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Abstract Hyperbolic polynomials are real polynomials whose real hypersurfaces are
maximally nested ovaloids, the innermost of which is convex. These polynomials
appear in many areas of mathematics, including optimization, combinatorics and dif-
ferential equations. Here we investigate the special connection between a hyperbolic
polynomial and the set of polynomials that interlace it. This set of interlacers is a
convex cone, which we write as a linear slice of the cone of nonnegative polynomials.
In particular, this allows us to realize any hyperbolicity cone as a slice of the cone
of nonnegative polynomials. Using a sums of squares relaxation, we then approxi-
mate a hyperbolicity cone by the projection of a spectrahedron. A multiaffine example
coming from the Vámos matroid shows that this relaxation is not always exact. Using
this theory, we characterize the real stable multiaffine polynomials that have a definite
determinantal representation and construct one when it exists.
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1 Introduction

A homogeneous polynomial f ∈ R[x] of degree d in variables x = (x1, . . . , xn) is
called hyperbolic with respect to a point e ∈ R

n if f (e) �= 0 and for every a ∈ R
n ,

all roots of the univariate polynomial f (te + a) ∈ R[t] are real. Its hyperbolicity
cone, denoted C( f, e) is the connected component of e in R

n\VR( f ) and can also be
defined as

C( f, e) = {a ∈ R
n : f (te − a) �= 0 when t ≤ 0}.

As shown in Gårding [6], C( f, e) is an open convex cone and f is hyperbolic with
respect to any point contained in it. Hyperbolicity is reflected in the topology of the
real projective variety VR( f ) in P

n−1(R). If VR( f ) is smooth, then f is hyperbolic
if and only if VR( f ) consists of � d

2 � nested ovaloids, and a pseudo-hyperplane if d is
odd (see [8, Thm. 5.2]) (Fig. 1).

A hyperbolic program, introduced and developed by Güler [7], Renegar [14] and
others, is the problem of maximizing a linear function over an affine section of the
convex cone C( f, e). This provides a very general context in which interior point
methods are effective. For example, taking f = ∏

i xi and e = (1, . . . , 1), we see
that C( f, e) is the positive orthant (R+)n and the corresponding hyperbolic program
is a linear program. If instead we take f as the determinant of a symmetric matrix of
variables X = (xi j ) and e is the identity matrix, then C( f, e) is the cone of positive
definite matrices.

f e C( f, e) Hyperbolic program

∏
i xi (1, . . . , 1) (R+)n Linear program

det(X) I Positive definite matrices Semidefinite program

It is a fundamental open question whether or not every hyperbolic program can
be rewritten as a semidefinite program. Helton and Vinnikov [8] showed that if f ∈
R[x1, x2, x3] is hyperbolic with respect to a point e, then f has a definite determinantal

Fig. 1 A quartic hyperbolic hypersurface and two of its affine slices
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representation f = det(
∑

i xi Mi ) where M1, M2, M3 are real symmetric matrices and
the matrix

∑
i ei Mi is positive definite. Thus every three dimensional hyperbolicity

cone is a slice of the cone of positive semidefinite matrices. For a survey of these results
and future perspectives, see also [18]. On the other hand, Brändén [2] has given an
example of a hyperbolic polynomial f (see Example 5.11) such that no power of
f has a definite determinantal representation. There is a close connection between
definite determinantal representations of a hyperbolic polynomial f and polynomials
of degree one-less that interlace it, which has also been used in [12] to study Hermitian
determinantal representations of hyperbolic curves.

Definition 1.1 Let f, g ∈ R[t] be univariate polynomials with only real zeros and with
deg(g) = deg( f ) − 1. Let α1 � · · · � αd be the roots of f , and let β1 � · · · � βd−1
be the roots of g. We say that g interlaces f if αi � βi � αi+1 for all i = 1, . . . , d−1.
If all these inequalities are strict, we say that g strictly interlaces f .

If f ∈ R[x] is hyperbolic with respect to e and g is homogeneous of degree
deg( f ) − 1, we say that g interlaces f with respect to e if g(te + a) interlaces
f (te + a) for every a ∈ R

n . This implies that g is also hyperbolic with respect to e.
We say that g strictly interlaces f if g(te + a) strictly interlaces f (te + a) for a in
a nonempty Zariski-open subset of Rn (Fig. 2).

The most natural example of an interlacing polynomial is the derivative. If f (t) is
a real polynomial with only real roots, then its derivative f ′(t) has only real roots,
which interlace the roots of f . Extending this to multivariate polynomials, we see that
the roots of ∂

∂t f (te + a) interlace those of f (te + a) for all a ∈ R
n . Thus

De f =
n∑

i=1

ei
∂ f

∂xi

interlaces f with respect to e. If f is square-free, then De f strictly interlaces f . This
was already noted by Gårding [6] and has been used extensively, for example in [1]
and [14]; for general information on interlacing polynomials, see also [5] and [13, Ch.
6].

Remark 1.2 If f is square-free and d = deg( f ), then f is hyperbolic with respect to
e if and only if f (te + a) has d distinct real roots for a in a Zariski-open subset of

Fig. 2 Two affine slices of a cubic interlacing a quartic
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R
n . In this case, if g interlaces f and has no common factors with f , then g strictly

interlaces f .

In this paper, we examine the set of polynomials in R[x]d−1 interlacing a fixed
hyperbolic polynomial. The main result is a description of a hyperbolicity coneC( f, e)
as a linear slice of the cone of nonnegative polynomials. Using the cone of sums of
squares instead gives an inner approximation ofC( f, e) by a projection of a spectrahe-
dron. This is closely related to recent results due to Netzer and Sanyal [10] and Parrilo
and Saunderson [11]. We discuss both this theorem and the resulting approximation in
Sect. 3. In Sect. 4 we see that the relaxation we obtain is exact if some power of f has a
definite determinantal representation. A multiaffine example for which our relaxation
is not exact is discussed in Sect. 5. Here we also provide a criterion to test whether or
not a hyperbolic multiaffine polynomial has a definite determinantal representation.
The full cone of interlacers has a nice structure, which we discuss in Sect. 6. First we
need to build up some basic facts about interlacing polynomials.

2 Interlacers

Let f be a homogeneous polynomial of degree d that is hyperbolic with respect to the
point e ∈ R

n . We will always assume that f (e) > 0. Define Int( f, e) to be the set of
real polynomials of degree d − 1 that interlace f with respect to e and are positive
at e:

Int( f, e) = {
g ∈ R[x]d−1 : g interlaces f with respect to e and g(e) > 0

}
.

As noted above, the hyperbolicity cone C( f, e) depends only on f and the connected
component of Rn\VR( f ) containing e. In other words, we have C( f, e) = C( f, a)

for all a ∈ C( f, e). We will see shortly that Int( f, e) does not depend on e either, but
only on C( f, e).

Theorem 2.1 Let f ∈ R[x]d be square-free and hyperbolic with respect to e ∈ R
n,

where f (e) > 0. For h ∈ R[x]d−1, the following are equivalent:

(1) h ∈ Int( f, e);
(2) h ∈ Int( f, a) for all a ∈ C( f, e);
(3) De f · h is nonnegative on VR( f );
(4) De f · h − f · Deh is nonnegative on R

n.

