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Abstract In this paper, we study the performance of static solutions for two-stage
adjustable robust linear optimization problems with uncertain constraint and objective
coefficients and give a tight characterization of the adaptivity gap. Computing an
optimal adjustable robust optimization problem is often intractable since it requires to
compute a solution for all possible realizations of uncertain parameters (Feige et al.
in Lect Notes Comput Sci 4513:439–453, 2007). On the other hand, a static solution
is a single (here and now) solution that is feasible for all possible realizations of the
uncertain parameters and can be computed efficiently for most dynamic optimization
problems. We show that for a fairly general class of uncertainty sets, a static solution
is optimal for the two-stage adjustable robust linear packing problems. This is highly
surprising in view of the usual perception about the conservativeness of static solutions.
Furthermore, when a static solution is not optimal for the adjustable robust problem,
we give a tight approximation bound on the performance of the static solution that is
related to a measure of non-convexity of a transformation of the uncertainty set. We
also show that our bound is at least as good (and in many case significantly better)
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as the bound given by the symmetry of the uncertainty set (Bertsimas and Goyal in
Math Methods Oper Res 77(3):323–343, 2013; Bertsimas et al. in Math Oper Res
36(1):24–54, 2011).
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1 Introduction

In most real world problems, problem parameters are uncertain at the optimization
or decision-making phase and stochastic and robust optimization are two different
paradigms to address this parameter uncertainty. In a stochastic optimization approach,
we model uncertainty using probability distributions and optimize the expected value
of the objective. Stochastic optimization was introduced by Dantzig [13] and Beale [1],
and since then has been extensively studied in literature. We refer the reader to several
textbooks including Infanger [19], Kall and Wallace [20], Prekopa [23], Shapiro [24],
Shapiro et al. [25] and the references therein for a comprehensive review of stochastic
optimization. While the stochastic optimization approach has its merits, it is by and
large computationally intractable even when the constraint and objective functions
are linear. Shapiro and Nemirovski [26] give hardness results for two-stage and multi-
stage stochastic optimization problems where they show that the multi-stage stochastic
optimization problem is computationally intractable even if approximate solutions
are desired. Dyer and Stougie [14] show that a multi-stage stochastic optimization
problem where the distribution of uncertain parameters in any stage also depends on
the decisions in past stages is PSPACE-hard. Even for the stochastic problems that
can be solved efficiently, it is difficult to estimate the probability distributions of the
uncertain parameters from historical data.

Robust optimization is another paradigm for dynamic optimization that has been
recently considered (see Ben-Tal and Nemirovski [3–5], El Ghaoui and Lebret [15],
Bertsimas and Sim [10,11], Goldfarb and Iyengar [17]). In a robust optimization
approach, the uncertain parameters are assumed to belong to some uncertainty set.
The goal is to construct a single (static) solution that is feasible for all possible real-
izations of the uncertain parameters from the set and optimizes the worst case objective
value. We point the reader to the survey by Bertsimas et al. [6] and the book by Ben-Tal
et al. [2] and the references therein for an extensive review of the literature in robust
optimization. This approach is significantly more tractable and for a large class of
problems, the robust problem is equivalent to the corresponding deterministic prob-
lem in computational complexity [2,6]. However, the robust optimization approach
is perceived to be highly conservative as it optimizes over the worst-case realization
of uncertain parameters, and the solution is not adjustable to the uncertain parameter
realization. However, computing an optimal adjustable robust solution is computa-
tionally intractable even for two-stage linear optimization problems. In fact, Feige et
al. [16] show that it is hard to approximate a two-stage fractional set covering problem
within a factor of Ω(log n).

In this paper, we study the performance of static solutions for two-stage adjustable
robust linear optimization problems under uncertain constraint and objective coeffi-
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cients. Approximation bounds for the performance of static solutions in two-stage and
multi-stage linear optimization problems have been studied in the literature. Bertsi-
mas and Goyal [7] show that if the uncertainty set is perfectly symmetric (such as a
hypercube or an ellipsoid), a static solution gives a 2-approximation for the adjustable
robust linear covering problems under right hand side uncertainty. Bertsimas et al. [9]
generalize the result for general convex compact uncertainty sets and show that the
performance of the static solution depends on a measure of symmetry of the uncer-
tainty set, introduced in Minkowski [21]. They also extend the approximation bounds
to multi-stage problems. However, the models in [7] and [9] consider linear optimiza-
tion problems with only covering constraints of the form aT x ≥ b, a ∈ R

n and b ≥ 0.
Moreover, the uncertainty appears only in the right hand side of the constraints. There-
fore, they do not capture many important applications including revenue management
and resource allocation problems where we require packing constraints with uncertain
constraint coefficients. For instance, in a typical revenue management problem, the
goal is to allocate scarce resources to a demand with uncertain resource requirements
such that the total revenue is maximized. The constraints in the problem corresponding
to resource capacities are packing constraints and the uncertainty related to resource
requirements appears in the constraint coefficients.

1.1 Our models

We consider the following two-stage adjustable robust linear optimization problem
ΠAR under uncertain constraint coefficients.

zAR = max
x

cT x + min
B∈U

max
y(B)

dT y(B)

Ax + B y(B) ≤ h
(1.1)

x ∈ R
n1

y(B) ∈ R
n2+ ,

where A ∈ R
m×n1, c ∈ R

n1, d ∈ R
n2+ and h ∈ R

m . The second-stage constraint
matrix B ∈ R

m×n2+ is uncertain and belongs to a full dimensional compact convex
uncertainty set U ⊆ R

m×n2+ in the non-negative orthant. The decision variables x
represent the first-stage decisions before the constraint matrix B is revealed, and
y(B) represent the second-stage or recourse decision variables after observing the
uncertain constraint matrix B ∈ U . Therefore, the (adjustable) second-stage decisions
depend on the uncertainty realization. We can assume without loss of generality that
U is down-monotone (see Appendix 1).

We would like to emphasize that the second-stage objective coefficients d , constraint
coefficients B, and the second-stage decision variables y(B) are all non-negative.
Also, the uncertainty set U of second-stage constraint matrices is contained in the
non-negative orthant. Therefore, the model is slightly restrictive and does not allow
us to handle arbitrary two-stage linear programs. For instance, we can not handle
covering constraints involving second-stage variables, or lower bounds on second-
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stage decision variables. Note that there is no restrictions on the first-stage constraint
coefficients A or objective coefficients c. Also, the first-stage decision variables x and
right-hand-side h are not necessarily non-negative.

Our model is still fairly general and captures important applications including
resource allocation and revenue management problems. For instance, consider a
resource allocation problem where we have fixed capacity of resources and demand
arrives online with uncertain resource requirements. We can model this problem in our
framework as follows: the second-stage constraint coefficients Bi j refer to the uncertain
requirement of resource i for demand j ; the right-hand-side h denotes the resource
capacities and the first and second-stage decision variables represent the allocation
decisions. Note that the irrevocable first-stage allocation decisions are made before
we observe the second-stage demand and resource requirements and the goal is to
maximize the worst-case profit assuming that an adversary chooses the second-stage
resource requirements from the given uncertainty set.

Computing an optimal adjustable robust solution is intractable in general [16].
Therefore, we consider a static robust optimization approach to approximate (1.1). The
corresponding static robust optimization problem ΠRob can be formulated as follows.

zRob = max
x

cT x + dT y

Ax + B y ≤ h, ∀B ∈ U
(1.2)

x ∈ R
n1

y ∈ R
n2+ .

Note that the second-stage solution y is static and does not depend on the realization of
uncertain B. Both first-stage and second-stage decisions x and y are selected before
the second-stage uncertain constraint matrix is known and (x, y) is feasible for all
B ∈ U . An optimal static robust solution to (1.2) can be computed efficiently if U
has an efficient separation oracle. In fact, Ben-Tal and Nemirovski [4] give compact
formulations for solving (1.2) for polyhedral and conic uncertainty sets. Our goal is
to compare the performance of an optimal static robust solution with respect to the
optimal adjustable robust solution of (1.1).

The above models have been considered in the literature. Ben-Tal and Nemirovski
[4] consider the adjustable robust problem and show that a static solution is optimal
if the uncertainty set U is constraint-wise where each constraint i = 1, . . . , m can be
selected independently from a compact convex set Ui , i.e., U is a Cartesian product of
Ui , i = 1, . . . , m. However, the authors do not discuss performance of static solutions
if the constraint-wise condition on U is not satisfied. Bertsimas and Goyal [8] consider
a general multi-stage convex optimization problem under uncertain constraints and
objective functions and show that the performance of the static solution is related to
the symmetry of the uncertainty set U . However, the symmetry bound in [8] can be
quite loose in many instances. For example, consider the case when U is constraint-
wise where each Ui , i = 1, . . . , m is a simplex, i.e.,

Ui = {x ∈ R
n+ | eT x ≤ 1}.
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The symmetry of U is O(1/n) [9] and the results in [8] imply an approximation bound
of Ω(n). While from Ben-Tal and Nemirovski [4], we know that a static solution is
optimal.

1.2 Our contributions

In this paper, we analyze the performance of static solutions as compared to an optimal
fully-adjustable solution for two-stage adjustable robust linear optimization problems
under constraint and objective uncertainty. Our main contributions are summarized
below.

1.2.1 Optimality of static solution

We give a tight characterization of the conditions under which a static solution is
optimal for the two-stage adjustable robust problem. The optimality of static solutions
depends on the geometric properties of a transformation of the uncertainty set. In
particular, we show that the static solution is optimal if the transformation of U is
convex. If U is a constraint-wise set, we show that the transformation of U is convex.
Ben-Tal and Nemirovski [4] show that for such U , a static solution is optimal for
adjustable robust problem. Therefore, our result extends the result in [4] for the case
where U is contained in the non-negative orthant. We also present other families of
uncertainty sets for which the transformation is convex.

This result is quite surprising as the worst-case choice of B ∈ U usually depends
on the first-stage solution even if U is constraint-wise unless U is a hypercube. For
the case of hypercube, each uncertain element can be selected independently from an
interval and in that case, the worst-case B is independent of the first-stage decision.
However, a constraint-wise set is a Cartesian product of general convex sets. We show
that if the transformation of U is convex, there is an optimal recourse solution for the
worst-case choice of B ∈ U that is feasible for all B ∈ U . Furthermore, we show that
our result can also be interpreted as the following min-max theorem.

min
B∈U

max
y≥0

{dT y | B y ≤ h} = max
y≥0

min
B∈U

{dT y | B y ≤ h}.

