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Abstract We consider two game-theoretic models of the generation capacity expan-
sion problem in liberalized electricity markets. The first is an open loop equilibrium
model, where generation companies simultaneously choose capacities and quanti-
ties to maximize their individual profit. The second is a closed loop model, in which
companies first choose capacities maximizing their profit anticipating the market equi-
librium outcomes in the second stage. The latter problem is an equilibrium problem
with equilibrium constraints. In both models, the intensity of competition among pro-
ducers in the energy market is frequently represented using conjectural variations.
Considering one load period, we show that for any choice of conjectural variations
ranging from perfect competition to Cournot, the closed loop equilibrium coincides
with the Cournot open loop equilibrium, thereby obtaining a ‘Kreps and Scheinkman’-
like result and extending it to arbitrary strategic behavior. When expanding the model
framework to multiple load periods, the closed loop equilibria for different conjec-
tural variations can diverge from each other and from open loop equilibria. We also
present and analyze alternative conjectured price response models with switching
conjectures. Surprisingly, the rank ordering of the closed loop equilibria in terms
of consumer surplus and market efficiency (as measured by total social welfare) is
ambiguous. Thus, regulatory approaches that force marginal cost-based bidding in
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spot markets may diminish market efficiency and consumer welfare by dampening
incentives for investment. We also show that the closed loop capacity yielded by a
conjectured price response second stage competition can be less or equal to the closed
loop Cournot capacity, and that the former capacity cannot exceed the latter when
there are symmetric agents and two load periods.

Keywords Generation expansion planning · Capacity pre-commitment ·
Noncooperative games · Equilibrium problem with equilibrium constraints (EPEC)

Mathematics Subject Classification 90B99 Operations Research and Management
Science · 91B26 Mathematical economics (Market Models) · 91A05 Game Theory
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1 Introduction

In this paper we compare game-theoretic models that can be used to analyze the
strategic behavior of companies facing generation capacity expansion decisions in
liberalized electricity markets. Game theory is particularly useful in the restructured
energy sector because it allows us to investigate the strategic behavior of agents (gener-
ation companies) whose interests are opposing and whose decisions affect each other.
In particular, we seek to characterize the difference between open and closed loop
models of investment.

Open loop models extend short-term models to a longer time horizon by modeling
investment and production decisions as being taken at the same time. This corresponds
to the open loop Cournot equilibrium conditions presented in [22], the Cournot-based
model presented in [31], and the model in [6]. However, this approach may overly
simplify the dynamic nature of the problem, as it assumes that expansion and operation
decisions are taken simultaneously.

The reason to employ more complicated closed loop formulations is that the gen-
eration capacity expansion problem has an innate two-stage structure: first investment
decisions are taken followed by determination of energy production in the spot market,
which is limited by the previously chosen capacity. A two-stage decision structure is a
natural way to represent how many organizations actually make decisions. One organi-
zational subunit is often responsible for capital budgeting and anticipating how capital
expenditures might affect future revenues and costs over a multi-year or even multi-
decadal time horizon, whereas a different group is in charge of day-to-day spot market
bidding and output decisions. This type of closed loop model is in fact an equilibrium
problem with equilibrium constraints (EPEC), see [21,29], arising when each of two or
more companies simultaneously faces its own profit maximization problem modeled
as a mathematical program with equilibrium constraints (MPEC). In the electricity
sector, MPECs, bilevel problems, and EPECs were first used to represent short-run
bidding and production games among power producers, e.g., [2,4,16,32,35]. EPECs
belong to a recently developed class of mathematical programs that often arise in engi-
neering and economics applications and can be used to model electricity markets [27].
For methods to solve EPECs, i.e., diagonalization, the reader is referred to [17,18,21].

123



Open versus closed loop capacity equilibria in electricity markets 297

Solving large-scale closed loop models can be very challenging, sometimes even not
tractable. Therefore, in real-world applications there is a strong incentive to resort to
easier open loop models, simply because the corresponding closed loop model cannot
be solved (yet). In this paper, our results indicate that when practical considerations
motivate adoption of easier, less complicated open loop models, the results may be
very different from (possibly more realistic) closed loop formulations.

For space reasons, many of the proofs and other details are omitted, but are available
in the full version of the paper [34].

1.1 Review of literature

Several closed loop approaches to the generation capacity expansion problem have
been proposed. The papers most relevant for our paper are [22] and [20]. With
their paper [20], Kreps and Scheinkman (K–S) tried to reconcile Cournot’s [8] and
Bertrand’s [3] theory by constructing a two-stage game, where first firms simultane-
ously set capacity and second, after capacity levels are made public, there is price com-
petition. They find that when assuming two identical firms and an efficient rationing
rule (i.e., the market’s short-run production is provided at least cost), their two-stage
game yields Cournot outcomes. For a more detailed review of the K–S literature, the
reader is referred to [34]. Our results extend this literature by considering generaliza-
tions of K–S-like models to conjectural variations other than competitive (Bertrand)
as well as multiple load periods or, equivalently, stochastic load.

In [22] the authors present and analyze three different models: an open loop per-
fectly competitive model, an open loop Cournot model and a closed loop Cournot
model. Each considers several load periods which have different demand curves and
two firms, one with a peak load technology (low capital cost, high operating cost)
and the other with a base load technology (high capital cost, low operating cost).
They analyze when open and closed loop Cournot models coincide and when they
are necessarily different. Moreover, they demonstrate that the closed loop Cournot
equilibrium capacities fall between the open loop Cournot and the open loop com-
petitive solutions. Our paper differs by considering a range of conjectural variations
between perfect competition and Cournot. Our formal results are for symmetric agents
but they extend to asymmetric cases. We derive certain equivalency results that can
also be extended to asymmetric firms. Moreover, in our models we consider a constant
second stage conjectural variation rather than a situation in which the conjectural vari-
ation switches to Cournot when rival firms are at capacity. We consider this alternative
conjectural variation in Sect. 4.5.

In addition to [23], there are other works that have formulated and solved closed
loop models of power generation expansion. In [31] we find a closed loop Stackelberg-
based model, where in the first stage a leader firm decides its capacity and then in the
second stage the followers compete in quantities in a Cournot game. Centeno et al. [6]
presents a two-stage model representing the market equilibrium, where the first stage is
based on a Cournot equilibrium among producers who can choose continuous capacity
investments and computes a market equilibrium approximation for the entire model
horizon and a second stage discretizes this solution separately for each year. In [13] the
authors present a linear bilevel model that determines the optimal investment decisions
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of one generation company considering uncertainty in demand and in competitors’
capacity decisions. In [28] the author applies a two-stage model in which firms choose
their capacities under demand uncertainty prior to competing in prices and presents
regulatory conclusions. An instance of a stochastic static closed loop model for the
generation capacity problem for a single firm can be found in [19], where investment
and strategic production decisions are taken in the upper level for a single target year
in the future, while the lower level represents market clearing.

Existing generation capacity expansion approaches in the literature assume either
perfectly competitive [13] or Cournot behavior [6,31] in the spot market. The proposed
open and closed loop models of this paper extend previous approaches by including a
generalized representation of market behavior via conjectural variations, in particular
through an equivalent conjectured price response. This allows us to represent vari-
ous forms of oligopoly, ranging from perfect competition to Cournot. Power market
oligopoly models have been proposed before based on conjectural variations [5] and
conjectured price responses [10], but only for short term markets in which capacity is
fixed.

In the case of electricity markets, production decisions undertaken by power pro-
ducers result from a complex dynamic game within multi-settlement markets. Typi-
cally, bids in the form of supply functions are submitted in two or more successive
markets at different times prior to operation, where the second and successive mar-
kets account for the commitments made in previous markets. Conjectural variations
models can represent a reduced form of a dynamic game as pointed out in [11]. This
kind of reinterpretation has been proposed by several authors. For example, the two
stage forward contracting/spot market Allaz–Vila game can be reduced to a one stage
conjectural variations model [23]. For further references of the conjectural variation
literature, the reader is referred to [34]. Therefore, conjectural variations can be used
to capture very complex games in a computationally tractable way. This is a major
reason why many econometric industrial organization studies estimate oligopolistic
interactions using model specifications based on the assumption of constant conjec-
tural variations [25]. Our discussion of these references is only to state that in general
conjectural variations can represent more complicated games. We do not consider here
the problem of estimating or calculating conjectural variations, which can be a very
complicated process and would depend on the nature of the particular game that is
reduced.

