
Math. Program., Ser. A (2014) 146:219–244
DOI 10.1007/s10107-013-0684-6

FULL LENGTH PAPER

A branch-and-cut decomposition algorithm for solving
chance-constrained mathematical programs with finite
support

James Luedtke

Received: 13 May 2011 / Accepted: 28 April 2013 / Published online: 22 May 2013
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2013

Abstract We present a new approach for exactly solving chance-constrained
mathematical programs having discrete distributions with finite support and random
polyhedral constraints. Such problems have been notoriously difficult to solve due to
nonconvexity of the feasible region, and most available methods are only able to find
provably good solutions in certain very special cases. Our approach uses both decom-
position, to enable processing subproblems corresponding to one possible outcome at
a time, and integer programming techniques, to combine the results of these subprob-
lems to yield strong valid inequalities. Computational results on a chance-constrained
formulation of a resource planning problem inspired by a call center staffing appli-
cation indicate the approach works significantly better than both an existing mixed-
integer programming formulation and a simple decomposition approach that does not
use strong valid inequalities. We also demonstrate how the approach can be used to
efficiently solve for a sequence of risk levels, as would be done when solving for the
efficient frontier of risk and cost.

Keywords Stochastic programming · Integer programming · Chance constraints ·
Probabilistic constraints · Decomposition

Mathematics Subject Classification (2010) 90C11 · 90C15

This research has been supported by NSF under grant CMMI-0952907.

J. Luedtke (B)
Department of Industrial and Systems Engineering, University of Wisconsin-Madison,
Madison, WI 53706, USA
e-mail: jrluedt1@wisc.edu

123

220 J. Luedtke

1 Introduction

We introduce a new approach for exactly solving chance-constrained mathematical
programs (CCMPs) having discrete distributions with finite support. A chance con-
straint (also known as a probabilistic constraint) states that the chosen decision vector
should, with high probability, lie within a region that depends on a set of random
variables. A generic CCMP can be stated as

min { f (x) | P{x ∈ P(ω)} ≥ 1− ε, x ∈ X} , (1)

where x ∈ R
n is the vector of decision variables to be chosen to minimize f : Rn → R,

ω is a random vector, P(ω) ⊆ R
n is a region parameterized by ω, and X ⊆ R

n

represents a set of deterministic constraints on x . The interpretation is that the region
P(ω) is defined such that the event x /∈ P(ω) is an undesirable outcome. The likelihood
of such an outcome is restricted to be less than the given risk tolerance ε ∈ (0, 1),
which is typically small. We don’t make explicit assumptions on the form of the
objective function f (·), or the deterministic constraint set X , but our algorithm will
require solving subproblems at least as hard as minimizing f (x) over x ∈ X , so f
and X should be sufficiently “nice” so that these subproblems can be solved (e.g., one
could assume f and X are convex).

Our algorithm solves CCMPs of the form (1) satisfying the following assumptions:

(A1) The random vector ω has discrete and finite support: specifically P{ω = ωk} =
1/N for k ∈ N := {1, . . . , N }.1

(A2) Each P(ωk), k ∈ N is a non-empty polyhedron.
(A3) P(ωk) have the same recession cone for all k ∈ N , i.e., there exists C ⊆ R

n

such that C = {r ∈ R
n | x + λr ∈ P(ωk) ∀x ∈ P(ωk), λ ≥ 0} for all k ∈ N .

We refer to the possible outcomes of ω, ωk for k ∈ N , as scenarios. Also, to sim-
plify notation, we let Pk = P(ωk) for k ∈ N . While assumption A1 is certainly
a restriction, recent results on using sample-average approximation on CCMPs with
general distributions [1] demonstrate that such finite support approximations, when
obtained from a Monte Carlo sample of the original distribution, can be used to find
good feasible solutions to the original problem and statistical bounds on solution qual-
ity. See also [2–5] for related results on sampling approaches to CCMPs. Assumption
A2 includes the case where Pk , k ∈ N are defined by the set of vectors for which a
feasible recourse action exists, i.e.,

Pk =
{

x ∈ R
n+ | ∃y ∈ R

d+ with T k x +W k y ≥ bk
}

, (2)

where bk ∈ R
m and T k and W k are appropriately sized matrices. The special case

with d = 0 yields a mathematical program with chance-constrained linear constraints
having random coefficients: P{T (ω)x ≥ b(ω)} ≥ 1 − ε. The assumption that the
polyhedra Pk are non-empty is without loss of generality, since we can discard any

1 The extension to more general discrete distributions of the form P{ω = ωk } = pk , where pk ≥ 0 and∑
k pk = 1, is straightforward and is omitted to simplify exposition.

123

A branch-and-cut decomposition algorithm 221

scenario with Pk = ∅ and consider a problem with risk tolerance ε′ = ε − 1/N .
Assumption A3 can be motivated by the result of Jeroslow [6] that, a general set
S ⊆ R

n is representable using a binary mixed-integer program if and only if S is the
union of finitely many polyhedra having the same recession cone. A simple case in
which assumption A3 holds is if each Pk is bounded, so that C = {0} for all k ∈ N .
The problem we use for our computational study in Sect. 3 provides an example where
assumption A3 holds with C = R

n+.
Although the CCMP (1) can implicitly model recourse actions, e.g., when the

polyhedra Pk are described as in (2), this model doesn’t consider costs associated with
these recourse actions, making this essentially a static model. Of course, a limit on
the cost of the recourse actions can be included in the definition of Pk , thus requiring
that a recourse action with cost not exceeding a (possibly random) threshold exist with
probability at least 1 − ε. On the other hand, many CCMPs fit exactly the structure
of (1). In Sect. 3.1 we describe a flexible resource planning application that fits this
model. In this application, one wishes to determine the quantity of different resources
to have available, while requiring that the resources available are sufficient to meet the
random demands with high probability. In this context, the costs are incurred when
resources are acquired, but the allocation of resources to demands incurs no additional
cost. A small list of example applications of CCMPs that fit the structure of (1) includes
multicommodity flow [7], optimal vaccination planning [8], air quality management
[9], aquifer remediation [10], and reliable network design [11,12].

CCMPs have a long history dating back to Charnes, Cooper and Symonds [13]. The
version considered here, which requires a system of constraints to be enforced with high
probability, was introduced by Prékopa [14]. However, CCMPs have remained com-
putationally challenging for two reasons: the feasible region is generally not convex,
and evaluating solution feasibility requires multi-dimensional integration. Because of
these difficulties, methods for obtaining provably good solutions for CCMPs have
been successful in only a few very special cases. If the chance constraint consists
of a single row and all random coefficients are normally distributed [15,16], then a
deterministic (nonlinear and convex) reformulation is possible if ε < 1/2. If the ran-
domness appears only in the right-hand side (i.e., P(ω) = {x | T x ≥ b(ω)}) and the
distribution of b(ω) is discrete, then approaches based on certain “efficient points” of
the random vector [17,18] or on strong integer programming formulations [19–21]
have been successful.

While the algorithm proposed in this paper cannot be directly applied to a CCMP
that violates assumption A1, it can be used to solve a sample-average approxima-
tion (SAA) of such a problem. We believe that this approach is complementary to
approaches that attempt to directly solve a CCMP without using SAA (e.g., [14,22–
26]). The advantage of the SAA approach is that it requires relatively few assumptions
on the structure of the CCMP or the distribution of ω. On the other hand, the SAA will
only yield statistical bounds on solution feasibility and optimality, and requires replica-
tion to do so. In addition, the SAA problem with ε > 0 is always non-convex, whereas,
in some special cases the original chance constraint defines a convex feasible region.
For example, if the randomness appears only in the right-hand side of the chance con-
straints and the random vector b(ω) has a log-concave distribution, then the resulting
feasible region is convex and so nonlinear programming techniques can be used [14].

123

222 J. Luedtke

Very few methods are available for finding provably good solutions for CCMPs
with the structure we consider here, i.e., for problems having linear constraints with
random coefficients or recourse actions as in (2). In [7], an approach based on an
integer programming formulation (which we give in Sect. 2.1), strengthened with
precedence constraints is presented. In more recent work, [27] presents a special-
ized branch-and-cut algorithm based on identification of irreducible infeasible sets
of certain linear inequality systems, and a specialized branch-and-bound algorithm
applicable for CCMPs with random constraint matrix is given in [28]. While these
are important contributions, the size of instances that are demonstrated to be solvable
with these approaches is very limited, in particular, because these approaches do not
enable decomposition. In another recent important stream of research, a number of
conservative approximations [2,4,29–33] have been studied that solve tractable (con-
vex) approximations to yield feasible solutions to many classes of CCMPs. However,
these approaches do not say anything about the cost of the resulting solutions relative
to the optimal, and tend to yield highly conservative solutions.