The inner minimization on the max-min problem implies that the solution y must
be feasible for all B ∈ U and therefore, is a static robust solution. We would like
to note that the above min-max result does not follow from the general saddle-point
theorem [12].

1.2.2 Approximation bounds for the static solution

We give a tight approximation bound on the performance of the optimal static solution
for the adjustable robust problem when the transformation of U is not convex and the
static solution is not optimal. We relate the performance of static solutions to a natural
measure of non-convexity of the transformation of U . We also present a family of
uncertainty sets and instances where we show that the approximation bound is tight,
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i.e., the ratio of the optimal objective value of the adjustable robust problem (1.1) and
the optimal objective value of the robust problem (1.2) is exactly equal to the bound
given by the measure of non-convexity.

We also compare our approximation bounds with the bound in Bertsimas and
Goyal [8] where the authors relate the performance of the static solutions with the
symmetry of the uncertainty set. We show that our bound is stronger than the sym-
metry bound in [8]. In particular, for any instance, we can show that our bound is at
least as good as the symmetry bound, and in fact in many cases, significantly better.
For instance, consider the following uncertainty set

U =
⎧
⎨

⎩
B ∈ R

m×n+

∣
∣
∣
∣
∣
∣

∑

i, j

Bi j ≤ 1

⎫
⎬

⎭
.

In this case, sym(U) = 1/mn [9] and the symmetry bound is Ω(mn). However, we
show that a static solution is optimal for the adjustable robust problem (our bound is
equal to one).

1.2.3 Models with both constraint and objective uncertainty

We extend our result to two-stage models where both constraint and objective coeffi-
cients are uncertain. In particular, we consider a two-stage model where the uncertainty
in the second-stage constraint matrix B is independent of the uncertainty in the second-
stage objective d. Therefore, (B, d) belong to a convex compact uncertainty set U that
is a Cartesian product of the uncertainty set of constraint matrices U B and uncertainty
set of second-stage objective Ud .

We show that our results for the model with only constraint coefficient uncertainty
can also be extended to this case of both constraint and objective uncertainty. In
particular, we show that a static solution is optimal if the transformation of U B is
convex. Furthermore, if the transformation is not convex, then the approximation
bound on the performance of the optimal static solution is related to the measure of
non-convexity of the transformation of U B . Surprisingly, the approximation bound or
the optimality of a static solution does not depend on the uncertainty set of objectives
Ud . If the transformation of U B is convex, a static solution is optimal for all convex
compact uncertainty sets Ud ⊆ R

n2+ . We also present a family of examples to show
that our bound is tight for this case as well.

We also consider a two-stage adjustable robust model where in addition to the
second-stage constraint matrix B and objective d, the right hand side h of the con-
straints is also uncertain and

(B, h, d) ∈ U = U B,h × Ud ,

where U is a convex compact set that is a Cartesian product of the uncertainty set for
(B, h) and the uncertainty set for d. For this case, we give a sufficient condition for
the optimality of a static solution that is related to the convexity of the transformation
of uncertainty set U B,h . Note again that the optimality of a static solution does not
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depend on the uncertainty set of objectives Ud . However, our approximation bounds
do not extend for this case if the transformation of U B,h is not convex.

1.2.4 Outline

The rest of the paper is organized as follows: In Sect. 2, we discuss the optimality of sta-
tic solutions for the two-stage adjustable robust problem under constraint uncertainty
and relate it to the convexity of an appropriate transformation of the uncertainty set. In
Sect. 3, we introduce a measure of non-convexity for any compact set. Moreover, we
present a tight approximation bound for the performance of an optimal static solution
for the adjustable robust problem, that is related to the measure of non-convexity of
the transformation of the uncertainty set. In Sect. 4, we extend our result to two-stage
models where both second-stage constraint and objective are uncertain.

2 Optimality of static solutions

In this section, we present a tight characterization of the conditions under which a static
robust solution computed from (1.2) is optimal for the adjustable robust problem (1.1).
We introduce a transformation of the uncertainty set U and relate the optimality of a
static solution to the convexity of the transformation.

An optimal static solution for (1.2) can be computed efficiently. Note that a static
solution (x, y) is feasible for all B ∈ U . To observe that an optimal static robust
solution can be computed in polynomial time, consider the separation problem: given
a solution x, y, we need to decide whether or not there exists B ∈ U and j ∈ {1, . . . , m}
such that

eT
j (Ax + B y) > h j ,

and find a separating hyperplane if (x, y) is not feasible. Therefore, by solving m
linear optimization problems over U we can decide whether the given solution is
feasible or obtain a separating hyperplane. From the equivalence of the separation and
optimization [18], we can compute an optimal static robust solution in polynomial
time. In fact, there is a compact linear formulation to compute the optimal static
solution for ΠRob [2,4].

We can easily see that the static solution is a lower bound of the optimal value of the
adjustable robust problem. Suppose (x∗, y∗) is an optimal solution for ΠRob. Then,
x = x∗, y(B) = y∗ for all B ∈ U is feasible for ΠAR. Therefore,

zAR ≥ zRob. (2.1)

We would like to study the conditions under which zAR ≤ zRob. Suppose (x∗, y∗(B))

for all B ∈ U is a fully-adjustable optimal solution for ΠAR. Then

zAR = cT x∗ + min
B∈U

max
y(B)

{
dT y(B)

∣
∣ B y(B) ≤ h − Ax∗ }

123



288 D. Bertsimas et al.

zRob ≥ cT x∗ + max
y≥0

{
dT y

∣
∣ B y ≤ h − Ax∗,∀B ∈ U

}
.

Note that h− Ax∗ ≥ 0, since otherwise the second-stage problem becomes infeasible
forΠAR. In fact, we can assume without loss of generality that h−Ax∗ > 0. Otherwise,
it is easy to see that zAR = zRob: suppose (h − Ax∗)i = 0 for some i . Since U is a full-
dimensional convex set, we can find B̂ ∈ U such that B̂i j > 0 for all j = 1, . . . , n2.
Therefore,

min
B∈U

max
y(B)≥0

{
dT y(B)

∣
∣B y(B) ≤ h − Ax∗ }

≤ max
y≥0

{
dT y | B̂ y ≤ h − Ax∗}=0,

which implies zAR = zRob. Therefore, we need to study conditions under which

max
y≥0

{
dT y

∣
∣B y ≤ h − Ax∗,∀B ∈ U

}
≥ min

B∈U
max
y≥0

{
dT y

∣
∣B y ≤ h − Ax∗ }

,

(2.2)
where h − Ax∗ > 0.

2.1 One-stage models

Motivated by (2.2), we consider the following one-stage adjustable robust problem
Π I

AR(U , h):

z I
AR(U , h) = min

B∈U
max

y
dT y

B y ≤ h (2.3)

y ∈ R
n+,

where h ∈ R
m+ and h > 0, d ∈ R

n+ and U ⊆ R
m×n+ is the convex, compact and

down-monotone uncertainty set. The corresponding one-stage static robust problem
Π I

Rob(U , h) can be formulated as follows:

z I
Rob(U , h) = max

y
dT y

B y ≤ h, ∀B ∈ U (2.4)

y ∈ R
n+.

Ben-Tal and Nemirovski [4] study these one-stage models and show that the solution
of Π I

Rob(U , h) is optimal if the uncertainty set U constraint-wise.
Consider Π I

AR(U , h) as defined in (2.3). We can write the dual problem of the inner
maximization problem.

z I
AR(U , h) = min

B,α
{hT α | BT α ≥ d, B ∈ U ,α ∈ R

m+}.
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Substituting λ = hT α and α = λμ, we can reformulate z I
AR(U , h) as follows.

z I
AR(U , h) = min

λ,B,μ
{λ | λBT μ ≥ d, hT μ = 1, B ∈ U ,μ ∈ R

m+}. (2.5)

2.2 Transformation of U

Motivated from the formulation (2.5), we define the following transformation T (U , h)

of the uncertainty set U ∈ R
m×n+ and h > 0.

T (U , h) =
{

BT μ

∣
∣
∣ hT μ = 1, B ∈ U , μ ≥ 0

}
. (2.6)

For instance, if h = e, then T (U , e) is the set of all convex combinations of rows of
B ∈ U for all B ∈ U . Note that T (U , e) is not necessarily convex in general. We
discuss several examples below to illustrate properties of T (U , h).

Example 1 (U where T (U , h) is non-convex). Consider the following uncertainty set
U :

U =
⎧
⎨

⎩
B ∈ [0, 1]n×n

∣
∣
∣
∣
∣
∣

Bi j = 0, ∀i �= j,
n∑

j=1

B j j ≤ 1

⎫
⎬

⎭
. (2.7)

T (U , e) is non-convex. Figure 1 illustrates T (U , e) when n = 3. In fact, in Theo-
rem 7, we prove that T (U , h) is non-convex for all h > 0.

On the other hand, in the following two lemmas, we show that T (U , h) can be
convex for all h > 0 for some interesting families of examples.

Example 2 (Constraint-wise uncertainty set) Suppose the uncertainty set U is
constraint-wise where each constraint i = 1, . . . , m can be selected independently
from a compact convex set Ui . In other words, U is a Cartesian product of Ui , i =
1, . . . , m, i.e.,

Fig. 1 The boundary of the set
T (U , e) when n = 3
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U = U1 × U2 × · · · × Um,

then T (U , h) is convex for all h > 0. In particular, we have the following lemma.

Lemma 1 Suppose the convex compact uncertainty set U is constraint-wise:

U = {B | BT e j ∈ U j },

where U j is a compact convex set in R
n+. Then T (U , h) is convex for all h > 0.

We provide a detailed proof of Lemma 1 in “Appendix 2”. In Ben-Tal and
Nemirovski [4], the authors show that a static solution is optimal for the adjustable
robust problem if U is constraint-wise. In later discussion, we show that a static solu-
tion is optimal if T (U , h) is convex for all h > 0; thereby extending the result in [4] for
the case where U is contained in the non-negative orthant. Note that constraint-wise
uncertainty is analogous to independence in distributions for stochastic optimization
problems.