1.2 Open loop versus closed loop capacity equilibria

We consider two identical firms with perfectly substitutable products, each facing
either a one-stage or a two-stage competitive situation. The one-stage situation, rep-
resented by the open loop model, describes the one-shot investment operation mar-
ket equilibrium. The closed loop model, which is an EPEC, describes the two-stage
investment-operation market equilibrium and is similar to the well-known K–S game
[20]. Considering one load period, we find that the closed loop equilibrium for any
strategic market behavior between perfect competition and Cournot yields the open
loop Cournot outcomes, thereby obtaining a K–S-type result and extending it to any
strategic behavior between perfect competition and Cournot. As previously mentioned,
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Murphy and Smeers [22] have found that under certain conditions the open and closed
loop Cournot equilibria coincide. Our result furthermore shows that considering one
load period, all closed loop models assuming strategic spot market behavior between
perfect competition and Cournot coincide with the open loop Cournot solution. In the
multiple load period case we define some sufficient conditions for the open and closed
loop capacity decisions to be the same. However, this result is parameter dependent.
When capacity is the same, outputs in non-binding load periods are the same for open
and closed loop models when strategic spot market behavior is the same, otherwise
outputs can differ.

When the closed loop capacity decisions differ for different conjectural variations,
then the resulting consumer surplus (CS) and market efficiency (ME) (as measured by
social welfare, the sum of CS and profit) will depend on the conjectural variation. It
turns out that which conjectural variation results in the highest efficiency is parameter
dependent. In particular, under some assumptions, the closed loop model considering
perfect competition in the energy market can actually result in lower market efficiency,
lower CS and higher prices than Cournot competition. This surprising result implies
that regulatory approaches that force marginal cost-based bidding in spot markets
may decrease ME and consumer welfare and may therefore actually be harmful. For
example, the Irish spot market rules [26] require bids to equal short-run marginal cost.
Meanwhile, local market power mitigation procedures in several US organized markets
reset bids to marginal cost (plus a small adder) if significant market power is present in
local transmission-constrained markets [24]. These market designs implicitly assume
that perfect competition is welfare superior to more oligopolistic behavior, such as
Cournot competition. As our counter-example will show, this is not necessarily so.

In [14], the authors have arrived at a similar result, however, they only examine the
polar cases of perfect or Cournot-type competition. In our work we generalize strategic
behavior using conjectural variations and look at a range of strategic behavior, from
perfect competition to Cournot competition and we also observe that an intermediate
solution between perfect and Cournot competition can lead to even larger social welfare
and CS.

The results obtained are suggestive of what might occur in other industries where
storage is relatively unimportant and there is time varying demand that must be met
by production at the same moment. Examples include, for instance, industries such as
airlines or hotels.

This paper is organized as follows. In Sect. 2 we introduce and define the conjectured
price response representation of the short-term market and provide a straight-forward
relationship to conjectural variations. Then, in Sect. 3 we formulate symmetric open
and closed loop models for one load period and establish that our K–S-like result also
holds for arbitrary strategic behavior ranging from perfect to Cournot competition.
This is followed by Sect. 4, which extends the symmetric K–S-like framework to
multiple load periods. We furthermore analyze alternative models in which the second
stage conjectural variation switches depending on whether rivals’ capacity is binding
or not, instead of being constant. In Sect. 5 we first show that the closed loop capacity
yielded by a conjectured price response second stage competition can be less or equal
to the closed loop Cournot capacity, and that the former capacity cannot exceed the
latter for symmetric agents and two load periods. Also in that section we show by
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example that under the closed loop framework, more competitive behavior in the spot
market can lead to less market efficiency and CS. Finally, Sect. 6 concludes the paper.

2 Conjectural variations and conjectured price response

We introduce equilibrium models that capture various degrees of strategic behavior
in the spot market by introducing conjectural variations into the short-run energy
market formulation. The conjectural variations development can be related to standard
industrial organization theory [12]. In particular, we introduce a conjectured price
response parameter that can easily be translated into conjectural variations with respect
to quantities, and vice versa if we consider demand to be linear.

First, we consider two identical firms with perfectly substitutable products, for
which we furthermore assume an affine price function p(d), i.e., p(d) = (D0 −d)/α,
where d is the quantity demanded, α = D0/P0 is the demand slope, D0 > 0 the
demand intercept, and P0 > 0 is the price intercept. Demand d and quantities produced
qi , q−i , with i and −i being the indices for the market agents, are linked by the market
clearing condition qi + q−i = d. Hence, we will refer to price also as p(qi , q−i ).

Then we define the conjectural variation parameters as Φ−i,i . These represent agent
i’s belief about how agent −i changes its production in response to a change in i’s
production. Therefore:

Φ−i,i = dq−i

dqi
, i �= −i, (1)

Φi,i = 1. (2)

And hence using (1)–(2) and our assumed p(qi , q−i ), we obtain:

dp(qi , q−i )

dqi
= − 1

α

∑

−i

Φ−i,i = − 1

α

⎛

⎝1 +
∑

−i �=i

Φ−i,i

⎞

⎠ (3)

As we are considering two identical firms in the models of this paper, we can assume
that Φi,−i = Φ−i,i which we define as Φ and therefore relation (3) simplifies to:

dp(qi , q−i )

dqi
= − 1

α
(1 + Φ) (4)

Let us define the conjectured price response parameter θi as company i’s belief con-
cerning its influence on price p as a result of a change in its output qi :

θi := −dp(qi , q−i )

dqi
= 1

α
(1 + Φ) ≥ 0, (5)

which shows how to translate a conjectural variations parameter into the conjectured
price response and vice versa. The nonnegativity of (5) comes from the assumption that
the conjectural variations parameter Φ ≥ −1. Throughout the paper we will formulate
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the equilibrium models using the conjectured price response parameter as opposed
to the conjectural variations parameter, because its depiction of the firms’ influence
on price is more convenient for the derivations, as opposed to a firm’s influence on
production by competitors.

As has been proven in [9], this representation allows us to express special cases of
oligopolistic behavior such as perfect competition, the Cournot oligopoly, or collusion.
A general formulation of each firm’s profit objective would state that p = p(qi , q−i ),
with the firm anticipating that price will respond to the firm’s output decision. We term
this the conjectured price response model. If the firm takes p as exogenous (although
it is endogenous to the market), the result is the price-taking or perfect competition
(and Φ = −1), similar to the Bertrand conjecture [20] under certain circumstances.
Then the conjectured price response parameter θi equals 0, which means that none of
the competing firms believes it can influence price (and Φ = −1). If instead p(qi , q−i )

is the inverse demand curve D0/α−(qi +q−i )/α, with q−i being the rival firm’s output
which is taken as exogenous by firm i , then the model is a Nash-Cournot oligopoly.
In the Cournot case, θi equals 1/α, which would translate to Φ = 0 in the conjectural
variations framework.

We can also express collusion (quantity matching, or ’tit for tat’) as 2/α, which
translates to Φ = 1, as well as values between the extremes of perfect competition and
the Cournot oligopoly. Some more complex dynamic games can be reduced to a one
stage game with intermediate values for Φ (or θi respectively). For example, Murphy
and Smeers [23] show that the Allaz–Vila [1] two stage forward contracting/spot
market game can be reduced to a one stage game assuming Φ = 1/2 (or θ = 1/(2α)).
The two stage Stackelberg game can also be reduced to a conjectural variations-based
one stage game as shown in [7].

