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Abstract The derivation of multiplier-based optimality conditions for elliptic mathe-
matical programs with equilibrium constraints (MPEC) is essential for the characteri-
zation of solutions and development of numerical methods. Though much can be said
for broad classes of elliptic MPECs in both polyhedric and non-polyhedric settings,
the calculation becomes significantly more complicated when additional constraints
are imposed on the control. In this paper we develop three derivation methods for
constrained MPEC problems: via concepts from variational analysis, via penalization
of the control constraints, and via penalization of the lower-level problem with the
subsequent regularization of the resulting nonsmoothness. The developed methods
and obtained results are then compared and contrasted.
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1 Introduction

In a previous work [10], the first and third authors applied and further developed
certain techniques from convex and nonsmooth analysis to derive first-order optimal-
ity conditions for a class of bilevel optimization problems known as mathematical
programs with equilibrium constraints, or simply MPECs, in function spaces. Such
models are known to arise in many application areas such as mathematical elasticity,
finance, economics, etc. Nevertheless, the techniques were only applicable to a certain
class of MPECs in which the so-called upper-level variables or controls are not subject
to any constraints. In fact, the literature on the derivation of explicit (i.e., multiplier-
based) necessary optimality conditions for MPECs in function spaces with upper-level
constraints is rather scarce; though there are some results available in [9,16,17]. We
thus aim to present several techniques for the derivation of multiplier-based first-order
optimality conditions.

In the literature on optimization problems governed by partial differential equations,
regularization/penalization techniques employed for the derivation of necessary opti-
mality conditions are relatively widespread. Conversely, techniques from set-valued
and variational analysis provide powerful tools for the direct derivation of multiplier-
based optimality conditions. Currently it is unclear as to how these techniques compare
from both the analytical perspective, e.g., the selectivity of the derived conditions and
the generality of their applicability, as well as in terms of numerics, e.g., the develop-
ment of mesh-independent solvers.

In this paper we are mainly concerned with the following class of MPECs:

min J (u, y) := 1

2
||y − yd ||2

L2(Ω)
+ α

2
||u||2

L2(Ω)
over (u, y) ∈ L2(Ω)× H1

0 (Ω)

s.t. u ∈ Uad := {
w ∈ L2(Ω) | a ≤ w ≤ b, almost everywhere (a.e.) inΩ

}
,

Ay + NM (y) � Bu + f.

(1)

Here α > 0, Ω ⊂ R
n with 1 ≤ n ≤ 3 is open and bounded, f ∈ L2(Ω), and

there exists β ∈ R such that b − a ≥ β > 0 a.e. Ω , where a, b ∈ L∞(Ω). For
1 ≤ p ≤ ∞, L p(Ω) represents the standard Lebesgue space. Letting C∞

0 (Ω) be the
space of all infinitely differentiable functions with compact support contained in Ω
and Cm(Ω) the space of all m-times continuously differentiable functions, we define
the Sobolev spaces H1

0 (Ω) and Hm(Ω), 1 ≤ m < ∞, as the completion of C∞
0 (Ω)

and Cm(Ω) under the norm || · ||Hm defined by

||u||Hm =
⎛

⎝
∑

0≤|γ |≤m

||Dγ u||22
⎞

⎠

1/2

, u ∈ Hm(Ω),
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Stationarity for elliptic MPECs 557

where γ represents the standard multi-index, and Dγ := Dγ1
1 · · · Dγn

n with Dγi
j the

γi th-weak (distributional) partial derivative with respect to the j th component. Due to
the Poincaré inequality, we can endow H1

0 (Ω) with the equivalent norm ||u||H1
0 (Ω)

=
||∇u||L2(Ω), where ∇u is the weak gradient of u. We use the symbol H−1(Ω) to
represent the dual of H1

0 (Ω). See [1] for more on these and related spaces.
The bounded linear operator A ∈ L(H1

0 (Ω), H−1(Ω)) is assumed to be coercive,
i.e., we assume that there exists a constant ξ > 0 such that

〈Ay, y〉H−1,H1
0

≥ ξ‖y‖2
H1

0
for all y ∈ H1

0 (Ω)

whereas, unless otherwise stated, B ∈ L(L2(Ω), H−1(Ω)). Finally, we define the
closed and convex subset M ⊂ H1

0 (Ω) by

M :=
{

y ∈ H1
0 (Ω) | y ≥ 0 a.e. Ω

}
. (2)

The operator NM (y) for y ∈ M signifies the classical normal cone of convex analysis
defined by

NM (y) :=
{

y∗ ∈ H−1(Ω)

∣
∣
∣〈y∗, y′ − y〉H−1,H1

0
≤ 0, ∀y′ ∈ M

}
.

Accordingly, we could rewrite the generalized equation in (1) as the variational
inequality

〈Ay − Bu − f, y′ − y〉H−1,H1
0

≥ 0, ∀y′ ∈ M.

In addition, we note that this variational inequality/lower-level problem is directly
related to the classical obstacle problem as can be found in [11,18]. For example, if A is
a second-order differential operator and f = Aψ withψ ∈ H2(Ω),ψ |∂Ω ≤ 0, where
ψ represents the obstacle, then the variational inequality is the first-order necessary
and sufficient conditions for the obstacle problem:

min

{
1

2
〈Ay, y〉H−1,H1

0
− (Bu, y)L2 over y ∈ H1

0 (Ω) : y ≥ ψ, a.e. Ω

}

The remaining notational assumptions are fairly standard, however, for complete-
ness we provide them here for quick reference. We use 〈·, ·〉X∗,X to represent the duality
pairing between a topological vector space X and its dual X∗ and (·, ·)X for the inner

product on X when X is a Hilbert space. The arrows
X→ and

X
⇀ are used to represent,

respectively, strong and weak convergence of sequences in X . All the subscripts are
omitted when it is clear in context. Furthermore, we recall that the contingent cone to
a closed set C ⊂ X of a Banach space X at a point x ∈ C is defined by

TC (x) :=
{

h ∈ X
∣
∣
∣ ∃tk → 0+, ∃hk

X→ h : x + tkhk ∈ C, ∀k
}
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and that in the event C is convex and the space X is reflexive, the aforementioned
normal cone of convex analysis can be defined as the polar (negative dual) cone to
TC (x), i.e.,

NC (x) := [TC (x)]
−
X := {

x∗ ∈ X∗ ∣∣ 〈x∗, h〉X∗,X ≤ 0, ∀h ∈ TC (x)
}
.

Throughout the paper we denote by S : H−1(Ω) → H1
0 (Ω) the mapping defined

by

S(w) :=
{

y ∈ H1
0 (Ω) | Ay + NM (y) � w + f

}
. (3)

S is referred to as the solution mapping associated with the variational inequal-
ity/generalized equation in our original MPEC (1). This mapping can be easily shown
to be single-valued and Lipschitz continuous by utilizing the coercivity of A and the
variational form of the generalized equation in (3); see, e.g., [11] or [4] as well as [10].
Moreover, it is well-known that S is in fact (Hadamard) directionally differentiable at
every w ∈ H−1(Ω), i.e., the limits

S′(w; h) := lim
t→0+

h′ H−1−→h

S(w + th′)− S(w)

t

exist for all h ∈ H−1(Ω).
By definition, if y = S(w), then there exists a v ∈ NM (y) such that v = w+ f −Ay.

Then by defining the classical critical cone from optimization theory:

K(y, v) := TM (y) ∩ {v}⊥, (4)

where

{v}⊥ :=
{

y ∈ H1
0 (Ω)

∣
∣
∣〈v, r〉H−1,H1

0
= 0

}
,

we can directly characterize the graph of S′:

gph S′(w; ·) =
{
(h, d) ∈ H−1(Ω)× H1

0 (Ω)
∣
∣Ad + NK(y,v)(d) � h

}
. (5)

This differentiability result is essentially due to Mignot [12], but it was rederived for
a broader class of problems in [10]. Furthermore, since the operator B is linear and
bounded from L2(Ω) into H−1(Ω), we know that

d = (S ◦ B)′(u; h) = S′(Bu; Bh) ⇐⇒ Ad + NK(y,v)(d) � Bh.

The reader is referred to [5, Chapter 2.2] for more details on these concepts.
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Stationarity for elliptic MPECs 559

Given the properties of the solution mapping S to the variational inequality
described above, we can reformulate the MPEC (1) as the following nonsmooth opti-
mization problem:

min V (u) := 1

2
||S(Bu)− yd ||2L2 + α

2
||u||2L2 over u ∈ L2(Ω)

s.t. u ∈ Uad . (6)

Following, e.g. [13] or [4], it can be shown that (6) has a solution. Since S is merely
directionally differentiable, (6) cannot be directly analyzed and solved with the same
techniques used for the optimal control of partial differential equations (PDE). In
particular, the usual method of deriving optimality conditions for PDE-constrained
problems are not available (cf. [20] for some standard techniques).

We now define in what follows various stationarity concepts for MPECs in the
current context that are studied in the subsequent sections.