Example 3 (Scaled projections) A compact convex set U ∈ R
m×n+ is said to satisfy

the scaled projections property if the projections of U onto each of its m row sets are
scalar multiples of each other. We show in the following lemma that if the uncertainty
set U satisfies the scaled projections property, then T (U , h) is convex for all h > 0.

Lemma 2 Consider any convex compact uncertainty set U ⊆ R
m×n+ . For any j =

1, . . . , m, let

U j =
{

b | ∃ B ∈ U , b = BT e j

}
.

Suppose U j = α jU1 for all j = 2, . . . , m where α j > 0. Then T (U , h) is convex for
all h > 0.

We provide a proof of Lemma 2 in “Appendix 2”.
The family of permutation invariant sets is an important sub-class of sets with

scaled projections. A set U ⊆ R
m×n+ is permutation invariant if for any B ∈ U and

any permutation σ of {1, . . . , m}, the matrix obtained by permuting the rows of B,
say Bσ where Bσ

i j = Bσ(i) j , also belongs to U . For example, consider the following
set:

U =
⎧
⎨

⎩
B ∈ R

m×n+

∣
∣
∣
∣
∣
∣

∑

i, j

Bi j ≤ 1

⎫
⎬

⎭
.

It is easy to observe that U is permutation invariant. Any permutation invariant set
U satisfies the scaled projections property since Ui = U j for all i, j ∈ {1, . . . , m}.
In fact, all projections are equal for permutation invariant sets. Therefore, T (U , h) is
convex for all h > 0 for any permutation invariant U .
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2.3 Main theorem

Now, we introduce the main theorem which gives a tight characterization of the opti-
mality of the static solution for the two-stage adjustable robust problem.

Theorem 1 (Optimality of Static Solutions) Let zAR be the objective of the two-stage
adjustable robust problem ΠAR defined in (1.1) and zRob be that of ΠRob defined
in (1.2). Then, zAR = zRob if T (U , h) is convex for all h > 0. Furthermore, if T (U , h)

is not convex for some h > 0, then there exist an instance such that zAR > zRob.

Note that zAR = zRob implies that the optimal static robust solution for ΠRob is
also optimal for the adjustable robust problem ΠAR. In order to prove Theorem 1, we
first reformulate Π I

AR(U , h) and Π I
Rob(U , h) as optimization problems over T (U , h).

From (2.5) and the definition of T (U , h), we have the following lemma.

Lemma 3 Given U ⊆ R
m×n+ and h > 0, the one-stage adjustable robust problem

Π I
AR(U , h) defined in (2.3) can be formulated as

z I
AR(U , h) = min

λ,b
{λ | λb ≥ d, b ∈ T (U , h)}. (2.8)

We can also reformulateΠ I
Rob(U , h) as an optimization problem over conv(T (U , h)

as follows.

Lemma 4 Given U ⊆ R
m×n+ and h > 0, the one-stage static robust problem

Π I
Rob(U , h) defined in (2.4) can be formulated as

z I
Rob(U , h) = min

λ,b
{λ | λb ≥ d, b ∈ conv(T (U , h))}. (2.9)

Proof Suppose

U = conv(B1, . . . , BK )

where B j ∈ U , j = 1, . . . , K are the extreme points of U . Let b j
i = BT

j ei , we can
rewrite (2.4) as follows.

z I
Rob(U , h) = max

y

{
dT y

∣
∣ B j y ≤ h, ∀ j = 1, . . . , K , y ∈ R

n+
}

.

Again, by writing the dual problem, we have

z I
Rob(U , h) = min

α j , j∈[K ]

⎧
⎨

⎩

K∑

j=1

hT α j

∣
∣
∣
∣
∣
∣

K∑

j=1

BT
j α j ≥ d,α j ∈ R

m+

⎫
⎬

⎭
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Denote θ j = hT α j , λ = eT θ . Note that h > 0, d ≥ 0 and d �= 0, we have α j �= 0
for any j ∈ [K ]. Therefore, θ j > 0 for any j ∈ [K ] and λ > 0. We have

z I
Rob(U , h) = min

λ,α j , j∈[K ]

⎧
⎨

⎩
λ

∣
∣
∣
∣
∣
∣
λ

K∑

j=1

θ j

λ
BT

j
α j

θ j
≥ d,α j ≥ 0

⎫
⎬

⎭

= min
λ,b̂ j

⎧
⎨

⎩
λ

∣
∣
∣
∣
∣
∣
λ

K∑

j=1

θ j

λ
b̂ j ≥ d, b̂ j ∈ T (U , h)

⎫
⎬

⎭

= min
λ,b

{λ | λb ≥ d, b ∈ conv(T (U , h))}

where the second equality holds because hT α j

θ j
= 1, j = 1, . . . , K . 
�

Note that the formulations (2.8) and (2.9) are bilinear optimization problems over
T (U , h) and not necessarily convex even if T (U , h) is convex. However, the reformu-
lations provide interesting geometric insights about the relation between the adjustable
robust and static robust problems with respect to properties of U . Figure 2 illustrates
the geometric interpretation of z I

AR(U , h) and z I
Rob(U , h) in terms of the formulation

in Lemma 3 and 4. Now, we are ready to prove Theorem 1.

Proof of Theorem 1 Suppose T (U , h) is convex for all h > 0. Let (x∗, y∗(B), B ∈ U)

be an optimal fully-adjustable solution to ΠAR. Then

zAR = cT x∗ + min
B∈U

max
y(B)≥0

{
dT y(B)

∣
∣ B y(B) ≤ h − Ax∗ }

= cT x∗ + z I
AR(U , h − Ax∗),

Fig. 2 A geometric illustration
of z I

AR(U , h) and z I
Rob(U , h)

when d = 1
2 e: For z I

AR(U , h),
the optimal solution b is the
point where d intersects with the
boundary of T (U , h), while for
z I
Rob(U , h), the optimal solution

is b = d since
d ∈ conv(T (U , h))
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where the second equation follows from (2.3). We can assume without loss of gener-
ality that h − Ax∗ > 0 as discussed earlier. Now,

zRob ≥ cT x∗ + max
y≥0

{
dT y

∣
∣ B y ≤ h − Ax∗,∀B ∈ U

}

= cT x∗ + z I
Rob(U , h − Ax∗)

= cT x∗ + z I
AR(U , h − Ax∗)

= zAR, (2.10)

where the first inequality follows as x∗ is a feasible first-stage solution for the static
robust problem. The second equation follows from (2.4). Equation (2.10) follows from
Lemma 3 and Lemma 4 and the fact that T (U , h − Ax∗) is convex. Also, from (2.1)
we know that zAR ≥ zRob which implies zAR = zRob.

Conversely, suppose zAR = zRob. For the sake of contradiction, assume T (U , h)

is non-convex for some h = ĥ. Then, there must exist b̂ ∈ R
n+ such that b̂ �∈ T (U , ĥ)

but b̂ ∈ conv(T (U , ĥ)). Consider the following instance of ΠAR and ΠRob:

A = 0, c = 0, h = ĥ, d = b̂.

Note that in this case, we have zAR = z I
AR(U , ĥ) and zRob = z I

Rob(U , ĥ). Therefore,
by our assumption,

z I
AR(U , ĥ) = z I

Rob(U , ĥ).

Since b̂ ∈ conv(T (U , ĥ)), α = 1, b = b̂ is a feasible solution for z I
Rob(U , ĥ).

Therefore, z I
Rob(U , ĥ) ≤ 1, which implies z I

AR(U , ĥ) ≤ 1. However, this would

further imply that there exists some b1 ∈ T (U , ĥ) such that b1 ≥ b̂. Since U is
down-monotone by our assumption, so is T (U , ĥ) (see “Appendix 1”). Therefore,
b̂ ∈ T (U , ĥ), which is a contradiction. 
�

We give examples of families of U in Lemma 1 and Lemma 2, where T (U , h) is
convex for all h > 0. We would like to note that for a given h > 0, it is not necessarily
tractable to decide whether T (U , h) is convex or not for any arbitrary U .

2.4 Min–Max theorem interpretation

We can interpret a special case of Theorem 1 as a min-max theorem. Consider the case
where A = 0, c = 0, in which we have

zAR = z I
AR(U , h), zRob = z I

Rob(U , h).

Recall:

z I
AR(U , h) = min

B∈U
max
y≥0

{
dT y

∣
∣
∣ B y ≤ h

}
.
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We define the following function for y ∈ R
n+, B ∈ U ⊆ R

m×n+ :

f ( y, B) =
{

dT y, if B y ≤ h
−∞, otherwise.

Now, we can express z I
AR(U , h) and z I

Rob(U , h) as follows:

z I
AR(U , h) = min

B∈U
max
y≥0

f ( y, B)

and

z I
Rob(U , h) = max

y≥0
min
B∈U

f ( y, B).

Therefore, from Theorem 1, we have:

min
B∈U

max
y≥0

f ( y, B) = max
y≥0

min
B∈U

f ( y, B) (2.11)

if T (U , h) is convex. We would like to note that the min-max equality (2.11) does
not follow from the general Saddle-Point Theorem [12] since f ( y, B) is not a quasi-
convex function of B.

3 Measure of non-convexity and approximation bound

In this section, we introduce a measure of non-convexity for general down-monotone
compact sets in the non-negative orthant and show that the performance of the opti-
mal static solution is related to this measure of non-convexity of the transformation
T (U , h) of the uncertainty set U . We also compare our bound with the symmetry
bound introduced by Bertsimas and Goyal [8]. In particular, we show that our bound
is at least as good as the symmetry bound, and is significantly better in many cases.

Definition 1 Given a down-monotone compact set S ⊆ R
n+ that is contained in the

non-negative orthant, the measure of non-convexity κ(S) is defined as follows.