As mentioned above, in the case of electricity markets, production decisions
undertaken by power producers result from a complex dynamic game within multi-
settlement markets. Conjectural variations models (such as the used in the lower level)
can also be used as a computationally tractable reduced form of a dynamic game [11].

3 Generalization of the K–S-like single load period result to arbitrary
oligopolistic conjectures

In this section we consider two identical firms with perfectly substitutable products,
facing either a one-stage or a two-stage competitive situation. The one-stage situa-
tion is represented by the open loop model presented in 3.1 and describes the one-
shot investment-operation market equilibrium. In this situation, firms simultaneously
choose capacities and quantities to maximize their individual profit, while each firm
conjectures a price response to its output decisions consistent with the conjectured
price response model. The closed loop model given in 3.2 describes the two-stage
investment-operation market equilibrium, where firms first choose capacities that max-
imize their profit while anticipating the equilibrium outcomes in the second stage, in
which quantities and prices are determined by a conjectured price response market
equilibrium. We furthermore assume that there is an affine relation between price and
demand and that capacity can be added in continuous amounts.
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The main contribution of this section is Theorem 1, in which we show that for
two identical agents, one load period and an affine non-increasing inverse demand
function, the one-stage model solution assuming Cournot competition is a solution
to the closed loop model independent of the choice of conjectured price response
within the perfect competition-Cournot range. When the conjectured price response
represents perfect competition, then this result is very similar to the finding of [20].
As a matter of fact, Bertrand competition boils down to perfect competition when
there is no capacity constraint [30], in which case our results would be equivalent
to the K–S result. However, considering that we have a capacity limitation, Bertrand
competition and perfect competition are not equivalent. For this reason our results
are not exactly K–S, however, taking into account the similarities, they are K–S-like.
Thus, Theorem 1 extends the ’Kreps and Scheinkman’-like result to any conjectured
price response within a range. Later in the paper, however, we show that this result
does not generalize to the case of multiple load periods.

Throughout this section we will use the following notation:

– qi denotes the quantity [MW] produced by firms i = 1, 2.
– xi denotes the capacity [MW] of firms i = 1, 2.
– d denotes quantity demanded [MW].
– p [e/MWh] denotes the clearing price. Moreover p(d) = (D0 − d)/α where D0

and α are positive constants, and P0 denotes D0/α.
– t [h/year] corresponds to the duration of the load period per year.
– β [e/MW/year] corresponds to the annual investment cost.
– δ [e/MWh] is the variable production cost.
– θ is a constant in [0, 1/α], that is the conjectured price response corresponding to

the strategic spot market behavior for each i , see (5).

Furthermore we will make the following assumptions:

– Both cost parameters, δ, β, are nonnegative.
– The investment cost plus the variable cost will be less than the price intercept times

duration t , i.e., δt + β < P0t , which is an intuitive condition as it simply states
that the maximum price P0 is high enough to cover the sum of the investment cost
and the operation cost. Otherwise there is clearly no incentive to participate in the
market.

– The same demand curve assumptions are made as in Sect. 2.
– We consider one year rather than a multi-year time horizon, and so each firm

attempts to maximize its annualized profit.

3.1 The open loop model

In the open loop model, every firm i faces a profit maximization problem in which
it chooses capacity xi and production qi simultaneously. When firms simultaneously
compete in capacity and quantity, the open loop investment-operation market equi-
librium problem consists of all the firms’ profit maximization problems plus market
clearing conditions that link together their problems by d = D0 − αp(qi , q−i ). Con-
ceptually, the resulting equilibrium problem can be written as (6)–(7):
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∀i

{
maxxi ,qi t (p(qi , q−i ) − δ)qi − βxi

s.t. qi ≤ xi
(6)

d = qi + q−i , d = D0 − αp(qi , q−i ) (7)

In (6) we describe i’s profit maximization as consisting of market revenues
tp(qi , q−i )qi minus production costs tδqi and investment costs βxi . The non-
negativity constraints can be omitted in this case.1

Although (6)’s constraint is expressed as an inequality, it will hold as an equality in
equilibrium, at least in this one-period formulation. That xi = qi for i = 1, 2 will be
true in equilibrium, can easily be proven by contradiction. Let us assume that at the
equilibrium xi > qi ; then firm i could unilaterally increase its profits by shrinking xi

to qi (assuming β > 0), which contradicts the assumption of being at an equilibrium.
In this representation the conjectured price response is not explicit. Therefore we re-

write the open loop equilibrium stated in (6)–(7) as a mixed complementarity problem
(MCP) by replacing each firm’s profit maximization problem by its first order Karush–
Kuhn–Tucker (KKT) conditions. The objective function in (6) is concave for any value
of θ in [0, 1/α].2 Then, due to linearity of p(d), (6)–(7) is a concave maximization
problem with linear constraints, hence its solutions are characterized by its KKT
conditions. Therefore let Li denote the Lagrangian of company i’s corresponding
optimization problem, given in (6) and let λi be the Lagrange multiplier of constraint
qi ≤ xi . Then, the open loop equilibrium problem is then given in (8)–(9).

∀i

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂Li
∂qi

= tp(qi , q−i ) − tθqi − tδ − λi = 0
∂Li
∂xi

= β − λi = 0

qi ≤ xi

λi ≥ 0
λi (xi − qi ) = 0

(8)

d = qi + q−i , d = D0 − αp(qi , q−i ) (9)

Due to the fact that λi = β > 0, the complementarity condition yields xi = qi in
equilibrium. In this formulation we can directly see the conjectured price response
parameter θ in ∂Li

∂qi
. Solving the resulting system of equations yields:

qi = D0t − α(β + δt)

t (αθ + 2)
∀i (10)

1 For completeness, let us consider the explicit non-negativity constraint 0 ≤ qi in the optimization problem
(6) and let us define μi ≥ 0 as the corresponding dual variable. Then, due to complementarity conditions
arising from the KKT conditions, we can separate two cases, the one where μi = 0 and the other where
μi > 0. The first case will lead us to the solution presented in the paper, and case μi > 0 will lead us to
a solution where μi = t (δ − P0). Considering that we assumed P0 > δ, this yields a contradiction to the
non-negativity of μi . Hence, this cannot be the case and therefore we omit the non-negativity constraint.
2 Taking the first derivative of the objective function in (6) with respect to qi yields: tp(qi , q−i )− tθqi − tδ.
Then, the second derivative is −2tθ , which is smaller or equal to zero for each value of θ in [0, 1/α], which
yields concavity of the objective function.
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p = D0tθ + 2(β + δt)

t (αθ + 2)
. (11)

In the open loop model we have not explicitly imposed qi ≥ 0, however, from (10)
we obtain that the open loop model has a non-trivial solution (i.e., each quantity is
positive at equilibrium) if parameters are chosen such that D0t − α(β + δt) > 0 is
satisfied. This condition is equivalent to δt + β < P0t using the fact that α = D0/P0
and D0 > 0, which has already been stated in the assumptions above.

A special case of the conjectured price response is the Cournot oligopoly. In order
to obtain the open loop Cournot solution, we just need to insert the appropriate value
of the conjectured price response parameter θ , which for Cournot is θ = 1/α. This
solution is unique [22]. Then (10)–(11) yield:

qi = D0t − α(β + δt)

3t
∀i (12)

p = D0t + 2α(β + δt)

3tα
. (13)

3.2 The closed loop model

We now present the closed loop conjectured price response model describing the two-
stage investment-operation market equilibrium. In this case, firms first choose capaci-
ties maximizing their profit anticipating the equilibrium outcomes in the second stage,
in which quantities and prices are determined by a conjectured price response market
equilibrium. We stress that the main distinction of this model from the equilibrium
model described in Sect. 3.1 is that now there are two stages in the decision process,
i.e., capacities and quantities are not chosen at the same time. Then we present Theo-
rem 1 which establishes a relation between the open loop and the closed loop models
for the single demand period case.

