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Abstract In this paper we present a topology on the space of real-valued functions
defined on a functionally Hausdorff space X that is finer than the topology of pointwise
convergence and for which (1) the closure of the set of continuous functions C(X) is
the set of upper semicontinuous functions on X , and (2) the pointwise convergence of
a net in C(X) to an upper semicontinuous limit automatically ensures convergence in
this finer topology.
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1 Introduction

Let 〈X, τ 〉 be a Hausdorff space. A real-valued function g on X is called upper
semicontinuous at x0 ∈ X if for each ε > 0, ∃ a neighborhood V of x0 such that
∀v ∈ V, g(v) < g(x0)+ ε. We denote the set of real-valued globally upper semicon-
tinuous functions on X by U(X). Global upper semicontinuity of a real-valued function
g can be characterized in either of these ways [5]: (1) ∀α ∈ R, {x ∈ X : g(x) < α} is
open in X ; (2) the hypograph of g defined by {(x, α) : x ∈ X, α ∈ R, and α ≤ g(x)}
is a closed subset of X × R. The family U(X) forms a cone-lattice: if f, g are upper
semicontinuous, so are f ∨ g, f ∧ g, f + g, and α f (for α ≥ 0).
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72 G. Beer

Certain properties of the domain space can be characterized in terms of the ability
to approximate elements of U(X) by elements of C(X), the continuous real-valued
functions on X . For example, X is completely regular if and only if each g ∈ U(X) is
the infimum of the continuous real-valued functions that majorize g [13]. This gives rise
to the existence of a net of continuous functions pointwise convergent to g from above.
To see this, for each finite subset {x1, x2, x3, . . . , xn} of X and scalarsαi > g(xi )where
1 ≤ i ≤ n, there exists a continuous function f = f(x1,x2,...,xn ,α1,α2,...,αn) majorizing
g such that for each i, f (xi ) < αi ( f exists because C(X) is a lattice). Put

Ω := {(x1, x2, . . . , xn, α1, α2, . . . , αn) : n ∈ N and ∀i ≤ n, αi > g(xi )},

directed by (x1, x2, . . . , xn, α1, α2, . . . , αn) � (w1, w2, . . . , wm, β1, β2, . . . , βm)

provided each (xi , αi ) lies on or above some (w j , β j ). Then

(x1, x2, . . . , xn, α1, α2, . . . , αn) �→ f(x1,x2,...,xn ,α1,α2,...,αn)

is the desired net.
The existence of a (decreasing) sequence in C(X) pointwise convergent to an arbi-

trary upper semicontinuous function g from above is characterized by the perfect
normality of X , i.e., by the property that each closed subset of X is a Gδ subset [23].
In the special case that X is metrizable, there is an attractive geometric algorithm for
constructing this sequence [5, pg. 18].

If we topologize the space R
X of all real-valued functions on X in different ways,

we get different closures for C(X). Under very mild assumptions, the closure with
respect to the topology of pointwise convergence is R

X itself, i.e., the continuous
functions are dense. If we equip R

X with topology of uniform convergence or in the
case that X is a κ-space, the topology of uniform convergence on compact subsets [15,
pg. 202], then C(X) is in fact closed. One of course wonders if there is an intermediate
topology for which the closure is exactly U(X). It is the purpose of this note to identify
what is the weakest topology of this kind, in the sense that if 〈 fλ〉 is a net in C(X)
pointwise convergent to g ∈ U(X), then it is of necessity already convergent to g in
this intermediate topology.

2 Preliminaries

In the sequel all spaces are Hausdorff and assumed to consist of at least two points.
A function h ∈ R

X is called lower semicontinuous if −h is upper semicontinuous.
We denote the lower semicontinuous functions on 〈X, τ 〉 by L(X). Evidently, U(X)∩
L(X) = C(X), and the characteristic function χE of a subset E of X is upper (resp.
lower) semicontinuous if and only if E is closed (resp. open). A real function h is lower
semicontinuous if and only if its epigraph {(x, α) : x ∈ X, α ∈ R, and α ≥ h(x)}
is closed. The theory that we will develop of course yields a dual theory for lower
semicontinuous functions.

There is a huge literature on the minimization of lower semicontinuous functions,
especially lower semicontinuous convex functions, where perhaps the most celebrated
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Semicontinuous limits 73

result is the Ekeland Variational Principle (see, e.g., [8,19]). The most important
convergence notions for lower semicontinuous functions in applications such as epi-
convergence, Attouch-Wets convergence, and in the convex case, slice or Joly conver-
gence, are derivative of set-convergence constructs, upon identifying elements of L(X)
with their epigraphs (see, e.g., [3,5,10,19,22]). For domains that are finite dimensional
Euclidean spaces where all of these notions coincide, convergence may be equivalently
understood as (1) classical Kuratowski-Painlevé convergence of epigraphs, and as (2)
convergence of epigraphs in the Fell topology. While epigraphical convergence from
below implies pointwise convergence, this fails more generally. We invite the reader
to construct a sequence of piecewise linear real functions on R that epigraphically
converges to the zero function but that nevertheless is nowhere pointwise convergent.
Thus, such notions and their duals for upper semicontinuous functions are outside the
scope of the present investigation.