In contrast to the dual stationarity concepts, the following primal stationarity con-
dition is easily adapted to function spaces provided S is regular enough. Moreover, it
provides good candidates for locally optimal solutions, but, it is not always convertible
into a multiplier based system.

Definition 1 (B-stationarity) A feasible point ū for the reduced MPEC (6) is referred
to as B- stationary provided

V ′(ū; h) ≥ 0, ∀h ∈ TUad (ū)

As we do not necessarily restrict ourselves to the more regular settings in which
S(Bu) ∈ H2(Ω) ∩ H1

0 (Ω), we cannot directly use the form of C- and S-stationarity
as defined in [8,9]. We will see in Sect. 4 that in such situations more information is
available and therefore, a more refined stationarity system.

Definition 2 (C- and S-stationarity) A point (ū, ȳ) ∈ L2(Ω)× H1
0 (Ω) feasible to the

MPEC (1) is called a C- stationary point of the MPEC if there exist multipliers
s̄ ∈ L2(Ω), v̄ ∈ H−1(Ω), p̄ ∈ H1

0 (Ω), and r̄ ∈ H−1(Ω) for which

0 = αū + B∗ p̄ + s̄, (7)

0 = ȳ − yd − A∗ p̄ + r̄ , (8)

0 = Aȳ − Bū − f + v̄, (9)

where the multipliers satisfy the following conditions:

0 ≤ s̄, a.e.Aa(ū) s̄ = 0, a.e.J (ū), s̄ ≥ 0 a.e.Ab(ū), (10)

0 ≥ 〈v̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e. Ω, (11)

0 = 〈v̄, ȳ〉H−1,H1
0
, (12)

0 = 〈v̄, p̄〉H−1,H1
0
, (13)

0 = 〈r̄ , ȳ〉H−1,H1
0
, (14)

0 ≥ 〈r̄ , p̄〉H−1,H1
0
. (15)
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560 M. Hintermüller et al.

Here, we use the notation

A(ȳ) := {x ∈ Ω | ȳ(x) = 0 } and I(ȳ) := Ω\A(ȳ)

to represent the active and inactive sets for the lower-level problem, respectively, and

Aa(ū) := {x ∈ Ω |ū(x) = a(x) },
Ab(ū) := {x ∈ Ω |ū(x) = b(x) },
J (ū) := Ω\(Aa(ū) ∪ Ab(ū))

for the lower active, upper active, and inactive sets for the control constraints, respec-
tively.

If in addition to the above conditions we have v̄ ∈ L2(Ω) and

0 ≤ p̄ a.e. B, (16)

0 ≤ 〈r̄ , ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0, a.e.B and ϕ = 0, a.e.A(ȳ)\B, (17)

then (ū, ȳ) is said to be a S(trong)- stationary point, where the notation

B := {x ∈ A(ȳ) | v̄(x) = 0 },

is used to denote the so-called bi-active set.

We note that (17) could also be defined when v ∈ H−1(Ω). In this case, one has

0 ≤ 〈r̄ , ϕ〉, ∀ϕ ∈ H1
0 (Ω) : 〈v̄, ϕ〉 = 0 and ϕ ≥ 0, q.e. A(ȳ),

where “q.e.” stands for quasi-almost-everywhere, see e.g. [13].
The terms C-stationarity and S-stationarity are originally attributed to Scheel and

Scholtes [19], where the “C” reflects the fact that the notions from Clarke’s nonsmooth
calculus were used in the derivation process. In the sense that only the product of the
multipliers r̄ and p̄ has a sign, C-stationarity conditions are not KKT conditions in the
classical sense. In infinite dimensions, S-stationarity conditions were first derived for
the class of problems with Uad = L2(Ω) by [13]. Since then, no one has been able to
extend their results to the case when Uad is a proper convex subset.

In a function space context, Outrata, Jarušek and Starà in [16] and [17] successfully
applied elements of the limiting variational calculus, see Sect. 3, to problems similar to
ours. Unfortunately, these results are only applicable in the case of control constraints
when Ω ⊂ R and the controls u belong to H−1(Ω). These conditions are similar
to a finite-dimensional concept known as M-stationarity, where the “M” is used in
reference to the limiting variational calculus largely developed by the second author.

The rest of the paper is structured as follows. In Sect. 2 we derive primal first-
order optimality conditions similar to the B-stationarity conditions mentioned above.
In Sect. 3 we define certain notions from the limiting variational calculus and then
apply these concepts to our class of MPECs. We then verify the necessary qualification
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Stationarity for elliptic MPECs 561

conditions and derive new limiting stationarity conditions. Section 4 is devoted to a
hybrid derivation method utilizing the results from [10] for MPECs without upper-
level constraints by penalizing the control constraints with a smooth penalty function.
In Sect. 5 we recall a penalization-regularization method extended to elliptic MPECs
by the first author and I. Kopacka in [9] and establish its important consequences.

2 B-Stationarity

In this brief section, we establish B-stationarity for a locally optimal solution of the
MPEC (1). It can be observed from the proof that it is certainly possible to work with
more general objective functionals J than the tracking-type functional.

Theorem 1 (B-stationarity of an optimal solution) Let (ū, ȳ) be a locally optimal
solution to the original MPEC (1). Then the following optimality condition holds

α(ū, h)L2 + (ȳ − yd , d)L2 ≥ 0,∀(h, d) ∈
[
TUad (ū)× H1

0 (Ω)
]

∩ gph S′(Bū; B·).
(18)

Equivalently, if (ū, ȳ) is a locally optimal solution to the MPEC (1), then the origin
in L2(Ω)× H1

0 (Ω) is a solution to the following MPEC

min α(ū, h)L2 + (ȳ − yd , d)L2 over (h, d) ∈ L2(Ω)× H1
0 (Ω)

s.t. h ∈ TUad (ū), Ad + NK(ȳ,v̄)(d) � Bh.
(19)

Proof Throughout the proof, we refer to the reduced MPEC (6), from which we
recall that the mapping V : L2(Ω) → R is directionally differentiable and Lipschitz
continuous. Next we modify the nonsmooth problem (6) one step further to

min V (u)+ IUad (u) over u ∈ L2(Ω), (20)

where IUad is the indicator function of Uad . Given an arbitrary locally optimal solution
ū to problem (20), observe that the corresponding pair (ū, ȳ) is a locally optimal
solution to the original MPEC (1), and vice versa. Moreover, it can be argued (see e.g.
[3] Chapter 6.1.3) that the following condition must hold

lim inf
t→0+

h′→L2 h

V (ū + th′)− V (ū)+ IUad (ū + th′)− IUad (ū)

t
≥ 0, ∀h ∈ L2(Ω). (21)

Continuing, we first note that if h ∈ L2(Ω) but h /∈ TUad (ū), then there either exist
no sequences tk → 0+ or hk →L2 h such that ū + tkhk ∈ Uad . Thus, for such h
the limit inferior in (21) is equal to +∞. Suppose now that h ∈ TUad (ū). Then by
definition there exist sequences tk → 0+ and hk →L2 h such that ū + tkhk ∈ Uad .
For such sequences, the difference quotients in (21) reduce to
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562 M. Hintermüller et al.

V (ū + tkhk)− V (ū)

tk
.

Then by using the directional differentiability and the fact that V is Lipschitz con-
tinuous (and therefore V ′(ū; ·) as well), we further reduce the difference quotients
to

V (ū + tkhk)− V (ū)

tk
= V (ū)+ tk V ′(ū; hk)+ o(tk)− V (ū)

tk
= V ′(ū; hk)+ o(tk)

tk
,

which implies in turn that

V ′(ū; h) ≥ 0, ∀h ∈ TUad (ū).

The final step of the proof requires us to compute the derivative V ′(ū, h). By definition,
we need to calculate the following limit:

lim
t→0+

1
2 ||S(B(ū + th))− yd ||2

L2 + α
2 ||ū + th||2

L2 − 1
2 ||S(Bū)− yd ||2

L2 − α
2 ||ū||2

L2

t
.

We observe first that

α
2 ||ū + th||2

L2 − α
2 ||ū||2

L2

t
= α(ū, h)L2 + αt

2
||h||2L2 .

Similarly, we reduce the remaining terms (using the directional differentiability of S)
to

1
2 ||S(Bū + th)− yd ||2

L2 − 1
2 ||S(Bū)− yd ||2

L2

t

= (S(Bū)− yd , S′(Bū; Bh)+ o(t)

t
)L2 + t ||S′(Bū; Bh)+ o(t)

t
||2L2 .

Then by adding the reduced terms and passing to the limit, we obtain the equality

lim
t→0+

1
2 ||S(B(ū + th))− yd ||2

L2 + α
2 ||ū + th||2

L2 − 1
2 ||S(Bū)− yd ||2

L2 − α
2 ||ū||2

L2

t

= α(ū, h)L2 + (S(Bū)− yd , S′(Bū; Bh))L2 ,

which completes the proof of the theorem via substitution. ��

Theorem 1 shows that if ū ∈ Uad such that TUad (ū) = L2(Ω), then S-stationarity
conditions can be rederived without major difficulties provided the operator B is
surjective or the identity on L2(Ω).
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Stationarity for elliptic MPECs 563

By directly adapting the proof of [5, Lemma 6.34], we obtain the following descrip-
tion:

TUad (ū) =
{

h ∈ L2(Ω)

∣
∣
∣
∣
h ≥ 0, a.e. on Aa(ū)
h ≤ 0, a.e. on Ab(ū)

}
.

