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Abstract Moreau’s decomposition is a powerful nonlinear hilbertian analysis tool
that has been used in various areas of optimization and applied mathematics. In this
paper, it is extended to reflexive Banach spaces and in the context of generalized
proximity measures. This extension unifies and significantly improves upon existing
results.
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1 Introduction

Throughout this paper, (X , ‖ · ‖) is a reflexive real Banach space with topolog-
ical dual (X ∗, ‖ · ‖∗), and the canonical bilinear form on X × X ∗ is denoted
by 〈·, ·〉. The distance function to a set C ⊂ X is dC : x �→ inf y∈C ‖x − y‖,
the metric projector onto C is PC : x �→ {

y ∈ C
∣
∣ ‖x − y‖ = dC (x)

}
, and the
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104 P. L. Combettes, N. N. Reyes

polar cone of C is C
 = {
x∗ ∈ X ∗ ∣

∣ (∀x ∈ C) 〈x, x∗〉 ≤ 0
}
. Γ0(X ) is the

class of lower semicontinuous convex functions ϕ : X → ]−∞,+∞] such that
dom ϕ = {

x ∈ X
∣
∣ ϕ(x) < +∞} �= ∅.

A classical tool in linear hilbertian analysis is the following orthogonal decompo-
sition principle.

Proposition 1 Suppose that X is a Hilbert space, let V be a closed vector subspace
of X with orthogonal complement V ⊥, and let x ∈ X . Then the following hold.

(i) ‖x‖2 = d2
V (x) + d2

V ⊥(x).
(ii) x = PV x + PV ⊥ x.

(iii) 〈PV x, PV ⊥ x〉 = 0.

In 1962, Moreau proposed a nonlinear extension of this decomposition.

Proposition 2 [22] Suppose that X is a Hilbert space, let K be a nonempty closed
convex cone in X , and let x ∈ X . Then the following hold.

(i) ‖x‖2 = d2
K (x) + d2

K 
(x).
(ii) x = PK x + PK 
 x.

(iii) 〈PK x, PK 
 x〉 = 0.

Motivated by problems in unilateral mechanics, Moreau further extended this result
in [23] (see also [25]). To state Moreau’s decomposition principle, we require some
basic notions from convex analysis [7,33]. Let ϕ and f be two functions in Γ0(X ).
The conjugate of ϕ is the function ϕ∗ in Γ0(X ∗) defined by

ϕ∗ : X ∗ → ]−∞,+∞]: x∗ �→ sup
x∈X

(〈x, x∗〉 − ϕ(x)
)
. (1.1)

Moreover, the infimal convolution of ϕ and f is the function

ϕ�� f : X → [−∞,+∞] : x �→ inf
y∈X

(
ϕ(y) + f (x − y)

)
. (1.2)

Now suppose that X is a Hilbert space and set q = (1/2)‖ · ‖2. Then, for every
x ∈ X , there exists a unique point p ∈ X such that (ϕ��q)(x) = ϕ(p) + q(x − p);
this point is denoted by p = proxϕx . The operator proxϕ : X → X thus defined is
called the proximity operator of ϕ.

Proposition 3 [23,25] Suppose that X is a Hilbert space, let ϕ ∈ Γ0(X ), set q =
‖ · ‖2/2, and let x ∈ X . Then the following hold.

(i) q(x) = (ϕ��q)(x) + (ϕ∗��q)(x).
(ii) x = proxϕx + proxϕ∗ x.

(iii) 〈proxϕx, proxϕ∗ x〉 = ϕ
(
proxϕx

) + ϕ∗(proxϕ∗ x
)
.