κ(S) = min {α | conv(S) ⊆ αS } . (3.1)

For any down-monotone compact set S ⊆ R
n+, κ(S) is the smallest factor by

which S must be scaled to contain the convex hull of S. If S is convex, then κ(S) = 1.
Therefore, if the uncertainty set U is constraint-wise, then κ(T (U , h)) = 1 for all
h > 0 (Lemma 1). On the other hand, if S is non-convex, then κ(S) > 1. For
instance, consider the following set:

Sn =
{

x ∈ R
n+

∣
∣
∣
∣
∣

n∑

i=1

x
1
2
j ≤ 1

}
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Fig. 3 A geometric illustration
of κ(S) when n = 2: S is
down-monotone and shaded
with dot lines, conv(S) is
marked with dashed lines, and
the outmost curve is the
boundary of κ · S. Draw a line
from the origin which intersects
with the boundary of S at v and
the boundary of conv(S) at u.
κ(S) is the largest ratio of such
u and v’s

Figure 3 illustrates set Sn for n = 2 and its measure of non-convexity. We would
like to emphasize that given an arbitrary down-monotone compact set U and h > 0,
it is not necessarily tractable to compute κ(T (U , h)).

3.1 Approximation bounds

In this section, we relate the performance of the static solution for the two-stage
adjustable robust problem to the measure of non-convexity of T (U , h).

Additional Assumption: For the analysis of the performance bound for static solu-
tions, we make two additional assumptions in the model (1.1): the first-stage objective
coefficients c and the first-stage decision variables x in ΠAR (1.1) are both non-
negative. We work with these assumptions for the rest of the paper.

Theorem 2 For any down-monotone, compact set U ⊆ R
m×n+ , let

ρ(U) = max{κ(T (U , h)) | h > 0}.

Let zAR be the optimal value of ΠAR in (1.1) and zRob be the optimal value of ΠRob
in (1.2) under the additional assumption that x ≥ 0 and c ≥ 0. Then,

zAR ≤ ρ(U) · zRob.

Furthermore, we can show that the bound is tight.

Proof Suppose (x∗, y∗(B), B ∈ U) is an optimal fully-adjustable solution for ΠAR.
Based on the discussion in Theorem 1, we can assume without loss of generality that
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h − Ax∗ > 0. Then

zAR = cT x∗ + min
B∈U

max
y(B)≥0

{
dT y(B) | B y(B) ≤ h − Ax∗}

= cT x∗ + z I
AR(U , h − Ax∗),

and

zRob ≥ cT x∗ + max
y

{
dT y | B y ≤ h − Ax∗, ∀B ∈ U

}

= cT x∗ + z I
Rob(U , h − Ax∗). (3.2)

Let ĥ = h − Ax∗ and κ = κ(T (U , ĥ)). From Lemmas 4, we can reformulate
z I

Rob(U , ĥ) as follows.

z I
Rob(U , ĥ) = min

b∈conv(T (U ,ĥ))

{λ | λb ≥ d, λ ≥ 0}. (3.3)

Suppose (λ̂, b̂) be the minimizer for z I
Rob(U , ĥ) in (3.3). Therefore,

b̂ ∈ conv(T (U , ĥ)) ⇒ 1

κ
· b̂ ∈ T (U , ĥ).

Now,

z I
AR(U , ĥ) = min

b∈T (U ,ĥ)

{λ | λb ≥ d, λ ≥ 0}

≤ κ · λ̂

= κ · z I
Rob(U , ĥ), (3.4)

where the first equation follows from the reformulation of z I
AR(U , ĥ) in Lemma 3.

The second inequality follows as (1/κ)b̂ ∈ T (U , ĥ) and λ̂b̂ ≥ d and the last equality
follows as z I

Rob(U , ĥ) = λ̂. Therefore,

zAR = cT x∗ + z I
AR(U , h − Ax∗)

≤ cT x∗ + κ · z I
Rob(U , h − Ax∗) (3.5)

≤ κ · (
cT x∗ + z I

Rob(U , h − Ax∗)
)

≤ ρ(U) · zRob, (3.6)

where (3.5) follows from (3.4) and the last inequality follows from (3.2) and the fact
that κ = κ(T (U , ĥ)) ≤ ρ(U).

Tightness of the bound. We can show that the bound is tight. In particular, given any
scalar μ > 1 and some n ∈ Z+, take A = 0, c = 0, d = e, h = e and θ = logμ n.
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Consider the following uncertainty set:

U =
⎧
⎨

⎩
B ∈ [0, 1]n×n

∣
∣
∣
∣
∣
∣

Bi j = 0, ∀i �= j,
n∑

j=1

Bθ
j j ≤ 1.

⎫
⎬

⎭
.

For ΠAR, we have

zAR = min
B

max
y

⎧
⎨

⎩
eT y

∣
∣
∣
∣
∣
∣

B j j y j ≤ 1, j = 1, . . . , n,

n∑

j=1

Bθ
j j ≤ 1

⎫
⎬

⎭

= min
B

⎧
⎨

⎩

n∑

j=1

1

B j j

∣
∣
∣
∣
∣
∣

n∑

j=1

Bθ
j j ≤ 1

⎫
⎬

⎭
.

This is a convex problem and by solving the KKT conditions, we have the optimal

solution as B j j = n− 1
θ for j = 1, . . . , n. Hence, the optimal value of zAR = n · n

1
θ =

n1+ 1
θ .

For ΠRob, we have

zRob = max
y

{
eT y

∣
∣
∣ B j j y j ≤ 1, ∀B ∈ U , j = 1, . . . , n.

}

The constraints essentially enforce B j j y j ≤ 1 for all B j j ≤ 1, j = 1, . . . , n. We only
need to consider the extreme case where B j j = 1, which yields y j = 1. Therefore,
zRob = n and

zAR

zRob
= n1+ 1

θ

n
= n

1
θ = μ.

In “Appendix 3”, we show that κ(T (U , h)) = n
1
θ for all h > 0. Therefore, ρ(U) =

n
1
θ = μ and zAR = ρ(U) · zRob. 
�
In Theorem 2, we prove a bound on the optimal objective value zAR of ΠAR with

respect to the optimal objective value zRob of ΠRob. Note that this also implies a bound
on the performance of the optimal static robust solution for ΠRob for the adjustable
robust problem ΠAR. Furthermore, in using a static robust solution (x̂, ŷ) for the
two-stage adjustable robust problem, we only implement the first-stage solution x̂ and
recompute the optimal second-stage solution y(B) after the uncertain constraint matrix
B is known. Therefore, the cost of such a solution would only be better than zRob which
is at most ρ(U) · zAR. We would like to note that given any arbitrary down-monotone
uncertainty set U , it is not necessarily tractable to compute κ(T (U , h)) or ρ(U). In
Table 1, we compute ρ(U) for some commonly used uncertainty sets. Moreover, in the
following theorem, we show that κ(T (U , h)) is at most m for any for any U ⊆ R

m×n+
and h > 0.
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Theorem 3 For any down-monotone convex compact set U ∈ R
m×n+ and h > 0,

κ(T (U , h)) ≤ m.

Proof Note that

T (U , h) =
{

BT μ

∣
∣
∣ B ∈ U , hT μ = 1,μ ≥ 0

}
.

For all j = 1, . . . , m, let

U j =
{(

1

h j

)

· BT e j

∣
∣
∣
∣ B ∈ U

}

.

We can show that
m⋃

j=1

U j ⊆ T (U , h) ⊆ conv

⎛

⎝
m⋃

j=1

U j

⎞

⎠ . (3.7)

For any j = 1, . . . , m, consider μ = e j/h j . Then U j = {BT μ | B ∈ U} ⊆ T (U , h)

for all j = 1, . . . , m. Consider any b ∈ T (U , h) where

b =
m∑

j=1

BT e jμ j ,

for some B ∈ U and μ ≥ 0 and hT μ = 1. Therefore,

b =
m∑

j=1

(
1

h j
BT e j

)

· (h jμ j ) =
m∑

j=1

b j · (h jμ j ),

where b j ∈ U j for all j ∈ [m] and h1μ1 + . . . + hmμm = 1 which proves that b
belongs to the convex hull of the union of U j , j ∈ [m]. From (3.7), we have that

conv(T (U , h)) = conv

⎛

⎝
m⋃

j=1

U j

⎞

⎠ .

Now consider any b ∈ conv(T (U , h)). Therefore, b belongs to the convex hull of
union of sets U j , i.e.,

b =
m∑

j=1

b jλ j ,
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for some b j ∈ U j , j = 1, . . . , m and some λ ≥ 0 such that λ1 + . . . + λm = 1. For
all j = 1, . . . , m, let

B j = h j · e j bT
j .

Since b j ∈ U j and U is down-monotone, B j ∈ U . Now, let

B̂ =
m∑

j=1

1

m
B j ∈ U ,

as B̂ is a convex combination of elements in U . Also, let μ̂ j = λ j/h j for all j =
1, . . . , m. Therefore, hT μ̂ = 1 and b̂ = B̂

T
μ̂ ∈ T (U , h). Also,

b̂ = 1

m
·
⎛

⎝
∑

j=1

BT
j μ̂

⎞

⎠ = 1

m
·
⎛

⎝
∑

j=1

h j b j eT
j μ̂

⎞

⎠ = 1

m

m∑

j=1

b jλ j = 1

m
· b.


�

3.2 Comparison with symmetry bound [8]

Bertsimas and Goyal [8] consider a general two-stage adjustable robust convex opti-
mization problem with uncertain convex constraints and under mild conditions, show
that the performance of a static solution is related to the symmetry of the uncertainty
set. In this section, we compare our bound ρ(U) defined in (3.1) with the symmetry
bound of [8] for the case of two-stage adjustable robust linear optimization problem
under uncertain constraints. The notion of symmetry is introduced by Minkowski [21].

Definition 2 Given a nonempty convex compact uncertainty set S ⊆ R
m and a point

s ∈ S, the symmetry of s with respect to S is defined as:

sym(s,S) := max{α ≥ 0 | s + α(s − ŝ) ∈ S,∀ŝ ∈ S}.

The symmetry of the set S is defined as:

sym(S) := max{sym(s,S) | s ∈ S}. (3.8)

The maximizer of (3.8) is called the point of symmetry.

In Bertsimas and Goyal [8], the authors prove the following bound on the perfor-
mance of static solution for the two-stage adjustable robust convex optimization with
uncertain constraints under some mild conditions.

zAR ≤
(

1 + 1

sym(U)

)

· zRob
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We show that for the case of two-stage adjustable robust linear optimization under
uncertain constraints, our approximation bound in 2 is at least as good as the symmetry
bound for all instances.