The key contribution of this paper is to present an exact approach for solving CCMPs
that requires relatively few assumptions about the problem structure, and, as we show in
Sect. 3, has the potential to solve problems with high-dimensional random parameters
and a large number of scenarios. Our algorithm builds on the ideas of [20,34] that were
successful for solving chance-constrained problems with random right-hand side by
developing a method to apply the same types of valid inequalities used there to the more
general case considered here. The other important aspect of our algorithm is that it
enables decomposition of the problem into single-scenario optimization and separation
subproblems. This is important for solving CCMPs with discrete distributions because
the problem size grows as the size of the support increases. Another advantage is
that the decomposed single-scenario optimization and separation subproblems can be
solved using specialized algorithms for the deterministic counterpart, if available. The
decomposition approach also enables a straightforward parallel implementation.

When using a chance-constrained formulation, the risk tolerance ε is an important
user input, as it controls the balance between solution cost and risk of violating the
uncertain constraints. Consequently, it is important in practice to perform a sensitivity
analysis on this parameter. For example, this can done by solving the CCMP with
varying values of risk level ε, and then constructing an efficient frontier displaying the
non-dominated solutions in terms of the two objectives of cost and risk. While any
algorithm that can solve a CCMP for a given risk level ε can be used to construct such
an efficient frontier by simply applying the algorithm at each risk level, we show that
our algorithm can effectively take advantage of information obtained in the solution
at one risk level to more efficiently solve problems at other risk levels.

Decomposition has long been used for solving traditional two-stage stochastic
programming problems, where the objective is to minimize the sum of costs of the
first stage decisions and the expected costs of second-stage recourse decisions (see,
e.g., [35–37]). For CCMPs, the only existing paper we are aware of that considers a
decomposition approach is [38]. The decomposition idea is similar to what we present
here, but the mechanism for generating cuts is significantly different: they use a convex
hull reformulation (based on the Reformulation-Linearization Technique [39]) which
involves “big-M” constants, likely leading to weak inequalities. In contrast, we com-

123

A branch-and-cut decomposition algorithm 223

bine the valid inequalities we obtain from different subproblems in a way that avoids
the need for “big-M” constants and hence yields strong valid inequalities. As we see
in the computational results in Sect. 3, the use of these stronger inequalities makes a
very significant difference beyond the benefits obtained from decomposition.

An extended abstract of this paper appeared in [40]. This full version includes a
convergence proof of the algorithm, more details on how to effectively implement the
algorithm, and the approach for solving for multiple risk levels to obtain an efficient
frontier of risk and cost. This paper also introduces and conducts extensive computa-
tional tests on the chance-constrained resource planning application, which generalizes
the model used in [40] because it allows the recourse constraints to include random
coefficients.

The remainder of this paper is organized as follows. The algorithm is described in
Sect. 2. In Sect. 3, we describe the chance-constrained resource planning application,
show how the algorithm can be specialized for this application, and present computa-
tional results demonstrating the effectiveness of the algorithm for this application. In
Sect. 4, we describe how the algorithm can be used to solve for multiple risk levels in
sequence and present a numerical illustration. We close in Sect. 5 with some comments
on possible modifications of the algorithm that may help when solving mixed-integer
CCMPs, in which some of the decision variables have integer restrictions, and non-
linear CCMPs.

2 The branch-and-cut decomposition algorithm

We begin this section with an overview of the approach in Sect. 2.1. We describe the
primary subproblems our algorithm is required to solve in Sect. 2.2. In Sect. 2.3 we
describe how we obtain strong valid inequalities. Section 2.4 describes the algorithm
details and proves its correctness, and computational enhancements are discussed in
Sect. 2.5.

2.1 Overview

We first state a mixed-integer programming formulation for (1) that uses logical con-
straints. Introduce a binary variable zk for each k ∈ N , where zk = 0 implies x ∈ Pk .
Then (1) is formulated as:

min f (x) (3a)

s.t. zk = 0 ⇒ x ∈ Pk, k ∈ N , (3b)
N∑

k=1

zk ≤ p , (3c)

x ∈ X, z ∈ {0, 1}N , (3d)

where p := �εN. Inequality (3c) is a rewritten and strengthened version of the
constraint 1

N

∑N
k=1(1−zk) ≥ 1−ε, and so models the constraint P{x ∈ P(ω)} ≥ 1−ε.

Let F = {(x, z) |(3b)–(3d)} be the feasible region of (3).

123

224 J. Luedtke

A natural approach to solve (3) is to use “big-M” constraints to reformulate the
conditions (3b). For example, if Pk, k ∈ N are explicitly given by (2) and are compact,
(3b) can be formulated using additional variables as

T k x +W k yk + zk Mk ≥ bk, k ∈ N (4a)

yk ∈ R
d+, k ∈ N . (4b)

Here Mk ∈ R
m+, k ∈ N are sufficiently large to ensure that when zk = 1, constraints

(4a) are not active. On the other hand, when zk = 0, constraints (4a) enforce x ∈ Pk .
Our goal is to avoid the use of big-M constants as in (4a), which are likely to lead to
weak lower bounds when solving a continuous relaxation, and to use decomposition
to avoid explicit introduction of the constraints (4a) and recourse variables yk that
make a formulation based on (4) a very large mixed-integer program when N is large.

The goal of our approach is similar in spirit to the goal of combinatorial Benders cuts
introduced by Codato and Fischetti [41]. However, we are able to take advantage of the
structural properties of the CCMP to obtain stronger valid inequalities. In particular,
the valid inequalities we use include both the “logical” z variables and the variables
x , in contrast to the combinatorial Benders cuts that are based only on the logical
variables. The approach in [27] has a closer connection to combinatorial Benders
cuts.

Our decomposition algorithm is based on a master problem that includes the original
variables x , and the binary variables z. The constraints (3b) are enforced implicitly with
cutting planes, as in a Benders decomposition approach. The key difference, however,
is that given the mixed-integer nature of our master problem, we seek to add cutting
planes that are strong. Specifically, we are interested in strong valid inequalities for
the feasible region F , of (3).

2.2 Required subproblems

Our algorithm assumes we have available algorithms (i.e., oracles) to solve three
primary subproblems. Specialized algorithms that take advantage of the structure of
the problem (e.g., the constraint set of a shortest path problem) may be used to solve
any of these, if available.

The first subproblem is optimization of a linear function over Pk ∩ X̄ , where
X̄ ⊆ R

n is a fixed closed set containing X , i.e., X̄ ⊇ X , chosen such that Pk ∩ X̄ �= ∅.
Any X̄ ⊇ X can be used for the algorithm to be correct (e.g., one can take X̄ = R

n).
In Sect. 2.3, we discuss the trade-offs involved in choosing X̄ . The single scenario
optimization subproblem for scenario k ∈ N is then:

hk(α) := min
{
αx | x ∈ Pk ∩ X̄

}
(5)

where α ∈ R
n . Problem (5) is always feasible because we require X̄ ∩ Pk �= ∅. In

addition, if α is chosen to be a vector in the dual cone of C , C∗ := {α ∈ R
N | αr ≥

0, ∀r ∈ C}, then (5) is bounded, and hence the optimal value hk(α) exists and is
finite.

123

A branch-and-cut decomposition algorithm 225

The second subproblem is the single scenario separation problem over the sets Pk ,
k ∈ N :

Procedure Sep(k, x̂)
Input: k ∈ N , x̂ ∈ R

n

Output: (viol, α, β): If x̂ ∈ Pk , return viol = FALSE,α = 0, β = 0. Otherwise, return
viol = TRUE, and (α, β) ∈ � such that α x̂ < β and αx ≥ β for all x ∈ P , where
� ⊆ R

n × R is a finite set.

Because each Pk is defined by finitely many linear inequalities, the assumption
that the separation problem returns a separating hyperplane from a finite set � is
not restrictive. For example, if Pk is given explicitly as {x | T k x ≥ bk}, then this
separation routine can be implemented by returning viol = FALSE if T k x̂ ≥ bk , and
otherwise returning viol = TRUE and (T k

i , bk
i) for some i such that T k

i x̂ < bi , where
T k

i denotes the i th row of T k . As a less trivial example, if Pk is defined as in (2), the
oracle Sep(k, x̂) can be implemented by obtaining an extreme point optimal solution
to the following linear program:

v(x̂) = max
π

πT (bk − T k x̂)

s.t. πT W k ≤ 0, πT e = 1, π ∈ R
m+. (6)

If v(x̂) > 0 and π̂ is an optimal extreme point solution, then the oracle returns TRUE
with α = π̂T T k and β = π̂T bk , otherwise the oracle returns FALSE.