The proof of this theorem and an important corollary are at the end of this section.
First, we need to build up some theory about the forms in Int( f, e).

Lemma 2.2 Suppose f1, f2, and h are real homogeneous polynomials.

(a) The product f1 · f2 is hyperbolic with respect to e if and only if both f1 and f2
are hyperbolic with respect to e. In this case, C( f1 · f2, e) = C( f1, e)∩C( f2, e).

(b) If f1 and f2 are hyperbolic with respect to e, then f1 · h interlaces f1 · f2 if and
only if h interlaces f2.

(c) If h interlaces ( f1)k f2 for k ∈ N, then ( f1)k−1 divides h.
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Fig. 3 Affine slices of two cubics interlacing a quartic

Proof These statements are checked directly after reducing to the one-dimensional
case. 	

Lemma 2.3 For any g and h in Int( f, e), the product g · h is nonnegative on VR( f ).

Proof To prove this statement, it suffices to restrict to any line x = te + a where
a ∈ R

n . Suppose that f (te + a) ∈ R[t] has roots α1 ≤ · · · ≤ αd and g(te + a) and
h(te + a) have roots β1 ≤ · · · ≤ βd−1 and γ1 ≤ · · · ≤ γd−1, respectively. By the
assumption that both g and h interlace f , we know that βi , γi ∈ [αi , αi+1] for all
1 ≤ i ≤ d − 1. Thus, if αi and α j are not also roots of g(te + a) or h(te + a), the
polynomial g(te + a)h(te + a) has an even number of roots in the interval [αi , α j ].
Then the sign of g(αi e + a)h(αi e + a) is the same for all i for which it is not zero.
Because g(e)h(e) > 0, we see that that sign must be nonnegative (Fig. 3). 	


Lemma 2.4 Suppose that f is square-free and that g ∈ Int( f, e) strictly interlaces f .
Then a polynomial h ∈ R[x]d−1 belongs to Int( f, e) if and only if g · h is nonnegative
on VR( f ).

Proof One direction follows from Lemma 2.3. For the other, let h ∈ R[x]d−1 for
which g · h is nonnegative on VR( f ). First, let us consider the case where f and
h have no common factor. Then, for generic a ∈ R

n , the roots of f (te + a) are
distinct from each other and from the roots of g(te + a) and h(te + a). The product
g(te + a)h(te + a) is then positive on all of the roots of f (te + a). Since g(te + a)

changes sign on consecutive roots of f (te + a), we see that h(te + a) must have a
root between each pair of consecutive roots of f (te+ a), and thus h interlaces f with
respect to e.

Now suppose f = f1 · f2 and h = f1 · h1. We will show that h1 interlaces f2, and
thus h interlaces f . Again, we can choose generic a for which the roots of f (te + a)

and g(te+a) are all distinct. Consider two consecutive roots α < β of the polynomial
f2(te + a). Let k be the number of roots of f1(te + a) in the interval (α, β). Because
g strictly interlaces f = f1 · f2, its restriction g(te + a) must have k + 1 roots in the
interval (α, β). Thus the polynomial g(te+a) f1(te+a) has an odd number of roots in
this interval and must therefore have different signs in α and β. Since g · f1 ·h1 ≥ 0 on
V ( f ), the polynomial h1(te + a) must have a root in this interval. Thus h1 interlaces
f2 and h interlaces f . 	
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Fig. 4 Non-crossing arcs of
Lemma 2.6

a e

x

V (f)

Example 2.5 In the above lemma, it is indeed necessary that f and g be without
common factors. For example, consider f = (x2 + y2 − z2)(x − 2z) and g =
(x2 + y2 − z2). Both f and g are hyperbolic with respect to [0 : 0 : 1] and g interlaces
f with respect to this point. However if h = y(x − 2z), then g · h vanishes identically
on VR( f ) but h does not interlace f .

For a ∈ C( f, e), the derivative Da f obviously interlaces f with respect to a, since
f is hyperbolic with respect to a. We need to show that Da f also interlaces f with
respect to e.

Lemma 2.6 For a ∈ C( f, e), the polynomial De f · Da f is nonnegative on VR( f ).

Proof For any b ∈ C( f, e) and x ∈ VR( f ), let α1(b, x) ≤ · · · ≤ αd(b, x) denote
the roots of f (tb + x). Because C( f, e) is convex, the line segment joining e and
a belongs to this cone. As we vary b from e to a along this line segment, the roots
{αi (b, x)b + x}i∈[d], form d non-crossing arcs in the plane x + span{e, a}, as shown
in Fig. 4. Since f (x) = 0, one of these arcs is just the point x . That is, there is some
k for which αk(b, x) = 0 for all b in the convex hull of e and a.

Now f (e) > 0 implies f (b) > 0 for all b ∈ C( f, e). Thus ∂
∂t f (tb + x) is positive

for t > αd(b, x). Furthermore, the sign of this derivative on the i th root, αi (b, x)
depends only on i . Specifically, for all i = 1, . . . , d,

(−1)d−i · Db f (αi (b, x)b + x) ≥ 0.

In particular, the sign of Db f on the kth root, αk(b, x)b + x = x , is constant:

(−1)d−k Db f (x) ≥ 0.

Then, regardless of k, the product De f (x)Da f (x) is non-negative. 	


Now we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1 (4 ⇒ 3) Clear.
(1 ⇔ 3) If f is square free, then De f strictly interlaces f . This equivalence then

follows from Lemma 2.4.
(1, 3 ⇒ 4) Here we need a useful fact about Wronskians. The Wronskian of two

univariate polynomials p(t), q(t) is the polynomial

W (p, q) = p · q ′ − p′ · q = q2 ·
(
p

q

)′
.

It is a classical fact that if the roots of p and q are all distinct and interlace, then
W (p, q) is a nonnegative or nonpositive polynomial [20, §2.3]. Thus if h ∈ Int( f, e)
is coprime to f , then for generic x , the roots of f (te+ x) and h(te+ x) interlace and
are all distinct. Thus their Wronskian h(te + x) f ′(te + x) − h′(te + x) f (te + x) is
either nonnegative or nonpositive for all t . By (3), the product h(te+ x) f ′(te+ x) is
nonnegative on the zeroes of f , so we see that the Wronskian is nonnegative. Setting
t = 0 gives us that h · De f − Deh · f is nonnegative for all x ∈ R

n , as desired.
If f and h share a factor, say f = f1 · f2, h = f1 · h1, we can use the identity
W ( f1 · f2, f1 · h1) = f 2

1 W ( f2, h1) to reduce to the coprime case.
(2 ⇔ 1) Because f is square free, both De f and Da f share no factors with f .

Thus De f strictly interlaces f with respect to e and Da f strictly interlaces f with
respect to a.