Theorem 4 Consider uncertainty set U ⊆ R
m×n+ . Then,

max{κ(T (U , h)) | h > 0} ≤
(

1 + 1

sym(U)

)

.

Proof For a given h > 0, from the definition of κ(·) in (3.1), we have

conv(T (U , h)) ⊆ κ(T (U , h)) · T (U , h).

Therefore, it is sufficient to show

conv(T (U , h)) ⊆
(

1 + 1

sym(U)

)

· T (U , h) (3.9)

for all h > 0. Let

B0 = arg max{sym(B,U) | B ∈ U}

be the point of symmetry. Then, from the result in [9], we have

(

1 + 1

sym(U)

)

· B0 ≥ B,∀B ∈ U . (3.10)

Now, given any h > 0, consider an arbitrary b ∈ conv(T (U , h)). There exists
B1, . . . , BK ∈ U such that

b =
K∑

j=1

θ j BT
j λ j , hT λ j = 1, λ j ∈ R

m+, j = 1, . . . , K , eT θ = 1, θ ∈ R
K+ .

From (3.10), since B1, . . . , BK ∈ U , we have

b ≤
K∑

j=1

θ j

(

1 + 1

sym(U)

)

BT
0 λ j

=
(

1 + 1

sym(U)

)

BT
0

⎛

⎝
K∑

j=1

θ jλ
j

⎞

⎠ ∈
(

1 + 1

sym(U)

)

· T (U , h).

The last inequality holds because

hT

⎛

⎝
K∑

j=1

θ jλ
j

⎞

⎠ =
⎛

⎝
K∑

j=1

θ j hT λ j

⎞

⎠ = eT θ = 1.
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Table 1 A comparison between the non-convexity bound and the symmetry bound for various uncertainty
sets

Uncertainty set U ρ(U) Symmetry bound [8]

Constraint-wise set U = U1 × . . . × Um 1 1 + 1
min1≤i≤m sym(Ui )

Permutation invariant U 1 1 + 1
sym(U)

{B : ||B||θ1 ≤ 1, ||B||θ2 ≤ r} ⊂ R
m×n+ 1 1 + r(mn)

1
θ1

{B : ||B||1 ≤ 1} ⊂ R
m×n+ 1 1 + mn

{B : ||B||θ ≤ 1} ⊂ R
m×n+ 1 1 + (mn)

1
θ

{B : ∑n
j=1 B j j ≤ 1, Bi j = 0, ∀i �= j} ⊂ [0, 1]n×n n 1 + n

{B : ∑n
j=1 Bθ

j j ≤ 1, Bi j = 0, ∀i �= j} ⊂ [0, 1]n×n , θ > 1 n
1
θ 1 + n

1
θ

All the norms are entry-wise, i.e., ||A||p =
(∑m

i=1
∑n

j=1 |ai j |p
)1/p

Since U is down-monotone by assumption, so is T (U , h) (Appendix 1), and we have

b ∈
(

1 + 1

sym(U)

)

· T (U , h).


�
Theorem 4 states that our bound in Theorem 2 is at least as good as the symmetry

bound and in many cases significantly better. For instance, consider the following
example:

U =
⎧
⎨

⎩
B ∈ [0, 1]n×n

∣
∣
∣
∣
∣
∣

∑

i, j

Bi j ≤ 1

⎫
⎬

⎭
.

In this case, U satisfies the scaled projections property since all projections are equal.
Therefore, from Lemma 2, T (U , h) is convex for all h > 0 and

max{κ(T (U , h)) | h > 0} = 1.

On the other hand, U is a simplex and sym(U) = 1
n2 [9]. Therefore,

1 + 1

sym(U)
= n2 + 1,

which is a significantly worse bound. Table 1 compares our bound with the symmetry
bound for several interesting uncertainty sets.

4 Two-stage model with constraint and objective uncertainty

In this section, we consider a two-stage adjustable robust linear optimization prob-
lem where both constraint and objective coefficients are uncertain. In particular, we
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consider the following two-stage adjustable robust problem Π
(B,d)

AR .

z(B,d)

AR = max cT x + min
(B,d)∈U

max
y(B,d)

dT y(B, d)

Ax + B y(B, d) ≤ h
(4.1)

x ∈ R
n1+

y(B, d) ∈ R
n2+ ,

where A ∈ R
m×n1, c ∈ R

n1+ , h ∈ R
m+, and (B, d) are uncertain second-stage constraint

matrix and objective that belong to a convex compact uncertainty setU ⊆ R
m×n2+ ×R

n2+ .
We consider the case where the uncertainty in constraint matrix B does not depend
on the uncertainty in objective coefficients d. Therefore,

U = U B × Ud ,

where U B ⊆ R
m×n2+ is a convex compact uncertainty set of constraint matrices and

Ud ⊆ R
n2+ is a convex compact uncertainty set of the second-stage objective. As

previous sections, we can assume without loss of generality thatU B is down-monotone.
We formulate the corresponding static robust problem Π

(B,d)

Rob , as follows.

z(B,d)

Rob = max
x, y

min
d∈Ud

cT x + dT y

Ax + B y ≤ h, ∀B ∈ U B

(4.2)
x ∈ R

n1+
y ∈ R

n2+ .

We can compute an optimal static robust solution efficiently. It is easy to see that the
separation problem for (4.2) can be solved in polynomial time. In fact, we can also give
a compact LP formulation to compute an optimal static robust solution similar to (1.2).
Now, suppose the optimal solution of Π

(B,d)

Rob is (x∗, y∗), then x = x∗, y(B, d) = y∗

for all (B, d) ∈ U is a feasible solution to Π
(B,d)

AR . Therefore,

z(B,d)

AR ≥ z(B,d)

Rob . (4.3)

We prove the following main theorem.

Theorem 5 Let z(B,d)

AR be the optimal objective value of Π
(B,d)

AR in (4.1) defined over

the uncertainty U = U B × Ud . Let z(B,d)

Rob be the optimal objective value of Π
(B,d)

Rob
in (4.2). Also, let

ρ(U B) = max
h>0

κ(T (U B, h)).
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Then,

z(B,d)

AR ≤ ρ(U B) · z(B,d)

Rob .

Furthermore, the bound is tight.

If T (U B, h) is convex for all h > 0, then ρ(U B) = 1 and z(B,d)

AR ≤ z(B,d)

Rob . In
this case, Theorem 5 implies that a static solution is optimal for the adjustable robust
problem Π

(B,d)

AR . Therefore, if U B is constraint-wise or has scaled projections then
T (U B, h) is convex for all h > 0 (Lemmas 1 and 2). In general, the performance
of static solution depends on the worst-case measure of non-convexity of T (U B, h)

for all h > 0. Surprisingly, the approximation bound for the static solution does not
depend on the uncertain set of objectives Ud .

To prove the Theorem 5, we need to introduce the following one-stage models as
in Sect. 2, Π I

AR(U , h) and Π I
Rob(U , h).

z I
AR(U , h) = min

(B,d)∈U
max

y
dT y

B y ≤ h
(4.4)

y ∈ R
n+,

z I
Rob(U , h) = max

y
min
d∈U d

dT y

B y ≤ h, ∀B ∈ U B (4.5)

y ∈ R
n+.

where U = U B × Ud and h > 0. Similar to Lemmas 3 and 4, we can reformulate the
above problems as optimization problems over the transformation set T (U B, h).

Lemma 5 The one-stage adjustable robust problem Π I
AR(U , h) defined in (4.4) can

be written as:

z I
AR(U , h) = min

λ,b,d
{ λ | λb ≥ d, b ∈ T (U B, h), d ∈ Ud}.

Proof Consider Π I
AR(U , h), by writing the dual of its inner maximization problem,

we have

z I
AR(U , h) = min

B,d,α
{hT α | BT α ≥ d, (B, d) ∈ U ,α ∈ R

m+}

= min
λ,B,d,α

{
λhT

(α

λ

) ∣
∣
∣ λBT

(α

λ

)
≥ d, hT α = λ, (B, d) ∈ U ,α ∈ R

m+
}
.

= min
λ,b,d

{ λ | λb ≥ d, b ∈ T (U B, h), d ∈ Ud},

where the last equality holds because U = U B × Ud . 
�
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Lemma 6 The one-stage static robust problem Π I
Rob(U , h) defined in (4.5) can be

written as:

z I
Rob(U , h) = min

λ,b,d
{ λ | λb ≥ d, b ∈ conv(T (U B, h)), d ∈ Ud}.

Proof Suppose

U = conv((B1, d1) . . . , (BK , d K ))

where (B j , d j ), j = 1, . . . , K are the extreme points of U . We can rewrite (4.5) as
follows.

z I
Rob(U , h) = max

z, y
{ z | B j y ≤ h, z − dT

j y ≤ 0, ∀ j = 1, . . . , K , y ∈ R
n+}.

Again, by writing the dual problem, we have

z I
Rob(U , h) = min

α j ∈R
m+,β∈R

K+

⎧
⎨

⎩

K∑

j=1

hT α j

∣
∣
∣
∣
∣
∣

K∑

j=1

BT
j α j ≥

K∑

j=1

β j d j , eT β = 1

⎫
⎬

⎭
.

Note that U = U B × Ud , d can be chosen regardless of B. Therefore, denote θ j =
hT α j , λ = eT θ . Using arguments similar to the proof of Lemma 4, we have θ > 0
and λ > 0. Therefore,

z I
Rob(U , h) = min

λ,α j ≥0,d∈Ud

⎧
⎨

⎩

K∑

j=1

θ j hT
(

α j

θ j

)
∣
∣
∣
∣
∣
∣
λ

K∑

j=1

θ j

λ
BT

j

(
α j

θ j

)

≥ d

⎫
⎬

⎭

= min
λ,b̂ j ,d

⎧
⎨

⎩
λ

∣
∣
∣
∣
∣
∣
λ

K∑

j=1

θ j

λ
b̂ j ≥ d, b̂ j ∈ T (U B, h), d ∈ Ud

⎫
⎬

⎭

= min
λ,b,d

{ λ | λb ≥ d, b ∈ conv(T (U B, h)), d ∈ Ud},

where the second equality holds because hT
(

α j
θ j

)
= 1, j = 1, . . . , K . 
�

Now, we are ready to prove Theorem 5.