Therefore, it can be argued that if the Lebesgue measure of the active set Aa(ū)∪Ab(ū)
equals zero, then TUad (ū) = L2(Ω). Thus, even though Uad has an empty interior in
L2(Ω), there exist admissible points such that the tangent cone is equal to the entire
space.

Under a fairly restrictive assumption, it is easy to derive the following corollary
from Theorem 1, which yields a dual form of B-stationarity.

Corollary 1 (Dual form of B-stationarity) Let (ū, ȳ) be a locally optimal solution
to the MPEC (1), where ū ∈ Uad such that S′(Bū; ·) =: �ū(·) is a bounded linear
operator from L2(Ω) into H1

0 (Ω). Then the following optimality condition holds

α(ū, h)L2 + (B∗�∗̄
u (ȳ − yd), h)L2 ≥ 0,∀h ∈ TUad (ū),

which in dual form is equivalent to the inclusion

0 ∈ αū + B∗�∗̄
u (ȳ − yd)+ NUad (ū)

or equivalently the variational inequality

(αū + B∗�∗̄
u (ȳ − yd), u′ − ū)L2 ≥ 0, ∀u′ ∈ Uad .

In order to obtain workable KKT-type optimality conditions in the case where
S′(Bū; B·) is not a bounded linear operator, we would need to calculate the following
polar cone:

[(
TUad (ū)× H1

0 (Ω)
)

∩ gph S′(Bū; B·)
]−

L2×H1
0

.

Unfortunately, it appears to be a difficult, if not impossible, task. Thus the need for a
different set of more constructive tools for the derivation of dual conditions (in both
finite and infinite dimensions) is evident.

3 Dual optimality conditions via limiting variational calculus

We first recall several definitions and concepts from variational analysis and general-
ized differentiation. Our main source is the two-volume monograph [14,15]. Through-
out the following section, unless otherwise noted, all spaces will be assumed to be
Hilbert spaces. Nevertheless, we stress that these objects along with the accompanying
results can be defined/proved in much more general settings.
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564 M. Hintermüller et al.

Definition 3 (The Regular/Fréchet Normal Cone) Let C ⊂ X . Then the multifunction
(set-valued mapping) N̂C : X ⇒ X∗ defined by

N̂C (x) :=

⎧
⎪⎪⎨

⎪⎪⎩
x∗ ∈ X∗

∣
∣
∣
∣
∣
∣
∣
∣

lim sup
x ′ X→x
x ′∈C

(x∗, x ′ − x)X

||x ′ − x ||X
≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
, x ∈ C, (22)

and N̂C (x) := ∅ for x /∈ C is called the regular/Fréchet normal cone to C .

Unfortunately, the convex cone N̂C does not admit a satisfactory calculus. This
restricts the scope of applications of (22), in particular, for deriving multiplier-based
optimality conditions. The situation changes significantly when we apply an appro-
priate limiting procedure to the mapping N̂C (·).
Definition 4 (The Limiting/Mordukhovich Normal Cone) Let C ⊂ X . The multifunc-
tion NC : X ⇒ X∗ defined by

NC (x) :=
{

x∗ ∈ X∗
∣
∣
∣
∣ ∃xk

X→ x, ∃x∗
k

X∗
⇀ x∗ : x∗

k ∈ N̂C (xk), ∀k ∈ N

}
(23)

is called the limiting/Mordukhovich normal cone to C .

If the set C is convex, both cones (22) and (23) agree with the normal cone of
convex analysis, otherwise N̂C (x) � NC (x) in general.

Next we define the notions of coderivatives for set-valued (in particular, single-
valued) mappings generated by the corresponding normal cones (22) and (23).

Definition 5 (Coderivatives) Let Φ : X ⇒ Y be a set-valued mapping between
(paired) reflexive Banach spaces X and Y , and let (x, y) ∈ gphΦ. The regu-
lar/Fréchet coderivative of Φ at (x, y) is the multifunction D̂∗Φ(x, y) : Y ∗ ⇒
X∗ defined by

h∗ ∈ D̂∗Φ(x, y)(d∗) ⇐⇒ (h∗,−d∗) ∈ N̂gphΦ(x, y). (24)

The limiting/Mordukhovich coderivative D∗Φ(x, y) ofΦ at (x, y) ∈ gphΦ is
similarly defined by

h∗ ∈ D∗Φ(x, y)(d∗) ⇐⇒ (h∗,−d∗) ∈ NgphΦ(x, y). (25)

We observe from (22) to (25) that the limiting coderivative (25) admits the following
representation, cf. [14, Corollary 2.36]:

h∗ ∈ D∗Φ(x, y)(d∗)

⇐⇒ ∃xk
X→ x, ∃yk

Y→ y, ∃d∗
k

Y ∗
⇀ d∗, ∃h∗

k
X∗
⇀ h∗ : h∗

k ∈ D̂∗Φ(xk, yk)(d
∗
k ).

(26)
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Stationarity for elliptic MPECs 565

If in (26) we replace “d∗
k

Y ∗
⇀ d∗” by the condition “d∗

k
Y ∗→ d∗”, then the cor-

responding construction D∗
MΦ(x, y) is known as the mixed coderivative of Φ at

(x, y) ∈ gphΦ.
IfΦ : X → Y is strictly differentiable at x , e.g. C1 around this point, with derivative

Φ ′(x), then all three coderivatives reduce to the adjoint derivative operator

D̂∗Φ(x)(y∗) = D∗Φ(x)(y∗) = D∗
MΦ(x)(y

∗) = {
Φ ′(x)∗y∗}, y∗ ∈ Y ∗,

where y = Φ(x) is omitted due to single-valuedness. In general these coderivative
mappings are positively homogeneous in y∗ with full calculi for D∗Φ and D∗

MΦ and a
rather restrictive one for D̂∗Φ. For mappings between infinite-dimensional spaces the
aforementioned calculus rules require appropriate “normal compactness” conditions.
The weakest ones among such conditions are given in the next definition.

Definition 6 (Sequential normal compactness) Let Φ : X ⇒ Y be a set-valued
mapping between (paired) spaces X and Y , and let (x, y) ∈ gphΦ. We say that
Φ : X ⇒ Y is sequentially normally compact (SNC) at (x, y) ∈ gphΦ if
for any collection of sequences {xk} ⊂ X, {yk} ⊂ Y, {x∗

k } ⊂ X∗, and {y∗
k } ⊂ Y ∗

satisfying

xk
X→ x̄, yk

Y→ ȳ, x∗
k

X∗
⇀ 0, y∗

k
Y ∗
⇀ 0, with y∗

k ∈ D̂∗Φ(xk, yk)(x
∗
k ),

it follows that ||x∗
k ||X∗ → 0 and ||y∗

k ||Y ∗ → 0. If the requirement that y∗
k

Y ∗
⇀ 0 above is

replaced by ||y∗
k ||Y ∗ → 0, thenΦ is said to be partially sequentially normally

compact (PSNC) at (x, y).

Besides finite-dimensional settings, the SNC and PSNC properties automatically
hold when the involved mappings satisfy certain Lipschitz-like properties. Moreover,
they are preserved under various compositions, see [14].

Definition 7 (The Aubin property) Let Φ : X ⇒ Y be a set-valued mapping between
(paired) spaces X and Y , and let (x, y) ∈ gphΦ. We say thatΦ has the Aubin prop-
erty or is Lipschitz- like/Pseudo- Lipschitz at (x, y) if there are neighborhoods
U of x and V of y together with a constant L > 0 such that

‖y − y′‖Y ≤ L‖x − x ′‖X , ∀(x, y), (x ′, y′) ∈ [U × V] ∩ gphΦ. (27)

It immediately follows from (27) that for single-valued mappings Φ : X → Y , the
Aubin property reduces to the classical local Lipschitz continuity. Moreover, the
coderivative criterion from [14, Theorem 4.0] asserts that a closed-graph mapping
Φ : X ⇒ Y has the Aubin property around (x, y) ∈ gphΦ if and only if it is PSNC
at this point and the injectivity condition “D∗

MΦ(x, y)(0) = {0}” holds.
For convenience, we restate the MPEC (1) in compact form:

min
1

2
||y − yd ||2L2(Ω)

+ α

2
||u||2L2(Ω)

over (u, y) ∈ L2(Ω)× H1
0 (Ω)

s.t. u ∈ Uad , y = S(Bu). (28)

123



566 M. Hintermüller et al.

Our first result provides a necessary optimality condition for the MPEC (1) in terms
of the limiting coderivative of S and the convex normal cone to the control set Uad .