Suppose h interlaces f with respect to a and h(a) > 0. By Lemma 2.4, h · Da f is
nonnegative on VR( f ). Using Lemma 2.6, we see that De f · Da f is also nonnegative
on VR( f ). Taking the product, it follows that (Da f )2 · De f · h is nonnegative on
VR( f ). Because Da f and f have no common factors, we can conclude that De f · h
is nonnegative on VR( f ). Using Lemma 2.4 again, we have h ∈ Int( f, e). Switching
the roles of a and e in this argument gives the reverse implication. 	

Corollary 2.7 The set Int( f, e) is a closed convex cone. If f is square-free, this cone
is linearly isomorphic to a section of the cone of nonnegative polynomials of degree
2 deg( f ) − 2:

Int( f, e) = {h ∈ R[x]deg( f )−1 : De f · h − f · Deh ≥ 0 on Rn}. (2.1)

If f = f1 · f2 where V( f ) = V( f2) and f2 is square-free, then

Int( f, e) = f1 · Int( f2, e)

and is isomorphic to a section of the cone of nonnegative polynomials of degree
2 deg( f2) − 2.

Proof For square-free f , the description (2.1) follows directly from Theorem 2.1. The
map

h �→ De f · h − f · Deh

123



230 M. Kummer et al.

is a linear map from R[x]deg( f )−1 to R[x](2 deg( f )−2). We see that Int( f, e) is the
preimage of the cone of nonnegative polynomials in R[x](2 deg( f )−2) under this map.
We can also check that this map is injective. Because f is square free, De f and f are
coprime. Hence if f were to divide De f · h, then f would have to divide h, which it
cannot. Thus De f · h − f · Deh cannot be identically zero.

If f is not square-free, then f factors as f1 · f2 as above. By Lemma 2.2(c), any
polynomial that interlaces f must be divisible by f1. By part (b), the remainder must
interlace f2. Thus Int( f, e) ⊆ f1 · Int( f2, e). Similarly, if h interlaces f2, then f1 · h
interlaces f = f1 · f2. Thus Int( f, e) is the image of the convex cone Int( f2, e) under
a linear map, namely multiplication by f1. This shows that it is linearly isomorphic to
a section of the cone of nonnegative polynomials of degree 2 deg( f2) − 2. 	


3 Hyperbolicity cones and nonnegative polynomials

An interesting consequence of the results in the preceding section is that we can
recover the hyperbolicity cone C( f, e) as a linear section of Int( f, e), and thus as a
linear section of the cone of nonnegative polynomials. We show this by considering
which partial derivatives Da( f ) interlace f . Using Theorem 2.1, we often have to
deal with the polynomials

�e,a f = De f · Da f − f · DeDa f.

Notice that �e,a f is homogeneous of degree 2d − 2, symmetric in e and a, and linear
in each.

Theorem 3.1 Let f ∈ R[x]d be square-free and hyperbolic with respect to the point
e ∈ R

n. The intersection of Int( f, e) with the plane spanned by the partial derivatives
of f is the image of C( f, e) under the linear map a �→ Da f . That is,

C( f, e) = {a ∈ R
n : Da f ∈ Int( f, e)}. (3.1)

Furthermore, C( f, e) is a section of the cone of nonnegative polynomials of degree
2d − 2:

C( f, e) = {a ∈ R
n : �e,a f ≥ 0 on R

n}. (3.2)

Proof Let C be the set on the right hand side of (3.1). From Theorem 2.1, we see
that Da f interlaces f with respect to e for all a ∈ C( f, e). This shows C( f, e) ⊂ C
and hence the inclusion C( f, e) ⊂ C , since C is closed. If this inclusion were strict,
there would exist a point a ∈ C\C( f, e) with f (a) �= 0, since C is also a convex
cone by Corollary 2.7. Thus to show the reverse inclusion, it therefore suffices to show
that for any point a outside of C( f, e) with f (a) �= 0, the polynomial Da f does
not belong to Int( f, e). If a belongs to −C( f, e), then −Da f belongs to Int( f, e). In
particular, −Da f (e) > 0 and Da f does not belong to Int( f, e). Thus we may assume
a /∈ C( f, e) ∪ −C( f, e). Since f is hyperbolic with respect to e, all of the roots

123



Hyperbolic polynomials 231

Fig. 5 For a outside of the
hyperbolicity cone, Da f does
not interlace f

a

e

Daf

α1 ≤ · · · ≤ αd of f (te + a) are real. The reciprocals of these roots, 1/α1, . . . 1/αd ,
are roots of the polynomial f (e + ta).

Because a is not in C( f, e) ∪ −C( f, e), there is some 1 ≤ i < n for which
αi < 0 < αi+1. Since f (e) �= 0 and f (a) �= 0, we can take reciprocals to find the
roots of f (e + ta):

1

αi
≤ 1

αi−1
≤ · · · ≤ 1

α1
< 0 <

1

αd
≤ 1

αd−1
≤ · · · ≤ 1

αi+1
.

By Rolle’s Theorem, the roots of ∂
∂t f (e + ta) interlace those of f (e + ta). Note

that the polynomial ∂
∂t f (e+ ta) is precisely Da f (e+ ta), so the roots of Da f (e+ ta)

interlace those of f (e + ta). In particular, there is some root β of Da f (e + ta) in
the open interval (1/α1, 1/αd), and thus 1/β �∈ [α1, αd ] is a zero of Da f (te + a).
Therefore Da f (te + a) has only d − 2 roots in the interval [α1, αd ] and thus cannot
interlace f with respect to e (Fig. 5).

Combining this with Theorem 2.1 shows the equality in (3.2). 	


Corollary 3.2 Relaxing nonnegativity to sums-of-squares in (3.2) gives an inner
approximation to the hyperbolicity cone of f :

{a ∈ R
n : �e,a f is a sum of squares} ⊆ C( f, e). (3.3)

If the relaxation (3.3) is exact, then the hyperbolicity cone is a projection of a
spectrahedron, namely of a section of the cone of positive semidefinite matrices in
SymN (R), where N = (n+d−2

n−1

) = dim R[x]d−1. A polynomial F is a sum of squares
if and only if there exists a positive semidefinite matrix G such that F = vT Gv, where
v is the vector of monomials of degree at most deg(F)/2. We call such a matrix G a
Gram matrix of F . The linear equations giving the Gram matrices of �e,a f give the
desired section of SymN (R).

If the relaxation (3.3) is not exact, one can allow for denominators in the sums
of squares and successively improve the relaxation. More precisely, for any integer
N � 0 consider
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232 M. Kummer et al.

CN =
⎧
⎨

⎩
a ∈ R

n :
(

n∑

i=1

x2
i

)N

· �e,a f is a sum of squares

⎫
⎬

⎭
⊆ C( f, e). (3.4)

As above, CN is seen to be a projection of a spectrahedron. Furthermore, by a result
of Reznick in [15], for any positive definite form F ∈ R[x] there exists some positive
integer N such that (

∑n
i=1 x

2
i )

N · F is a sum of squares. Thus if VR( f ) is smooth,
then {�e,a f | a ∈ R

n} contains a strictly positive polynomial, for example �e,e f . It
follows that the hyperbolicity cone C( f, e) is the closure of the union of all the cones
CN .