Proof of Theorem 5 Suppose (x∗, y∗(B, d), (B, d) ∈ U) is a fully-adjustable optimal
solution for Π

(B,d)

AR . As discussed earlier, we can assume without loss of generality
that h − Ax∗ > 0. Then,

z(B,d)

AR = cT x∗ + min
(B,d)∈U

max
y(B,d)≥0

{
dT y(B, d)

∣
∣ B y(B, d) ≤ h − Ax∗ }

= cT x∗ + z I
AR(U , h − Ax∗), (4.6)
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and

z(B,d)

Rob ≥ cT x∗ + max
y≥0

min
d∈Ud

{
dT y

∣
∣
∣ B y ≤ h − Ax∗,∀B ∈ U B

}

= cT x∗ + z I
Rob(U , h − Ax∗). (4.7)

Let ĥ = h − Ax∗ and κ = κ(T (U B, ĥ)). Suppose (λ̂, b̂, d̂) is an optimal solution for
Π I

Rob(U , ĥ). Therefore,

b̂ ∈ conv(T (U B, ĥ)) ⇒ 1

κ
· b̂ ∈ T (U B, ĥ).

Also,

λ̂ · b̂ ≥ d̂ ⇒ (κλ̂) ·
(

1

κ
b̂
)

≥ d̂,

which implies that (κλ̂, b̂/κ, d̂) is a feasible solution to Π I
AR(U , ĥ) and

z I
AR(U , ĥ) ≤ κ · z I

Rob(U , ĥ).

From (4.6), we have

z(B,d)

AR = cT x∗ + z I
AR(U , h − Ax∗)

≤ cT x∗ + κ · z I
Rob(U , h − Ax∗)

(4.8)≤ κ · (cT x∗ + z I
Rob(U , h − Ax∗))

≤ κ · z(B,d)

Rob ,

where (4.8) holds because κ ≥ 1, the last inequality holds from (4.7).
We can show that the bound is tight using the same family of uncertainty sets of

matrices U B
θ in the discussion of Theorem 2:

U B
θ =

⎧
⎨

⎩
B ∈ [0, 1]n×n

∣
∣
∣
∣
∣
∣

Bi j = 0, ∀i �= j,
n∑

j=1

Bθ
j j ≤ 1

⎫
⎬

⎭
.

Consider the following instance of Π
(B,d)

AR and Π
(B,d)

Rob :

A = 0, c = 0, h = e,Ud = {e}.

From the discussion in Theorem 2, the bound in Theorem 5 is tight. 
�
Note that surprisingly, the bound only depends on the measure of non-convexity of

U B and is not related to Ud . Therefore, if T (U B, h) is convex for all h > 0, then a
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static solution is optimal for the adjustable robust problem Π
(B,d)

AR irrespective of Ud .
As a special case where there is no uncertainty in B, i.e., U B = {B0}, and the only
uncertainty is in Ud , T (U B, h) is convex for all h > 0 and a static solution is optimal.
In fact, the optimality of static solution in this case follows from von Neumann’s Min-
max theorem [22]. Therefore, we can interpret the result as a generalization of von
Neumann’s theorem.

General Case when U is not a Cartesian product. For the general case where the
uncertainty set U of constraint matrices B and objective coefficients d is not a Cartesian
product of the respective uncertainty sets, our bound of Theorem 5 does not extend.
Consider the following example:

A = 0, c = 0, h = e,

U =
⎧
⎨

⎩
(B, d) ∈ R

n×n+ × R
n+

∣
∣
∣
∣
∣
∣

n∑

i=1

Bii ≤
n∑

j=1

d j ≤ 1, d ≥ ε

n
e, Bi j = 0,∀i �= j

⎫
⎬

⎭
.

Now,

z(B,d)

AR = min
(B,d)∈U

max
y

{
dT y

∣
∣ B j j y j ≤ 1, ∀ j = 1, . . . , n, y ≥ 0

}

= min
(B,d)∈U

n∑

j=1

d j

B j j

≥ 1,

where the second equation follows from the fact that at optimum of the outer min-
imization problem, B j j > 0 for all j = 1, . . . , n and y j = 1/B j j for the inner
maximization problem. Otherwise, if B j j = 0 for some j , then y j and d j y j are both
unbounded as d j > ε/n > 0. The last equality follows as for any (B, d) ∈ U ,

n∑

j=1

B j j ≤
n∑

j=1

d j ,

which implies that B j j ≤ d j for some j ∈ [n].
For the robust problem Π

(B,d)

Rob , consider any static solution y ≥ 0. For all j =
1, . . . , n,

B j j y j ≤ 1, ∀(B, d) ∈ U .

Since there exist (B, d) ∈ U such that B j j = 1, y j ≤ 1 for all j = 1, . . . , n. Moreover,
y = e is a feasible solution as B j j ≤ 1 for all (B, d) ∈ U for all j ∈ [n]. Therefore,

z(B,d)

Rob = min
(B,d)∈U

dT e ≤ ε,
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where the second inequality follows by setting d j = ε/n for all j = 1, . . . , n. There-
fore,

z(B,d)

AR ≥ 1

ε
· z(B,d)

Rob ,

where ε > 0 is arbitrary. Therefore, the performance of the optimal static robust
solution as compared to the optimal fully adjustable solution can not be bounded by
the measure of non-convexity as in Theorem 5.

4.1 Constraint, right-hand-side and objective uncertainty

In this section, we discuss the case where the right-hand-side, the constraint and
the objective coefficients are all uncertain. Consider the following adjustable robust
problem Π

(B,h,d)

AR .

z(B,h,d)

AR = max
x

cT x + min
(B,h,d)∈U B,h,d

max
y(B,h,d)

dT y(B, h, d)

Ax + B y(B, h, d) ≤ h
(4.9)

x ∈ R
n1+

y(B, h, d) ∈ R
n2+ ,

where A ∈ R
m×n1, c ∈ R

n1+ . In this case, (B, h, d) ∈ U B,h,d are uncertain and
U B,h,d ⊆ R

m×n2+ × R
m+ × R

n2+ is convex and compact. We consider the case that the
uncertainties in constraint matrix B and right-hand-side vector h are independent of
the uncertainty in the objective coefficients d, i.e.,

U B,h,d = U B,h × Ud ,

where U B,h ⊆ R
m×(n2+1) is the convex compact uncertainty set of constraint matrices

and right-hand-side vectors, and Ud ⊆ R
n2 is the convex compact set of the constraint

coefficients.
The corresponding static robust version Π

(B,h,d)

Rob , can be formulated as follows.

z(B,h,d)

Rob = max
x, y

min
d∈Ud

cT x + dT y

Ax + B y ≤ h, ∀(B, h) ∈ U B,h

(4.10)
x ∈ R

n1+
y ∈ R

n2+ .

We can compute an optimal solution for (4.10) efficiently by solving a compact LP
formulation for its separation problem. Now, we study the performance of static solu-
tion and show that it is optimal if U B,h is constraint-wise. In particular, we have the
following theorem.
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Theorem 6 Let z(B,h,d)

AR be the optimal value of Π
(B,h,d)

AR defined in (4.9) and z(B,h,d)

Rob

be the optimal value of Π
(B,h,d)

Rob defined in (4.10). Suppose U B,h is constraint-wise,

then the static solution is optimal for Π
(B,h,d)

AR , i.e.,

z(B,h,d)

AR = z(B,h,d)

Rob . (4.11)

To prove Theorem 6, we need to introduce the one-stage models. Consider the
one-stage adjustable robust problem Π I

AR(U B,h,d)

z I
AR(U B,h,d) = min

(B,h,d)∈U B,h,d
max

y
dT y

B y ≤ h (4.12)

y ∈ R
n+,

where U B,h,d = U B,h × Ud . The corresponding one-stage static robust problem
Π I

Rob(U B,h,d) can be formulated as follows

z I
Rob(U B,h,d) = max

y
min
d∈Ud

dT y

B y ≤ h, ∀(B, h) ∈ U B,h (4.13)

y ∈ R
n+,

We can reformulate these models as optimization problems over T (U B,h, e).

Lemma 7 The one-stage adjustable robust problem Π I
AR(U B,h,d) defined in (4.12)

can be written as

z I
AR(U B,h,d) = min

λ,b,t,d
{λt | λb ≥ d, (b, t) ∈ T (U B,h, e), d ∈ Ud}.

We present the proof of Lemma 7 in “Appendix 4”.

Lemma 8 The one-stage static-robust problem Π I
Rob(U B,h,d) defined in (4.13) can

be written as

z I
Rob(U B,h,d) = min

λ,b,t,d
{λt | λb ≥ d, (b, t) ∈ conv(T (U B,h, e)), d ∈ Ud}.

We present the proof of Lemma 8 in “Appendix 4”. Now, with the formulations in
Lemma 7 and Lemma 8, we are ready to prove Theorem 6.

Proof of Theorem 6 Suppose the optimal solution of Π
(B,h,d)

Rob is (x̃, ỹ), then x =
x̃, y(B, h, d) = ỹ for all (B, h, d) ∈ U is a feasible solution to Π

(B,h,d)

AR . Therefore,

z(B,h,d)

AR ≥ z(B,h,d)

Rob . (4.14)
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On the other hand, suppose (x∗, y∗(B, h, d), (B, h, d) ∈ U B,h,d) is a fully-
adjustable optimal solution for Π

(B,h,d)

AR . As discussed earlier, we can assume without
loss of generality that h − Ax∗ > 0 for all h such that (B, h) ∈ U B,h for some B.
Then,

z(B,h,d)

AR = cT x∗ + min
(B,h,d)∈U B,h,d

max
y≥0

{
dT y

∣
∣ B y ≤ h − Ax∗ }

= cT x∗ + z I
AR(U B,h−Ax∗,d), (4.15)

and

z(B,h,d)

Rob ≥ cT x∗ + max
y≥0

min
d∈Ud

{
dT y

∣
∣
∣ B y ≤ h − Ax∗,∀(B, h) ∈ U B,h

}

= cT x∗ + z I
Rob(U B,h−Ax∗,d). (4.16)

Since U B,h is constraint-wise, so is U B,h−Ax∗
. Therefore, T (U B,h−Ax∗

, e) is convex
from Lemma 1 and T (U B,h−Ax∗

, e) = conv(T (U B,h−Ax∗
, e)). From Lemma 7 and

Lemma 8, this implies that

z I
AR(U B,h−Ax∗,d) = z I

Rob(U B,h−Ax∗,d).