Proposition 1 (Limiting optimality conditions for the MPEC) Let (ū, ȳ) be a locally
optimal solution to the MPEC (1). Then we have

0 ∈ αū + B∗ D∗S(Bū, y)(ȳ − yd)+ NUad (ū). (29)

Proof As argued in the introduction, S ◦ B is Lipschitz continuous from L2(Ω) →
H1

0 (Ω). Thus, it follows from [14, Theorem 4.10] that

1. S ◦ B is partially sequentially normally compact (PSNC) at (ū, ȳ),
2. D∗

M (S ◦ B)(ū, ȳ)(0) = {0}.
Applying now the necessary optimality conditions for abstract MPECs established in
[15, Theorems 5.33 and 5.34] to (28), and taking into account that the cost functional
therein is smooth, we conclude that the PSNC and qualification assumptions required
by [15, Theorems 5.33 and 5.34] are satisfied. It follows that

0 ∈ αū + D∗(S ◦ B)(ū, ȳ)(ȳ − yd)+ NUad (ū).

Finally, it follows from the calculus result of [14, Corollary 3.16] that

D∗(S ◦ B)(ū, ȳ)(ȳ − yd) ⊂ B∗D∗S(Bū, ȳ)(ȳ − yd),

and therefore, the asserted optimality condition (29) holds. ��

Remark 1 (Regularity of the optimal control) We mention that if Uad = L2(Ω), then
NUad (ū) = {0}. Moreover, if B acts as the identity on L2(Ω), then B∗y∗ ∈ H1

0 (Ω)

for all y∗ ∈ D∗S(Bū, ȳ)(ȳ − yd). Thus it follows from Proposition 1 that the optimal
solution ū enjoys an increased regularity in this case. Observe that the above arguments
can be easily extended to more general situations.

The remaining part of this section is dedicated to the explicit characterization of
the coderivative in the necessary optimality condition of Proposition 1. Developing
this derivation technique, we arrive at multiplier-based optimality conditions for the
original MPEC.

We start by first observing the following description of the coderivative in (29) in
light of (26):

D∗S(Bū, ȳ)(ȳ − yd) =
{

p̄∗ ∈ H1
0 (Ω)

∣
∣
∣
∣∃y∗

k
H−1−→ Bū, ∃yk

H1
0→ ȳ,

∃q∗
k

H−1

−⇀ ȳ − yd , ∃p∗
k

H1
0
⇀ p̄∗ : p∗

k ∈ D̂∗S(y∗
k , yk)(q

∗
k ),∀k

}

.
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By simply referring to the definition of the regular coderivative (24), we know that
the previous equation can be understood as

D∗S(Bū, ȳ)(ȳ − yd) =
{

p̄∗ ∈ H1
0 (Ω)

∣
∣
∣
∣∃y∗

k
H−1−→ Bū, ∃yk

H1
0→ ȳ,

∃q∗
k

H−1

−⇀ ȳ − yd , ∃p∗
k

H1
0
⇀ p̄∗ : (p∗

k ,−q∗
k ) ∈ N̂gph S(y

∗
k , yk),∀k

}

.

Using [14, Theorem 1.10], we approximate the limiting coderivative of S by replac-
ing N̂gph S(y∗

k , yk) with the larger polar contingent cone
[
Tgph S(y∗

k , yk)
]−. Note that

the contingent cone to the graph of S coincides with the graph of the so-called con-
tingent derivative of S; see [3]. In the current setting with S being single-valued,
Lipschitz continuous and Hadamard directionally differentiable, the contingent deriv-
ative coincides with the Hadamard directional derivative. It was shown in the proof of
[10, Theorem 4.6] that

(p∗
k ,−q∗

k ) ∈ [
Tgph S(y

∗
k , yk)

]− ⇐⇒ p∗
k ∈ K(yk, vk), A∗ p∗

k − q∗
k ∈ [K(yk, vk)]

−,

where vk ∈ NM (yk) such that vk = y∗
k + f − Ayk , and where K(yk, vk) is the critical

cone (4). This leads to the following characterization of the coderivative.

Proposition 2 (A characterization via the critical cone) Let vk := y∗
k + f − Ayk ∈

NM (yk). Then elements of the limiting coderivative of the solution map (3) are
described by

p̄ ∈ D∗S(Bū, ȳ)(ȳ − yd)

�⇒ ∃y∗
k

H−1−→ Bū, ∃yk
H1

0→ ȳ, ∃qk
H−1

−⇀ ȳ − yd , ∃pk
H1

0
⇀ p̄ :

pk ∈ K(yk, vk) and A∗ pk − qk ∈ [K(yk, vk)]
− .

Before establishing our next result, we point out a simple fact concerning the con-
vergence of normal cone mappings to closed convex sets. Suppose that X is a Banach

space and C ⊂ X is a closed convex subset. Let xk ∈ C be such that xk
X→ x and

let zk ∈ NC (xk) be such that zk
X∗
⇀ z. Then by the definition of the normal cone we

have 〈zk, x ′ − xk〉 ≤ 0 for all x ′ ∈ C . For an arbitrary element x ′ ∈ C , it follows that
〈zk, x ′ − xk〉 → 〈z, x ′ − x〉 and thus z ∈ NC (x). We make use of this property in the
proof of the following proposition.

Proposition 3 (Limits of the polar critical cones) Let rk ∈ [K(yk, vk)]− with

rk
H−1

−⇀ r̄ , yk
H10→ ȳ, vk

H−1−→ v̄
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568 M. Hintermüller et al.

and vk ∈ NM (yk). Then one of the following alternatives holds

r̄ ∈ NM (ȳ), (30)

r̄ ∈ NM (ȳ)− ε̄v̄, ε̄ > 0, (31)

0 = 〈r̄ , ȳ〉H−1,H1
0
. (32)

Proof Given that the polar (negative dual) cone of an intersection of closed convex
sets C, D is equal to the closure of the sum [C]− + [D]−, we have

[
TM (yk) ∩ {vk}⊥

]− = cl {NM (yk)+ Rvk}H−1 = cl {NM (yk)− R+vk}H−1 .

It follows then that for each k ∈ N there exists a sequence rk
l ∈ NM (yk) − R+vk

such that rk
l

H−1→ rk as l → +∞. Then for each k we can find an Lk ∈ N such that
||rk

l − rk ||H−1 ≤ 1/2k for all l ≥ Lk . Now let ϕ ∈ H1
0 (Ω) with ||ϕ||H1

0
= 1. From

the previous argument, we deduce the following:

1

2k
≥ |〈rk

Lk
− rk, ϕ〉H−1,H1

0
| = |〈rk

Lk
− r̄ , ϕ〉H−1,H1

0
+ 〈r̄ − rk, ϕ〉H−1,H1

0
|.

Passing to the limit as k → +∞, it follows that r̂k := rk
Lk

H−1

⇀ r̄ . Consider now that
for all k, there exists wk ∈ NM (yk) and εk ∈ R+ such that r̂k = wk − εkvk .

If there exists a subsequence εkl such that εkl = 0 for all sufficiently large l, then
r̄ ∈ NM (ȳ). Suppose instead that εk > 0 for all k large enough and that εk is bounded.
Without loss of generality, we can assume that εk → ε̄ > 0. Otherwise we can take a
subsequence and obtain the same result. Thenwk = r̂k +εkvk is bounded in H−1(Ω),
a reflexive Banach space. Hence, there exists a subsequence wkl and w̄ ∈ H−1(Ω)

such that wkl

H−1

⇀ w̄. It follows from wkl ∈ NM (ykl ) that w̄ ∈ NM (ȳ). Therefore,
r̄ ∈ NM (ȳ)− ε̄v̄.

Finally, assume that εk is unbounded. Since M is a cone, 〈wk, yk〉H−1,H1
0

= 0 for all

wk ∈ NM (yk), from which we can deduce that 〈r̂k, yk〉H−1,H1
0

= 0 for all k. Passing
to the limit yields: 〈r̄ , ȳ〉H−1,H1

0
= 0; as was to be shown. ��

Remark 2 Note that in (30) and (31), 〈r̄ , ȳ〉H−1,H1
0

= 0 also holds.

Remark 3 It follows from [5, Theorem 6.57], that if λ ∈ NM (y), then

〈λ, y〉H−1,H1
0

= 0, and 0 ≥ 〈λ, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e. Ω, (33)

Thus, (32) is always implied by (30) and (31).