Note that, if in Proposition 3 ϕ is the indicator function of a nonempty closed convex
cone K ⊂ X , i.e., ϕ = ιK where

(∀x ∈ X ) ιK (x) =
{

0, if x ∈ K ;
+∞, if x /∈ K ,

(1.3)

we recover Proposition 2.
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The above hilbertian nonlinear decomposition principles have found many appli-
cations in optimization and in various other areas of applied mathematics (see for
instance [9,12–18,21,28] and the references therein) and attempts have been made to
extend them to more general Banach spaces. The main result in this direction is the fol-
lowing generalization of Proposition 2(ii) and (iii) in uniformly convex and uniformly
smooth Banach spaces (see also [3,19,29,30] for alternate proofs and applications),
where ΠC denotes the generalized projector onto a nonempty closed convex subset C
of X [1], i.e., if J denotes the duality mapping of X ,

(∀x ∈ X ) ΠC x = argmin
y∈C

(‖x‖2 − 2〈y, J x〉 + ‖y‖2). (1.4)

Proposition 4 [2] Suppose that X is uniformly convex and uniformly smooth, let
J : X → X ∗ denote its duality mapping, which is characterized by

(∀x ∈ X ) ‖x‖2 = 〈x, J x〉 = ‖J x‖2∗, (1.5)

let K be a nonempty closed convex cone in X , and let x ∈ X . Then the following
hold.

(i) x = PK x + J−1
(
ΠK 
(J x)

)
.

(ii) 〈PK x,ΠK 
(J x)〉 = 0.

The objective of the present paper is to unify and extend the above results. To this
end, we first discuss in Sect. 2 suitable notions of proximity in Banach spaces. Based
on these, we propose our extension of Moreau’s decomposition in Sect. 3. A feature
of our analysis is to rely heavily on convex analytical tools, which allows us to derive
our main result with simpler proofs than those utilized in the above special case.

2 Proximity in Banach spaces

Let ϕ ∈ Γ0(X ). As seen in the Introduction, if X is a Hilbert space, Moreau’s
proximity operator is defined by

(∀x ∈ X ) proxϕx = argmin
y∈X

(
ϕ(y) + 1

2
‖x − y‖2

)
. (2.1)

In this section we discuss two extensions of this operator in Banach spaces.
We recall that ϕ is coercive if lim‖y‖→+∞ ϕ(y) = +∞ and supercoercive if
lim‖y‖→+∞ ϕ(y)/‖y‖ = +∞. As usual, the subdifferential operator of ϕ is denoted
by ∂ϕ. Finally, the strong relative interior of a convex set C ⊂ X is

sri C =
{

x ∈ C

∣
∣
∣
∣
⋃

λ>0

λ(C − x) = span (C − x)

}
. (2.2)

We shall also require the following facts.
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106 P. L. Combettes, N. N. Reyes

Lemma 1 [24,26] Let f ∈ Γ0(X ) and let x∗ ∈ X ∗. Then f − x∗ is coercive if and
only if x∗ ∈ intdom f ∗.

Lemma 2 [5, Theorem 3.4] Let f ∈ Γ0(X ) be supercoercive. Then dom f ∗ = X ∗.

Lemma 3 [4] Let f and ϕ be functions in Γ0(X ) such that 0 ∈ sri (dom f −dom ϕ).
Then the following hold.

(i) (ϕ + f )∗ = ϕ∗�� f ∗ and the infimal convolution is exact everywhere:

(∀x∗ ∈ X ∗)(∃ y∗ ∈ X ∗) (ϕ + f )∗(x∗) = ϕ∗(y∗) + f ∗(x∗ − y∗).

(ii) ∂(ϕ + f ) = ∂ϕ + ∂ f .

2.1 Legendre functions

We review the notion of a Legendre function, which was introduced in Euclidean spaces
in [27] and extended to Banach spaces in [5] (see also [8] for further developments in
the nonreflexive case).

Definition 1 [5, Definition 5.2] Let f ∈ Γ0(X ). Then f is:

(i) essentially smooth, if ∂ f is both locally bounded and single-valued on its domain;
(ii) essentially strictly convex, if (∂ f )−1 is locally bounded on its domain and f is

strictly convex on every convex subset of dom ∂ f ;
(iii) a Legendre function, if it is both essentially smooth and essentially strictly convex.