Finally, the algorithm requires solving a master problem of the form:

RP(N0, N1, R) := min f (x) (7a)

s.t.
N∑

k=1

zk ≤ p, (x, z) ∈ R, x ∈ X, z ∈ [0, 1]N , (7b)

zk = 0, k ∈ N0, zk = 1, k ∈ N1 , (7c)

where R ⊆ R
n+N is a polyhedron that contains F , and N0, N1 ⊆ N are such that

N0 ∩ N1 = ∅. To ensure (7) is well-defined, we make the following assumption:

(A4) For any polyhedron R ⊆ R
n+N such that F ⊆ R, and any N0, N1 ⊆ N such

that N0 ∩ N1 = ∅ with |N1| ≤ p, problem (7) is either infeasible, or has an
optimal solution.

This assumption is satisfied, for example, if f is continuous and X is compact, or if
f is linear and X is a polyhedron. We adopt the convention that if (7) is infeasible,
then RP(N0, N1, R) = +∞. In our algorithm, the restrictions on the binary variables
z given by N0 and N1 are obtained by branching, and the set R is defined by cuts,
valid for F , that are added in the algorithm to enforce (3b). If f is linear and X is a
polyhedron, (7) is a linear program. If f is convex, and X is a convex set, then (7)
is a convex program. If f is linear, and X is a set defined by linear inequalities and

123

226 J. Luedtke

integer restrictions on some of the variables, then (7) is a mixed-integer program, so
this subproblem will not be efficiently solvable in general. In Sect. 2.5, we discuss a
modification to the algorithm that avoids solving mixed-integer programs for this case.
Finally, if we don’t assume f is convex, or that X is a convex set, then again (7) is not
efficiently solvable in general, so the requirement to solve this problem would be a
severe limitation of our algorithm. Of course, in this case the problem (1) is generally
intractable even without the chance constraint.

2.3 Generating strong valid inequalities

We now describe our procedure for generating valid inequalities of the form

αx + π z ≥ β (8)

for the set F , where α ∈ R
n , π ∈ R

N , and β ∈ R. We assume here that the coefficients
α ∈ C∗ are given, so our task is find π and β that make (8) valid for F . In addition,
given a point (x̂, ẑ) our separation task is to find, if possible, π and β such that (x̂, ẑ)
violate the resulting inequality.

The approach is very similar to that used in [20,34], which applies only to chance-
constrained problems with random right-hand side. However, by exploiting the fact that
we have assumed α to be fixed, we are able to reduce our more general problem to the
structure studied in [20,34] and ultimately apply the same types of valid inequalities.

The first step is to solve the single scenario optimization problems (5):

hk(α) := min
{
αx | x ∈ Pk ∩ X̄

}
, k ∈ N .

We have assumed that X̄ is chosen so that Pk ∩ X̄ �= ∅, and hence these problems are
feasible. In addition, α ∈ C∗ and so αr ≥ 0 for all r ∈ C , the common recession cone
of each Pk . Thus, each of these problems is bounded and so the values hk(α), k ∈ N are
well-defined. The choice of X̄ represents a trade-off in time to compute the values hk(α)

and strength of the resulting valid inequalities. Choosing X̄ = R
n leads to a problem

for calculating hk(α) that has the fewest number of constraints (and presumably the
shortest computation time), but choosing X̄ = X yields larger values for hk(α) and
consequently stronger inequalities. For example, if X is described as a polyhedron with
additional integer restrictions on some of the variables, problem (5) would become
a mixed-integer program and hence could be computationally demanding to solve,
although doing so may yield significantly better valid inequalities.

Having obtained the values hk(α) for k ∈ N , we then sort them to obtain a permu-
tation σ of N such that:

hσ1(α) ≥ hσ2(α) ≥ · · · ≥ hσN (α) .

Although the permutation depends on α, we suppress this dependence to simplify
notation. Our first lemma uses these values to establish a set of “base” inequalities that
are valid for F , which we ultimately combine to obtain stronger valid inequalities.

123

A branch-and-cut decomposition algorithm 227

Lemma 1 The following inequalities are valid for F:

αx + (hσi (α)− hσp+1(α))zσi ≥ hσi (α), i = 1, . . . , p . (9)

The proof of this result is almost identical to an argument in [34] and follows from
the observation that zk = 0 implies αx ≥ hk(α), whereas (3c) implies that zk = 0 for
at least one of the p + 1 largest values of hk(α), and hence αx ≥ hσp+1(α) is always
valid.

Now, as was done in [20,34], we can apply the star inequalities of [42], or equiv-
alently in this case, the mixing inequalities of [43] to “mix” the inequalities (9) to
obtain additional strong valid inequalities.

Theorem 1 ([42,43]) Let T = {t1, t2, . . . , t
} ⊆ {σ1, . . . , σp} be such that hti (α) ≥
hti+1(α) for i = 1, . . . ,
, where ht
+1(α) := hσp+1(α). Then the inequality

αx +

∑

i=1

(hti (α)− hti+1(α))zti ≥ ht1(α) (10)

is valid for F.

These inequalities are strong in the sense that, if we consider the set

Y = {
(y, z) ∈ R× {0, 1}p | y+(hσi (α)−hσp+1(α))zσi ≥hσi (α), i=1, . . . , p

}
,

then the inequalities (10), with αx replaced by y, define the convex hull of Y [42].
Furthermore, the inequalities of Theorem 1 are facet-defining for the convex hull of
Y (again with y = αx) if and only if ht1(α) = hσ1(α), which suggests that when
searching for a valid inequality of the form (10), one should always include σ1 ∈ T .
In particular, for any fixed i ∈ {2, . . . , p}, using T = {σ1, σp} in (10) yields the
inequality

αx + (hσ1(α)− hσi (α))zσ1 + (hσi (α)− hσp+1(α))zσi ≥ hσ1(α) , (11)

which dominates the inequality (9) for this i .
Theorem 1 presents an exponential family of valid inequalities, but given a point

(x̂, ẑ) separation of these inequalities can be accomplished very efficiently. In [42] an
algorithm based on finding a longest path in an acyclic graph is presented that has
complexity O(p2), and [43] gives an O(p log p) algorithm. We use the algorithm of
[43].

Additional classes of inequalities have been derived in [20] and [19] for the set
defined by (9) and

∑
k zk ≤ p, and these could be applied in this algorithm. However,

as the results in [20] indicate that the mixing inequalities (10) provide a substantial
portion of the strength of this relaxation, we do not pursue this option in the current
work.

123

228 J. Luedtke

2.4 Algorithm details

A basic version of our proposed algorithm is given in Algorithm 1. The algorithm is a
basic branch-and-bound algorithm, with branching being done on the binary variables
zk . A node
 in the search tree is defined by the sets N0(
) and N1(
), representing the
sets of variables zk fixed to zero and to one, respectively. The algorithm also uses a
polyhedral set R, defined by the cuts added throughout the algorithm. The algorithm
is initialized with R = R

n×N and a root node 0 having N0(0) = N1(0) = ∅. The
only important difference between this algorithm and a standard branch-and-bound
algorithm is how nodes are processed (Step 2 in the algorithm). In this step, the
current node relaxation (7) is solved repeatedly until no cuts have been added to
the description of R or the lower bound exceeds the incumbent objective value U .
Whenever an integer feasible solution ẑ is found, and optionally otherwise, the cut
separation routine SepCuts is called. The SepCuts routine must be called when ẑ is
integer feasible to check whether the solution (x̂, ẑ) is in the set F (i.e., is truly a
feasible solution). The routine is optionally called otherwise to possibly improve the
lower bound.

Algorithm 1: Branch-and-cut decomposition algorithm.

t ← 0, N0(0)← ∅, N1(0)← ∅, R← R
n×N , OPEN← {0}, U ←+∞;1

while OPEN �= ∅ do2
Step 1: Choose
 ∈ OPEN and let OPEN← OPEN \ {
};3
Step 2: Process node
;4

repeat5
Solve (7);6
if (7) is infeasible then7

CUTFOUND← FALSE;8
else9

Let (x̂, ẑ) be an optimal solution to (7), and lb← RP(N0(
), N1(
), R);10

if ẑ ∈ {0, 1}N then11
CUTFOUND← SepCuts(x̂, ẑ, R);12
if CUTFOUND = FALSE then U ← lb;13

else14
CUTFOUND← FALSE;15
Optional: CUTFOUND← SepCuts(x̂, ẑ, R);16

end17

end18

until CUTFOUND �= TRUE or lb ≥ U ;19
Step 3: Branch if necessary;20

if lb < U then21
Choose k ∈ N such that ẑk ∈ (0, 1);22
N0(t + 1)← N0(
) ∪ {k}, N1(t + 1)← N1(
);23
N0(t + 2)← N0(
), N1(t + 2)← N1(
) ∪ {k};24
t ← t + 2;25
OPEN← OPEN

⋃{t + 1, t + 2};26

end27

end28

123

A branch-and-cut decomposition algorithm 229

The SepCuts routine, described in Algorithm 2, attempts to find strong violated
inequalities using the approach described in Sect. 2.3. The key here is the method
for selecting the coefficients α that are taken as given in Sect. 2.3. The idea is to test
whether the conditions that define F ,

zk = 0 ⇒ x ∈ Pk, ∀k ∈ N , (12)

are satisfied. If so, the solution is feasible, otherwise, we identify a scenario k such
that ẑk = 0 and x /∈ Pk . We then find an inequality, say αx ≥ β, that is valid for Pk

and that separates x̂ from Pk .