We are now ready to establish the main result of this section.
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Theorem 2 (Limiting stationarity conditions) Let (ū, ȳ) be a locally optimal solution
to MPEC (1). Then there exist p̄ ∈ H1

0 (Ω), r̄ ∈ H−1(Ω), v̄ ∈ H−1(Ω), and s̄ ∈
L2(Ω) along with sequences {pk} ⊂ H1

0 (Ω) and {rk} ⊂ H−1(Ω) such that pk
H10−⇀ p̄

and rk
H−1

−⇀ r̄ , for which it holds that

0 = αū + B∗ p̄ + s̄, (34)

0 = ȳ − yd − A∗ p̄ + r̄ , (35)

0 = Aȳ − Bū − f + v̄, (36)

0 ≤ s̄, a.e.Aa(ū) s̄ = 0, a.e.J (ū), s̄ ≥ 0 a.e.Ab(ū), (37)

0 ≥ 〈v̄, ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e. Ω, (38)

0 = 〈v̄, ȳ〉H−1,H1
0
, (39)

0 = 〈v̄, p̄〉H−1,H1
0
, (40)

0 ≥ lim sup
k→∞

〈rk, pk〉H−1,H1
0
. (41)

In addition, one of the following alternatives holds

〈 r̄ , ȳ〉H−1,H1
0

= 0, and 0 ≥ 〈r̄ , ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ ≥ 0 a.e. Ω, (42)

〈 r̄ , ȳ〉H−1,H1
0

= 0, and r̄ ∈ NM (ȳ)− εv̄, ε > 0, (43)

〈 r̄ , ȳ〉H−1,H1
0

= 0. (44)

Proof Equation (34) follows directly from Proposition 1, whereas Eq. (36) is due to
the feasibility of an optimal solution. Equations (37), (38) and (39) also follow from
the characterization of the normal cones NUad (ū) and NM (ȳ), cf. [5, Lemma 6.34,
Lemma 6.57]. According to Proposition 2, p̄ is the weak limit in H1

0 (Ω) of some
sequence pk with pk ∈ K(yk, vk), whereas rk is given by

rk := A∗ pk − qk ∈ [K(yk, vk)]
−,

with qk
H−1

−⇀ ȳ − yd . Whence, we have and (35). By definition of the critical cone,

〈vk, pk〉H−1,H1
0

= 0 for all k. Hence, (40) holds, since vk
H−1−→ v̄. Moreover, we have

by polarity 〈rk, pk〉H−1,H1
0

≤ 0, from which (41) follows. The alternatives (42)–(44)
arise as a consequence of Proposition 3 in light of (33). ��
Remark 4 (Discussions on the limiting stationarity conditions)

(i) The reader has most likely noted that we did not use the inclusion p∗
k ∈ TM (yk)

in the proof of Theorem 2 to further characterize p̄. Using a diagonalization
argument, it can be shown that p̄ is an element of the weak Painlevé–Kuratowski
outer limit of the sequence of sets {t−1

k (M − yk)}, which amounts to the so-called
(weak) paratingent cone; see, e.g., [3].
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The paratingent cone is often too large to provide any meaningful local lin-
earization of the set M . For example, let M := [0, 1] ⊂ R. Here, TM (0) = R+,
which is locally a reasonable approximation of the set. Conversely, for a sequence
εk → 0+, TM (εk) = R for all k. Therefore, the paratingent cone at 0 becomes
the entire space. Due to such a property even for the simplest of convex sets in
finite dimensions, we do not attempt to characterize this cone in H1

0 (Ω) without
more knowledge of the involved structures.

(ii) Since the sequences pk and rk in Theorem 2 need only converge weakly in
their respective spaces, nothing more can be said about the sign of the prod-
uct 〈r̄ , p̄〉H−1,H1

0
. The very existence of these sequences was provided by the

coderivative, so it appears that no extra information can be obtained. In the next
two sections we are not provided with the existence of these sequences, rather,
we must derive them. The advantage then becomes evident as we can show that

qk
L2

⇀ ȳ − yd , not merely weakly in H−1(Ω). However, there we must make
additional data assumptions, so that the technique used here remains more widely
applicable.

4 Stationarity conditions via penalization of the control constraints

We begin this section by simplifying the model class through the removal of the
constraint u ≥ a a.e. Ω . It should be clear that the same arguments remain valid so
that their application to bilateral control constraints can also be considered. Our new
model problem becomes

min 1
2 ||y − yd ||2

L2(Ω)
+ α

2 ||u||2
L2(Ω)

over (u, y) ∈ L2(Ω)× H1
0 (Ω),

s.t. u ≤ b a.e. Ω,
Ay + NM (y) � Bu + f.

(45)

Thus from now on we denote by Uad the set

Uad :=
{

u ∈ L2(Ω) | u ≤ b a.e. Ω
}
.

Moreover, we assume further that the linear operator B is the identity on L2(Ω) and
henceforth cease to explicitly use it in the results below. The results can be extended
for more general B, provided B is surjective. All the other data assumptions for (1)
remain the same, unless otherwise stated.

Continuing with the reduced model class (45), we now penalize the constraint on
u with an L2-penalty function derived from the Moreau–Yosida regularization of the
indicator function of Uad . By defining

Jγ (u, y) := 1

2
||y − yd ||2L2(Ω)

+ α

2
||u||2L2(Ω)

+ γ

2
||(u − b)+||2L2 ,
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this gives rise to the following class of MPECs:

min Jγ (u, y) over (u, y) ∈ L2(Ω)× H1
0 (Ω),

s.t. y = S(u) (46)

with γ > 0, where (·)+ := max(0, ·) pointwise almost everywhere.

First we justify the required well-posedness of the penalization procedure.

Proposition 4 (Well-posedness of the penalization) Let γn → ∞ as n → ∞. Then
for each n ∈ N the MPEC problem (46) with γ := γn has an optimal solution
(ūγn , ȳγn ) := (ūn, ȳn). Moreover, if (ū, ȳ) ∈ L2(Ω)× H1

0 (Ω) is optimal to (45), then
there exists a subsequence of {(ūn, ȳn)}, indexed still by n, such that (ūn, ȳn) → (ū, ȳ)
in the strong–strong topology on L2(Ω)× H1

0 (Ω).

Proof The following arguments are standard, we present them merely for complete-
ness. Since the penalty functional ||(· − b)+||2

L2 : L2(Ω) → R is weakly lower
semicontinuous and bounded from below, we can apply a classical argument (see,
e.g., [13]) to show that MPEC (46) has an optimal solution (ūγn , ȳγn ) := (ūn, ȳn) for
each γn > 0. It follows from the definition that

1

2
||ȳn − yd ||2L2 + α

2
||ūn||2L2 + γn

2
||(ūn − b)+||2L2

≤ 1

2
||y − yd ||2L2 + α

2
||u||2L2 + γn

2
||(u − b)+||2L2 ,

∀(u, y) ∈ L2(Ω)× H1
0 (Ω) : Ay + NM (y) � u + f.

Then letting (ū, ȳ) be a globally optimal solution to (45), we obtain the inequality

1

2
||ȳn −yd ||2L2 + α

2
||ūn||2L2 + γn

2
||(ūn − b)+||2L2 ≤ 1

2
||ȳ−yd ||2L2 + α

2
||ū||2L2 , (47)

from which the following conclusions are deduced:

(i) {ūn} is bounded in L2(Ω);
(ii) 1

2 ||(ūn − b)+||2
L2 → 0 as n → ∞.

Hence there exists a control u∗ ∈ L2(Ω) and a subsequence {ūnl } such that ūnl

L2

⇀ u∗.
Using the Lipschitz continuity of y = S(u) as a function of u from H−1(Ω) into
H1

0 (Ω), we have for some fixed C > 0

||ȳnl − y∗||H1
0

≤ C ||ūnl − u∗||H−1,

where ȳnl , y∗ are solutions to the variational inequality associated with ūnl , u∗ ∈
L2(Ω), respectively. Since L2(Ω) ↪→ H−1(Ω) is compact, there exists a subsequence

{ūnlk
} with ūnlk

H−1−→ u∗. Thus, ȳnlk

H1
0→ y∗. Furthermore, since

〈Aȳnlk
− ūnlk

− f, y′ − ȳnlk
〉H−1,H1

0
≥ 0, ∀y′ ∈ M,
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passing to the limit as k → ∞ yields

〈Ay∗ − u∗ − f, y′ − y∗〉H−1,H1
0

≥ 0, ∀y′ ∈ M,

and thus y∗ = S(u∗). It is easy to check that (u∗, y∗) is in fact a feasible point of the
original MPEC (45). Indeed, since the functional F(·) := ||(·−b)+||2

L2 : L2(Ω) → R

is weakly lower semicontinuous, it follows that

0 = lim
k→∞ F(ūnlk

) = lim inf
k→∞ F(ūnlk

) ≥ F(u∗) ⇒ ||(u∗ − b)+||2L2 = 0,

and hence, u∗ ≤ b a.e. Ω . Taking now the limit inferior in (47) ensures that (u∗, y∗) =
(ū, ȳ).

Finally, it follows from (47) that

||ūnlk
||2L2 − ||ū||2L2 ≤ 1

α

(
||ȳnlk

− yd ||2L2 − ||ȳ − yd ||2L2

)
.

Using then ȳnlk

H10→ ȳ and the weak lower-semicontinuity of the L2-norm yields

0 = ||ū||2L2 − ||ū||2L2 ≤ lim inf
k→∞ ||ūnlk

||2L2 − ||ū||2L2

≤ lim inf
k→∞

1

α

(
||ȳnlk

− yd ||2L2 − ||ȳ − yd ||2L2

)
= 0

as well as

lim sup
k→∞

||ūnlk
||2L2 − ||ū||2L2 ≤ lim sup

k→∞
1

α

(
||ȳnlk

− yd ||2L2 − ||ȳ − yd ||2L2

)
= 0.