Therefore, from (4.15) and (4.16), we have

z(B,h,d)

AR ≤ z(B,h,d)

Rob .

Together with (4.14), we have z(B,h,d)

AR = z(B,h,d)

Rob .

We would like to note, we can not extend the approximation bounds similar to
Theorem 5 in this case. In fact, the measure of non-convexity of T (U B,h, e) is not
even well defined in this case since U B,h is not down-monotone.

5 Conclusion

In this paper, we study the performance of static robust solution as an approximation
of two-stage adjustable robust linear optimization problem under uncertain constraints
and objective coefficients. We give a tight characterization of the performance of static
solution and relate it to the measure of non-convexity of the transformation T (U , ·) of
the uncertainty set U . In particular, we show that a static solution is optimal if T (U , h)

is convex for all h > 0. If T (U , ·) is not convex, the measure of non-convexity
of T (U , ·) gives a tight bound on the performance of static solutions. For several
interesting families of uncertainty sets such as constraint-wise or scaled projections,
we show that T (U , h) is convex for all h > 0; thereby, extending the result of Ben-Tal
and Nemirovski [4] for the case where U is contained in the non-negative orthant.
Also, our approximation bound is better than the symmetry bound in Bertsimas and
Goyal [8].
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We also extend our result to models where both constraint and objective coefficients
are uncertain. We show that if U = U B ×Ud , where U B is the set of uncertain second-
stage constraint matrices B and Ud is the set of uncertain second-stage objective,
then the performance of static solution is related to the measure of non-convexity of
T (U B, ·). In particular, a static solution is optimal if T (U B, h) is convex for all h > 0.
Surprisingly, the performance of static solution does not depend on the uncertainty set
Ud . We also present several examples to illustrate such optimality and the tightness
of the bound.

Our results develop new geometric intuition about the performance of static robust
solutions for adjustable robust problems. The reformulations of the adjustable robust
and static robust problems based on the transformation T (U , ·) of the uncertainty set
U give us interesting insights about properties of U where the static robust solution
does not perform well. Therefore, our results provide useful guidance in selecting
uncertainty sets such that the adjustable robust problem can be well approximated by
a static solution.

6 Appendix 1: Down-monotone uncertainty sets

In this section, we show that in Π I
AR(U , h) defined in (2.3) and Π I

Rob(U , h) defined
in (2.4), we can assume U to be down-monotone without loss of generality, where
down-monotone is defined as follows.

Definition 3 A set S ⊆ R
n+ is down-monotone if s ∈ S, t ∈ R

n+ and t ≤ s implies
t ∈ S.

Given S ⊆ R
n+, we can construct the down-hull of S, denoted by S↓ as follows.

S↓ = {t ∈ R
n+ | ∃s ∈ S : t ≤ s}. (6.1)

We would like to emphasize that the down hull of a non-negative uncertainty set is still
constrained in the non-negative orthant. Given uncertainty set U ∈ R

m×n+ and h > 0,
if U is down-monotone, then U↓ = U . Therefore, Π I

AR(U↓, h) is essentially the same
problem with Π I

AR(U , h) and we have z I
AR(U↓, h) = z I

AR(U , h). Similar arguments
applies for Π I

Rob(U , h) and z I
Rob(U↓, h) = z I

Rob(U , h). On the other hand, if U is not
down-monotone, then U � U↓. Then, we prove the following lemma.

Lemma 9 Given uncertainty set U ∈ R
m×n+ and h > 0, let z I

AR(U , h) be the optimal
value of Π I

AR(U , h) defined in (2.3), z I
Rob(U , h) be the optimal value of Π I

Rob(U , h)

defined in (2.4). Suppose U is not down-monotone, let U↓ be defined as in (6.1). Then,

z I
AR(U↓, h) = z I

AR(U , h), z I
Rob(U↓, h) = z I

Rob(U , h).

Proof Consider an arbitrary X ∈ U↓ and X �∈ U , i.e., X ∈ U↓\U . From (6.1), there
exists B ∈ U such that X ≤ B. Since B, X and y are all non-negative, any y ∈ R

n+
such that B y ≤ h satisfies X y ≤ h. Therefore,

max{dT y | B y ≤ h, y ∈ R
n+} ≤ max{dT y | X y ≤ h, y ∈ R

n+}.
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Take minimum over all B ∈ U on the left side, we have

min
B∈U

max
y

{dT y | B y ≤ h, y ∈ R
n+} ≤ max

y
{dT y | X y ≤ h, y ∈ R

n+}.

Since X is arbitrarily chosen in U↓\U , we can take minimum of all X ∈ U↓\U on the
right side

min
B∈U

max
y

{dT y | B y ≤ h, y ∈ R
n+} ≤ min

X∈U↓\U
max

y
{dT y | X y ≤ h, y ∈ R

n+}.

Therefore, the minimizer of the outer problem of Π I
AR(U↓, h) is in U , which implies

min
B∈U

max
y

{dT y | B y ≤ h, y ∈ R
n+} = min

X∈U↓
max

y
{dT y | X y ≤ h, y ∈ R

n+}.

As a result, we have z I
AR(U↓, h) = z I

AR(U , h).
Similarly, any y ∈ R

n+ satisfies B y ≤ h for all B ∈ U is guaranteed to be feasible to
X y ≤ h for all X ∈ U↓\U . Therefore, we conclude that z I

Rob(U↓, h) = z I
Rob(U , h).


�
Therefore, we can assume without loss of generality that U is down-monotone

in (2.3) and (2.4). Now, we generalize the result for the two-stage problems ΠAR

in (1.1) and ΠRob in (1.2). Consider the following adjustable robust problem Π
↓
AR

z↓
AR = max cT x + min

B∈U↓
max
y(B)

dT y(B)

Ax + B y(B) ≤ h
(6.2)

x ∈ R
n1

y(B) ∈ R
n2+ ,

and the corresponding two-stage static robust problem Π
↓
Rob

z↓
Rob = max cT x + dT y

Ax + B y ≤ h, ∀B ∈ U↓
(6.3)

x ∈ R
n1

y ∈ R
n2+ .

Again, given uncertainty set U ∈ R
m×n2+ , if U is down-monotone, then U↓ = U .

Therefore, Π
↓
AR is essentially the same problem with ΠAR and we have z↓

AR = zAR.

Similarly, z↓
Rob = zRob. For the case where U is not down-monotone, we prove the

following lemma:

Lemma 10 Given uncertainty set U ∈ R
m×n2+ and h ∈ R

m, let zAR and zRob be
the optimal values of ΠAR defined in (1.1) and ΠRob defined in (1.2), respectively.
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Suppose U is not down-monotone, let U↓ be defined as in (6.1). Let z↓
AR and z↓

Rob be

the optimal values of Π
↓
AR defined in (6.2) and Π

↓
Rob defined in (6.3), respectively.

Then,

z↓
AR = zAR, z↓

Rob = zRob.

Proof Suppose (x∗, y∗(B), B ∈ U↓) is an optimal solution of Π
↓
AR. Based on the

discussion in Theorem 1, we can assume without loss of generality that h − Ax∗ > 0.
Then,

z↓
AR = cT x∗ + min

B∈U↓
max
y∈R

n2+

{
dT y

∣
∣ B y ≤ h − Ax∗ }

= cT x∗ + z I
AR(U↓, h − Ax∗)

= cT x∗ + z I
AR(U , h − Ax∗)

≤ zAR.

The second equation holds from Lemma 9, and the last inequality holds because
x = x∗ is a feasible first-stage solution for ΠAR. Therefore, z↓

AR ≤ zAR.
Conversely, suppose (x̃, ỹ(B), B ∈ U) is the optimal solution for ΠAR. Again, we

can assume without loss of generality that h − Ax̃ > 0. Using similar arguments, we
have

zAR = cT x̃ + min
B∈U

max
y∈R

n2+

{
dT y

∣
∣
∣ B y ≤ h − Ax̃

}

= cT x̃ + z I
AR(U , h − Ax̃)

= cT x̃ + z I
AR(U↓, h − Ax̃)

≤ z↓
AR.

The last inequality holds because x = x̃ is a feasible first-stage solution for z↓
AR.

Therefore, in both cases, we have zAR ≤ z↓
AR. Together with previous result, we have

z↓
AR = zAR. In the same way, we can show that z↓

Rob = zRob, we omit it here. 
�
Lemma 11 Given a down-monotone set U ⊆ R

m×n+ , let T (U , h) be defined as in (2.6),
then T (U , h) is down-monotone for all h > 0.

Proof Consider an arbitrary h > 0 and y ∈ T (U , h) ⊆ R
n+ such that

y = BT λ, hT λ = 1,λ ≥ 0, B ∈ U .

Then, for any z ∈ R
n+ such that z ≤ y, set

B̂i j = z j

y j
Bi j , i = 1, . . . , m, j = 1, . . . , n.
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Clearly, B̂ ≤ B since z ≤ y. Therefore, B̂ ∈ U from the assumption that U is
down-monotone. Then,

z = B̂
T
λ, hT λ = 1,λ ≥ 0, B̂ ∈ U ,

which implies z ∈ T (U , h). 
�

7 Appendix 2: Proofs of Lemmas 1 and 2

Proof of Lemma 1 Consider any v1, v2 ∈ T (U , h). Therefore, for j = 1, 2,

v j = BT
j λ j , hT λ j = 1,λ j ≥ 0, B j ∈ U .

For any arbitraryα ∈ [0, 1], letμi = αλ1
i +(1−α)λ2

i and b j
i = BT

j ei for i = 1, . . . , m.
Then,

αv1 + (1 − α)v2 =
m∑

i=1

(
αλ1

i b1
i + (1 − α)λ2

i b2
i

)

=
m∑

i=1

μi

(
αλ1

i

μi
b1

i + (1 − α)λ2
i

μi
b2

i

)

=
m∑

i=1

μi · b̂i

= B̂
T
μ,

where b̂i ∈ Ui since b̂i is a convex combination of b1
i and b2

i for all i = 1, . . . , m
and Ui is convex. Also, note that B̂ ∈ U (since U is constraint-wise) and hT μ =
αhT λ1 + (1 − α)hT λ2 = 1, we have

αv1 + (1 − α)v2 ∈ T (U , h).