Algorithm 2: Cut separation routine SepCuts(x̂, ẑ, R).
Data: x̂, ẑ, R
Result: If valid inequalities for F are found that are violated by (x̂, ẑ), adds these to description of R

and returns TRUE, else returns FALSE.

CUTFOUND← FALSE;1
for k ∈ N such that ẑk < 1 do2

Call the Sep(k, x̂) oracle to obtain (viol, α, β);3
if viol = TRUE then4

Using the coefficients α, exactly solve the separation problem for inequalities of the form5
(10). If an inequality violated by (x̂, ẑ) exists, add a non-empty set of violated inequalities to
the description of R;
CUTFOUND← TRUE;6
break;7

end8

end9
return CUTFOUND and updated R;10

In line 2 of Algorithm 2, we test whether x̂ ∈ Pk for any k such that ẑk < 1. To
obtain a convergent algorithm, it is sufficient to check only those k such that ẑk = 0;
we also optionally check k such that ẑk ∈ (0, 1) in order to possibly generate additional
violated inequalities. We now establish that Algorithm 1 solves (3).

Theorem 2 Assume A1–A4, and that we have algorithms available to solve subprob-
lems (5), Sep(k, x̂) for any x̂ ∈ X and k ∈ N , and (7). Then, algorithm 1 terminates
finitely, and at termination if U = +∞, problem (3) is infeasible, otherwise U is the
optimal value of (3).

Proof First, we verify that the values hk(α), k ∈ N , obtained in solving (5) are
well defined (these are used in line 5 of the SepCuts subroutine, when separating
inequalities of the form (10)). The coefficient vector α ∈ R

n , obtained from the
procedure Sep(k, x̂), defines a valid inequality of the form αx ≥ β for Pk . Thus,
αr ≥ 0 for any r ∈ C , since otherwise there would not exist a β such that αx ≥ β for
all x ∈ Pk . Thus, α ∈ C∗, and so hk(α), k ∈ N are well-defined by the arguments in
Sect. 2.3.

We next argue that the algorithm terminates finitely. Indeed, the algorithm trivially
processes a finite number of nodes as it is based on branching on a finite number

123

230 J. Luedtke

of binary variables. In addition, the set of possible inequalities that can be produced
by the procedure SepCuts procedure is finite because for any coefficient vector α

there are finitely many mixing inequalities of the form (10), and furthermore there are
finitely many coefficient vectors α since the SepCuts procedure is assumed to return
inequalities from a finite set. Thus, the terminating condition for processing a node
(line 19) must be satisfied after finitely many iterations.

Next, the algorithm never cuts off an optimal solution because the branching never
excludes part of the feasible region and only valid inequalities for the set F are added.
This proves that, at termination, if U = +∞, then (3) is infeasible, and otherwise that
U is an upper bound on the optimal value of (3). The final point we must argue is that
U is only updated (in line 13) if the solution (x̂, ẑ) ∈ F (i.e., it is feasible), and hence
U is also a lower bound on the optimal value of (3). U is updated only if ẑ ∈ {0, 1}N
and SepCuts(x̂, ẑ, R) returns FALSE. We therefore must argue that if ẑ ∈ {0, 1}N but
ẑ /∈ F , then SepCuts(x̂, ẑ, R) must return TRUE. If ẑ /∈ F , then there must exist a
scenario k′ such that ẑk′ = 0 but x̂ /∈ Pk′ . For the first such scenario k′, the separation
procedure Sep(k′, x̂) returns viol = TRUE and (α, β) such that αx ≥ β is valid for
Pk′ and α x̂ < β. The vector α is then used to calculate hk(α) for all k ∈ N . Because
αx ≥ β holds for any x ∈ Pk′ ,

hk′(α) = min
{
αx | x ∈ Pk′ ∩ X̄

} ≥ β.

We then consider two cases. First, if hσp+1(α) ≥ hk′(α) then any inequality of the
form (10) is violated by (x̂, ẑ) because

ht1(α)−

∑

i=1

(hti (α)− hti+1(α))ẑti ≥ hσp+1(α) ≥ hk′(α) ≥ β > α x̂ .

Otherwise, if hσp+1(α) < hk′(α) then k′ = σi for some i = 1, . . . , p. Then, the
inequality (10) defined by taking T = {k′} reduces to:

αx + (hk′(α)− hσp+1(α))zk′ ≥ hk′(α)

which cuts off (x̂, ẑ) since ẑk′ = 0. Because separation of the inequalities (10) is
done exactly, this implies that in either case a violated inequality is added to R and
SepCuts(x̂, ẑ, R) returns TRUE. ��

An advantage of this algorithm is that most of the subproblems are decomposed
and so can be solved one scenario at a time and can be implemented in parallel. In
particular, the subproblems Sep(k, x̂) for any k such that ẑk < 1 can be solved in
parallel. The subsequent work of generating a strong valid inequality is dominated by
calculation of the values hk(α) as in (5), which can also be done in parallel.

123

A branch-and-cut decomposition algorithm 231

2.5 Computational enhancements

We have stated our approach in relatively simple form in Algorithm 1. However,
as this approach is a variant of branch-and-cut for solving a particularly structured
mixed-integer programming problem, we can and should also use all the computa-
tional enhancements commonly used in such algorithms. In particular, it is important
to use heuristics to find good feasible solutions early and use some sort of pseudocost
branching [44], strong branching [45], or reliability branching [46] approach for choos-
ing which variable to branch. These enhancements are easily achieved if the algorithm
is implemented within a commercial integer programming solver such as IBM Ilog
CPLEX, which already has these and many other useful techniques implemented.

In our experience, we found that a potential bottleneck in the algorithm is solving
the separation subproblem Sep(k, x̂), which we implemented using the linear program
(6), within the SepCuts routine. In the worst case, this problem may be solved for all
scenarios k with ẑk < 1. If the solution (x̂, ẑ) is feasible, this effort is necessary to
verify that it is feasible. However, it is often the case that it is eventually found that
(x̂, ẑ) is not feasible, and hence the time spent solving Sep(k, x̂) for scenarios in which
x̂ ∈ Pk is unproductive as these separations problems fail to yield an inequality that
cuts off (x̂, ẑ). Stated another way, if a violated inequality exists, we would prefer to
find it at one of the first scenarios we check. This potential for significant unproductive
calls to Sep(k, x̂) is the reason we terminate the SepCuts routine after finding the first
scenario that yields one or more violated inequalities, as opposed to continuing through
all scenarios. In addition, two other strategies helped to minimize unproductive calls
to Sep(k, x̂).

The first and most beneficial strategy is to save a list of all the α vectors gener-
ated in the SepCuts routine, along with the corresponding calculated values hk(α),
throughout the algorithm in a coefficient pool. The coefficient pool is similar to
the standard strategy in mixed-integer programming solvers of maintaining a “cut
pool” that stores valid inequalities that may be later added to the linear programming
relaxation; the difference is that the coefficient pool does not store valid inequal-
ities, but instead stores information useful for generating valid inequalities. When
the SepCuts routine is called we first solve the separation problem to search for
violated mixing inequalities (10) for each of the coefficient vectors in the coef-
ficient pool. If we find any violated inequalities by searching through the coef-
ficient pool, we add these and avoid solving Sep(k, x̂) altogether. While there is
some computational expense in solving the separation problem for the inequali-
ties (10) for all the vectors in the coefficient pool, the separation of (10) is very
efficient and hence this time was significantly outweighed by the time saved by
avoiding solving Sep(k, x̂). Although we did not pursue this option, if the coeffi-
cient pool becomes too large, a strategy could be implemented to “prune” the list,
e.g., based on the frequency in which each vector in the pool yielded a violated
inequality.

The second strategy for limiting unproductive calls to Sep(k, x̂) is to heuristically
choose the sequence of scenarios in a way that finds a scenario that yields a violated
inequality, if there is one, earlier. First, observe that when ẑk > 0, it is possible to
find x̂ /∈ Pk , and yet not find a violated mixing inequality (10). This motivates first

123

232 J. Luedtke

checking scenarios with ẑk = 0, and more generally, checking scenarios in increasing
order of ẑk . In addition, it seems intuitive that scenarios that have yielded inequali-
ties previously are the ones that are more likely to yield inequalities in future calls
to SepCuts. Thus, for each scenario k, we also keep a count sk , of the total num-
ber of times that scenario k has yielded a violated inequality (10). We heuristically
combine these observations by searching scenarios in decreasing order of the value
(1− ẑk)sk .

