem (35), which can be solved by the
method proposed in the previous subsection.

8.3 Quadri-linear tensor PCA

In this subsection, we consider the following quadri-linear PCA problem:

max F(x1, x2, x3, x4)

s.t. xi ∈ Rni , ‖xi‖ = 1, ∀ i = 1, 2, 3, 4,
(39)

where F ∈ Rn1×···×n4 with n1 ≤ n3 ≤ n2 ≤ n4. Let us first convert the quadri-linear

function F(x1, x2, x3, x4) to a bi-quadratic function T
(

x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)
with T

being partial symmetric. To this end, we first construct G with

Gi1,i2,n+i3,n+i4 =
{

F j1 j2 j3 j4 , if 1 ≤ ik ≤ nk

0, otherwise.

Consequently, we have F(x1, x2, x3, x4) = G
(

x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)
. Then we can fur-

ther partial-symmetrize G and the desired tensor T is as follows,

Ti1i2i3i4 = 1

4

(
Gi1i2i3i4 + Gi1i4i3i2 + Gi3i2i1i4 + Gi3i4i1i2

) ∀ i1, i2, i3, i4,

satisfying T
(

x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)
= G

(
x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)
. Therefore,

problem (39) is now reformulated as a bi-quadratic problem:

max T
(

x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

s.t. xi ∈ Rni , ‖xi‖ = 1, ∀ i = 1, . . . , 4.

(40)

Moreover, we can show that the above problem is actually a bi-quadratic problem
in the form of (35).

Proposition 8.2 Suppose T is a fourth order partial symmetric tensor. Then prob-
lem (40) is equivalent to

max T
(

x1

x3 ,
x2

x4 ,
x1

x3 ,
x2

x4

)

s.t.
√‖x1‖2 + ‖x3‖2 = √

2,√‖x2‖2 + ‖x4‖2 = √
2.

(41)

123

452 B. Jiang et al.

Proof It is obvious that (41) is a relaxation of (40). To further prove that the relax-

ation (41) is tight, let (x̂1, x̂2, x̂3, x̂4)be optimal to (41). ThenT
(

x̂1

x̂3 ,
x̂2

x̂4 ,
x̂1

x̂3 ,
x̂2

x̂4

)
=

F(x̂1, x̂2, x̂3, x̂4) > 0, and so x̂ i 	= 0 for all i . Moreover, notice that

√
‖x̂1‖‖x̂3‖ ≤

√
‖x̂1‖2 + ‖x̂3‖2

2
= 1 and

√
‖x̂2‖‖x̂4‖ ≤

√
‖x̂2‖2 + ‖x̂4‖2

2
= 1.

Thus

T
(

x̂1

‖x̂1‖
x̂3

‖x̂3‖
,

x̂2

‖x̂2‖
x̂4

‖x̂4‖
,

x̂1

‖x̂1‖
x̂3

‖x̂3‖
,

x̂2

‖x̂2‖
x̂4

‖x̂4‖

)

= F
(

x̂1

‖x̂1‖ ,
x̂2

‖x̂2‖ ,
x̂3

‖x̂3‖ ,
x̂4

‖x̂4‖
)

= F(x̂1, x̂2, x̂3, x̂4)

‖x̂1‖‖x̂2‖‖x̂3‖‖x̂4‖
≥ F(x̂1, x̂2, x̂3, x̂4)

= T
(

x̂1

x̂3 ,
x̂2

x̂4 ,
x̂1

x̂3 ,
x̂2

x̂4

)
.

To summarize, we have found a feasible solution
(

x̂1

‖x̂1‖ , x̂2

‖x̂2‖ , x̂3

‖x̂3‖ , x̂4

‖x̂4‖
)

of (40), which is optimal to its relaxation (41) and thus this relaxation is tight. �

By letting y =
(

x1

x3

)
, z =

(
x2

x4

)
and using some scaling technique, we can see

that problem (41) share the same solution with

max T (y, z, y, z)
s.t. ‖y‖ = 1,

‖z‖ = 1,

which was studied in Subsect. 8.1.

8.4 Even order multi-linear PCA

The above discussion can be extended to the even order multi-linear PCA problem:

max F(x1, x2, . . . , x2d)

s.t. xi ∈ Rni , ‖xi‖ = 1, ∀ i = 1, 2, . . . , 2d,
(42)

where F ∈ R
n1×···×n2d

. An immediate relaxation of (42) is the following

max F(x1, x2, . . . , x2d)

s.t. xi ∈ Rni ,

√
2d∑

i
‖xi‖2 = √

2d.
(43)

123

Tensor principal component analysis 453

The following result shows that these two problems are actually equivalent.