Therefore, T (U , h) is convex. 
�
Proof of Lemma 2 Since U satisfies the scaled projections property, U j = α j S for
some α j > 0 for all j = 1, . . . , m where S is a convex set. Suppose

α1

h1
≤ α2

h2
≤ · · · ≤ αm

hm
.

Then

α1

h1
S ⊆ α2

h2
S ⊆ · · · ⊆ αm

hm
S,
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which implies

1

h1
U1 ⊆ 1

h2
U2 ⊆ · · · ⊆ 1

hm
Um ⊆ T (U , h).

The last set inequality holds because we can take μ = em
hm

in (2.6).
Now, consider an arbitrary v ∈ T (U , h) such that

v = BT λ, hT λ = 1,λ ≥ 0, B ∈ U .

Let b j = BT e j , we have

v =
m∑

j=1

λ j b j

=
m∑

j=1

λ j h j · 1

h j
b j

= 1

hm
b̂,

where b̂ ∈ Um . The last equation holds because hT λ = 1 and 1
h j

U j ⊆ 1
hm

Um for all
j = 1, . . . , m − 1. Therefore,

T (U , h) = 1

hm
Um,

which is convex. 
�

8 Appendix 3: Tight example for measure of non-convexity bound

Theorem 7 Consider the following uncertainty set, Uθ ,

Uθ =
⎧
⎨

⎩
B ∈ [0, 1]n×n

∣
∣
∣
∣
∣
∣

Bi j = 0, ∀i �= j,
n∑

j=1

Bθ
j j ≤ 1

⎫
⎬

⎭
.

with θ > 1. Then,

1. T (Uθ , h) can be written as:

T (Uθ , h) =
⎧
⎨

⎩
b ∈ R

n+

∣
∣
∣
∣
∣
∣

n∑

j=1

(
b j

h j

) θ
θ+1 ≤ 1

⎫
⎬

⎭
(8.1)
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2. The convex hull of T (Uθ , h) can be written as:

conv(T (Uθ , h)) =
⎧
⎨

⎩
b ∈ R

n+

∣
∣
∣
∣
∣
∣

n∑

j=1

b j

h j
≤ 1

⎫
⎬

⎭
. (8.2)

3. T (Uθ , h) is non-convex for all h > 0.

4. κ(T (Uθ , h)) = n
1
θ for all h > 0.

Proof 1. For given h > 0 and b ∈ T (Uθ , h), we have

b = BT μ, hT μ = 1,μ ≥ 0, B ∈ Uθ .

Let λi = hiμi for i = 1, . . . , n. Therefore, eT λ = 1 and

b = BT (diag(h))−1λ = (diag(h))−1 BT λ,

where diag(h) ∈ R
n×n denotes the matrix with diagonal entries being hi , i ∈

[n] and off-diagonal entries being zero. The second equality above follows as B
is diagonal. Therefore, (diag(h))b ∈ T (Uθ , e). Using a similar argument, we
can show that b ∈ T (Uθ , e) implies that (diag(h))−1b ∈ T (Uθ , h). Therefore,
T (Uθ , h) = diag(h))−1T (Uθ , e) and it is sufficient to show:

T (Uθ , e) = A :=
⎧
⎨

⎩
b ∈ R

n+

∣
∣
∣
∣
∣
∣

n∑

j=1

b
θ

θ+1
j ≤ 1

⎫
⎬

⎭
.

Consider any b ∈ ∂A, i.e., b ∈ R
n+ such that

n∑

j=1

b
θ

θ+1
j = 1.

Set

λ j = b
θ

θ+1
j , x j = b

1
θ+1
j .

Then,

λ j x j = b j , eT λ = 1,

n∑

j=1

x j
θ = 1,

which implies b ∈ T (Uθ , e). Since both A and T (Uθ , e) are down-monotone,
A ⊆ T (Uθ , e).
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Conversely, consider the following problem:

max
λ,x≥0

⎧
⎨

⎩

n∑

i=1

(λ j x j )
θ

θ+1

∣
∣
∣
∣
∣
∣

eT λ = 1,

n∑

j=1

xθ
j ≤ 1.

⎫
⎬

⎭

From Holder’s Inequality, we have

n∑

i=1

(λ j x j )
θ

θ+1 ≤ (eT λ)
θ

θ+1 ·
⎛

⎝
n∑

j=1

xθ
j

⎞

⎠

1
θ+1

≤ 1.

Therefore, for any b ∈ T (Uθ , e), we have

n∑

j=1

b
θ

θ+1
j ≤ 1,

which implies b ∈ A. Therefore, T (Uθ , e) ⊆ A.
2. Similarly, it is sufficient to show

conv(T (Uθ , e)) = B :=
⎧
⎨

⎩
b ∈ R

n+

∣
∣
∣
∣
∣
∣

n∑

j=1

b j ≤ 1

⎫
⎬

⎭
.

From (8.1), we see that e j ∈ T (Uθ , e). For any b ∈ ∂B, by taking λ = b as the
convex multiplier, we have

b =
n∑

j=1

b j e j .

Therefore, ∂B ⊆ conv(T (Uθ , e)). Since both B and conv(T (Uθ , e)) are down-
monotone, we have B ⊆ conv(T (Uθ , e)).
Conversely, consider the following problem:

max
b≥0

⎧
⎨

⎩
eT b

∣
∣
∣
∣
∣
∣

n∑

j=1

b
θ

1+θ

j ≤ 1

⎫
⎬

⎭
= max

a≥0

⎧
⎨

⎩

n∑

j=1

a
1+θ
θ

j

∣
∣
∣ eT a ≤ 1

⎫
⎬

⎭

Note that

f (x) =
n∑

j=1

x
1+θ
θ

j
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is a convex function. Therefore,

n∑

j=1

a
1+θ
θ

j ≤ (eT a)
1+θ
θ ≤ 1.

Therefore, for any b ∈ T (Uθ , e), we have b ∈ B. Since B is convex,
conv(T (Uθ , e)) ⊆ B.

3. From (8.1) and (8.2), we see that 1
n h ∈ conv(T (Uθ , h)), but 1

n h �∈ T (Uθ , h).
Therefore, T (Uθ , h) is non-convex for all h > 0.

4. Now, we compute κ(Uθ , h). Recall that

κ(Uθ , h) = min{α | conv(T (Uθ , h)) ⊆ αT (Uθ , h)}
= min{α | 1

α
conv(T (Uθ , h)) ⊆ T (Uθ , h)}.

From (8.2) and scaling, we can observe that it is equivalent to find the largest α

such that the hyperplane

⎧
⎨

⎩
b ∈ R

n+

∣
∣
∣
∣
∣
∣

n∑

j=1

b j

h j
= 1

α

⎫
⎬

⎭

intersects with the positive boundary of T (Uθ , h). Therefore, we formulate the
following problem:

(κ(Uθ , h))−1 = min
b≥0

⎧
⎨

⎩

n∑

j=1

b j

h j

∣
∣
∣
∣
∣
∣

n∑

j=1

(
b j

h j
)

θ
1+θ = 1

⎫
⎬

⎭

= min
a≥0

⎧
⎨

⎩

n∑

j=1

a
1+θ
θ

j

∣
∣
∣
∣
∣
∣

n∑

j=1

a j = 1

⎫
⎬

⎭

By solving KKT conditions for the convex problem above, the optimal solution is
a = 1

n · e. Therefore, we have

κ(Uθ , h) = (n · n− 1+θ
θ )−1 = n

1
θ .


�

123



318 D. Bertsimas et al.

9 Appendix 4: Proofs of Lemmas 7 and 8

Proof of Lemma 7 We can write the dual of the inner problem of (4.12):

z(B,h,d)

AR = min
(B,h,d)∈U B,h,d ,α∈R

m+

{
hT α

∣
∣
∣ BT α ≥ d

}

= min
(B,h)∈U B,h ,d∈Ud ,α∈R

m+,λ

{
λhT

(α

λ

) ∣
∣
∣ λBT

(α

λ

)
≥ d, hT α = λ

}

= min
(b,t)∈T (U B,h ,e),d∈Ud ,λ

{λt | λb ≥ d} ,

where the second equality holds because U B,h,d = U B,h × Ud . 
�
Proof of Lemma 8 Suppose

U B,h,d = conv((B1, h1, d1) . . . , (BK , hK , d K ))

where (B j , h j , d j ), j = 1, . . . , K are the extreme points of U B,h,d . We can
rewrite (4.13) as follows.

z(B,h,d)

Rob = max{ z | B j y ≤ h j , z − dT
j y ≤ 0, ∀ j = 1, . . . , K , y ∈ R

n+}.

By writing the dual problem, we have:

z(B,h,d)

Rob = min
α j ∈R

m+,β∈R
K+

⎧
⎨

⎩

K∑

j=1

hT
j α j

∣
∣
∣
∣
∣
∣

K∑

j=1

BT
j α j ≥

K∑

j=1

β j d j , eT β = 1

⎫
⎬

⎭
.

Note that U B,h,d = U B,h × Ud , d can be chosen regardless of B and h. Denote
θ j = hT

j α j , λ = eT θ . Note that if α j = 0 for some j ∈ [K ], we can remove the

term hT
j α j and BT

j α j from the problem. Therefore, we can assume without loss of
generality that θ > 0 and λ > 0. Therefore,

z(B,h,d)

Rob = min
d∈Ud ,α j ≥0,λ

⎧
⎨

⎩
λ

K∑

j=1

θ j

λ
hT

j

(
α j

θ j

)
∣
∣
∣
∣
∣
∣
λ

K∑

j=1

θ j

λ
BT

j

(
α j

θ j

)

≥ d

⎫
⎬

⎭

= min
(b̂ j ,t̂ j )∈T (U B,h ,e),d∈Ud ,λ

⎧
⎨

⎩
λ

K∑

j=1

θ j

λ
t̂ j

∣
∣
∣
∣
∣
∣
λ

K∑

j=1

θ j

λ
b̂ j ≥ d

⎫
⎬

⎭

= min
(b,t)∈T (U B,h ,e),d∈Ud ,λ

{λt | λb ≥ d} ,

where the second equality holds because eT
(

α j
θ j

)
= 1, j = 1, . . . , K .
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