Thus ūnlk

L2

⇀ ū and ||ūnlk
||L2 → ||u||L2 . Since L2(Ω) is a Hilbert space, the latter

implies ūnlk

L2→ ū. ��
By applying the same arguments as in the proof of Proposition 1, we check that

any locally optimal solution (ū, ȳ) to (46) satisfies the necessary optimality condition

0 ∈ ∇u Jγ (ū, ȳ)+ B∗D∗S(ū, ȳ)
(∇y Jγ (ū, ȳ)

)
. (48)

Since B = B∗ is the identity on L2(Ω) and p̄ ∈ D∗S(ū, ȳ)(∇y Jγ (ū, ȳ)) is an element
of H1

0 (Ω), we can argue that ∇u Jγ (ū, ȳ) ∈ H1
0 (Ω). This leads us to the following

proposition.

Proposition 5 (Increased regularity at a solution) If (ūγ , ȳγ ) is a locally optimal
solution of (46), then

αūγ + γ (ūγ − b)+ ∈ H1
0 (Ω).
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Proof Since ∇u Jγ (ūγ , ȳγ ) = αūγ+ γ (ūγ−b)+, the result follows from the argument
directly preceeding the statement of this proposition. ��

Based on the results in [10], we now derive primal and dual optimality conditions
for MPECs of type (46).

Theorem 3 (S-stationarity for penalized MPECs) Let (ūγ , ȳγ ) be a local optimal
solution to MPEC (46). Then we have

(αūγ + γ (ūγ − b)+, h)L2 + (ȳγ − yd , d)L2 ≥ 0,∀(h, d) ∈ gph S′(ūγ , ·). (49)

Moreover, there exist p̄γ ∈ H1
0 (Ω), r̄γ ∈ H−1(Ω), and v̄γ ∈ H−1(Ω) such that

0 = αūγ + γ (ūγ − b)+ + p̄γ , (50)

0 = ȳγ − yd − A∗ p̄γ + r̄γ , (51)

0 = Aȳγ − ūγ − f + v̄γ (52)

with the primal-dual triple ( p̄γ , r̄γ , v̄γ ) satisfying the inclusions

p̄γ ∈ K(ȳγ , v̄γ ), r̄γ ∈ [K(ȳγ , v̄γ )
]−
, v̄γ ∈ NM (ȳγ ). (53)

Proof As the penalty functional is Fréchet differentiable from L2(Ω) into R for each
γ > 0, the primal optimality condition (49) can be derived by using the same argument
that was applied in order to prove Theorem 1.

By the data assumptions, h ∈ L2(Ω). Therefore, we can rewrite (49) as

(αūγ + γ (ūγ − b)+, h)L2 + (ȳγ − yd , d)L2 ≥ 0, ∀(h, d) ∈ gph S′(ūγ , ·).

Using the characterization (5) of gph S′(ūγ , ·) and the result from Proposition 5, we
may write

〈αūγ + γ (ūγ − b)+, Ad + w〉H1
0 ,H

−1

+ 〈ȳγ − yd , d〉H−1,H1
0

≥ 0, ∀(d, w) ∈ gph NK(ȳγ ,v̄γ ).

This is equivalent to defining p̄γ ∈ H1
0 (Ω) such that

〈−A∗ p̄γ + ȳγ − yd , d〉H−1,H1
0

+ 〈 p̄γ , w〉H1
0 ,H

−1 ≥ 0, ∀(d, w) ∈ gph NK(ȳγ ,v̄γ ).

where

0 = αūγ + γ (ūγ − b)+ + p̄γ .

Then since [gph NK(ȳγ ,v̄γ )]− = [K(ȳγ , v̄γ )
]− × K(ȳ, v̄) in the H−1(Ω) × H1

0 (Ω)-
topology (see, e.g., the proof of Theorem 4.6 in [10]), we obtain the relation

0 = ȳγ − yd − A∗ p̄γ + r̄γ
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where

p̄γ ∈ K(ȳγ , v̄γ ) and r̄γ ∈ [K(ȳγ , v̄γ )
]−
.

From which we obtain the assertion; (52) follows from feasibility. ��
Given the well-known characterizations of the cones involved in the dual condi-

tions of Theorem 3, see e.g. Lemmas 6.57 and Section 6.4.4 in [5], one can derive
S-stationarity conditions as in [13] for the penalized MPEC (46). This result is not sur-
prising, as the results in [10] provide S-stationarity conditions for much more general
settings than considered here, provided the objective functional is Fréchet differen-
tiable and there are no upper-level constraints. We have nevertheless decided to provide
the derivation above in order to partially demonstrate the technique.

Next, we derive some auxiliary results needed for the main result of this section.
Recall the following two notions of variational convergence:

Definition 8 (Mosco epi-convergence and graph convergence) For n ≥ 1, let φn, φ :
X → R be proper convex lower semicontinuous functions and X a reflexive Banach
space. One says that φn epi- converges in the sense of Mosco to φ, denoted

by φn
M−epi−−−−→ φ, provided the following two conditions hold for all x ∈ X :

1. ∀xn
X
⇀ x, φ(x) ≤ lim infn→∞ φn(xn),

2. ∃xn
X→ x such that φ(x) ≥ lim supn→∞ φn(xn).

For n ≥ 1, let An and A be maximal monotone operators from X into X∗. The sequence

An is said to graph converge to A, denoted by An
G−→ A, if the following property

holds:

For every (x, y) ∈ gph A, there exists a sequence (xn, yn) ∈ gph An such that

xn
X→ x and yn

X∗→ y.

We refer the reader to the monograph by Attouch [2] for more on these and related
topics. After defining graph convergence, Attouch points out in Proposition 3.59 in

[2] that for a sequence of maximal monotone operators An
G−→ A, the following holds:

For every sequence (xn, yn) ∈ gph An such that xn
X→ x and yn

X∗
⇀ y, (x, y) ∈

gph A (and vice versa, by exchanging strong and weak).

This result shows that the convergence properties of sequences of normal cone map-
pings to convex sets discussed in Sect. 3 extends to the much broader class of maximal
monotone operators. We now apply these notions and results on variational conver-
gence to our problem.

Lemma 1 (Moreau–Yosida approximations of unilateral pointwise constraints) Let
γn → ∞, and let b ∈ L2(Ω). Define the Moreau–Yosida regularization Fn :
L2(Ω) → R by

Fn(u) := γn

2
||(u − b)+||2L2 , ∀u ∈ L2(Ω).
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Then Fn
M−epi−−−−→ IUad , where IUad stands for the indicator function of the set Uad given

by

Uad :=
{

u ∈ L2(Ω) | u ≤ b a.e. Ω
}
.

Proof We begin by assuming that u /∈ Uad . For any un ⇀ u in L2(Ω), we can use
the weak lower semicontinuity of ||(· − b)+||2

L2 in order to deduce the existence of
some ε > 0 such that

lim inf
n→∞ ||(un − b)+||2L2 ≥ ε > 0.

It follows that lim infn→∞ Fn(un) = +∞. Conversely, suppose that u ∈ Uad , then
since the trivial sequence un = u converges weakly to u in L2(Ω), we have found
a sequence such that lim infn→∞ Fn(un) = 0. Therefore, it holds for all u ∈ L2(Ω)

that

∀un
L2

⇀ u, IUad (u) ≤ lim inf
n→∞ Fn(un).

The remaining argument requires us to demonstrate the existence of a strongly
convergent sequence such that the limit superior condition in Definition 8 holds for
all u ∈ L2(Ω). Of course, if u /∈ Uad , then IUad (u) = +∞. Thus for any sequence
un strongly converging to u in L2(Ω), it follows that

+∞ = IUad (u) ≥ lim sup
n→∞

Fn(un).

Finally, if u ∈ Uad , then by taking the trivial sequence un = u, we see that Fn(un) = 0
for all n. Hence,

0 = IUad (u) ≥ lim sup
n→∞

Fn(un),

as was to be shown. ��
We now combine Lemma 1 with [2, Theorem 3.66] to obtain:

Proposition 6 (Convergence of approximations) Let γn → ∞, b ∈ L2(Ω), and

un
L2→ u. If wn

L2→ w for wn := γn(un − b)+, then we have w ∈ NUad (u).

Proof The aforementioned theorem by Attouch states that the Mosco epi-convergence
for a sequence of proper, convex, and lower semicontinuous functions is equivalent to
the graph convergence of their subdifferentials (plus a normalizing condition). Using
Fn and F from Lemma 1, we see that

∂Fn(un) = γn(un − b)+ and ∂F(u) = ∂ IUad = NUad (u), u ∈ L2(Ω).

Then by [2, Proposition 3.59] (see above), the assertion holds. ��
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We are now ready to derive the main result of this section.