Proposition 8.3 It holds that problem (42) is equivalent to (43).

Proof It suffices to show that relaxation (43) is tight. To this end, suppose (x̂1, . . . , x̂2d)

is an optimal solution of (43). Then F(x̂1, x̂2, . . . , x̂2d) > 0 and so x̂ i 	= 0 for
i = 1, . . . , 2d. We also notice

√√√
√√
(

2d∏

i=1

‖x̂i‖2

) 1
2d

≤
√√√√

2d∑

i

‖x̂ i‖2/2d = 1.

Consequently,
∏2d

i=1 ‖x̂i‖ ≤ 1 and

F
(

x̂1

‖x̂1‖ ,
x̂2

‖x̂2‖ , . . . ,
x̂2d

‖x̂2d‖
)

= F(x̂1, x̂2, . . . , x̂2d)
∏2d

i=1 ‖x̂i‖
≥ F(x̂1, x̂2, . . . , x̂2d).

Therefore, we have found a feasible solution
(

x̂1

‖x̂1‖ , x̂2

‖x̂2‖ , . . . , x̂2d

‖x̂2d‖
)

of (42), which

is optimal to (43). This implies that the relaxation is tight. �
We now focus on (43). Based on F , we can construct a larger tensor G as follows

Gi1...i2d =
{

F j1... j2d , if 1 +∑k−1
�=1 n� ≤ ik ≤∑k

�=1 n� and jk = ik −∑k−1
�=1 n�

0, otherwise.

By this construction, we have

F(x1, x2, . . . , x2d) = G(y, . . . , y
︸ ︷︷ ︸

2d

)

with y = ((x1)�, (x2)�, . . . , (x2d)�)�. We can further symmetrize G and find a
super-symmetric T such that

Ti1...i2d := 1

|π(i1 . . . i2d)|
∑

j1... j2d∈π(i1...i2d)

G j1... j2d , ∀ 1 ≤ i1, . . . , i2d ≤
2d∑

�=1

n�,

and

T (y, . . . , y
︸ ︷︷ ︸

2d

) = G(y, . . . , y
︸ ︷︷ ︸

2d

) = F(x1, x2, . . . , x2d).

Therefore, problem (43) is equivalent to

max T (y, . . . , y
︸ ︷︷ ︸

2d

)

s.t. ‖y‖ = √
2d,

123

454 B. Jiang et al.

which is further equivalent to

max T (y, . . . , y
︸ ︷︷ ︸

2d

)

s.t. ‖y‖ = 1.

Thus the methods we developed for solving (6) can be applied to solve (42).

8.5 Odd degree tensor PCA

The last problem studied in this section is the following odd degree tensor PCA prob-
lem:

max F(x, . . . , x︸ ︷︷ ︸
2d+1

)

s.t. ‖x‖ = 1,

(44)

where F is a (2d + 1)-th order super-symmetric tensor. As the degree is odd,

max‖x‖=1
F(x, . . . , x︸ ︷︷ ︸

2d+1

) = max‖x‖=1
|F(x, . . . , x︸ ︷︷ ︸

2d+1

)| = max
‖xi ‖2

2=1, i=1,...,2d+1
|F(x1, . . . , x2d+1)|,

where the last identity is due to Corollary 4.2 in [10]. The above formula combined
with the fact that

max‖x‖=1
|F(x, . . . , x︸ ︷︷ ︸

2d+1

)| ≤ max‖x‖=1, ‖y‖=1
|F(x, . . . , x︸ ︷︷ ︸

2d

, y)|

≤ max
‖xi ‖=1, i=1,...,2d+1

|F(x1, . . . , x2d+1)|

implies

max‖x‖=1
F(x, . . . , x︸ ︷︷ ︸

2d+1

) = max‖x‖=1, ‖y‖=1
|F(x, . . . , x︸ ︷︷ ︸

2d

, y)| = max‖x‖=1, ‖y‖=1
F(x, . . . , x︸ ︷︷ ︸

2d

, y).