Some key properties of Legendre functions are listed below.

Lemma 4 Let f ∈ Γ0(X ) be a Legendre function. Then the following hold.

(i) f ∗ is a Legendre function [5, Corollary 5.5].
(ii) dom ∂ f = intdom f �= ∅ and f is Gâteaux differentiable on intdom f [5,

Theorem 5.6].
(iii) ∇ f : intdom f → intdom f ∗ is bijective with inverse ∇ f ∗ : intdom f ∗ →

intdom f [5, Theorem 5.10].

2.2 D-proximity operators

In this subsection we discuss a notion of proximity based on Bregman distances inves-
tigated in [6] and which goes back to [10,31].

The first extension of (2.1) was investigated in [6]. Let f ∈ Γ0(X ) be a Legendre
function. The Bregman distance associated with f is

D f : X × X → [0,+∞]

(y, x) �→
{

f (y) − f (x) − 〈y − x,∇ f (x)〉, if x ∈ intdom f ;
+∞, otherwise.

(2.3)
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Moreau’s decomposition in Banach spaces 107

For every ϕ ∈ Γ0(X ), we define the function ϕ� f : X → [−∞,+∞] by

(∀x ∈ X ) (ϕ� f )(x) = inf
y∈X

(
ϕ(y) + D f (y, x)

)
. (2.4)

The following proposition refines and complements some results of [6, Section 3.4].

Proposition 5 Let f ∈ Γ0(X ) be a Legendre function, let ϕ ∈ Γ0(X ) be such that

0 ∈ sri (dom f − dom ϕ), (2.5)

and let x ∈ intdom f . Suppose that one of the following holds.

(i) ∇ f (x) ∈ int(dom f ∗ + dom ϕ∗).
(ii) intdom f ∗ ⊂ int(dom f ∗ + dom ϕ∗).

(iii) f is supercoercive.
(iv) inf ϕ(X ) > −∞.

Then there exists a unique point p ∈ X such that (ϕ� f )(x) = ϕ(p) + D f (p, x);
moreover, p lies in dom ∂ϕ ∩ intdom f and it is characterized by the inclusion

∇ f (x) − ∇ f (p) ∈ ∂ϕ(p). (2.6)

Proof Set fx : X → ] − ∞,+∞]: y �→ f (y) − 〈y,∇ f (x)〉. Then the minimizers
of ϕ + D f (·, x) coincide with those of ϕ + fx and our assumptions imply that

ϕ + fx ∈ Γ0(X ). (2.7)

Now let p ∈ X . It follows from (2.5), Lemma 3(ii), and Lemma 4(ii) that

(ϕ � f )(x) = ϕ(p) + D f (p, x) ⇔ p minimizes ϕ + fx

⇔ 0 ∈ ∂
(
ϕ + fx

)
(p)

⇔ 0 ∈ ∂ϕ(p) + ∂ f (p) − ∇ f (x)

⇔ 0 ∈ ∂ϕ(p) + ∇ f (p) − ∇ f (x)

⇔ ∇ f (x) − ∇ f (p) ∈ ∂ϕ(p) (2.8)

⇒ p ∈ dom ∂ϕ ∩ intdom f . (2.9)

Hence, the minimizers of ϕ + fx are in intdom f . However, since f is essentially
strictly convex, it is strictly convex on intdom f and so is therefore ϕ + fx . This shows
that ϕ + fx admits at most one minimizer. It remains to establish existence.

(i): It follows from (2.7) that, to show existence, it is enough to show that ϕ + fx

is coercive [33, Theorem 2.5.1(ii)]. In view of Lemma 1, this is equivalent to showing
that ∇ f (x) ∈ intdom ( f + ϕ)∗. However, it follows from (2.5) and Lemma 3(i) that

intdom ( f + ϕ)∗ = intdom ( f ∗��ϕ∗) = int(dom f ∗ + dom ϕ∗). (2.10)

(ii) ⇒ (i): Lemma 4(iii).