Remark 3.3 In a recent paper [10], Netzer and Sanyal showed that the hyperbolicity
cone of a hyperbolic polynomial without real singularities is the projection of a spec-
trahedron. Their proof uses general results on projected spectrahedra due to Helton
and Nie and is not fully constructive. In particular, it does not imply anything about
equality in (3.3) or (3.4).

Explicit representations of hyperbolicity cones as projected spectrahedra have
recently been obtained by Parrilo and Saunderson in [11] for elementary symmet-
ric polynomials and for directional derivatives of polynomials possessing a definite
determinantal representation.

Remark 3.4 We also have the relaxation

{a ∈ R
n : De f · Da f is a sum of squares modulo ( f )} ⊆ C( f, e). (3.5)

It is unclear whether or not this relaxation is always equal to (3.3). Its exactness would
also show C( f, e) to be the projection of a spectrahedron. We will see below that if f
has a definite determinantal representation, then we get equality in (3.3) and (3.5).

Example 3.5 Consider the quadratic form f (x) = x2
1 − x2

2 − · · · − x2
n , which is

hyperbolic with respect to the point e = (1, 0, . . . , 0). The hyperbolicity cone C( f, e)
is known as the Lorentz cone. In this example, the relaxation (3.3) is exact. To see
this, note that

�e,a f = (2x1)

⎛

⎝2a1x1 −
∑

j �=1

2a j x j

⎞

⎠ −
⎛

⎝x2
1 −

∑

j �=1

x2
j

⎞

⎠ (2a1)

= 2

⎛

⎝a1x
2
1 − 2

∑

j �=1

a j x1x j +
∑

j �=1

a1x
2
j

⎞

⎠ .

Since every nonnegative quadratic form is a sum of squares, there is equality in
(3.3). In fact, taking the Gram matrix of 1

2�e,a f , we recover the Lorentz cone as

C( f, e) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a ∈ R
n :

⎛

⎜
⎜
⎜
⎝

a1 −a2 . . . −an
−a2 a1 0

...
. . .

...

−an 0 . . . a1

⎞

⎟
⎟
⎟
⎠

� 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.
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Hyperbolic polynomials 233

Note also that this Gram matrix gives a definite determinantal representation of
an−2

1 f (a).

Example 3.6 Consider the hyperbolic cubic polynomial

f = (x − y)(x + y)(x + 2y) − xz2,

with e = [1 : 0 : 0]. Here the polynomial �e,a f has degree four in x, y, z. In this
case, the relaxation (3.3) is exact, as shown in Corollary 4.5 below. (One can also see
exactness from the fact that every nonnegative ternary quartic is a sum of squares).
Using the basis (x2, y2, z2, xy, xz, yz) of R[x, y, z]2, we can then write the cone
C( f, e) as the set of (a, b, c) in R

3 for which there exists (g1, . . . , g6) ∈ R
6 to make

the real symmetric matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3a + 2b g1 g2 4a − 2b −2c g3
g1 9a + 2b g4 4a − 8b g5 −2c
g2 g4 a g6 0 0

4a − 2b 4a − 8b g6 8a − 20b − 2g1 −2c − g3 −g5
−2c g5 0 −2c − g3 2b − 2g2 −2a − g6
g3 −2c 0 −g5 −2a − g6 2a + 6b − 2g4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

positive semidefinite.

The sums of squares relaxation (3.3) is not always exact. A counterexample comes
from a multilinear hyperbolic polynomial and will be discussed in Example 5.11.

4 Definite symmetric determinants

We consider det(X) as a polynomial in R[Xi j : i ≤ j ∈ [d]], where X = (Xi j ) is a
symmetric matrix of variables. Since all eigenvalues of a real symmetric matrix are
real, this polynomial is hyperbolic with respect to the identity matrix. The hyperbolicity
cone C(det(X), I ) is the cone of positive definite matrices. Hence, for any positive
semidefinite matrix E �= 0, the polynomial

DE (det(X)) = tr
(
E · X adj

)
(4.1)

interlaces det(X), where X adj denotes the adjugate matrix, whose entries are the signed
(d−1)×(d−1)-minors of X . This holds true when we restrict to linear subspaces. For
real symmetric d × d matrices M1, . . . , Mn and variables x = (x1, . . . , xn), denote

M(x) =
n∑

j=1

x j M j .

If M(e) is positive definite for some e ∈ R
n , then the polynomial det(M(x)) is

hyperbolic with respect to the point e.
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Proposition 4.1 If M is a real symmetricmatrix of linear forms such that M(e) � 0 for
some e ∈ R

n, then for any positive semidefinite matrix E, the polynomial tr
(
E · Madj

)

interlaces det(M) with respect to e.

Proof By the discussion above, the polynomial DE (det(X)) = tr
(
E · X adj

)
inter-

laces det(X) with respect to E . (In fact these are all of the interlacers of det(X).
See Example 6.2 below.) By Theorem 2.1, tr

(
E · X adj

)
interlaces det(X) with respect

to any positive definite matrix, in particular M(e). Restricting to the linear space
{M(x) : x ∈ R

n} shows that tr
(
E · Madj

)
interlaces det(M) with respect to e. 	


Theorem 4.2 If f ∈ R[x]d has a definite symmetric determinantal representation
f = det(M) with M(e) � 0 and M(a) � 0, then �e,a f is a sum of squares. In
particular, there is equality in (3.3).

Proof Because M(e) and M(a) are positive semidefinite, we can write them as sums
of rank-one matrices: M(e) = ∑

i λiλ
T
i and M(a) = ∑

j μ jμ
T
j , where λi , μ j ∈ R

d .

Then De f = 〈M(e), Madj〉 = 〈∑i λiλ
T
i , Madj〉 = ∑

i λ
T
i M

adjλi , so

De f =
∑

i

λT
i M

adjλi and, similarly, Da f =
∑

j

μT
j M

adjμ j .

Furthermore, by Proposition 4.6 below, the second derivative DaDb f is

DeDa f = De

⎛

⎝
∑

j

μT
j M

adjμ j

⎞

⎠ =
∑

i, j

ui j where ui j =

∣
∣
∣
∣
∣
∣
∣

M λi μ j

λT
i 0 0

μT
j 0 0

∣
∣
∣
∣
∣
∣
∣

.

Now, again using Proposition 4.6, we see that �e,a f equals

∑

i, j

(

(λT
i M

adjλi )(μ
T
j M

adjμ j ) − det(M) · ui j
)

=
∑

i, j

(λT
i M

adjμ j )
2, (4.2)

which is the desired sum of squares. 	

In fact, something stronger is true. We can also consider the case where some

power of f has a definite determinantal representation. This is particularly interesting
because taking powers of a hyperbolic polynomial does not change the hyperbolicity
cone.

Corollary 4.3 If f ∈ R[x]d and a power f r has a definite symmetric determinantal
representation f r = det(M)with M(e), M(a) � 0, then�e,a( f ) is a sum of squares.
In particular, there is equality in (3.3).