Theorem 4 (Improved limiting stationarity conditions for the constrained MPEC)
Let γn → ∞, and let (ū, ȳ) ∈ L2(Ω)× H1

0 (Ω) be an optimal solution to (45). Then
there exist sequences

ūn
L2→ ū, ȳn

H1
0→ ȳ, p̄n

H1
0
⇀ p̄, r̄n

H−1

−⇀ r̄ , (54)

where (ūn, ȳn) ∈ L2(Ω)× H1
0 (Ω) solves the penalized MPEC (46) for each n ∈ N,

with γ := γn, and, given v̄n = ūn + f − Aȳn ∈ NM (yn),

(ūn, ȳn, v̄n, p̄n, r̄n) ∈ L2(Ω)× H1
0 (Ω)× H−1(Ω)× H1

0 (Ω)× H−1(Ω)

satisfies the strong stationarity system (50)–(53). Moreover, there exist v̄ ∈ H−1(Ω)

and s̄ ∈ L2(Ω) such that (ū, ȳ, v̄, p̄, r̄ , s̄) satisfies the limiting stationarity conditions
(34)–(44) with (41) replaced by

0 ≥ 〈r̄ , p̄〉H−1,H1
0
.

Proof According to Proposition 4, there exists a sequence of optimal solutions (ūn, ȳn)

of (46) with γ := γn such that along a subsequence, indexed still by n, ūn and ȳn

converge as in (54) to a solution (ū, ȳ) of (45). Since each pair is an optimal solution,
we have from Theorem 3 the existence of ( p̄n, r̄n, v̄n) such that the conditions (50)–
(53) hold for each tuple (ūn, ȳn, v̄n, p̄n, r̄n).

Using now the properties of p̄n and r̄n , we have from (51), after multiplying with
p̄n , the following equation

〈A∗ p̄n, p̄n〉H−1,H1
0

= (ȳn − yd , p̄n)L2 + 〈r̄n, p̄n〉H−1,H1
0
.

Using the coercivity of A and the fact that 〈r̄n, p̄n〉H−1,H1
0

≤ 0, we know there exists
a ξ > 0 such that

ξ || p̄n||2H1
0

≤ (ȳn − yd , p̄n)L2 ≤ ||ȳn − yd ||L2 || p̄n||L2 .

Then by dividing through by || p̄n||L2 and using the fact that H1
0 (Ω) ↪→ L2(Ω) is

continuous, we derive the existence of some κ > 0 such that

|| p̄n||H1
0

≤ κ||ȳn − yd ||L2 .

It follows that { p̄n} is bounded in H1
0 (Ω). Therefore, there exists p̄ ∈ H1

0 (Ω) and a

subsequence { p̄nl } such that p̄nl

H1
0
⇀ p̄. Moreover, we can use this sequence along with

(51) to conclude the existence of a sequence {r̄nl } in H−1(Ω)which converges weakly
in H−1(Ω) to some r̄ ∈ H−1(Ω). Thus, the sequences (ūnl , ȳnl , v̄nl , p̄nl , r̄nl ) satisfy
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the same requirements as those arising from the definition of the limiting coderivative
in Proposition 2.

Next, since for all nl

− p̄nl − αūnl = γnl (ūnl − b)+,

where p̄nl

H1
0
⇀ p̄, therefore strongly in L2(Ω), and ūnl

L2→ ū, we can apply Proposition
6 in order to deduce the limiting condition

0 ∈ p̄ + αū + NUad (ū).

Hence, (ū, ȳ, v̄, p̄, r̄) fulfills the relations (34)–(44) via the same results which were
used to prove Theorem 2.

Finally, since 〈r̄n, p̄n〉H−1,H1
0

≤ 0 for all n ≥ 1, with r̄n := A∗ p̄n + yd − ȳn , we
obtain

0 ≥ 〈A∗ p̄n + yd − ȳn, p̄n〉H−1,H1
0

= 〈A∗ p̄n, p̄n〉H−1,H1
0

+ (yd − ȳn, p̄n)L2

≥ lim inf
n→∞ 〈A∗ p̄n, p̄n〉H−1,H1

0
+ (yd − ȳn, p̄n)L2

≥ 〈A∗ p̄, p̄〉H−1,H1
0

+ (yd − ȳ, p̄)L2 = 〈r̄ , p̄〉H−1,H1
0
.

This completes the proof. ��
In the context of Sect. 3, the previous inequality can also be written:

0 ≥ 〈A∗ p̄n − q̄n, p̄n〉H−1,H1
0

= 〈A∗ p̄n, p̄n〉H−1,H1
0

− 〈q̄n, p̄n〉H−1,H1
0
.

However, q̄n ∈ H−1(Ω) and only converges weakly in H−1(Ω) to ȳ − yd . Hence,
a similar argument is not possible. Weak convergence in L2(Ω) of q̄n can only be
obtained in Sect. 3, by definition of D∗S, if we assume that S : H−1(Ω) → L2(Ω),
i.e. by enlarging the range space. How exactly this affects the results on the directional
differentiability and polarization of the contingent cone Tgph S , which are essential for
the characterization of D∗S, remains an open question.

5 Stationarity conditions for constrained MPECs
via regularization-penalization techniques

In this section we explore yet another approximation approach to study the class of our
constrained elliptic MPECs. Such a penalization-approximation technique has been
recently applied to MPECs by Hintermüller and Kopacka in [9] although it has been
widely employed before in various frameworks of single-level optimal control and
related problems governed by partial differential equations; see, e.g., the books by
Barbu [4, Chapter 3.2] and Mordukhovich [15, Chapter 7.4] with the bibliographies
therein. Note also that the concept of penalizing the nonsmoothness/multivaluedness
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via a sequence of parameter-dependent differentiable functions goes back to earlier
developments presented in [11] and [7]. Our notation and terminology are based on
[9].

For simplicity we consider in this section the class of MPECs (45) described at
the beginning of Sect. 5 with imposing two additional assumptions. First, we assume
that A is the second-order differential operator associated with the bilinear form a :
H1

0 (Ω)× H1
0 (Ω) → R defined by

a(v,w) =
l∑

i, j=1

∫

Ω

ai j
∂v

∂x j

∂w

∂xi
dx +

l∑

i=1

∫

Ω

bi
∂v

∂xi
wdx

+
∫

Ω

cvwdx, ∀v,w ∈ H1
0 (Ω), (55)

where bi , c ∈ L∞(Ω), ai j ∈ C0,1(Ω̄), i.e., Lipschitz continuous on the closure of
Ω, c ≥ 0, and a(·, ·) is both bounded and coercive. Second, we assume that eitherΩ
is a convex polyhedron or ∂Ω is a C1,1-boundary. This implies that every solution y
of the variational inequality is an element of H2(Ω) ∩ H1

0 (Ω).
Suppose now that π : H1

0 (Ω) → H−1(Ω) is Lipschitz continuous and monotone
with the condition ker(π) = M . Then the variational inequality can be approximated
by a semi-linear second-order partial differential equation written here in the form

a(y, ϕ)+ 1

β
〈π(y), ϕ〉H−1,H1

0
= (u, ϕ)L2 + ( f, ϕ)L2 , ∀ϕ ∈ H1

0 (Ω),

where β−1 > 0 is a penalty parameter. The assumptions imposed on the penalty
operator π ensure that the above partial differential equation (PDE) has a unique
solution yβ(u). Moreover, it can be shown that yβ(u) → y(u) in H1

0 (Ω) as β → 0+,
where y(u) solves the original variational inequality; see e.g., [7,9]. Note that in [9]
the mapping π was defined by using the maximum operator

π(v) := − max(0,−v), ∀v ∈ H1
0 (Ω).

Since the pointwise maximum max(0, ·) is nondifferentiable, certain regularized (i.e.,
smoothed) operators dependent on some parameter ε > 0 were considered in [9].
These smoothed operators, which we denote now by maxε(0, ·), act almost identically
to the max(0, ·) operators with the only difference that the “kink” at zero is smoothed
out on a neighborhood depending on ε. One such example is given explicitly by

maxε(0, r) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r − ε

2
if r ≥ ε,

r2

2ε
if r ∈ (0, ε),

0 if r ≤ 0.
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Under relatively weak assumptions it is shown in [9, Theorem 2.3] that solutions yβ
to the regularized penalized problems

Ayβ − 1

β
maxε(0,−yβ) = uβ + f,

with uβ, u ∈ L2(Ω) and uβ → u in H−1(Ω), converge strongly in H1
0 (Ω) asβ → 0+

to the solution y(u) of the original variational inequality. By using the penalized
regularized variational inequality, i.e., the semi-linear partial differential equation, we
define the following smoothed penalized problem that approximates MPEC (45) under
consideration:

min
1

2
||y − yd ||2L2(Ω)

+ α

2
||u||2L2(Ω)

over (u, y) ∈ L2(Ω)× H1
0 (Ω)

s.t. a ≤ u ≤ b a.e. Ω,

Ay − 1

β
maxε(0,−y) = u + f. (56)

Since (56) is no longer an MPEC, more classical methods for the derivation of opti-
mality conditions can be applied. The process is roughly as follows: the regularization
of the non-smoothness can be used to show that the solution mapping S of the PDE
is Fréchet differentiable for each ε > 0. After rewriting the problem in terms of the
control u, one can then characterize the solutions via a variational inequality, which
after introducing the proper slack variables, leads to the following result.