123



108 P. L. Combettes, N. N. Reyes

(iii) ⇒ (ii): By Lemma 2, dom f ∗ = X ∗ and, since dom ϕ∗ �= ∅, intdom f ∗ ⊂
int(dom f ∗ + dom ϕ∗).

(iv) ⇒ (ii): We have inf ϕ(X ) > −∞ ⇒ ϕ∗(0) = − inf ϕ(X ) < +∞ ⇒ 0 ∈
dom ϕ∗. Hence, intdom f ∗ ⊂ int(dom f ∗ + dom ϕ∗). ��

In view of Proposition 5 and Lemma 4(iii), the following is well defined.

Definition 2 Let f ∈ Γ0(X ) be a Legendre function and let ϕ ∈ Γ0(X ) be such
that 0 ∈ sri (dom f − dom ϕ). Set

E = (intdom f ) ∩ (∇ f ∗(int(dom f ∗ + dom ϕ∗)
))

. (2.11)

The D-proximity (or Bregman proximity) operator of ϕ relative to f is

bprox f
ϕ : E → intdom f : x �→ argmin

y∈X

(
ϕ(y) + D f (y, x)

)
. (2.12)

Remark 1 In connection with Definition 2, let us make a couple of observations.

(i) It follows from Proposition 5 that, if intdom f ∗ ⊂ int(dom ϕ∗ +dom f ∗) (in par-
ticular if f is supercoercive or if inf ϕ(X ) > −∞), then bprox f

ϕ : intdom f →
intdom f .

(ii) Suppose that X is hilbertian and that f = ‖ · ‖2/2, and let ϕ ∈ Γ0(X ). Then
ϕ� f = ϕ �� f and bprox f

ϕ = proxϕ .

2.3 Anisotropic proximity operators

An alternative extension of the notion of proximity can be obtained by replacing the
function ‖ · ‖2/2 in (2.1) by a Legendre function f . This type of construction goes
back to [20].

Proposition 6 Let f ∈ Γ0(X ) be a Legendre function, let ϕ ∈ Γ0(X ) be such that

0 ∈ sri (dom f ∗ − dom ϕ∗), (2.13)

and let x ∈ sri (dom f + dom ϕ). Then there exists a unique point p ∈ X such that
(ϕ �� f )(x) = ϕ(p) + f (x − p); moreover, p is characterized by the inclusion

∇ f (x − p) ∈ ∂ϕ(p). (2.14)

Proof Using (2.13) and Lemma 3(i), we obtain

(ϕ∗ + f ∗)∗ = ϕ∗∗ �� f ∗∗ = ϕ �� f (2.15)

and the fact that the infimum in the infimal convolution is attained everywhere. On the
other hand, since x ∈ sri (dom f + dom ϕ), we have

0 ∈ sri
(
dom ϕ − (x − dom f )

) = sri
(
dom ϕ − dom f (x − ·)). (2.16)
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Consequently, by Lemma 3(ii),

∂
(
ϕ + f (x − ·)) = ∂ϕ + ∂ f (x − ·). (2.17)

Now let p ∈ X . It follows from (2.17) and Lemma 4(ii) that

p minimizes ϕ + f (x − ·) ⇔ 0 ∈ ∂
(
ϕ + f (x − ·))(p)

⇔ 0 ∈ ∂ϕ(p) − ∂ f (x − p)

⇔ 0 ∈ ∂ϕ(p) − ∇ f (x − p)

⇔ ∇ f (x − p) ∈ ∂ϕ(p) (2.18)

⇒ x − p ∈ intdom f . (2.19)

To show uniqueness, suppose that p and q are two distinct minimizers of ϕ+ f (x −·).
Then (ϕ �� f )(x) = ϕ(p) + f (x − p) = ϕ(q) + f (x − q) and, by (2.19), x − p and
x −q lie in intdom f . Now let r = (1/2)(p +q) and suppose that p �= q. Lemma 4(ii)
asserts that f is strictly convex on the convex set intdom f = dom ∂ f . Therefore,
invoking the convexity of ϕ,