3.2.1 The production level—second stage

The second stage (or lower level) represents the conjectured-price-response market
equilibrium, in which both firms maximize their market revenues minus their produc-
tion costs, deciding their production subject to the constraint that production will not
exceed capacity. The argument given above shows, at equilibrium, that this constraint
binds if there is a single demand period. These maximization problems are linked by
the market clearing condition. Thus, the second stage market equilibrium problem can
be written as:

∀i

{
maxqi t (p(qi , q−i ) − δ)qi

s.t. qi ≤ xi
(14)

d = qi + q−i , d = D0 − αp(qi , q−i ), (15)

As in the open loop case, p may be conjectured by firm i to be a function of its output
qi . Using a justification similar to that in the previous section, we can substitute
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firm i’s KKT conditions for (14) and arrive at the conjectured price response market
equilibrium conditions, as shown in [34].

3.2.2 The investment level—first stage

In the first stage, both firms maximize their total profits, consisting of the gross margin
from the second stage (revenues minus production costs) minus investment costs, and
choose their capacities subject to the second stage equilibrium response, which can
be written as the following equilibrium problem:

∀i

{
maxxi t (p(qi , q−i ) − δ)qi − βxi

s.t. Market Equilibrium Conditions for (14), (15)
(16)

We know that at equilibrium, production will be equal to capacity. As in the open loop
model, this can be shown by contradiction. Since there is a linear relation between
price and demand, it follows that price can be expressed as p = D0−d

α
. Substituting

xi = qi in this expression of price, yields p = D0−x1−x2
α

. Then expressing the objective
function and the second stage in terms of the variables xi yields the following simplified
closed loop equilibrium problem:

∀i

⎧
⎨

⎩
maxxi t

(
D0−x1−x2

α
− δ

)
xi − βxi

s.t. D0−x1−x2
α

− θxi − δ ≥ 0 : γi

(17)

where γi are the dual variables to the corresponding constraints. Then, the closed loop
equilibrium conditions (assuming a nontrivial solution xi > 0) are:

∀i

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t
(

D0−x1−x2
α

− δ
)

− t xi/α − β + γi (−θ − 1/α) = 0

D0−x1−x2
α

− θxi − δ ≥ 0

γi

(
D0−x1−x2

α
− θxi − δ

)
= 0

γi ≥ 0

(18)

When solving the system of equations given by (18) we distinguish between two
separate cases: γi = 0 and γi > 0. The first case, i.e. γi = 0, yields the following
solution for the closed loop equilibrium:

xi = D0t − α(β + δt)

3t
∀i. (19)

p = D0t + 2α(β + δt)

3tα
(20)

This can be verified without difficulty by checking the market equilibrium conditions,
i.e., KKT conditions of (14)–(15); see [34] for details. As in the previous section, the
solution is nontrivial due to the assumption that δt + β < P0t .
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As for uniqueness of the closed loop equilibrium, [22] has proven for the Cournot
closed loop equilibrium that if an equilibrium exists, then it is unique. We will inves-
tigate uniqueness issues of the closed loop conjectured price response model in future
research. Comparing (19) and (20) with the open loop equilibrium (10) and (11) we
see that this is exactly the open loop solution considering Cournot competition, i.e.
(12) and (13).

Now let us consider the second case, i.e., γi > 0. Then (18) yields the following
values for capacities and γi :

xi = D0 − αδ

2 + αθ
∀i. (21)

γi = −(D0t + α2(β + δt)θ + α(2β − t (δ + D0θ)))

(αθ + 1)(αθ + 2)
∀i. (22)

It can be verified [34] that for θ ∈ [0, 1/α] the expression of γi in (22) is smaller or
equal to zero, which is a contradiction to the assumption that γi > 0. Hence the only
solution to the closed loop equilibrium is the open loop Cournot solution that results
when γi = 0.

3.2.3 Theorem 1

Theorem 1 Let there be two identical firms with perfectly substitutable products and
one load period. Let the affine price p(d) and the parameters needed to define the
open loop equilibrium problem (8)–(9) be as described at the start of Sect. 3.

When comparing the open and closed loop competitive equilibria for two firms,
we find the following: The open loop Cournot solution, see (12)–(13), is a solution
to the closed loop conjectured price response equilibrium (19)–(20) for any choice
of the conjectured price response parameter θ from perfect competition to Cournot
competition.

Proof Sections 3.1 and 3.2 above prove this theorem. As in the open loop model, the
closed loop model has a non-trivial solution if data is chosen such that P0t > β + δt
is satisfied. ��

What we have proven in Theorem 1 is that as long as the strategic behavior in the
market (which is characterized by the parameter θ ) is more competitive than Cournot,
then in the closed loop problem firms could decide to build Cournot capacities. Even
when the market is more competitive than the Cournot case (e.g., Allaz–Vila or perfect
competition), firms can decide to build Cournot capacities. Hence Theorem 1 states
that the Kreps and Scheinkman-like result holds for any conjectured price response
more competitive than Cournot (e.g., Allaz–Vila or perfect competition), not just
for the case of perfect second stage competition. Theorem 1 extends to the case of
asymmetric firms but we omit the somewhat tedious analysis which can, however, be
found in [33].

Note that Theorem 1 describes sufficient conditions but they are not necessary. This
means that there are cases where Theorem 1 also holds for θ > 1/α. For example
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Theorem 1 may hold under collusive behavior (θ = 2/α) when the marginal cost of
production (δ) is sufficiently small.3

In the following section we will extend the result of Theorem 1 to the case of
multiple demand periods. In particular, under stringent conditions, the Cournot open
loop and closed loop solutions can be the same, and the Cournot open loop capacity
can be the same as the closed loop capacity for more intensive levels of competition in
the second stage of the closed loop game. But this result is parameter dependent, and
in general, these solutions differ. Surprisingly, for some parameter assumptions, more
intensive competition in the second stage can yield economically inferior outcomes
compared to Cournot competition, in terms of CS and total market surplus.

4 Extension of K–S-like result for multiple load periods

In this section we extend the previously established comparison between the open
loop and the closed loop model to the situation in which firms each choose a single
capacity level, but face time varying demand that must be met instantaneously. This
characterizes electricity markets in which all generation capacity is dispatchable ther-
mal plant and there is no significant storage (e.g., in the form of hydropower). We
also do not consider intermittent nondispatchable resources (such as wind); however,
if their capacity is exogenous, their output can simply be subtracted from consumer
quantity demanded, so that d represents effective demand. In particular, this extension
will be characterized by Proposition 1. We start this section by introducing some def-
initions and conditions, followed by the statement of Proposition 1. In the remainder
of this section we then introduce the open and the closed loop model for multiple
load periods in Sects. 4.1 and 4.2. In Sect. 4.3 we present the proof of Proposition 1.
Section 4.4 contains a numerical example of the theoretical results obtained in this
section. Finally, in Sect. 4.5 we introduce and briefly analyze alternative conjectured
price response models with switching instead of constant second stage behavior, which
is arguably more realistic [23], and we show how Proposition 1 can be extended to
these alternative types of models.

We adopt the following assumptions:

– We still consider two identical firms and a linear demand function.
– Additionally let us define l as the index for distinct load periods. Now production

decisions depend on both i and l. Furthermore let us define the active set of
load levels L Bi as the set of load periods in which equilibrium production equals
capacity for firm i , i.e., L Bi := {l|qil = xi }.

– The conjectured price response θl for each i is a constant in [0, 1/α].
– Both cost parameters, δ, β, are nonnegative.
– Moreover, pl(d) = (D0l − dl)/αl where D0l and αl are positive constants, and

P0l denotes D0l/αl .

3 Let D0 = 1, t = 1, α = 1, β = 1/2 and δ = 0, then the open loop Cournot solution is p = 2/3, with
x = 1/6 for each firm. In this case, with these cost numbers, the open loop Cournot equals the closed loop
equilibrium with θ = 2/α (collusion, Φ = 1).
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– In addition, let P0l > δ be true for l ∈ L Bi , which means that the maximum
price that can be attained in the market has to be bigger than the production cost,
otherwise there would be no investment or production.