3 Application and computational results

3.1 A probabilistic resource planning problem

We tested our approach on a probabilistic resource planning problem. This problem
consists of a set of resources (e.g., server types), denoted by i ∈ I := {1, . . . , n},
which can be used to meet demands for a set of customer types, denoted by
j ∈ J := {1, . . . , m}. The objective is to choose the quantity of each resource to
have on hand to meet customer demands.

A deterministic version of this problem can be stated as:

min
x∈Rn+,y∈Rnm+

⎧⎨
⎩cx |

∑
j∈J

yi j ≤ ρi xi , ∀i ∈ I,
∑
i∈I

μi j yi j ≥ λ j , ∀ j ∈ J

⎫⎬
⎭ .

Here ci represents the unit cost of resource i , ρi ∈ (0, 1] represents the yield of
resource i , i.e., the fraction of what is planned to be available that actually can
be used, λ j ≥ 0 represents the demand of customer type j , and μi j ≥ 0 repre-
sents the service rate of resource i for customer type j , i.e., how many units of
demand of customer type j can be met with a unit of resource i . The variables
xi determine the quantity of resource i to have on hand, and the variables yi j rep-
resent the amount of resource i to allocate to customer type j . Thus, the prob-
lem is to choose resource levels and allocations of these resources to customer
types to minimize the total cost of resources, while requiring that the allocation
does not exceed the available resource levels and is sufficient to meet customer
demands.

In the probabilistic resource planning problem, the customer demands, resource
yields, and service rates are nonnegative random vectors of appropriate size denoted
by λ̃, ρ̃, and μ̃. The resource decisions xi must be made before these random quan-
tities are observed, but the allocation decisions can adapt to these realizations. We
require that all customer demands should be met with high probability, leading to the
chance-constrained model

min
x∈Rn+

{
cx

∣∣ P
{

x ∈ P(λ̃, ρ̃, μ̃)
} ≥ 1− ε

}
,

123

A branch-and-cut decomposition algorithm 233

where

P(λ, ρ, μ) =
⎧⎨
⎩x ∈ R

n+ | ∃y ∈ R
nm+ s.t.

m∑
j=1

yi j ≤ ρi xi , ∀i ∈ I,

n∑
i=1

μi j yi j ≥ λ j , ∀ j ∈ J

}
. (13)

We test our algorithm on three versions of this problem, varying which components
are random. In the first version, only the arrival rates λ̃ are random; this is the model
that was used in the call center staffing problem studied in [47] and was used as the
test case in [40]. In the second version, both the arrival rates and the yields are random,
and all are random in the final version.

When we use a finite scenario approximation of the random vectors λ̃, ρ̃, and μ̃,
assumption A1 of Sect. 2.1 is satisfied. Assumption A2 is satisfied because P(λ, ρ, μ)

is a non-empty polyhedron for any nonnegative vectors λ, ρ, and μ. It is easy to see that
the recession cone of P(λ, ρ, μ) is C = R

n+ for any nonnegative λ, ρ, μ and hence
Assumption A3 is satisfied. Assumption A4 is satisfied because the master problem
(7) is always a feasible linear program.

3.2 Implementation details

A key advantage of the proposed algorithm is the ability to use problem-specific
structure to efficiently solve the separation and optimization problems over Pk for all
scenarios k. As an illustration, we describe here how the optimization problems can
be solved efficiently for this application.

Given a coefficient vector α ∈ R
n+, the following optimization problem is to be

solved for each scenario k:

hk(α) = min
x,y

∑
i∈I

αi xi

s.t.
∑
j∈J

yi j − ρk
i xi ≤ 0, ∀i ∈ I, (14a)

∑
i∈I

μk
i j yi j ≥ λk

j , ∀ j ∈ J,

x ∈ R
n+, y ∈ R

nm+ . (14b)

Because α ≥ 0 and ρk
i > 0 for all i , there exists an optimal solution in which

inequalities (14a) are tight, and hence x can be eliminated from the problem.
After doing so, the problem can be decomposed by customer type yielding

hk(α) =
∑
j∈J

min
y· j

{∑
i∈I

(αi

ρk
i

)
yi j

∣∣∣
∑
i∈I

μk
i j yi j ≥ λk

j , y· j ∈ R
m+

}

123

234 J. Luedtke

=
∑
j∈J

min
i∈I

{
αiλ

k
j

ρk
i μk

i j

}
.

Thus, given a coefficient vector α, optimization over all scenario sets Pk can
be accomplished with O(Nnm) calculations using the above closed-form expres-
sion.

When the yields and service rates are not random, optimization over all scenario
sets can be done even more efficiently. Specifically, in this case the expression for
hk(α) reduces to:

hk(α) =
∑
j∈J

min
i∈I

{
αiλ

k
j

ρiμi j

}
=

∑
j∈J

λk
j min

i∈I

{
αi

ρiμi j

}
.

Thus, the minimization over i ∈ I is independent of scenario, and hence can be done
just once for each customer type j , allowing optimization over all scenarios to be
accomplished in O(Nn + mn).

In this application, the set of deterministic constraints is simply X = R
n+. Thus,

the only choice for X̄ is to use X̄ = X = R
n+.

We implemented our approach within the commercial integer programming solver
CPLEX 12.2. The main component of the approach, separation of valid inequalities
of the form (10), was implemented within a cut callback that CPLEX calls whenever
it has finished solving a node (whether the solution is integer feasible or not) and
also after it has found a heuristic solution. In the feasibility checking phase of the
SepCuts routine (line 2) we searched for k with ẑk < 1 and x /∈ Pk in decreasing
order of (1 − ẑk)sk . The separation problem Sep(k, x̂) was implemented by solving
the linear program (6), also using CPLEX. For the first k we find in which ẑk < 1
and x /∈ Pk (and only the first) we add all the violated valid inequalities of the form
(11) as well as the single most violated inequality of the form (10). Our motivation
for adding the inequalities (11) is that they are sparse and this is a simple way to add
additional valid inequalities in one round; we found that doing this yielded somewhat
faster convergence. As required in the algorithm, the separation of valid inequalities is
always attempted if the relaxation solution ẑ is integer feasible. When ẑ is not integer
feasible, at the root node we continued generating valid inequalities until no more
were found, or until the relative improvement in relaxation objective value from one
round of cuts to the next was less than 0.01 %. Throughout the branch-and-bound tree,
we attempt to generate cuts if ẑ is fractional only every 20 nodes, and for such nodes
we add only one round of cuts. This strategy appeared to offer a reasonable balance
between time spent generating valid inequalities and the corresponding improvement
in relaxation objective values, but it is certainly possible that an improved strategy
could be found.

All computational tests were conducted on a Mac Mini, running OSX 10.6.6, with
a two-core 2.66 GHz (only a single core was used) having 8GB memory. A time limit
of 1 h was enforced.

123

A branch-and-cut decomposition algorithm 235

3.3 Test instances

We randomly generated test instances. For a given problem size (number of resources
and customer types) we first generated a single “base instance” consisting of the unit
costs of the resources and a set of base service rates. A significant fraction of the
service rates μi j were randomly set to zero, signifying that resource i cannot be used
to meet customer type j . The costs were generated in such a way that “more efficient”
resources were generally more expensive, in order to make the solutions nontrivial.
Customer demands λ̃ are assumed to be multivariate normally distributed. When the
yields ρ̃ are random, they are assumed to take the form ρ̃ = max{ρ̂, e} where e is a
vector of all ones and ρ̂ is a vector of independent normal random variables. For the
test instances in which μ̃ is random, it is modeled as μ̃i j = e−Zi j μi j where μi j are
the base service rates and Zi j are independent normal random variables with mean
zero and standard deviation 0.05. For each base instance, we generated five different
base distributions of the arrival rate and yield random vectors and for each of these
we generated a sample of 3,000 realizations for instances in which only λ̃ is random,
and 1,500 realizations for instances in which ρ̃ and/or μ̃ are random. For each base
instance we also generated 5 independent samples of 1,500 realizations of μ̃i j from
the same base distribution (i.e., in contrast to λ̃ and ρ̃, the base distribution of μ̃ is
the same in all instances; only the random sample varies). Instances with N < 3,000
(or N < 1,500 when ρ̃ or μ̃ are random) are obtained by using only the first N
scenarios in the sample. For the version of the problem in which only the arrival rates
are random, we used ρi = 1 for all resources i , and used the base service rates without
modification. In addition to varying the sample size N , we also considered two risk
levels, ε = 0.05 and ε = 0.1. Complete details of the instance generation, and the
actual instances used, are available from the author [48].