(ϕ �� f )(x) ≤ ϕ(r) + f (x − r)

<
1

2

(
ϕ(p) + ϕ(q)

) + 1

2

(
f (x − p) + f (x − q)

)

= (ϕ �� f )(x), (2.20)

which is impossible. ��
Using Proposition 6, we can now introduce the anisotropic proximity operator of

ϕ.

Definition 3 Let f ∈ Γ0(X ) be a Legendre function and let ϕ ∈ Γ0(X ) be such
that 0 ∈ sri (dom f ∗ − dom ϕ∗). Set

E = sri (dom f + dom ϕ). (2.21)

The anisotropic proximity operator of ϕ relative to f is

aprox f
ϕ : E → X : x �→ argmin

y∈X

(
ϕ(y) + f (x − y)

)
. (2.22)

Remark 2 Suppose that X is hilbertian and that f = ‖ · ‖2/2, and let ϕ ∈ Γ0(X ).
Then aprox f

ϕ = proxϕ .

3 Main result

In the previous section we have described two extensions of the classical proximity
operator. Our main result is a generalization of Moreau’s decomposition (Proposi-
tion 3) in Banach spaces which involves a mix of these two extensions.
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Theorem 1 Let f ∈ Γ0(X ) be a Legendre function, let ϕ ∈ Γ0(X ) be such that

0 ∈ sri (dom f ∗ − dom ϕ∗), (3.1)

and let x ∈ (intdom f ) ∩ int(dom f + dom ϕ). Then the following hold.

(i) f (x) = (ϕ �� f )(x) + (ϕ∗ � f ∗)
(∇ f (x)

)
.

(ii) x = aprox f
ϕ x + ∇ f ∗(bprox f ∗

ϕ∗
(∇ f (x)

))
.

(iii)
〈
aprox f

ϕ x, bprox f ∗
ϕ∗

(∇ f (x)
)〉 = ϕ

(
aprox f

ϕ x
) + ϕ∗(bprox f ∗

ϕ∗
(∇ f (x)

))
.

(iv)
〈
aprox f

ϕ x,∇ f
(
x − aprox f

ϕ x
)〉 = ϕ

(
aprox f

ϕ x
) + ϕ∗(∇ f

(
x − aprox f

ϕ x
))

.

Proof Since x ∈ int(dom f + dom ϕ), Lemma 4(iii) yields

x ∈ sri (dom f + dom ϕ) and ∇ f ∗(∇ f (x)
) ∈ int

(
dom f ∗∗ + dom ϕ∗∗). (3.2)

Hence, it follows from Proposition 6 that aprox f
ϕ x is well defined and, from Lemma 4(i)

and Proposition 5(i) (applied to f ∗ and ϕ∗), that ∇ f ∗(bprox f ∗
ϕ∗ (∇ f (x))) is well

defined. In addition,

(ϕ �� f )(x) ∈ R and (ϕ∗ � f ∗)
(∇ f (x)

) ∈ R. (3.3)

(i): It follows from (2.3), Lemma 4(iii), and the Fenchel-Young identity [33,
Theorem 2.4.2(iii)] that

(∀x∗ ∈ X ∗) D f ∗
(
x∗,∇ f (x)

) = f ∗(x∗) − f ∗(∇ f (x)
) − 〈x∗ − ∇ f (x), x〉∗

= f ∗(x∗) + f (x) − 〈x∗, x〉∗. (3.4)

This, (2.4), (3.1), and Lemma 3(i) imply that

(ϕ∗ � f ∗)
(∇ f (x)

) = inf
x∗∈X ∗

(
ϕ∗(x∗) + f ∗(x∗) + f (x) − 〈x∗, x〉∗

)