– We also assume P0l ≥ δ for l �∈ L Bi , which is similar to the condition above and
guarantees non-negativity, however, it allows production to be zero in non-binding
load periods.

– Similarly to the assumption made in the previous section, we also assume that∑
l∈L Bi

P0l tl > β + δ
∑

l∈L Bi
tl , which states that if maximum price P0l is paid

for the durations tl then the resulting revenue must be more than the sum of the
investment cost and the operation cost, otherwise there is no incentive to participate
in the market.

– The same demand curve assumptions are made as in Sect. 2.
– We consider one year rather than a multi-year time horizon, and so each firm is

maximizing its annualized profit.

Proposition 1 (a) If the closed loop solutions for different θ between perfect compe-
tition and Cournot competition exist and have the same active set of load periods (i.e.,
firm i’s upper bound on production is binding for the same load periods l) and the
second stage multipliers, corresponding to the active set, are positive at equilibrium,
then capacity xi is the same for those values of θ . (b) Furthermore, if we assume that
the open loop Cournot equilibrium, i.e., θ = 1/α, has the same active set, then the
Cournot open and closed loop equilibria are the same.

Perhaps the most difficult assumption of Proposition 1 is the existence of closed
loop equilibria, since in general, EPECs may not have pure strategy equilibria as shown
in [15] and example 4 of [18].

4.1 The open loop model for multiple load periods

The purpose of this section is to introduce the open loop model for general θ and
multiple load periods and to characterize the equilibrium capacity xi . Hence, we write
the open loop investment-operation market equilibrium as:

∀i

{
maxxi ,qil

∑
l tl(pl(qil , q−il) − δ)qil − βxi

s.t. qil ≤ xi ∀l
(23)

dl = qil + q−il , dl = D0l − αl pl(qil , q−il) ∀l (24)

As previously mentioned in Sect. 3.1, the non-negativity constraints can be omitted in
this case. Similar to Sect. 3.1, we can derive the investment-operation market equilib-
rium conditions in which we distinguish periods where capacity is binding from when
capacity is slack. Details can be found in [34].

For the non-binding load periods l �∈ L Bi we can obtain the solution to the equi-
librium by solving the system of equations given by the investment-operation market
equilibrium conditions, which yields:
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qil = D0l − αlδ

2 + αlθl
∀i, l �∈ L Bi (25)

pl = D0lθ + 2δ

2 + αlθl
∀l �∈ L Bi . (26)

In order to obtain the solution for load levels when capacity is binding, we sum ∂Li
∂qil

over all load periods l ∈ L Bi , substitute qil = xi and use the ∂Li
∂xi

= 0 condition.
We then express price as a function of capacity (qi = xi ) and we solve the system of
equations given by the investment-operations market equilibrium, together with the
previously mentioned condition ∂Li

∂xi
= 0 for all i , which yields the capacity solution

given in (27), as detailed in [34].

xi =
∑

l∈L Bi

(
D0l tl

∏
n �=l∈L Bi

αn

)
− ∏

l∈L Bi
αl

(
β + δ

∑
l∈L Bi

tl
)

∑
l∈L Bi

(
tl (2 + αlθl)

∏
n �=l∈L Bi

αn

) ,∀i (27)

We know that for θl ∈ [0, 1/αl ], qil will be a continuous function of xi and hence
from the investment-operations equilibrium conditions we get that λil will also be a
continuous function of xi . Having obtained capacities xi , the prices pl and demand
dl for l ∈ L Bi follow. We furthermore observe that (10) is a special case of (27) in
which we only have one binding load period.

Above it has not been explicitly stated that qi and xi are positive variables, but this
is satisfied at the equilibrium point, see [34].

4.2 The closed loop model for multiple load periods

Let us now introduce the closed loop problem for multiple load periods and derive an
expression for the equilibrium capacity. First, we state the second stage production
game for the closed loop game with multiple load periods in (28)–(29) and define
Lagrange multipliers λil for the constraint qil ≤ xi .

∀i

⎧
⎨

⎩

maxqil

∑
l tl(pl(qil , q−il) − δ)qil

s.t. qil ≤ xi ∀l
(28)

dl = qil + q−il , dl = D0l − αl pl(qil , q−il) ∀l (29)

As mentioned in previous sections, we can derive the market equilibrium conditions,
assuming that each firm holds the same conjectured price response θl in each load
period l. θl can differ among periods. The complementarity between λil and qi < xi

for l �∈ L Bi implies that λil = 0 for l �∈ L Bi . Hence we can omit that complementarity
condition for those load periods in the market equilibrium formulation, which is given
in detail in [34]. Moreover, we assume that multipliers λil for l ∈ L Bi will be positive
at equilibrium. (If any multipliers are zero, then Proposition 1 may not hold.)

For the non-binding load periods l �∈ L Bi we can obtain the solution to the con-
jectured price response market equilibrium by solving the corresponding system of
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equations given by the multiple load period market equilibrium conditions, which
yields:

qil = D0l − αlδ

2 + αlθl
∀i, l �∈ L Bi (30)

pl = D0lθ + 2δ

2 + αlθl
∀l �∈ L Bi . (31)

We cannot yet solve the market equilibrium for the binding load periods l ∈ L Bi

depending as they do upon the xi ’s. Hence we move on to the investment equilibrium
problem to obtain those xi ’s, which is formulated below:

∀i

{
maxxi

∑
l tl pl(qil , q−il)qil − ∑

l tlδqil − βxi

s.t. Market Equilibrium Conditions for (28), (29)
(32)

After recalling that qi = xi for l belonging to L Bi and then re-arranging terms, we can
rewrite the objective function separating the terms that correspond to inactive capacity
constraints (l �∈ L Bi ) which do not involve xi ’s at all, and the terms that correspond to
the active capacity constraints (l ∈ L Bi ). We express price as a function of capacity
for l ∈ L Bi and replace it in the new expression of the objective function, take the
derivative of this objective function with respect to xi , set it to zero and solve for xi ,
which yields the closed loop capacity solution given in equation (33). Details can be
found in [34].

xi =
∑

l∈L Bi

(
D0l tl

∏
n �=l∈L Bi

αn

)
− ∏

l∈L Bi
αl

(
β + δ

∑
l∈L Bi

tl
)

3
∑

l∈L Bi

(
tl

∏
n �=l∈L Bi

αn

) ∀i (33)

Having obtained capacities xi , the prices pl and values for qil for l ∈ L Bi follow and
the solution will be non-trivial, see [34].

4.3 Proof of proposition 1

Proof (Part a) First, we observe that the closed loop capacity, given by (33), does not
depend on the conjectured price responses θl , for l = 1, . . . , L , and in particular this
means that two closed loop equilibria with different θl ’s have the exact same capacity
solution as long as their active sets are the same with λil positive for l ∈ LBi .

(Part b) Comparing the closed loop capacity (33) with the open loop capacity
(27) we note that the open loop capacity does depend on the strategic behavior θl

in the market whereas the closed loop capacity does not. Moreover we observe that
if open loop and closed loop models have the same active set at equilibrium, then
their solutions are exactly the same under Cournot competition (θl = 1/αl). If open
and closed loop equilibria have the same active set and their θl coincide but are not
Cournot, then in general their capacity will differ. However, their production qil for
l �∈ LBi will be identical, as can be seen by comparing (25)–(26) and (30)–(31). ��

123



Open versus closed loop capacity equilibria in electricity markets 311

In general, prices will be lower in the second stage under perfect competition than
under Cournot competition for periods other than L Bi . In that case, consumers will
be better off (and firms worse off) under perfect competition than Cournot competi-
tion. The numerical example in Sect. 4.4 illustrates this point. However, this result is
parameter dependent as will be demonstrated by the example in Sect. 5.2, where we
will show that in some cases Cournot competition can yield more capacity and higher
ME than perfect competition. This can only occur for cases where either the binding
L Bi differ, or the L Bi are the same but the λil are zero for some l. We furthermore
observe that for one load period, Proposition 1 reduces to Theorem 1, i.e., (19) is a
special case of (33).