By using the similar technique as in Sect. 8.2, problem (44) is equivalent to an even
order tensor PCA problem:

max G(x, . . . , x︸ ︷︷ ︸
4d

)

s.t. ‖x‖ = 1,

where G is super-symmetric with

Gi1,...,i4d = 1

|π(i1 . . . i4d)|
n∑

k=1

⎛

⎝
∑

j1... j4d∈π(i1...i4d)

Fi1...i2d k Fi2d+1...i4d k

⎞

⎠ .

123

Tensor principal component analysis 455

9 Conclusions

Tensor PCA is an emerging area of research with many important applications in
image processing, data analysis, statistical learning, and bio-informatics. In this paper
we introduced a new matricization scheme, which ensures that if the tensor is of
rank one (in the sense of CP rank), then its matricization is a rank-one matrix, and
vice versa. This enables one to apply the methodology in compressive sensing and
matrix rank minimization, in particular the L1-norm and nuclear norm optimization
techniques. As it turns out, this approach is very likely to yield a rank-one solution.
This effectively finds the leading PC by convex optimization, at least for randomly
generated problem instances. The resulting convex optimization model is still large in
general. We proposed to use the first-order method such as the ADMM method, which
turns out to be very effective in this case. Multiple PCs can be computed sequentially
via the so-called “deflation” technique.

Acknowledgments We would like to thank the co-editor and the anonymous referees for their helpful
comments, and Fei Wang and Yiju Wang for sharing with us their codes of Z-eigenvalue methods.

References

1. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial
optimization. SIAM J. Optim. 5, 13–51 (1993)

2. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation
distribution function. In: Metaxas, D., Axel, L., Fichtinger, G., Szekeley, G. (eds.) Medical Image
Computing and Computer-Assisted Intervention, MICCAI (2008)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

4. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9,
717–772 (2009)

5. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

6. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans.
Inf. Theory 56(5), 2053–2080 (2009)

7. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way
generalization of “eckart-young” decomposition. Psychometrika 35(3), 283–319 (1970)

8. Chandrasekaran, V., Recht, P.A., Parrilo, B., Willsky, A.S.: The convex geometry of linear inverse
problems. Found. Comput. Math. 12(6), 805–849 (2012)

9. Chen, B.: Optimization with Block Variables: Theory and Applications. PhD thesis, The Chinese
Univesrity of Hong Kong (2012)

10. Chen, B., He, S., Li, Z., Zhang, S.: Maximum block improvement and polynomial optimization. SIAM
J. Optim. 22, 87–107 (2012)

11. Comon, P., Golub, G., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM
J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)

12. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
13. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3

space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)
14. Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Optimization.

PhD thesis, Massachusetts Institute of Technology (1989)
15. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algo-

rithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
16. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to the Numerical Solution

of Boundary-Value Problems. North-Holland, Amsterdam (1983)

123

456 B. Jiang et al.

17. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowin-
ski, R. (eds.) Augmented Lagrangian Methods: Applications to the Solution of Boundary Value Prob-
lems. North-Holland, Amsterdam (1983)

18. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex opti-
mization. Inverse Probl. 27(2), 025010 (2011)

19. Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based
approach to extract the maxima of an antipodally symmetric spherical function and its application to
extract fiber directions from the orientation distribution function in diffusion MRI. In: Computational
Diffusion MRI Workshop (CDMRI08), New York (2008)

20. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear
Mechanics. SIAM, Philadelphia, PA (1989)

21. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. J. ACM (JACM) 42(6), 1115–1145 (1995)

22. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging
Sci. 2, 323–343 (2009)

23. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 1.21. http://
cvxr.com/cvx, May 2010

24. Harshman, R.A.: Foundations of the parafac procedure: models and conditions for an “explanatory”
multimodal factor analysis. UCLA Working Papers in Phonetics, vol 16, pp. 1–84. http://publish.uwo.
ca/~harshman/wppfac0.pdf (1970)

25. Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)
26. Henrion, D., Lasserre, J.B., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite pro-

gramming. Optim. Methods Softw. 24, 761–779 (2009)
27. Hilling, J.J., Sudbery, A.: The geometric measure of multipartite entanglement and the singular values

of a hypermatrix. J. Math. Phys. 51, 072102 (2010)
28. Hitchcock, F.L.: The Expression of a Tensor or a Polyadic as a Sum of Products. J. Math. Phys. 6,

164–189 (1927)
29. Hitchcock, F.L.: Multiple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys.

7(1), 39–79 (1927)
30. Hu, S., Qi, L.: Algebraic connectivity of an even uniform hypergraph. J. Comb. Optim. 24(4), 564–579

(2012)
31. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors.

SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)
32. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
33. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal.

32, 1095–1124 (2011)
34. Kruskal, J.B.: Rank, Decomposition, and Uniqueness for 3-way and n-way arrays. In: Multiway Data

Analysis, pp. 7–18 (1989)
35. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim.

11, 796–817 (2001)
36. Lasserre, J.B.: Polynomials nonnegative on a grid and discrete representations. Trans. Am. Math. Soc.

354, 631–649 (2001)
37. Li, W., Ng, M.: Existence and Uniqueness of Stationary Probability Vector of a Transition Probability

Tensor. Technical Report. Department of Mathematics, The Hong Kong Baptist University (2011)
38. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Computational

Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International Workshop on, pp. 129–
132. IEEE (2005)

39. Ling, C., Nie, J., Qi, L., Ye, Y.: Biquadratic optimization over unit spheres and semidefinite program-
ming relaxations. SIAM J. Optim. 20, 1286–1310 (2009)

40. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer.
Anal. 16, 964–979 (1979)

41. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data.
In: The Twelfth IEEE International Conference on Computer Vision (2009)

42. Ma, S.: Alternating direction method of multipliers for sparse principal component analysis. J. Oper.
Res. Soc. China 1(2), 253–274 (2013)

43. Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimiza-
tion. Math. Program. Ser. A 128, 321–353 (2011)

123

http://cvxr.com/cvx
http://cvxr.com/cvx
http://publish.uwo.ca/~harshman/wppfac0.pdf
http://publish.uwo.ca/~harshman/wppfac0.pdf

Tensor principal component analysis 457

44. Mackey, L.: Deflation methods for sparse PCA. In: Advances in Neural Information Processing Systems
(NIPS) (2008)

45. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness
and Optimization. PhD thesis, California Institute of Technology (2000)

46. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. Ser.
B 96, 293–320 (2003)

47. Peaceman, D.H., Rachford, H.H.: The numerical solution of parabolic elliptic differential equations.
SIAM J. Appl. Math. 3, 28–41 (1955)

48. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
49. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math.

Program. Ser. A 118, 301–316 (2009)
50. Qi, L., Yu, G., Wu, E.X.: Higher order positive semi-definite diffusion tensor imaging. SIAM J. Imaging

Sci. 3(3), 416–433 (2010)
51. Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)
52. Scheinberg, K., Ma, S., Goldfarb, D.: Sparse inverse covariance selection via alternating linearization

methods. In: NIPS (2010)
53. Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy

observations. SIAM J. Optim. 21, 57–81 (2011)
54. Tomioka, R., Suzuki, T., Hayashi, K., Kashima, H.: Statistical performance of convex tensor decom-

position. In: Advances in Neural Information Processing Systems (NIPS), p. 137 (2011)
55. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
56. Wang, H., Ahuja, N.: Compact representation of multidimensional data using tensor rank-one decom-

position. In: Proceedings of the Pattern Recognition, 17th International Conference on ICPR (2004)
57. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation

image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)
58. Wen, Z., Goldfarb, D., Yin, W.: Alternating direction augmented Lagrangian methods for semidefinite

programming. Math. Program. Comput. 2, 203–230 (2010)
59. Yang, J., Zhang, Y.: Alternating direction algorithms for �1 problems in compressive sensing. SIAM

J. Sci. Comput. 33(1), 250–278 (2011)
60. Yuan, X.: Alternating direction methods for sparse covariance selection. J. Sci. Comput. 51, 261–273

(2012)

123

	Tensor principal component analysis via convex optimization
	Abstract
	1 Introduction
	2 Equivalence under the rank-one hypothesis
	3 A nuclear norm penalty approach
	4 Semidefinite programming relaxation
	5 Alternating direction method of multipliers
	5.1 ADMM for nuclear norm penalty problem (15)
	5.2 The projection
	5.3 ADMM for SDP relaxation (16)

	6 Numerical results
	6.1 The ADMM for convex programs (15) and (16)
	6.2 Comparison with SOS and MBI
	6.3 Comparison with Z-eigenvalue methods

	7 What if the solution is not rank-one?
	8 Extensions
	8.1 Bi-quadratic tensor PCA
	8.2 Tri-linear tensor PCA
	8.3 Quadri-linear tensor PCA
	8.4 Even order multi-linear PCA
	8.5 Odd degree tensor PCA

	9 Conclusions
	Acknowledgments
	References