= f (x) − sup
x∗∈X ∗

(〈x∗, x〉∗ − ϕ∗(x∗) − f ∗(x∗)
)

= f (x) − (ϕ∗ + f ∗)∗(x)

= f (x) − (ϕ �� f )(x). (3.5)

In view of (3.3), we obtain the announced identity.
(ii): Let p ∈ X . Using Proposition 6, Lemma 4(iii), and Proposition 5(i), we obtain

p = aprox f
ϕ x ⇔ ∇ f (x − p) ∈ ∂ϕ(p) (3.6)

⇔ p ∈ ∂ϕ∗(∇ f (x − p)
)

⇔ ∇ f ∗(∇ f (x)
) − ∇ f ∗(∇ f (x − p)

) ∈ ∂ϕ∗(∇ f (x − p)
)

⇔ ∇ f (x − p) = bprox f ∗
ϕ∗

(∇ f (x)
)

(3.7)

⇔ x − p = ∇ f ∗(bprox f ∗
ϕ∗

(∇ f (x)
))

. (3.8)
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(iii): Set p = aprox f
ϕ x . As seen in (3.7) and (3.6),

bprox f ∗
ϕ∗

(∇ f (x)
) = ∇ f (x − p) ∈ ∂ϕ(p). (3.9)

Hence, the Fenchel-Young identity yields

〈p, bprox f ∗
ϕ∗

(∇ f (x)
)〉 = 〈p,∇ f (x − p)〉

= ϕ(p) + ϕ∗(∇ f (x − p)
)

= ϕ(p) + ϕ∗(bprox f ∗
ϕ∗

(∇ f (x)
))

. (3.10)

(iv): This follows at once from (iii) and (3.9). ��
Remark 3 An instance of Theorem 1(iv) in which f and f ∗ are real-valued appears
in [32, Proposition 1].

Theorem 1 provides a range of new decomposition schemes, even in the case when
X is a Hilbert space. Thus, in the following result, we obtain a new hilbertian frame
decomposition principle (for background on frames and their applications, see [11]).

Corollary 1 Suppose that X is a separable Hilbert space, let I be a countable set,
and let (ei )i∈I be a frame in X , i.e.,

(∃ α ∈ ]0,+∞[)(∃ β ∈ ]0,+∞[)(∀x ∈ X ) α‖x‖2 ≤
∑

i∈I

|〈x, ei 〉|2 ≤ β‖x‖2.

(3.11)

Let S : X → X : x �→ ∑
i∈I 〈x, ei 〉ei be the associated frame operator and let

(e∗
i )i∈I = (S−1ei )i∈I be the associated canonical dual frame. Furthermore, let ϕ ∈

Γ0(X ), let x ∈ X , and set

a(x) = argmin
y∈X

(

ϕ(y) + 1

2

∑

i∈I

|〈x − y, ei 〉|2
)

(3.12)

and

b(x) = argmin
x∗∈X

(

ϕ∗(x∗) − 〈x∗, x〉 + 1

2

∑

i∈I

|〈x∗, e∗
i 〉|2

)

. (3.13)

Then x = a(x) + ∑
i∈I 〈b(x), e∗

i 〉e∗
i .

Proof Set f : X → R : x �→ (1/2)
∑

i∈I |〈x, ei 〉|2. It is easily seen that f is Fréchet
differentiable on X with ∇ f = S. It therefore follows from [5, Theorem 5.6] that f
is essentially smooth. Now fix x∗ ∈ X . Since the frame operator of (e∗

i )i∈I is S−1

[11, Lemma 5.1.6], we have

〈S−1x∗, x∗〉 =
〈 ∑

i∈I

〈x∗, e∗
i 〉e∗

i , x∗
〉

=
∑

i∈I

|〈x∗, e∗
i 〉|2 = 2 f (S−1x∗). (3.14)
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112 P. L. Combettes, N. N. Reyes

Now set g : X → R : x �→ f (x)−〈x, x∗〉. Then g is a differentiable convex function
and ∇g : x �→ Sx − x∗ vanishes at x = S−1x∗. Hence, using (3.14), we obtain

f ∗(x∗)=− min
x∈X

g(x)=〈S−1x∗, x∗〉 − f (S−1x∗)= f (S−1x∗)= 1

2

∑

i∈I

|〈x∗, e∗
i 〉|2.