Proof Let f r have a definite determinantal representation. We have �e,a( f r ) =
r f 2(r−1)�e,a f. Theorem 4.2 states that �e,a( f r ) is a sum of squares,

g2
1 + · · · + g2

s = r f 2(r−1)�e,a f
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for some gi ∈ R[x]. Let p be an irreducible factor of f 2(r−1). Then p is hyperbolic
with respect to e and the right hand side vanishes onVC(p). Therefore, each gi vanishes
on VR(p) and thus on VC(p), since VR(p) is Zariski dense in VC(p). Thus we can
divide the gi by p. By iterating this argument, we get the claim. 	

Remark 4.4 This result is closely related to (but does not seem to follow from) [9,
Thm. 1.6], which says that the parametrized Hermite matrix of f is a sum of matrix
squares whenever a power of f possesses a definite determinantal representation.

Corollary 4.5 If f ∈ R[x1, x2, x3], then there is equality in (3.3).

Proof By the Helton-Vinnikov Theorem [8], every hyperbolic polynomial in three
variables has a definite determinantal representation. The claim then follows from
Theorem 4.2. 	

The following determinantal identities were needed in the proof of Theorem 4.2 above.

Proposition 4.6 Let X be a d × d matrix of variables Xi j and let | · | denote det(·).
Then for any vectors α, β, γ, δ ∈ C

d we have

∣
∣
∣
∣
X β

αT 0

∣
∣
∣
∣ ·

∣
∣
∣
∣
X δ

γ T 0

∣
∣
∣
∣ −

∣
∣
∣
∣
X δ

αT 0

∣
∣
∣
∣ ·

∣
∣
∣
∣
X β

γ T 0

∣
∣
∣
∣ = |X | ·

∣
∣
∣
∣
∣
∣

X β δ

αT 0 0
γ T 0 0

∣
∣
∣
∣
∣
∣

(4.3)

in C[Xi j : 1 ≤ i, j ≤ d]. Furthermore,

DβαT |X | =
∣
∣
∣
∣
X β

αT 0

∣
∣
∣
∣ and Dδγ T DβαT |X | =

∣
∣
∣
∣
∣
∣

X β δ

αT 0 0
γ T 0 0

∣
∣
∣
∣
∣
∣
.

Proof We will prove the first identity using Schur complements. See, for example,

[3, §1]. If A is a m × m submatrix of the n × n matrix
(
A C
B D

)
, then its determinant

equals |A| · |D − BA−1C |. If D is the zero matrix, this simplifies to

∣
∣
∣
∣
A C
B 0

∣
∣
∣
∣ = |A| ·

∣
∣
∣
∣
−1

|A| · BAadjC

∣
∣
∣
∣ = |A| ·

(−1

|A|
)n−m

· |BAadjC |.

To obtain the desired identity, we set A = X, B =
(

αT

γ T

)

, and C = (
β δ

)
:

∣
∣
∣
∣
∣
∣

X β δ

αT 0 0
γ T 0 0

∣
∣
∣
∣
∣
∣
= |X | ·

(−1

|X |
)2

·
∣
∣
∣
∣

(
αT

γ T

)

X adj (β δ
)
∣
∣
∣
∣

= 1

|X | ·
∣
∣
∣
∣
αT X adjβ αT X adjδ

γ T X adjβ γ T X adjδ

∣
∣
∣
∣ .

123



236 M. Kummer et al.

Multiplying both sides by det(X) finishes the proof of the determinantal identity.
For the claim about derivatives of the determinant, by additivity, we only need

to look at the case when α, β, γ, δ are unit vectors, ei , e j , ek, el , respectively. Then
DβαT |X | = Dej eTi

|X | is the derivative of |X | with respect to the entry X ji . This is
the signed minor of X obtained by removing the j th row and i th column, which is

precisely the determinant

∣
∣
∣
∣
X e j
eTi 0

∣
∣
∣
∣. Taking the derivative of this determinant with respect

to Xlk the same way gives

∂2|X |
∂X ji∂Xlk

= DeleTk
De j eTi

|X | = DeleTk

∣
∣
∣
∣
X e j
eTi 0

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣

X e j el
eTi 0 0

eTk 0 0

∣
∣
∣
∣
∣
∣
∣
.

	

We conclude this section with a general result inspired by Dixon’s construction

of determinantal representations of plane curves, which will be applied in the next
section. If f ∈ R[x]d has a definite determinantal representation, f = det(M) with
M(e) � 0, then Madj is a d × d matrix with entries of degree d − 1. This matrix
has rank at most one on V( f ), as seen by the identity M · Madj = det(M) · I . By
Proposition 4.1, the top left entry Madj

11 interlaces f with respect to e. In fact, these
properties of Madj are enough to reconstruct a definite determinantal representation
M .

Theorem 4.7 Let A = (ai j ) be a symmetric d × d matrix of real forms of degree
d − 1. Suppose that f ∈ R[x]d is irreducible and hyperbolic with respect to e ∈ R

n.
If A has rank one modulo ( f ), then f d−2 divides the entries of Aadj and the matrix
M = (1/ f d−2)Aadj has linear entries. Furthermore there exists γ ∈ R such that

det(M) = γ f.

If a11 interlaces f with respect to e and A has full rank, then γ �= 0 and M(e) is
definite.

Proof By assumption, f divides all the 2×2 minors of A. Therefore, f d−2 divides all
of the (d − 1) × (d − 1) minors of A and thus all of the entries of the adjugate matrix
Aadj, see [12, Lemma 4.7]. We can then consider the matrix M = (1/ f d−2) · Aadj. By
similar arguments, f d−1 divides det(A). Because these both have degree d(d − 1),
we conclude that det(A) = λ f d−1 for some λ ∈ R. Putting all of this together, we
find that

det(M) = 1

f d(d−2)
· det(Aadj) = 1

f d(d−2)
det(A)d−1 = λd−1 f,

so we can take γ = λd−1. Now, suppose that a11 interlaces f and that γ = λ = 0.
Then det(A) is identically zero. In particular, the determinant of A(e) is zero, there is
some nonzero vector v ∈ R

d in its kernel, and vT A(e)v is also zero.
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We will show that the polynomial vT Av is not identically zero and that it interlaces
f with respect to e. This will contradict the conclusion that vT A(e)v = 0. Because A
has rank one on V( f ), for each i = 1, . . . , d we have that

(eTi Aei )(v
T Av) − (eTi Av)2 = 0 modulo ( f ). (4.4)

If vT Av is identically zero, then eTi Av vanishes on V( f ). Since eTi Av only has degree
d − 1, it must vanish identically as well. As this holds for each i , this implies that Av

is zero, which contradicts our assumption. Thus vT Av cannot be identically zero.
Furthermore, (4.4) shows that a11 · (vT Av) is nonnegative on VR( f ). Then

Lemma 2.4 shows that vT Av interlaces f with respect to e. In particular, vT Av cannot
vanish at the point e. Thus the determinant of A and hence M cannot be identically
zero.

Thus M is a determinantal representation of f . To show that M(e) is definite, it
suffices to show that A(e) is definite. For any vector v ∈ R

d , we see from (4.4) with
i = 1 that a11v

T Av is nonnegative on VR( f ). Thus a11(e) ·vT Av belongs to Int( f, e)
by Lemma 2.4 and in particular a11(e) · vT A(e)v is positive for all v ∈ R

d . Hence the
matrix A(e) is definite. 	