Proposition 1, like Theorem 1, can be extended to asymmetric firms. As the details
are tedious we refer the reader to the proof presented in [33].

4.4 Example with two load periods: LBi the same for all θ

Let us now consider an illustrative numerical example where two firms both consider
an investment in power generation capacity with the following data:

– Two load periods l, with durations of t1=3,760 and t2=5,000 [h/year]
– Demand intercepts D0l given by D0,1= 2,000 and D0,2=1,200 [MW]
– Demand slopes αl equal to α1 = D0,1/250 and α2 = D0,2/200
– Annualized capital cost β = 46,000 [e/MW/year]
– Operating cost δ = 11.8 [e/MWh]

Having chosen the demand data for the two load levels such that capacity will not
be binding in both periods in any solution, we solve the open loop and the closed loop
model and compare results. In Fig. 1 we present the solution of one firm (as the second
firm will have the same solution). First we depict the capacity that was built, then we
compare production for both load periods and finally profits. Note that for both firms,
LBi will be the same for all θ and will include only period l = 1. Later we will present
another example where this is not the case, and the results differ in important ways.

As demonstrated in Proposition 1, the closed loop capacity does not depend on
behavior in the spot market. However we will see that profits do depend on the com-
petitiveness of short-run behavior, and unlike the single demand period case, are not
the same for all θ between perfect competition and Cournot. We refer to the binding
load period as ’peak’ and to the non-binding load period as ’base’. The closed loop
production in the peak load level is the same for all θ , as long as the competitive
behavior on the spot market is at least as competitive as Cournot. However, base load
production depends on the strategic behavior in the spot market. This can be explained
as follows: as long as the strategic behavior in the spot market is at least as compet-
itive as Cournot, peak load outputs are independent of θ because agents are aware
that building Cournot capacities will cause the peak period capacity constraint to bind
and will limit production on the market to the Cournot capacity. However, given our
demand data we also know that capacities will not be binding in the base period and
as a consequence outputs will not be limited either. Hence during the base periods the
closed loop model will find it most profitable to produce the equilibrium outcomes
resulting from the particular conjectured price response.

123



312 S. Wogrin et al.

Perfect Competition Allaz−Vila Cournot
500

600

700

800

900

1000

Conjectured Price Response θ

C
ap

ac
ity

 (
M

W
)

Capacity Open−Loop (OL) vs Closed−Loop (CL) − 2 load periods

Perfect Competition Allaz−Vila Cournot
400

600

800

1000

Conjectured Price Response θ

P
ro

du
ct

io
n 

(M
W

)

Production Open−Loop (OL) vs Closed−Loop (CL) − 2 load periods

Perfect Competition Allaz−Vila Cournot
0

100

200

300

Conjectured Price Response θ

P
ro

fit
s 

(M
 E

ur
o)

Profit Open−Loop (OL) vs Closed−Loop (CL) − 2 load periods

Capacity OL

Capacity CL

Load Period 1 − OL

Load Period 1 − CL
Load Period 2 − OL, CL

Profits OL

Profits CL

Fig. 1 Built capacity, production and profit of one firm in the two load period numerical example

On the other hand, when considering the open loop model, the capacity (peak
load production) does depend on θ . In particular, the open loop capacity will be
determined by the spot market equilibrium considering the degree of competitive
behavior specified by θ . We observe that for increasing θ between perfect competition
and Cournot in the open loop model, less and less capacity is built until we reach the
Cournot case, at which point the open and closed loop results are exactly the same.
Comparing open and closed loop models for a given θ reveals that while their base load
outputs are identical, see Tables 1, 2, capacity and thus peak load production differs
depending on θ . Figure 1 also shows that profits obtained in the closed loop model
equal or exceed the profits of the open loop model. This gap is largest assuming perfect
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Table 1 Closed loop
equilibrium solution perfect
competition (θl = 0),
Allaz–Vila (θl = 1/(2αl )) and
Cournot (θl = 1/αl )

second-stage competition

l Peak Base

qil [MW]
θl = 0 602.6 564.6

qil [MW]
θl = 1/(2αl ) 602.6 451.7

qil [MW]
θl = 1/αl 602.6 376.4

pl [e/MWh]

θl = 0 99.4 11.8

pl [e/MWh]

θl = 1/(2αl ) 99.4 49.4

pl [e/MWh]

θl = 1/αl 99.4 74.5

Table 2 Open loop equilibrium
solution perfect competition
(θl = 0), Allaz–Vila
(θl = 1/(2αl )) and Cournot
(θl = 1/αl ) second-stage
competition

l Peak Base

qil [MW]
θl = 0 903.9 564.6

qil [MW]
θl = 1/(2αl ) 723.1 451.7

qil [MW]
θl = 1/αl 602.6 376.4

pl [e/MWh]

θl = 0 24.0 11.8

pl [e/MWh]

θl = 1/(2αl ) 69.2 49.4

pl [e/MWh]

θl = 1/αl 99.4 74.5

competition and becomes continuously smaller for increasing θ until the results are
equal under Cournot. This means that the further away that spot market competition
is from Cournot, the greater the difference between model outcomes.

In standard open loop oligopoly models [12] without capacity constraints, perfect
competition gives lower prices and total profits of firms, and greater CS, and market
efficiency compared to Cournot competition.4 We observe that this occurs for this
particular instance of the open and closed loop models, see Tables 2, 3. It can be
readily proven more generally that market efficiency, consumer surplus, and average
prices are greater for lower values of θ (more competitive second stage conditions) if
L Bi are the same for those θ (and multipliers are positive), and capacity is not binding

4 Total Profit is defined as
∑

l tl (pl − δ)(qil + q−il ) − β(xi + x−i ). CS is defined as the integral of the
demand curve minus payments for energy, equal here to

∑
l tl (P0l − pl )(qil + q−il )/2. Market efficiency

(ME) is defined as CS plus total profits.
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Table 3 Market efficiency
(ME), consumer surplus (CS)
and total profit in closed loop
solutions

Perfect
competition

Allaz–Vila Cournot

ME [e] 1.21 × 109 1.19 × 109 1.15 × 109

CS [e] 0.873 × 109 0.681 × 109 0.577 × 109

Total profit [e] 0.342 × 109 0.511 × 109 0.578 × 109

in every l.5 However, we will also demonstrate by counter-example that this result
does not necessarily apply when L Bi differ for different θ . In particular, in Sect. 5.2
we will present an example in which Cournot competition counterintuitively yields
higher ME than perfect competition.

4.5 Conjectured price response models with switching conjectures

In this section we consider and analyze alternative conjectured price response models
that are a variant of the previously presented models. In particular, we propose models
in which a firm always has a Cournot conjectured price response with respect to the
output of a rival in periods when their capacity is binding, and an arbitrary conjectured
price response θ between perfect competition and Cournot when the rival’s capacity
is not binding. This type of model is arguably more realistic because producers in the
second stage will recognize the times when rivals are at their capacity constraint and
cannot increase output. This argument has been thoroughly discussed in [23].

In general, when solving models with switching conjectures, one has to have in mind
that in a multi-player game, some generation companies may have binding capacity, but
others might not in the same load period. In this case, the conjecture of the generation
company at capacity would be θ and the rival’s conjecture would be the Cournot
conjecture. Such models are more difficult to solve than the previously presented
models as some kind of iterative process has to be adopted and moreover, pure strategy
equilibria might not exist. Hence, for the sake of simplicity of this analysis, we assume
that a pure strategy equilibrium exists and we furthermore assume that the equilibrium
is a symmetric one. Because of space limitations, we omit the formulation of these
alternative open and closed loop models and other details, which can be found in [34].

As an aside we note that asymmetric equilibria may exist, even if the firms them-
selves are symmetric. For an analysis of the case of asymmetric equilibria, which is
more complicated and extensive than the case discussed in this section, and numerical
examples that show this can happen with the Allaz–Vila conjectural variation, the
reader is referred to [23]. Although asymmetric equilibria are of interest and deserve
further study, we do not explore these alternative models outside of this section.