(3.15)

Hence, as above, f ∗ is Fréchet differentiable on X with ∇ f ∗ = S−1 and, in turn,
essentially smooth, which makes f essentially strictly convex [5, Theorem 5.4].
Altogether, f is a Legendre function with

dom f = X , dom f ∗ = X , ∇ f = S, and ∇ f ∗ = S−1. (3.16)

Moreover, it follows from (2.12), (2.22), (3.16), Lemma 4(iii), (3.12), (3.13), and
(3.15) that

bprox f ∗
ϕ∗ (∇ f (x)) = b(x) and aprox f

ϕ (x) = a(x). (3.17)

The result is therefore an application of Theorem 1(ii). ��
Remark 4 Corollary 1 can be regarded as an extension of Moreau’s decomposition
principle in separable Hilbert spaces. Indeed, in the special case when (ei )i∈I is an
orthonormal basis in Corollary 1, we recover Proposition 3(ii).

The next application is set in uniformly convex and uniformly smooth Banach
spaces.

Corollary 2 Suppose that X is uniformly convex and uniformly smooth, let J be its
duality mapping, set q = ‖ · ‖2/2, and let ϕ ∈ Γ0(X ). Then q∗ = ‖ · ‖2∗/2 and the
following hold for every x ∈ X .

(i) q(x) = (ϕ �� q)(x) + (ϕ∗ � q∗)(J x).

(ii) x = aproxq
ϕx + J−1

(
bproxq∗

ϕ∗(J x)
)
.

(iii)
〈
aproxq

ϕx, bproxq∗
ϕ∗(J x)

〉 = ϕ
(
aproxq

ϕx
) + ϕ∗(bproxq∗

ϕ∗(J x)
)
.

(iv)
〈
aproxq

ϕx, J
(
x − aproxq

ϕx
)〉 = ϕ

(
aproxq

ϕx
) + ϕ∗(J

(
x − aproxq

ϕx
))

.

Proof This is an application of Theorem 1 with f = q. Indeed, dom f = X ,

dom f ∗ = X ∗, and ∇ f = J . ��
In particular, if X is a Hilbert space in Corollary 2, if follows from Remark 1(ii)

and Remark 2 that we recover Moreau’s decomposition principle (Proposition 3) and
a fortiori Propositions 1 and 2. Another noteworthy instance of Corollary 2 is when
ϕ = ιK , where K is a nonempty closed convex cone in X . In this case, ϕ∗ =
ιK 
 , aproxq

ϕ = PK , and we derive from (1.4) and (1.5) that bproxq
ϕ = ΠK . Hence,

Corollary 2 (ii)&(iii) yields Proposition 4.
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Remark 5 Consider the setting of Theorem 1 and set A = ∂ϕ. Then, by Rockafellar’s
theorem, A is a maximally monotone operator [33, Theorem 3.1.11]. Moreover, it
follows from (2.14), Lemma 4(iii), and (2.6) that we can rewrite Theorem 1(ii) as

x = (Id + ∇ f ∗ ◦ A)−1x + ∇ f ∗ ◦ (∇ f ∗ + A−1)−1
x, (3.18)

where Id is the identity operator on X . The results of [6, Section 3.3] suggest that this
decomposition holds for more general maximally monotone operators A : X → 2X ∗

.
IfX is a Hilbert space and f = ‖·‖2/2, (3.18) yields the well-known resolvent identity
Id = (Id + A)−1 +(Id + A−1)−1, which is true for any maximally monotone operator
A [7, Proposition 23.18].
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