Theorem 5 (Necessary optimality conditions for the penalized regularized problems)
Let β, ε > 0 and (y, u) ∈ H1

0 (Ω)× L2(Ω) be an optimal solution to (56). Then there
exists an adjoint state p ∈ H1

0 (Ω) such that

y + A∗ p + 1

β
max′

ε(0,−y)p = yd , (57)

Ay − 1

β
maxε(0,−y) = u + f, (58)

u ∈ Uad , (αu − p, v − u)L2 ≥ 0, ∀v ∈ Uad . (59)

By defining sequences of stationary points, rather than local or global minimizers
in the primal variables, satisfying (57)–(59) along a sequence of positive numbers
β → 0+ and a bounded sequence {ε(β)} with ε(β)

/
/β → 0 as β → 0+, it is shown

in [9, Theorem 3.4] that there exists a sextuple

(ũ, ỹ, ṽ, p̃, r̃ , s̃) ∈ L2(Ω)×
[

H2(Ω) ∩ H1
0 (Ω)

]

×L2(Ω)× H1
0 (Ω)× H−1(Ω)× L2(Ω)

and a subsequence of the stationary points, which we again denote by β, such that

uβ
L2→ ũ, yβ

H1
0→ ỹ,

1

β
maxε(β)(0,−yβ)

H−1−→ ṽ
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and

pβ
H1

0
⇀ p̃,

1

β
max′

ε(β)(0,−yβ)pβ
H−1

⇀ r̃ ,

where (ũ, ỹ, ṽ, p̃, r̃ , s̃) is a C-stationary point for the original MPEC in the sense that
(7)–(10) hold and in place of (12)–(15) one has

0 ≥ ṽ, a.e.A(ỹ), (60)

0 = ṽ, a.e. I(ỹ), (61)

0 = p̃, a.e.A(ỹ) ∩ {x ∈ Ω |ṽ(x) > 0 } , (62)

0 ≥ 〈r̃ , p̃〉H−1,H1
0
, (63)

and for every ε > 0 there exists a subset Eε ⊂ I(ȳ) with meas(I(ȳ)\Eε) ≤ ε such
that

0 = 〈r̃ , ϕ〉H−1,H1
0
, ∀ϕ ∈ H1

0 (Ω) : ϕ = 0, Ω\Eε.

Such a point (ũ, ỹ) is said to be E-almost-C-stationary and was introduced in [8]
and [9]. This concept is unique to function space settings and at the moment only
available for MPECs in this more regular setting. Nevertheless, it is strictly stronger
than the limiting stationarity conditions of Sects. 3 and 4 if one were to apply the
techniques used there on this class of MPECs. However, if r̄ in Theorem 4 happens to
enjoy a pointwise interpretation, e.g. when p̄ ∈ H2(Ω)∩ H1

0 (Ω), then the E-almost-
C-stationarity conditions would be strictly weaker than those given by the limiting
stationarity conditions.

In addition, the multiplier r̃ can be shown to be in (L∞(Ω))∗, which is more
regular in the sense that each r̃ is then a finitely additive, finite signed-measure, see
e.g., [6, Theorem IV.8.16]. For simplicity we confine ourselves to the case when the
coefficient functions b j in the bilinear form (55) equal to zero.

Proposition 7 (Increased regularity of the multiplier r̃ ) The limiting multiplier r̃ in
Theorem 5 is an element of H−1(Ω) ∩ (L∞(Ω))∗.

Proof We apply a technique similar to that which was used to prove [4, Theorem 3.3].
We begin by letting sign(·) represent the pointwise sign function and suppose that σ(·)
is a monotonic C1-smoothing of sign(·), which has the property

σ(x) < 0, if x < 0, σ (0) = 0, σ (x) > 0, if x > 0.

For an arbitrarily fixed number β > 0, multiply equation (57) above by σ(pβ) and
obtain the equality

〈A∗ pβ, σ (pβ)〉H−1,H1
0

+
(

1

β
max′

ε(β)(0,−yβ)pβ, σ (pβ)

)

L2
= (

yd − yβ, σ (pβ)
)

L2 .
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To see that the first term of the latter equation is always nonnegative, we refer back to
the definition of the bilinear form a(·, ·) in (55). This gives

〈A∗ pβ, σ (pβ)〉H−1,H1
0

=
∫

Ω

σ ′(pβ)
∑

i, j

ai j |∇ pβ |2 dx +
∫

Ω

cpβσ (pβ) dx . (64)

The assumptions imposed above ensure that cpβσ (pβ) ≥ 0 almost everywhere on
Ω . Furthermore, observe that the first term on the right-hand side of equation (64) is
positive since the derivative of σ is either zero or positive and since the operator A
is coercive. It follows from the convergence results of Theorem 5 that there exists a
constant κ > 0 such that

0 ≤
( 1

β
max′

ε(β)(0,−yβ)pβ, σ (pβ)
)

L2
≤ (

yd − yβ, σ (pβ)
)

L2 ≤ κ,

Given the positivity of the integrand 1
β

max′
ε(β)(0,−yβ)pβσ (pβ), it follows that

∫

Ω

| 1

β
max′

ε(β)(0,−yβ)pβσ (pβ)|dx ≤ κ, ∀β > 0.

Then by letting σ → sign(·), we can argue that 1
β

max′
ε(β)(0,−yβ)pβ is bounded in

L1(Ω). In which case, we deduce the existence of a subsequence, still denoted by β,

and an element r∗ ∈ (L∞(Ω))∗, such that 1
β

max′
ε(β)(0,−yβ)pβ

∗
⇀ r∗ in (L∞(Ω))∗.

It follows that r∗ = r̃ ∈ (L∞(Ω))∗. ��

6 Conclusions and comparisons

In terms of the usefulness of the results for the development of numerical methods, the
penalization/regularization technique has the clear advantage. Indeed, in this setting
the practitioner is required to solve a sequence of KKT systems arising from smooth
non-linear programs (NLPs). Moreover, the limit of subsequences of solutions to the
NLPs is guaranteed under weak assumptions to satisfy a type of stationarity conditions
weaker than C-stationarity, yet stronger than so-called weak stationarity [19].

The development of a numerical method from the derivation technique described
in Sect. 4 is somewhat more difficult. In contrast to the previously discussed method,
in which one speaks of the convergence of stationary points, this method requires
knowledge of optimal solutions for each of the penalized MPECs. However, provided
with this information, one is guaranteed that each member of the sequence is strongly
stationary and that the limit of subsequences of these solutions will satisfy the limiting
stationarity system. The development of numerical methods realizing strong stationary
points is one possible future direction.

Finally, though they provide us with a significant amount of insight in terms of
the limits of solutions satisfying strong stationarity conditions, the limiting calculus
appears to impose certain restrictions on the ability to construct numerical methods
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in function spaces. This relates mainly to the fact that the existence of the sequences
in Proposition 2 is guaranteed by the definition of the limiting coderivative while the
sequences in Theorem 4, along with their characteristics, had to be derived. Moreover,
the relationship in (38) is clearly difficult to handle. If such a method were available,
then the minimal requirements placed on the operator B would allow the practitioner
to consider examples in which the control perturbation of the variational inequality is
not distributed on the entire domainΩ . Nevertheless, the technique used in Proposition
1 required very little in terms of structure of the control. In this sense, the limiting
calculus has an analytical advantage.

Acknowledgments We would like to thank the two anonymous reviewers for their careful reading of this
manuscript. Their comments and suggestions certainly improved the readability of this paper.

References

1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2008)
2. Attouch, H.: Variational Convergence for Functions and Operators. Pitman Advanced Publishing Pro-

gram, Boston (1984)
3. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)
4. Barbu, V.: Optimal Control of Variational Inequalities, Research Notes in Mathematics, vol. 100.

Pitman (Advanced Publishing Program), Boston (1984)
5. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)
6. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. Wiley Classics Library. Wiley, New York (1988)
7. Glowinski, R., Lions, J.L., Trémolières, R.: Analyse numérique des inéquations variationnelles.

Tome 1. Dunod, Paris (1976). Théorie générale premiéres applications, Méthodes Mathématiques
de l’Informatique, 5

8. Hintermüller, M., Kopacka, I.: Mathematical programs with complementarity constraints in function
space: C- and strong stationarity and a path-following algorithm. SIAM J. Optim. 20(2), 868–902
(2009)

9. Hintermüller, M., Kopacka, I.: A smooth penalty approach and a nonlinear multigrid algorithm for
elliptic MPECs. Comput. Optim. Appl. (2009). doi:10.1007/s10589-009-9307-9

10. Hintermüller, M., Surowiec, T.: First-order optimality conditions for elliptic mathematical programs
with equilibrium constraints via variational analysis. SIAM J. Optim. 21(4), 1561–1593 (2011)

11. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications.
Academic Press, New York (1980)

12. Mignot, F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22(2), 130–185
(1976)

13. Mignot, F., Puel, J.P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22(3),
466–476 (1984)

14. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. vol. 1: Basic Theory.
Springer, Berlin (2006)

15. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. vol. 2: Applications.
Springer, Berlin (2006)
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