3.4 Results

We compared our algorithm against the Big-M formulation that uses (4) and also
against a basic decomposition algorithm that does not use the strong valid inequalities
of Sect. 2.3 or the computational enhancements discussed in Sect. 2.5. We compare
against this simple decomposition approach to understand whether the success of
our algorithm is due solely to decomposition, or whether the strong inequalities are
also important. The difference between the basic decomposition algorithm and the
strengthened version is in the type of cuts that are added in the SepCuts routine.
Specifically, given a solution (x̂, ẑ) such that there exists scenario k with ẑk = 0 and
x̂ /∈ Pk , and a valid inequality αx ≥ β for the set Pk that is violated by x̂ , the basic
decomposition algorithm simply adds the inequality

αx ≥ β(1− zk) .

When the sets Pk have the form (13), this inequality is valid for F because x ≥ 0 and
any valid inequality for Pk has α ≥ 0. Furthermore, this inequality successfully cuts
off the infeasible solution (x̂, ẑ).

123

236 J. Luedtke

Table 1 Results for instances with random demands only

(n, m) ε N Big-M (4) Basic Decomp Strong Decomp

Gap (%) # Time Gap (%) Time Nodes

(20, 30) 0.05 1,000 *23.7 3 3,033 0.1 3 0.0

2,000 * 0 – 3.1 9 0.0

3,000 * 0 – 6.8 16 1.6

0.1 1,000 *32.1 0 – 3.9 5 0.0

2,000 * 0 – 12.9 12 0.4

3,000 * 0 – 23.0 22 16.4

(40, 50) 0.05 1,000 * 2 2,382 1.7 6 0.0

2,000 * 0 – 11.0 15 0.0

3,000 * 0 – 16.6 25 0.0

0.1 1,000 * 0 – 10.6 7 2.0

2,000 * 0 – 19.5 23 18.2

3,000 * 0 – 25.4 26 16.0

(50, 100) 0.05 1,000 * 0 – 10.4 21 0.0

2,000 * 0 – *22.8 39 0.8

3,000 * 0 – * 70 0.8

0.1 1,000 * 0 – 21.7 20 2.2

2,000 * 0 – *31.3 63 1.4

3,000 * 0 – * 106 0.2

The main results are presented in Tables 1, 2 and 3. These tables compare the results
for solving these instances with three methods: directly solving the big-M formulation
based on (4), the simple Benders decomposition algorithm (labeled Basic Decomp),
and the algorithm proposed in this paper (labeled Strong Decomp). Each row in these
tables presents summary results for 5 instances with the same characteristics: a base
instance with size (n, m), risk level ε, and N scenarios. In most cases, three entries
are reported for each method: the # column reports how many of the five instances
were solved to optimality within the time limit, the Time column reports the average
solution time of the instances that were solved to optimality, in seconds rounded to
the nearest integer, and the Gap column reports the average optimality gap at the time
limit for the instances that were not solved to optimality. Optimality gap is calculated
as (U B − L B)/U B where U B and L B are the values of the best feasible solution
and best lower bound, respectively, found by that method. A ‘–’ in a Time or Gap
entry indicates there were no instances on which to calculate this average (because
either none or all of them were solved to optimality, respectively). A ‘*’ in the Gap
column indicates that for at least one of the instances no feasible solution was found
within the time limit, and hence such instances were not included in the average gap
calculation. If a ‘*’ appears with no number, no feasible solution was found for any
of the instances.

123

A branch-and-cut decomposition algorithm 237

Table 2 Results with random demands and yields

(n, m) ε N Big-M (4) Basic Decomp Strong Decomp

Time Gap (%) # Time Gap (%) # Time Gap (%)

(5, 10) 0.05 500 5 1,805 – 5 122 – 5 3 –

1,000 0 – 5.0 4 1,494 0.4 5 12 –

1,500 0 – 10.2 0 – 1.8 5 32 –

0.1 500 0 – 4.0 5 1,134 – 5 7 –

1,000 0 – 11.5 0 – 3.8 5 336 –

1,500 0 – 16.0 0 – 11.9 3 1,267 0.2

(10, 20) 0.05 500 2 865 1.3 5 693 – 5 14 –

1,000 0 – 12.4 0 – 4.2 5 70 –

1,500 0 – 21.6 0 – 9.6 3 195 0.3

0.1 500 0 – 4.9 1 2,983 4.5 5 25 –

1,000 0 – 24.2 0 – 11.6 4 708 0.4

1,500 0 – 31.9 0 – 15.8 1 192 0.3

(20, 30) 0.05 500 0 – 16.6 4 1,707 1.0 5 91 –

1,000 0 – * 0 – 11.5 4 1064 0.1

1,500 0 – * 0 – 15.7 0 – 0.9

0.1 500 0 – 25.7 0 – 8.1 4 211 0.2

1,000 0 – *31.3 0 – 18.3 0 – 0.9

1,500 0 – * 0 – 15.1 0 – 1.6

Table 1 gives the results for instances in which only the demands (λ̃) are ran-
dom. The big-M formulation based on (4) is not able to solve any of these instances
within the time limit (and hence, only a “Gap” column is reported). This formulation
only successfully solves the LP relaxation and finds a feasible solution for the small-
est instance sizes (and not even for all of these). The basic decomposition approach
significantly improves over the big-M formulation in that it is able to find feasible solu-
tions for most of the instances. However, only some of the smallest of the instances
could be solved to optimality, and the larger instances had very large optimality gaps
after the limit. The branch-and-cut decomposition algorithm is able to solve all these
instances to optimality in an average of less than two minutes. Table 1 also shows that
the total number of nodes required to solve these instances with this method is very
small on average (0 nodes indicates the instances were solved at the root node), which
occurs because for this problem class the lower bounds produced by the strong valid
inequalities are almost identical to the true optimal values.

Table 2 gives the results for instances with random demands and yields and Table
3 gives the results for the case where demands, yields, and service rates are ran-
dom. These instances are significantly more challenging than those with only random
demands, and hence we report results for smaller instances. However, these instances
are still large enough to prevent solution using the big-M formulation based on (4), as
the linear programming relaxation again is often not solved within the time limit, and

123

238 J. Luedtke

Table 3 Results with random demands, yields, and service rates

(n, m) ε N Big-M (4) Basic Decomp Strong Decomp

Time Gap (%) # Time Gap (%) # Time Gap (%)

(5, 10) 0.05 500 4 1,524 1.6 5 163 – 5 5 –

1,000 0 – 2.9 2 2,158 0.5 5 16 –

1,500 0 – 6.4 0 – 4.3 5 140 –

0.1 500 0 – 2.5 5 1,151 – 5 7 –

1,000 0 – 9.5 0 – 6.5 5 362 –

1,500 0 – 16.8 0 – 12.3 3 2,182 0.1

(10, 20) 0.05 500 4 943 0.6 5 674 – 5 19 –

1,000 0 – 16.5 0 – 3.5 5 235 –

1,500 0 – 20.1 0 – 9.0 2 1,436 0.3

0.1 500 0 – 1.3 0 – 2.1 5 92 –

1,000 0 – 23.6 0 – 13.8 1 489 0.4

1,500 0 – 31.7 0 – 15.7 0 – 0.7

(20, 30) 0.05 500 0 – 20.7 4 1,828 0.6 5 314 –

1,000 0 – *26.7 0 – 7.2 0 – 0.6

1,500 0 – * 0 – 14.5 0 – 1.4

0.1 500 0 – *26.5 0 – 7.0 3 1,245 0.3

1,000 0 – * 0 – 16.9 0 – 1.7

1,500 0 – * 0 – 20.9 0 – 1.9

when it does the optimality gap is very large. We see that again the basic decomposition
algorithm has more success solving the smallest instances, but leaves large optimal-
ity gaps for the larger instances. While the branch-and-cut decomposition algorithm
solves many more of the instances to optimality, a significant portion of the larger
instances are not solved to optimality within the time limit, in contrast to the random
demands only case. However, the optimality gap achieved within the time limit is still
quite small, usually less than 1 %, and almost always less than 2 %.

Table 4 presents results comparing the optimality gap and solution times of the two
decomposition approaches at the root node for some of the instances with random
yields and service rates. Specifically, for the largest instances in this test set, we report
the average quality of the lower bound obtained at the root node (compared against
the optimal solution, or best solution found by any method if optimal is unknown)
and the average time to process the root node. These results indicate that the strong
valid inequalities close substantially more of the optimality gap at the root node than
the basic Benders inequalities, and do so in a comparable amount of time. In addi-
tion, the computation times suggest that although many of these instances are not
solved to optimality in the 1 h time limit, it is possible to obtain strong bounds on
solution quality relatively quickly. Finally, these gaps also suggest that, in addition
to obtaining additional classes of strong valid inequalities to close the gap further,
investigating problem-specific branching strategies may also be beneficial in helping
to finish solving these instances to optimality.