5 Multiaffine polynomials

An interesting special case of a hyperbolic polynomial is a multiaffine polynomial
whose hyperbolicity cone contains the positive orthant. These polynomials are deeply
connected to the theory of matroids [2,4,21].

Definition 5.1 A polynomial f ∈ R[x] is called affine in xi if the degree of f in xi
is at most one. If f is affine in each variable x1, . . . , xn , then f is called multiaffine.

Much of the literature on these polynomials deals with complex polynomials, rather
than real polynomials, and the property of stability in place of hyperbolicity.

Definition 5.2 A polynomial f ∈ C[x] is called stable if f (μ) is non-zero whenever
the imaginary part of each coordinate μi is positive for all 1 ≤ i ≤ n.

A real homogeneous polynomial f ∈ R[x] is stable if and only if f is hyperbolic
with respect to every point in the positive orthant. After a linear change of variables,
every hyperbolic polynomial is stable. In 2004, Choe et al. [4] showed that if f ∈
R[x]d is stable, homogeneous, and multiaffine, then its support (the collection of
I ⊂ {1, . . . , n} for which the monomial

∏
i∈I xi appears in f ) is the set of bases of a

matroid. They further show that any representablematroid is the support of some stable
multiaffine polynomial. In 2010, Brändén [2] used this deep connection to disprove
the generalized Lax conjecture by showing that the bases-generating polynomial of
the Vámos matroid (see Example 5.11) is hyperbolic but none of its powers has a
determinantal representation. This example will also provide a counterexample to
equality in our relaxation (3.3).

The Wronskian polynomials �e,a f also played a large part in the study of mul-
tiaffine stable polynomials. They are particularly useful when the points e and a are
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unit vectors. In this case, we will simplify our notation and write

�i j ( f ) := �ei ,e j ( f ) = ∂ f

∂xi
· ∂ f

∂x j
− f · ∂2 f

∂xi∂x j
.

Using these polynomials, Brändén [1] established a necessary and sufficient condition
for multiaffine polynomials to be stable.

Theorem 5.3 ([1], Theorem 5.6) For multiaffine f ∈ R[x], the following are equiv-
alent:

(1) �i j f is nonnegative on R
n for all 1 ≤ i, j ≤ n,

(2) f is stable.

Brändén also notes that the implication (2)⇒(1) holds for polynomials that are
not multiaffine, giving an alternative proof of a part of Theorem 2.1 above. The other
implication however, does not hold in general, as the following example shows.

Example 5.4 Let h = x2
1 +x2

2 , q = x1 +x2 and N ∈ N. Clearly qNh is not hyperbolic
with respect to any e ∈ R

2, but for all i, j ∈ {1, 2} we have

�i j (q
Nh) = q2N�i j h + Nq2N−2h2�i j q

= q2N−2(q2�i j h + Nh2).

Now let z ∈ R be the minimal value that q2�i j h takes on the unit sphere and let
N > |z|. Then, since �i j (qNh) is homogeneous, we see that �i j (qNh) is nonnegative
on R

2. Because �i j (qNh) is a homogeneous polynomial in two variables, it is even
a sum of squares. Thus �ab(qNh) is a sum of squares for all a, b in the positive
orthant. This also shows that the converse of Corollary 4.3 is not true, i.e. there is
some polynomial f such that �e,a f is a sum of squares for all e, a in some full
dimensional cone, but no power of f has a definite determinantal representation.

In an analogous statement, the polynomials �i j can also be used to determine
whether or not a homogeneous multiaffine stable polynomial has a definite determi-
nantal representation.

Theorem 5.5 Let f ∈ R[x]d be homogeneous and stable. Suppose f is affine in
the variables x1, . . . , xd and the coefficient of x1 · · · xd in f is non-zero. Then the
following are equivalent:

(1) �i j f is a square in R[x] for all 1 ≤ i, j ≤ d;

(2) ∂ f
∂xi

· ∂ f
∂x j

is a square in R[x]/( f ) for all 1 ≤ i, j ≤ d;

(3) f has a definite determinantal representation.

Lemma 5.6 Let f ∈ R[x] be affine in xi and x j for some i, j ∈ {1, . . . , n}. If f = g ·h
with g, h ∈ R[x], then �i j f is a square if and only if �i j g and �i j h are squares.

Proof Suppose �i j f is a square. Since f is affine in xi , x j , both g and h are affine
in xi , x j and either ∂g

∂xi
= 0 or ∂h

∂xi
= 0. It follows that either �i j g = 0 or �i j h = 0.
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Using the identity �i j f = g2�i j h + h2�i j g, we see that either �i j g = 0 or �i j g =
(�i j f )/h2. In both cases �i j g is a square. The same holds true for �i j h. For the
converse, suppose that �i j g and �i j h are squares. As we saw above, one of them is
zero. Thus �i j f = h2�i j g or �i j f = g2�i j h. 	

Proof of Theorem 5.5 (1 ⇒ 2) Clear.

(2 ⇒ 3) For a start, suppose that f is irreducible. We will construct a matrix A
satisfying the hypotheses of Theorem 4.7. For every i ≤ j , the polynomial ∂ f

∂xi
· ∂ f

∂x j
is

equivalent to a square a2
i j modulo ( f ). In the case i = j we can choose aii = ∂ f

∂xi
. Then

it is easy to check that a11aii equals a2
1i modulo ( f ). Further, for every 2 ≤ i < j ≤ d,

the polynomials (a11ai j )2 and (a1i a1 j )
2 are equivalent modulo f . After changing the

sign of ai j if necessary, we see that a11ai j equals a1i a1 j modulo ( f ). Because f is
irreducible, it follows that the symmetric matrix A = (ai j )i j has rank one on V( f ).

We now need to show that A has full rank. For each k = 1, . . . , d, consider the point
pk = ∑

j∈[d]\{k} e j , which lies in the real variety of f . For j �= k, we see that ∂ f/∂x j
vanishes at pk , and therefore so must akj . On the other hand, akk(pk) = ∂ f/∂xk(pk)
equals the nonzero coefficient of x1 · · · xd in f . Now suppose that Av = 0 for some
v ∈ R

d . The kth row of this is
∑

j v j ak j = 0. Plugging in the point pk then shows
that vk must be zero, and thus v is the zero vector. Since f is stable, a11 = ∂ f/∂x1
interlaces it, and so by Theorem 4.7, f has a definite determinantal representation.

If f is reducible and g is an irreducible factor of f , then, by Lemma 5.6, �i j g is a
square. Since every irreducible factor of f has a definite determinantal representation,
so has f .

(3 ⇒ 1) Let f = det(M) = det(
∑

i xi Mi ) where M1, . . . , Mn are real symmet-
ric d × d matrices where

∑
i Mi � 0. Because f is affine in each of the variables

x1, . . . , xd , the matrices M1, . . . , Md must have rank one. Furthermore, since f is
stable, these rank-one matrices must be positive semidefinite (see [2], proof of Theo-
rem 2.2). Thus we can write Mi = viv

T
i , with vi ∈ R

d for each 1 ≤ i ≤ d. Then by
(4.2) and Proposition 4.6, we have �i j f = (vTi M

adjv j )
2 for 1 ≤ i, j ≤ d. 	