Our main result, extending Proposition 1 to models with switching conjectures, is
that many different kinds of strategic behavior in the energy market yield the same
equilibrium capacity provided the active sets of load periods are the same at equilibrium
and the conjecture ranges between perfect and Cournot competition:

5 This is proven by demonstrating that for smaller θ , the second stage prices will be lower and closer to
marginal operating cost in load periods for those periods that capacity is not binding.
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– Closed loop models with switching conjectures in style of [23], as discussed above,
under any conjecture (i.e., any conjectured price response θ ).

– Open and closed loop models in style of [23] under any conjecture.
– Two closed loop models, one with and the other without switching conjectures,

under any conjecture.

However should different conjectures or different ways of reacting to a competitor
being at capacity lead to different binding load periods, then installed capacity may
also differ (if a pure strategy equilibrium exists at all).

5 Ranking of closed loop equilibria: capacity and market efficiency

In this section we make some observations concerning capacity results in closed loop
equilibria. We also discuss the ambiguities that occur regarding social welfare when
comparing two closed loop equilibrium solutions with different strategic behavior in
the spot market. In Sect. 5.1 we prove that the capacity of a closed loop model with
competitive behavior between perfect competition and Cournot can be lower or equal
to the closed loop Cournot second stage capacity, depending on the choice of data,
and moreover, that it cannot be higher for symmetric players in the two period case.
In 5.2 we prove by counter-example that the ranking of closed loop conjectured price
response equilibria, in terms of ME (aggregate CS and market surplus) and consumer
welfare, is parameter dependent.

5.1 Comparisons of capacity from closed loop equilibria

In this section we analyze the effects of the strategic behavior in the spot market on
capacity in the closed loop model. This work is an extension of the work of Murphy
and Smeers [23] , in which they compare a closed loop Cournot model to a model
with an additional forward market stage, i.e., a closed loop Allaz–Vila model with
capacity decisions. They find that, depending on the data, the capacity yielded by the
closed loop Allaz–Vila model can either be more, less or equal to the capacity given
by the closed loop Cournot model in a market with asymmetric players. We extend
their results to general conjectural variations considering symmetric companies, and
compare our closed loop model with Cournot second stage competition to a closed
loop model with arbitrary second stage competition between perfect competition and
Cournot. We show that in this comparison the capacity yielded by conjectured price
response second stage competition can be less (decreasing) or equal to the closed loop
Cournot capacity. Further, we find that the former capacity cannot exceed the latter
for symmetric agents and two load periods.

Part (a) of Proposition 1 proves that if two closed loop solutions for different θ

between perfect competition and Cournot competition have the same active set of
load periods, then capacity is the same for those values. The corresponding numerical
example has been presented in Sect. 4.4. This demonstrates that it is possible for two
different closed loop models to yield the same capacity. However, from the closed
form expression for capacity, given in (33), we also know that when active sets of
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load periods do not coincide, then the solutions will generally not be the same. For
an example in which the closed loop Cournot second stage capacity is strictly above
the capacities yielded by other closed loop models with more competitive strategic
behavior, we refer the reader to Sect. 5.2.

For two load periods, the case in which capacity increases with increasing compe-
tition (which occurred for an asymmetric case in [23]) cannot happen for symmetric
agents. The proof of this result as well as a two load period numerical example of
decreasing capacity can be found in [34]. Our result therefore shows that, for the two
load period case in [23], asymmetry is a necessary condition in order for the capacity
of the closed loop conjectured price response solution to be larger than in the closed
loop second stage Cournot equilibrium. We hypothesize that in the case of symmetric
agents this might generally be true for multiple load periods as well. However, proving
this hypothesis or finding a counterexample is out of the scope of this paper and will
be a topic of future research.

5.2 Ambiguity in ranking of closed loop equilibria when LBi differs for different θ

In this section we show by counter-example that the ranking of the closed loop con-
jectured price response equilibria, in terms of ME and consumer welfare, is parameter
dependent. An interesting result we obtain is that it is possible for the closed loop
model that assumes perfectly competitive behavior in the market to actually result in
lower ME (as measured by the sum of surpluses for all parties and load periods), lower
CS, and higher average prices than when Cournot competition prevails. This counter-
intuitive result implies that contrary to regulators’ beliefs that requiring marginal cost
bidding protects consumers, it actually can be harmful. In [14] the authors have arrived
at a similar result comparing perfectly competitive and Cournot spot market behavior,
however, they only look at the polar cases of perfect competition or Cournot-type
competition. In our paper we generalize strategic behavior using conjectural varia-
tions and look at a range of strategic behavior, from perfect competition to Cournot
competition and we furthermore observe that an intermediate solution between perfect
and Cournot competition can lead to even larger social welfare and CS despite yield-
ing a level of installed capacity intermediate between the perfect competition and the
Cournot cases. In particular: The ranking of conjectured price response equilibria in
terms of market efficiency and consumer welfare is parameter dependent. This occurs
because in general the L Bi differ among the solutions. It does not occur when L Bi

are the same for all θ and multipliers are positive as proven (and illustrated) in the
previous section.

A counter-example: Let us now consider two firms both making an investment in
generation capacity using the following data:

– Twenty equal length load periods l, so tl = 438 [h/year] for l = 1, . . . , 20
– Demand intercept D0l , obtained by D0l = 2,000 − 50(l − 1) [MW] and demand

slope αl , obtained by D0l/250 for l = 1, . . . , 20
– Capital cost β = 46,000 [e/MW/year]
– Operating cost δ = 11.8 [e/MWh]
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Table 4 Closed loop equilibrium solution under perfect competition second-stage competition (θl = 0)

with capacity xi = 456.2 MW

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2

pl [e/MWh] 135.9 133.0 129.9 126.7 123.3 119.7 115.8 111.8 107.4 102.8

l 11 12 13 14 15 16 17 18 19 20

qil [MW] 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2 456.2

pl [e/MWh] 97.9 92.7 87.1 81.0 74.5 67.5 59.9 51.6 42.6 32.8

Table 5 Closed loop equilibrium solution under Cournot second-stage competition (θl = 1/αl ) with
capacity xi = 550.6 MW

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 550.6 550.6 550.6 550.6 550.6 550.6 539.9 524.0 508.2 492.3

pl [e/MWh] 112.4 108.8 105.1 101.2 97.1 92.7 91.2 91.2 91.2 91.2

l 11 12 13 14 15 16 17 18 19 20

qil [MW] 476.4 460.5 444.6 428.8 412.9 397.0 381.1 365.2 349.4 333.5

pl [e/MWh] 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2

First we assume perfect competition, i.e., θl = 0. We solve the resulting closed loop
game by diagonalization [18], which is an iterative method in which firms take turns
updating their first-stage capacity decisions, each time solving a two-stage MPEC
while considering the competition’s capacity decisions as fixed. The closed loop equi-
librium solution assuming perfect competition in stage two is shown in Table 4. Second,
we assume Cournot competition in the spot market, i.e., θl = 1/αl . Again we solve
the closed loop game by diagonalization, yielding the results shown in Table 5. We
observe that under second stage perfect competition, the capacity of 456.2 MW is
binding in every load period and prices never fall to marginal operating cost. More-
over, the total installed capacity of 912.4 MW is significantly lower than that installed
under Cournot, which is 1,101.2 MW. On the other hand, under Cournot competition,
each firm’s capacity of 550.6 MW is binding only in the first six load periods and the
firms exercise market power by restricting their output to below capacity in the other
fourteen periods. Furthermore considering that the Cournot capacity is well above
the perfectly competitive capacity, it follows that during the six peak load periods,
perfectly competitive prices will be higher than Cournot prices. Third, we solve the
closed loop game assuming Allaz–Vila as an intermediate level of competitiveness
between perfect competition and Cournot, i.e., θl = 1/(2αl). This yields the equilib-
rium given in Table 6. Finally, the system optimal plan, which is obtained by central
planning under a maximization of social welfare objective, is presented in Table 7. As
expected, this solution exhibits the highest total installed capacity of 1,651.8 MW and
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Table 6 Closed loop equilibrium solution assuming Allaz–Vila second-stage competition (θl = 1/(2αl ))