123

A branch-and-cut decomposition algorithm 239

Table 4 Root gaps and times for decomposition approaches for instances with n = 20, m = 30

Random ε N Basic Decomp Strong Decomp

Root gap (%) Root time Root gap (%) Root time

λ̃, ρ̃ 0.05 500 16.5 33.4 1.4 53.3

1,000 16.6 92.4 1.6 168.9

1,500 16.7 126.3 2.1 231.0

0.1 500 20.0 45.1 1.4 73.8

1,000 20.1 88.5 2.5 165.2

1,500 20.1 125.2 2.8 228.9

λ̃, ρ̃, μ̃ 0.05 500 16.2 79.4 1.6 166.8

1,000 16.5 177.4 2.2 254.1

1,500 16.5 265.0 2.6 285.0

0.1 500 19.8 96.0 2.0 140.8

1,000 20.1 198.7 3.1 231.0

1,500 19.8 261.9 3.1 246.4

4 Solving for the efficient frontier

We now describe how the proposed algorithm can be used to efficiently solve for
multiple risk levels in sequence, as would be done when constructing an efficient
frontier between cost and risk of constraint violation. We assume we have a fixed set of
N scenarios, and we wish to solve the CCMP for a set of risk levels ε1 < ε2 < · · · < εr .
Of course, one option is simply to solve these r instances independently. Alternatively,
we demonstrate how, by solving the instances in a particular sequence, the branch-and-
cut decomposition algorithm can use information obtained from solving one instance
to “warm-start” the solution of later instances. This is not straightforward because
these are mixed-integer programming instances with different feasible regions.

First, observe that if x∗t is an optimal solution to the instance with risk level εt ,
then x∗t is a feasible solution to the instance with risk level εt+1, since εt < εt+1. This
motivates solving the instances in order of increasing risk level, so that the optimal
solution of one instance can be used as a starting incumbent solution for the next.

Another strategy for using information from one solution of a mixed-integer pro-
gram to the next is to use valid inequalities derived from one for the next. Unfortunately,
if the instances are being solved in increasing order of risk level, a valid inequality
for the instance with risk level εt may not be valid for the instance with risk level
εt+1 > εt , since this instance has a larger feasible region. However, the information
used to generate the mixing inequalities (10)—the coefficient vectors α and the cor-
responding scenario objective values hk(α)—is independent of the risk level. Thus,
we can save all the information in the coefficient pool (described in Sect. 2.5) from
one instance to the next, and continue to use this information to generate the mixing
inequalities (10). As the primary work in generating these inequalities is the derivation
of the coefficient vector α by solving a separation problem and the calculation of the
scenario objective values hk(α), this can save a significant amount of time.

123

240 J. Luedtke

Table 5 Impact of warm-start strategies for computing an efficient frontier

Random (n, m) N Without warm-start With warm-start

Time Nodes Time Nodes

λ̃ (40, 50) 3,000 223.6 180.0 71.3 4.0

(50, 100) 3,000 1,279.8 129.8 291.6 8.0

λ̃, ρ̃ (5, 10) 500 83.6 6,297.2 47.3 6,059.0

(10, 20) 500 510.2 10,843.6 329.6 10,953.0

λ̃, ρ̃, μ̃ (5, 10) 500 160.3 12,563.6 87.9 10,708.0

(10, 20) 500 2,635.4 27,805.6 1,133.6 21,553.6

When saving the coefficient pool from one instance to the next, its size can grow very
significantly. To prevent the time spent checking the coefficient pool from becoming a
bottleneck of the algorithm we keep only a subset of the coefficient vectors in the pool
from one instance to the next. To choose which to keep, we maintain a count of how
many times a violated inequality was found using each coefficient vector throughout
the solution of an instance, and keep 20 % of the coefficient vectors that have the
highest counts (we also keep any that are tied with the smallest count in the top 20 %,
so the number kept may exceed 20 %). In addition to limiting the size of the coefficient
pool, this strategy has the potential benefit of identifying and focusing attention on the
coefficient vectors that are most effective at generating valid inequalities.

We conducted a computational experiment to test this approach for computation
of an efficient frontier. For this test we chose three base instances; one with only
demands (λ̃) random, one with random demands and yields (λ̃, ρ̃), and one with ran-
dom demands, yields and service rates (λ̃, ρ̃, μ̃). We also chose a single sample size
N for each. These instances were chosen to be the largest in our test set that our
algorithm can solve to optimality within the time limit at the largest risk level we
solve for. For each of these base instances, we solved for 16 risk levels ε ranging
from 0.0 to 0.15 in increments of 0.01, with and without using warm-start informa-
tion. We repeated this exercise for the five different random instances of each base
instance.

Table 5 presents the average total solution time and average total number of nodes
to solve all 16 risk levels using the two approaches. The results indicate that these
warm-start strategies can indeed effectively reduce the total solution time for com-
puting an efficient frontier. The ideas were particularly effective for the instances in
which only the demands are random, reducing the total solution time by about 75 %
on average. When the yields and/or service rates are random the warm-start strategies
were relatively less helpful, but still reduced total solution time by about 50 % on aver-
age. The reduced impact can be explained by the total number of nodes processed.
When only demands are random, very few branch-and-bound nodes are processed,
so a significant portion of the total time is spent finding a good feasible solution and
generating valid inequalities to solve the initial LP relaxation, and this work is aided
significantly by the warm-start techniques. In contrast, when the yields and/or ser-
vice rates are random, relatively more branch-and-bound nodes are processed, and

123

A branch-and-cut decomposition algorithm 241

the number processed is not significantly affected by the warm-start techniques. As
a result, in these instances, the proportion of the time spent solving the node lin-
ear programming relaxations is higher, and this time is not helped by the warm-start
techniques.

5 Discussion

We close by discussing adaptations and extensions of the algorithm. In our definition of
the master relaxation (7), we have enforced the constraints x ∈ X . If X is a polyhedron
and f (x) is linear, (7) is a linear program. However, if X is not a polyhedron, suitable
modifications to the algorithm could be made to ensure that the relaxations solved
remain linear programming problems. For example, if X is defined by a polyhedron Q
with integrality constraints on some of the variables, then we could instead define the
master relaxation to enforce x ∈ Q, and then perform branching both on the integer-
constrained x variables and on the z variables. Such a modification is straightforward
to implement within existing integer programming solvers. In this case, Q would be
a natural choice for the relaxation X̄ of X used in Sect. 2.3 when obtaining the hk(α)

values as in (5). In addition, Q could be augmented with inequalities that are valid for
X ∩ Pk to obtain a linear relaxation that is a closer approximation to conv(X ∩ Pk).

Although these modifications are likely to help our algorithm when X contains
integrality restrictions, we should also point out that the algorithm may face some dif-
ficulties with such problems due to these integrality restrictions. For example, suppose
that X = Q ∩Z

n where Q is a polyhedron, and consider the (trivial) case with ε = 0,
so that the feasible set becomes Q∩ P̄∩Z

n where P̄ = ∩N
k=1 Pk . Because our approach

does not make use of integrality of the x variables, except possibly when solving single
scenario problems to obtain the hk(α) values, the absolute best relaxation our valid
inequalities could produce would be

⋂N
k=1 conv(Q ∩ Pk ∩Z

n), which could certainly

be a poor approximation to conv
(

Q ∩ P̄ ∩ Z
n
)

. As a result, for chance-constrained

mixed-integer programs, we expect that further research will be needed to find strong
valid inequalities that yield tighter relaxations of the latter set.

If X is defined by convex nonlinear inequalities of the form g(x) ≤ 0, then the
master relaxation problem (7) could be made a linear program by using an outer
approximation of X , as in the LP/NLP branch-and-bound algorithm for solving mixed-
integer nonlinear programs (MINLPs) [49]. In this case, when a solution (x̂, ẑ) is found
in which ẑ is integer feasible, in addition to being required to check feasibility of the
logical conditions (3b), a nonlinear programming problem min{ f (x) | g(x) ≤ 0, x ∈
R} would also be solved, and the gradient inequalities at the optimal solution x̂ ,

g(x̂)+ ∇g(x̂)T (x − x̂) ≤ 0,

would be added to the current outer approximation linear programming relaxation
for each nonlinear constraint. (A similar inequality, with an auxiliary variable, would
be added if the objective is a convex nonlinear function.) The details are beyond the
scope of this paper, but we conjecture that this algorithm could be shown to converge
finitely provided that a constraint qualification holds at every nonlinear programming

123

242 J. Luedtke

problem solved in the algorithm, an assumption that is standard for convergence of
the LP/NLP algorithm.