Corollary 5.7 Let f ∈ R[x] be homogeneous, stable and multiaffine. Then the fol-
lowing are equivalent:

(1) �i j f is a square for all 1 ≤ i, j ≤ n;

(2) ∂ f
∂xi

· ∂ f
∂x j

is a square in R[x]/( f ) for all 1 ≤ i, j ≤ n;

(3) f has a definite determinantal representation.

Proof This is an immediate consequence of the preceding theorem. 	

Corollary 5.8 Let 1 ≤ k ≤ n and let f ∈ R[x] be a multiaffine stable polynomial. If
f has a definite determinantal representation, then ∂ f

∂xk
and f |xk=0 also have a definite

determinantal representation.

Proof Let 1 ≤ k, i, j ≤ n, g = ∂ f
∂xk

and h = f |xk=0. Wagner and Wei [21] calculated

�i j f = x2
k · �i j g + xk · p + �i j h,
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where p, g, h ∈ R[x1, . . . , xn] do not depend on xk . Since �i j f is a square, �i j g and
�i j h are squares as well. Thus g and h have a definite determinantal representation.

	

Corollary 5.9 Let f = g ·h, where f, g, h ∈ R[x] are multiaffine stable polynomials.
Then f has a definite determinantal representation if and only if both g and h do.

Proof This follows directly from Lemma 5.6 and Theorem 5.5. 	

Example 5.10 [Elementary Symmetric Polynomials] Let ed ∈ R[x] be the elementary
symmetric polynomial of degree d. We have �i j e1 = 1,�i j en = 0 and �i j en−1 =
(x1 . . . xn/xi x j )2 for all 1 ≤ i < j ≤ n. It is a classical result that these are the only
cases where ed has a definite determinantal representation [16]. Indeed, for n ≥ 4 and
2 ≤ d ≤ n − 2 the coefficients of the monomials (x3x5 · · · xd+2)

2, (x4x5 · · · xd+2)
2

and x3x4(x5 · · · xd+2)
2 in �12ed are all 1. Specializing to x j = 1 for j ≥ 5 then shows

that �12 f is not a square.

Example 5.11 [The Vámos Polynomial] The relaxations (3.3) and (3.5) are not
always exact. An example of this comes from the multiaffine quartic polynomial in
R[x1, . . . , x8]4 given as the bases-generating polynomial of the Vámos matroid:

h(x1, . . . , x8) =
∑

I⊂([8]
4 )\C

∏

i∈I
xi ,

where C = {{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 7, 8}, {3, 4, 5, 6}, {3, 4, 7, 8}}. Wagner and
Wei [21] have shown that the polynomial h is stable, using an improved version of
Theorem 5.3 and representing �13h as a sum of squares. But it turns out that �78h is
not a sum of squares. Because the cone of sums of squares is closed, it follows that for
some a, e in the hyperbolicity cone of h, the polynomial Deh · Dah − h · DeDah is
not a sum of squares. In order to show that �78h is not a sum of squares, it suffices to
restrict to the subspace {x = x1 = x2, y = x3 = x4, z = x5 = x6} and show that the
resulting polynomial W = (1/4)�78h(x, x, y, y, z, z, w,w) is not a sum of squares.
This restriction is given by

W = x4y2 + 2x3y3 + x2y4 + x4yz + 5x3y2z + 6x2y3z + 2xy4z + x4z2 + 5x3yz2

+10x2y2z2 + 6xy3z2 + y4z2 + 2x3z3 + 6x2yz3 + 6xy2z3 + 2y3z3 + x2z4

+2xyz4 + y2z4.

This polynomial vanishes at six points in P
2(R),

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : −1 : 0], [1 : 0 : −1], and [0 : 1 : −1].
Thus if W is written as a sum of squares

∑
k h

2
k , then each hk must vanish at each of

these six points. The subspace of R[x, y, z]3 of cubics vanishing in these six points is
four dimensional and spanned by v = {x2y + xy2, x2z + xz2, y2z + yz2, xyz}. Then
W is a sum of squares if and only if there exists a positive semidefinite 4 × 4 matrix
G such that W = vT Gv. However, the resulting linear equations in the variables
Gi j , 1 ≤ i ≤ j ≤ 4, have the unique solution
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G =

⎛

⎜
⎜
⎝

1 1/2 1 2
1/2 1 1 2
1 1 1 2
2 2 2 5

⎞

⎟
⎟
⎠ .

One can see that G is not positive semidefinite from its determinant, which is −1/4.
Thus W cannot be written as a sum of squares.

This, along with Corollary 4.3, provides another proof that no power of the Vámos
polynomial h(x) has a definite determinantal representation.

The polynomial �78h is also not a sum of squares modulo the ideal (h). To see this,
suppose �78h = ∑

i q
2
i + p · h for some p, qi ∈ R[x] and consider the terms with

largest degree in x7 and x8 in this expression. Writing h = h0 +h1(x7 + x8)+ x7x8h2
where h0, h1, h2 lie in R[x1, . . . , x6], we see that the leading form x7x8h2 is real
radical, meaning that whenever a sum of squares

∑
i g

2
i lies in the ideal (x7x8h2),

this ideal contains each polynomial gi . Since �78h does not involve the variables x7
and x8, we can then reduce the polynomials qi modulo the ideal (h) so that they do
not contain the variables x7, x8. See [19, Lemma 3.4]. Because h does involve the
variable x7 and x8, this results in a representation of �78h as a sum of squares, which
is impossible, as we have just seen.

6 The cone of interlacers and its boundary

Here we investigate the convex cone Int( f, e) of polynomials interlacing f . We com-
pute this cone in two examples coming from optimization and discuss its algebraic
boundary, the minimal polynomial vanishing on the boundary of Int( f, e), when this
cone is full dimensional. For smooth polynomials, this algebraic boundary is irre-
ducible.

If the real variety of a hyperbolic polynomial f is smooth, then the cone Int( f, e)
of interlacers is full dimensional in R[x]d−1. On the other hand, if V( f ) has a real
singular point, then every polynomial that interlaces f must pass through this point.
This has two interesting consequences for the hyperbolic polynomials coming from
linear programming and semidefinite programming.

Example 6.1 Consider f = ∏n
i=1 xi . The singular locus of V( f ) consists of the set of

vectors with two or more zero coordinates. The subspace of polynomials in R[x]n−1
vanishing in these points is spanned by the n polynomials {∏ j �=i x j : i = 1, . . . , n}.
Note that this is exactly the linear space spanned by the partial derivatives of f .
Theorem 3.1 then shows that the cone of interlacers is isomorphic toC( f, e) = (R≥0)

n :

Int
(∏

xi , 1
)

=
⎧
⎨

⎩

n∑

i=1

ai
∏

j �=i

x j : a ∈ (R≥0)
n

⎫
⎬

⎭
∼= (R≥0)

n .