with capacity xi = 515.2 MW

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 515.2 515.2 515.2 515.2 515.2 515.2 515.2 515.2 515.2 515.2

pl [e/MWh] 121.2 117.9 114.4 110.8 106.9 102.8 98.5 93.9 89.0 83.8

l 11 12 13 14 15 16 17 18 19 20

qil [MW] 515.2 515.2 515.2 514.5 495.5 476.4 457.3 438.3 419.2 400.2

pl [e/MWh] 78.3 72.3 66.0 59.4 59.4 59.4 59.4 59.4 59.4 59.4

Table 7 System optimal plan solution with capacity xi = 825.9 MW

l 1 2 3 4 5 6 7 8 9 10

qil [MW] 825.9 825.9 825.9 825.9 825.9 825.9 809.9 786.1 762.2 738.4

pl [e/MWh] 43.5 38.2 32.7 26.8 20.6 14.0 11.8 11.8 11.8 11.8

l 11 12 13 14 15 16 17 18 19 20

qil [MW] 714.6 690.8 667.0 643.1 619.3 595.5 571.7 547.9 524.0 500.2

pl [e/MWh] 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8

the lowest prices. We have omitted the open loop results here, however, they can be
found in [34].

This closed loop investment game can be viewed as a kind of prisoners’ dilemma
among multiple companies. An individual company might be able to unilaterally
improve its profit by expanding capacity, with higher volumes making up for lower
prices. But if all companies do that, then everyone’s profits could be lower than if all
companies instead refrained from building. (In this prisoners’ dilemma metaphor we
have not taken into account another set of players that is better off when the companies
all build, i.e., the consumers, who enjoy lower prices and more consumption; as a result,
overall ME as measured by total market surplus may improve when firms “cheat”.)

Standard (single stage) oligopoly models [12] without capacity constraints find
that perfect competition gives lower prices and greater ME than Cournot. Considering
that standard result, our results seem counter-intuitive, but they are due to the two-
stage nature of the game. In particular, less intensive competition in the commodity
market can result in more investment and more consumer benefits than if competition
in the commodity market is intense (price competition a la Bertrand). In terms of the
prisoners’ dilemma metaphor, higher short run margins under Cournot competition
provide more incentive for the “prisoners” to “cheat” by adding capacity. Note that
in order to get these counter-intuitive results, firms do not need to be symmetric, as
shown in a numerical example in [33].

Comparing the ME and the CS that we obtain in the perfectly competitive, Cournot,
Allaz–Vila and the social welfare maximizing solutions in Table 8, we observe that,
surprisingly, apart from the welfare maximizing solution the highest social welfare

123



Open versus closed loop capacity equilibria in electricity markets 319

Table 8 Market efficiency (ME), consumer surplus (CS) and total profit in closed loop solutions and social
welfare maximizing solution

Perfect competition Allaz–Vila Cournot Social welfare maximum

ME [e] 1.24 × 109 1.30 × 109 1.28 × 109 1.47 × 109

CS [e] 0.621 × 109 0.717 × 109 0.638 × 109 1.436 × 109

Total profit [e] 0.621 × 109 0.584 × 109 0.638 × 109 0.034 × 109

and the highest CS is obtained under the intermediate Allaz–Vila case. Even more
surprising is that the capacity obtained under Allaz–Vila competition is lower than the
Cournot capacity, but still yields a higher social welfare. This is because the greater
welfare obtained during periods when capacity is slack (and Allaz–Vila prices are
lower and closer to production cost) offsets the welfare loss during peak periods when
the greater Cournot capacity yields lower prices.

Another surprise is that not only ME but also profits are non-monotonic in θ . Both
perfect competition and Cournot profits are higher than Allaz–Vila profits; the lowest
profit thus occurs when ME is highest, at least under these parameters. However, higher
profits do not always imply lower ME, as a comparison of the perfect competition
and Cournot open loop cases shows. Cournot shows higher profit, CS, and ME than
perfect competition. That is, Cournot is Pareto superior to perfect competition under
these parameters because all parties are better off under the Cournot equilibrium.

6 Conclusions

In this paper we compare two types of models for modeling the generation capacity
expansion game: an open loop model describing a game in which investment and
operation decisions are made simultaneously, and a closed loop equilibrium model,
where investment and operation decisions are made sequentially. The purpose of this
comparison is to emphasize that when resorting to easier, less complicated open loop
models, instead of solving the more realistic but more complicated closed loop mod-
els, the results may differ greatly. In both models the market is represented via a
conjectured price response, which allows us to capture various degrees of oligopolis-
tic behavior. Setting out to characterize the differences between these two models, we
have found that for one load period, the closed loop equilibrium equals the open loop
Cournot equilibrium for any choice of conjectured price response between perfect
competition and Cournot competition—a generalization of Kreps and Scheinkman-
like [20] findings. In the case of multiple load periods, this result can be extended.
In particular, if closed loop models under different conjectures have the same set
of load periods in which capacity is constraining and the corresponding multipli-
ers are positive, then their first stage capacity decisions are the same, although not
their outputs during periods when capacity is slack. Furthermore, if the Cournot open
and closed loop solutions have the same periods when capacity constrains, then their
solutions are identical. When comparing two closed loop models, one with Cournot
behavior and the other with different strategic second stage behavior between perfect
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competition and Cournot, then the closed loop conjectured price response capacity
can be less or equal than the closed loop Cournot second stage capacity. Moreover the
former capacity cannot exceed the latter when there are symmetric agents and two load
periods.

We also explore alternative conjectured price response models in which the strate-
gic second stage competition switches to Cournot in load periods in which rivals’
capacity is binding. When capacity does not bind, the strategic behavior can range
from perfect competition to Cournot. Such alternative models may be more realis-
tic, however, pure strategy equilibria might not exist and they are more difficult to
solve.

As indicated in the first numerical example, when having market behavior close
to Cournot competition, the additional effort of computing the closed loop model (as
opposed to the simpler open loop model) does not pay off because the outcomes are
either exactly the same or very similar depending on the data. But if behavior on the
spot market is far from Cournot competition and approaching perfect competition, the
additional modeling effort might be worthwhile, as the closed loop model is capable of
depicting a feature that the open loop model fails to capture, which is that generation
companies would not voluntarily build all the capacity that might be determined by
the spot market equilibrium if that meant less profits for themselves. Thus the closed
loop model could be useful to evaluate the effect of alternative market designs for
mitigating market power in spot markets and incenting capacity investments in the
long run, e.g. capacity mechanisms, in Sakellaris [28]. Extensions could also consider
the effect of forward energy contracting as well (as in Murphy and Smeers [23]). These
policy analyses will be the subject of future research.

The second numerical example shows that depending on the choice of parameters,
more competition in the spot market may lead to less ME and less CS in the closed
loop model. This surprising result indicates that regulatory approaches that encourage
or mandate marginal pricing in the spot market in order to protect consumers may
actually lead to situations in which both consumers and generation companies are
worse off.

In future research we will address the issue of existence and uniqueness of solu-
tions, as has been done for the Cournot case by Murphy and Smeers [22], who found
that a pure-strategy closed loop equilibrium does not necessarily exist but if it exists
it is unique. We will also address the question concerning under what a priori condi-
tions the active sets of open and closed loop equilibria coincide. There will be further
investigation of games in which the conjectural variation is endogenous, resulting
from the possibility that power producers might adopt the Cournot conjecture in bind-
ing load periods since they may be aware that their rivals cannot expand output at
such times. Finally, the games presented here will be extended to multi-year games
with sequential capacity decisions, and the effects of forward contracting will be
investigated.
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