Many special cases of (1) are known to be NP-hard [12,20,50]. Therefore, we
cannot expect a polynomial-time algorithm for (1), which is why we propose a branch-
and-cut algorithm. On the other hand, in our tests, the proposed algorithm performed
remarkably well on the instances in which randomness appeared only in the right-hand
side of the constraints, most notably requiring a very small number of branch-and-
bound nodes to be explored. We therefore think it would be an interesting direction for
future research to investigate whether a polynomial-time algorithm, or approximation
algorithm with a priori guarantee on optimality or feasibility violation, may exist for
this special case, possibly with additional assumptions on the data (e.g., that it was a
obtained as a sample approximation from a log-concave distribution).

Acknowledgments The author thanks Shabbir Ahmed for the suggestion to compare the presented
approach with a basic decomposition algorithm. The author also thanks the anonymous referees for helpful
comments.

References

1. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic con-
straints. SIAM J. Optim. 19, 674–699 (2008)

2. Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels.
Math. Program. 102, 25–46 (2005)

3. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Automat.
Control 51, 742–753 (2006)

4. Nemirovski, A., Shapiro, A.: Scenario approximation of chance constraints. In: Calafiore, G., Dabbene,
F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty, pp. 3–48. Springer,
London (2005)

5. Campi, M., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: fea-
sibility and optimality. J. Optim. Theory Appl. 148, 257–280 (2011)

6. Jeroslow, R.: Representability in mixed integer programming, I: characterization results. Discr. Appl.
Math. 17, 223–243 (1987)

7. Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained
knapsack polyhedra. Math. Program. 93, 195–215 (2002)

8. Tanner, M., Sattenspiel, L., Ntaimo, L.: Finding optimal vaccination strategies under parameter uncer-
tainty using stochastic programming. Math. Biosci. 215, 144–151 (2008)

9. Watanabe, T., Ellis, H.: Stochastic programming models for air quality management. Comput. Oper.
Res. 20, 651–663 (1993)

10. Morgan, D., Eheart, J., Valocchi, A.: Aquifer remediation design under uncertainty using a new chance
constrained programming technique. Water Resour. Res. 29, 551–561 (1993)

11. Andreas, A.K., Smith, J.C.: Mathematical programming algorithms for two-path routing problems
with reliability considerations. INFORMS J. Comput. 20, 553–564 (2008)

12. Song, Y., Luedtke, J.: Branch-and-cut algorithms for chance-constrained formulations of reliable net-
work design problems (2012). Available at http://www.optimization-online.org

13. Charnes, A., Cooper, W.W., Symonds, G.H.: Cost horizons and certainty equivalents: an approach to
stochastic programming of heating oil. Manag. Sci. 4, 235–263 (1958)

14. Prékopa, A.: On probabilistic constrained programmming. In: Kuhn, H.W. (ed.) Proceedings of the
Princeton Symposium on Mathematical Programming, pp. 113–138. Princeton University Press,
Princeton, NJ (1970)

15. Calafiore, G., El Ghaoui, L.: On distributionally robust chance-constrained linear programs. J. Optim.
Theory Appl. 130, 1–22 (2006)

16. Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance
constraints. Oper. Res. 11, 18–39 (1963)

123

http://www.optimization-online.org

A branch-and-cut decomposition algorithm 243

17. Beraldi, P., Ruszczyński, A.: The probabilistic set-covering problem. Oper. Res. 50, 956–967 (2002)
18. Dentcheva, D., Prékopa, A., Ruszczyński, A.: Concavity and efficient points of discrete distributions

in probabilistic programming. Math. Program. 89, 55–77 (2000)
19. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132,

31–56 (2012)
20. Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with

probabilistic constraints. Math. Program. 12, 247–272 (2010)
21. Saxena, A., Goyal, V., Lejeune, M.: MIP reformulations of the probabilistic set covering problem.

Math. Program. 121, 1–31 (2009)
22. Dentcheva, D., Martinez, G.: Regularization methods for optimization problems with probabilistic

constraints. Math. Program. 138, 223–251 (2013). doi:10.1007/s10107-012-0539-6
23. Henrion, R., Möller, A.: A gradient formula for linear chance constraints under gaussian distribution.

Math. Oper. Res. 37, 475–488 (2012)
24. Hong, L., Yang, Y., Zhang, L.: Sequential convex approximations to joint chance constrained programs:

A Monte Carlo approach. Oper. Res. 59, 617–630 (2011)
25. Prékopa, A.: Programming under probabilistic constraints with a random technology matrix. Mathe-

matische Operationsforschung Statistik 5, 109–116 (1974)
26. Van Ackooij, W., Henrion, R., Möller, A., Zorgati, R.: On probabilistic constraints induced by rectan-

gular sets and multivariate normal distributions. Math. Methods Oper. Res. 71, 535–549 (2010)
27. Tanner, M., Ntaimo, L.: IIS branch-and-cut for joint chance-constrained programs and application to

optimal vaccine allocation. Eur. J. Oper. Res. 207, 290–296 (2010)
28. Beraldi, P., Bruni, M.: An exact approach for solving integer problems under probabilistic constraints

with random technology matrix. Ann. Oper. Res. 177, 127–137 (2010)
29. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with

uncertain data. Math. Program. 88, 411–424 (2000)
30. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52, 35–53 (2004)
31. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim.

17, 969–996 (2006)
32. Erdoğan, E., Iyengar, G.: Ambiguous chance constrained problems and robust optimization. Math.

Program. 107, 37–61 (2006)
33. Erdoğan, E., Iyengar, G.: On two-stage convex chance constrained problems. Math. Meth. Oper. Res.

65, 115–140 (2007)
34. Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with

probabilistic constraints. In: Fischetti, M., Williamson, D. (eds.) IPCO 2007, Lecture Notes in Com-
puter Science, pp. 410–423. Springer, Berlin (2007)

35. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (1997)
36. Van Slyke, R., Wets, R.J.: L-shaped linear programs with applications to optimal control and stochastic

programming. SIAM J. Appl. Math 17, 638–663 (1969)
37. Higle, J.L., Sen, S.: Stochastic decomposition: an algorithm for two-stage stochastic linear programs.

Math. Oper. Res. 16, 650–669 (1991)
38. Shen, S., Smith, J., Ahmed, S.: Expectation and chance-constrained models and algorithms for insuring

critical paths. Manage. Sci. 56, 1794–1814 (2010)
39. Sherali, H., Adams, W.: A hierarcy of relaxations between the continuous and convex hull representa-

tions for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)
40. Luedtke, J.: An integer programming and decomposition approach for general chance-constrained

mathematical programs. In: Eisenbrand, F., Shepherd, F.B. (eds.) IPCO, Lecture Notes in Computer
Science, vol. 6080, pp. 271–284. Springer, Berlin (2010)

41. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper.
Res. 54, 756–766 (2006)

42. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: The mixed vertex packing problem. Math.
Program. 89, 35–53 (2000)

43. Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90, 429–457 (2001)
44. Linderoth, J., Savelsbergh, M.: A computational study of search strategies for mixed integer program-

ming. INFORMS J. Comput. 11, 173–187 (1999)
45. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding cuts in the TSP. Technical Report 95–05,

DIMACS (1995)
46. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2004)

123

http://dx.doi.org/10.1007/s10107-012-0539-6

244 J. Luedtke

47. Gurvich, I., Luedtke, J., Tezcan, T.: Call center staffing with uncertain arrival rates: a chance-constrained
optimization approach. Manag. Sci. 56, 1093–1115 (2010)

48. Luedtke, J.: Online supplement to: a branch-and-cut decomposition algorithm for solving chance-
constrained mathematical programs (2012). Available at http://www.cae.wisc.edu/~luedtkej

49. Quesada, I., Grossmann, I.E.: An LP/NLP based branch-and-bound algorithm for convex MINLP
optimization problems. Comput. Chem. Eng. 16, 937–947 (1992)

50. Qiu, F., Ahmed, S., Dey, S., Wolsey, L.: Covering linear programming with violations (2012). Available
at http://www.optimization-online.org

123

http://www.cae.wisc.edu/~luedtkej
http://www.optimization-online.org

	A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support
	Abstract
	1 Introduction
	2 The branch-and-cut decomposition algorithm
	2.1 Overview
	2.2 Required subproblems
	2.3 Generating strong valid inequalities
	2.4 Algorithm details
	2.5 Computational enhancements

	3 Application and computational results
	3.1 A probabilistic resource planning problem
	3.2 Implementation details
	3.3 Test instances
	3.4 Results

	4 Solving for the efficient frontier
	5 Discussion
	Acknowledgments
	References