Interestingly, this also happens when we replace the positive orthant by the cone of
positive definite symmetric matrices.
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Example 6.2 Let f = det(X) where X is a d × d symmetric matrix of variables. The
singular locus of V( f ) is the locus of matrices with rank ≤ d − 2. The corresponding
ideal is generated by the (d − 1) × (d − 1) minors of X . Since these have degree
d −1, we see that the polynomials interlacing det(X) must lie in the linear span of the
(d − 1)× (d − 1) minors of X . Again, this is exactly the linear span of the directional
derivatives DE ( f ) = tr(E · X adj). Thus Theorem 3.1 identifies Int( f, e) with the cone
of positive semidefinite matrices:

Int (det(X), I ) =
{

tr(A · X adj) : A ∈ R
d×d
�0

}
∼= R

d×d
�0 .

If VR( f ) is nonsingular, then the cone Int( f, e) is full dimensional and its algebraic
boundary is a hypersurface in R[x]d−1. We see that any polynomial g on the boundary
of Int( f, e) must have a non-transverse intersection point with f . As we see in the
next theorem, this algebraic condition exactly characterizes the algebraic boundary of
Int( f, e).

Theorem 6.3 Let f ∈ R[x]d be hyperbolic with respect to e ∈ R
n and assume that

the projective variety V( f ) is smooth. Then the algebraic boundary of the convex cone
Int( f, e) is the irreducible hypersurface in C[x]d−1 given by

{

g∈C[x]d−1 ∃ p∈P
n−1 such that f (p)=g(p)=0 and rank

(∇ f (p)
∇g(p)

)

≤1

}

.

(6.1)

Proof First, we show that the set (6.1) is irreducible. Consider the incidence variety
X of polynomials g and points p satisfying this condition,

X =
{

(g, p)∈P(C[x]d−1) × P
n−1 : f (p) = g(p)=0 and rank

(∇ f (p)
∇g(p)

)

≤1

}

.

The projection π2 onto the second factor is V( f ) in P
n−1. Note that the fibres of π2 are

linear spaces in P(C[x]d−1) of constant dimension. In particular, all fibres of π2 are
irreducible of the same dimension. Since X and V( f ) are projective and the latter is
irreducible, this implies that X is irreducible (see [17, §I.6, Thm. 8]), so its projection
π1(X) onto the first factor, which is our desired set (6.1), is also irreducible.

If V( f ) is smooth, then by [12, Lemma 2.4], f and De f share no real roots. This
shows that the set of polynomials g ∈ R[x]d−1 for which De f · g is strictly positive
on VR( f ) is nonempty, as it contains De f itself. This set is open and contained in
Int( f, e), so Int( f, e) is full dimensional in R[x]d−1. Thus its algebraic boundary
∂Int( f, e) is a hypersurface in C[x]d−1. To finish the proof, we just need to show that
this hypersurface is contained in (6.1), since the latter is irreducible.

To see this, suppose that g ∈ R[x]d−1 lies in the boundary of Int( f, e). By Theo-
rem 2.1, there is some point p ∈ VR( f ) at which g · De f is zero. As f is nonsingular,
De f (p) cannot be zero, again using [12, Lemma 2.4]. Thus g(p) = 0. Moreover, the
polynomial g · De f − f · Deg is globally nonnegative, so its gradient also vanishes at
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Fig. 6 Two singular hyperbolic quartics with different dimensions of interlacers

the point p. As f (p) = g(p) = 0, this means that De f (p)·∇g(p) = Deg(p)·∇ f (p).
Thus the pair (g, p) belongs to X above. 	


When V( f ) has real singularities, computing the dimension of Int( f, e) becomes
more subtle. In particular, it depends on the type of singularity.

Example 6.4 Consider the two hyperbolic quartic polynomials

f1 =3y4+x4+5x3z+6x2z2−6y2z2 and f2 =(x2+y2+2xz)(x2+y2+3xz),

whose real varieties are shown in Fig. 6 in the plane {z = 1}. Both are hyperbolic with
respect to the point e = [−1 : 0 : 1] and singular at [0 : 0 : 1]. Every polynomial
interlacing either of these must pass through the point [0 : 0 : 1]. However, for a
polynomial g to interlace f2, its partial derivative ∂g/∂y must also vanish at [0 : 0 : 1].
Thus Int( f1, e)has codimension one inR[x, y, z]3 whereas Int( f2, e)has codimension
two.

Theorem 3.1 states that C( f, e) is a linear slice of the cone Int( f, e). By taking
boundaries of these cones, we recover V( f ) as a linear slice of the algebraic boundary
of Int( f, e).

Definition 6.5 We say that a polynomial f ∈ R[x] is cylindrical if there exists an
invertible linear change of coordinates T on R

n such that f (T x) ∈ R[x1, . . . , xn−1].
Corollary 6.6 For non-cylindrical f , the map R

n → R[x]d−1 given by a �→ Da f
is injective and maps the boundary of C( f, e) into the boundary of Int( f, e). If f is
irreducible, this map identifies V( f ) with a component of the Zariski closure of the
boundary of Int( f, e) in the plane spanned by ∂ f/∂x1, . . . , ∂ f/∂xn.

Proof Since f is not cylindrical, the n partial derivatives ∂ f/∂x j are linearly indepen-
dent, so that a �→ Da f is injective. The claim now follows from taking the boundaries
of the cones in (3.1). If f is irreducible, then the Zariski closure of the boundary of
C( f, e) is V( f ). 	

Example 6.7 We take the cubic form f (x, y, z) = (x − y)(x + y)(x + 2y) − xz2,
which is hyperbolic with respect to the point [1 : 0 : 0]. Using the com-
puter algebra system Macaulay 2, we can calculate the minimal polynomial in
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Q[c11, c12, c13, c22, c23, c33] that vanishes on the boundary of the cone Int( f, e). Note
that any conic

q = c11x
2 + c12xy + c13xz + c22y

2 + c23yz + c33z
2

on the boundary of Int( f, e) must have a singular intersection point with V( f ). Satu-
rating with the ideal (x, y, z) and eliminating the variables x, y, z from the ideal

( f, q) + minors2(Jacobian( f, q))

gives an irreducible polynomial of degree twelve in the six coefficients of q. This
hypersurface is the algebraic boundary of Int( f, e). When we restrict to the three-
dimensional subspace given by q = a ∂ f

∂x + b ∂ f
∂y + c ∂ f

∂z , this polynomial of degree
twelve factors as

a · f (a, b, c)·(961a8+5952a7b+11076a6b2−3416a5b3−34770a4b4−31344a3b5

+ 14884a2b6 + 34632ab7 + 13689b8 − 1896a6c2 − 4440a5bc2 + 6984a4b2c2

+ 25728a3b3c2 + 15960a2b4c2 − 7560ab5c2 − 7560b6c2 + 1074a4c4

− 1680a3bc4 − 7116a2b2c4 − 2376ab3c4 + 2106b4c4 + 16a2c6

+ 936abc6 − 27c8).

One might hope that Int( f, e) is also a hyperbolicity cone of some hyperbolic polyno-
mial, but we see that this is not the case. Restricting to c = 0 shows that the polynomial
above, unlike f , is not hyperbolic with respect to [1 : 0 : 0].
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