If g is upper semicontinuous and h is a lower semicontinuous function that majorizes
g, one might seek to insert a continuous function between them. Underlying structural
properties of X can also be characterized by insertion theorems (see, e.g., [15]), also
called sandwich theorems [9].

If W is a set, a quasi-uniformity on W is a family D of reflexive relations on W
that form a filter and such that for each D ∈ D, ∃D0 ∈ D with D0 ◦ D0 ⊆ D [16,18].
A subfamily ̂D of D is called a base for the quasi-uniformity if ∀D ∈ D, ∃̂D ∈ ̂D with
̂D ⊆ D. The conjugate quasi-uniformity determined by D is the family of relations
{D−1 : D ∈ D}, and the smallest uniformity containing D has as a base all sets of the
form ̂D ∩ ̂D−1 where ̂D runs over a prescribed base for D.

Given a quasi-uniformity D on W , for each D ∈ D and w0 ∈ W put D(w0) =
{w : (w0, w) ∈ D}. Then {D(w0) : D ∈ D} forms a neighborhood base at w0 for a
topology on W called the topology of the quasi-uniformity. While a topology is induced
by a uniformity if and only if it is completely regular [15,24], each topology is induced
by a quasi-uniformity [16], the most familiar of which is the Pervin quasi-uniformity
[21].

We now introduce three Hausdorff function space topologies on the real-valued
functions defined on 〈X, τ 〉. Letting F0(X) denote the family of nonempty finite sub-
sets of X , a base for the standard uniformity for the topology of pointwise conver-
gence Tp on R

X [20,24], sometimes called the pointwise uniformity, consists of all
entourages of the form

[F, ε]p := {(g, h) : ∀x ∈ F, |g(x)− h(x)| < ε} (F ∈ F0(X), ε > 0).

Thinking of this uniformity as a quasi-uniformity, a finer quasi-uniformity on R
X has

as a base all sets of the form

[F, ε]u := {(g, h) : ∀x ∈ F, |g(x)− h(x)| < ε and ∃ a neighborhood V of F

such that ∀x ∈ V, g(x) < h(x)+ ε} (F ∈ F0(X), ε > 0).

We denote the induced topology on R
X by Tu . Note that
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74 G. Beer

– the neighborhoods V in the definition of [F, ε]u depend on g and h, not just on F
and ε;

– [F1 ∪ F2,min{ε1, ε2}]u ⊆ [F1, ε1]u ∩ [F2, ε2]u ;
– [F, 1

2ε]u ◦ [F, 1
2ε]u ⊆ [F, ε]u ;

– as the induced topology Tu is finer than Tp, it is Hausdorff as well;
– if g is lower semicontinuous and its graph lies above a compact subset K of the

product, and h is close to g in Tu , then the same can be said for the graph of h;
– ( f, g) �→ f + g, ( f, g) �→ f ∨ g, and ( f, g) �→ f ∧ g, are Tu-jointly continuous

on R
X × R

X ;
– (α, f ) �→ α f is jointly continuous on (0,∞)× R

X .

In general, (α, f ) �→ α f is not jointly continuous on [0,∞) × R
X . Points (0, g)

in the product where joint continuity occurs are described by the following result.

Proposition 2.1 Let 〈X, τ 〉 be a Hausdorff space, where R
X is equipped with Tu.

Then (α, f ) �→ α f defined on [0,∞)× R
X is jointly continuous at (0, g) if and only

if g is locally bounded from below.

Proof Suppose g is not bounded from below on any neighborhood V of x0. Let h
denote the zero function on X . Then the sequence 〈( 1

n , g)〉 converges to (0, g) while
〈 1

n g〉 fails to converge to h, as [{x0}, 1]u(h) contains no function of the form 1
n g.

For sufficiency, assume g is locally bounded from below; it suffices to produce for
each x0 ∈ X and ε > 0, a neighborhood of (0, g) mapped into [{x0}, ε]u(h). Choose
an open neighborhood V of x0 and n ∈ N such that ∀v ∈ V, g(v) > −n ε2 . We claim
that [0, 1

n )× [{x0}, ε2 ]u(g) is mapped by (α, f ) �→ α f into [{x0}, ε]u(h). To see this,
fix (α, f ) with α ∈ [0, 1

n ) and such that for some neighborhood W of x0 contained in
V,∀w ∈ W, g(w) − ε

2 < f (w). If α = 0 there is nothing to prove. Otherwise, for
each w ∈ W , we have

α f (w) > αg(w)− α
ε

2
>

1

n

(

−n
ε

2

)

− 1

n

ε

2
≥ −ε

2
− ε

2
= −ε,

which means that α f ∈ [{x0}, ε]u(h).

We see from Proposition 2.1 and the sixth and seventh bullets above that C(X) or
even L(X) equipped with Tu becomes a topological cone-lattice.

A final remark about the standard quasi-uniformity for Tu : the conjugate quasi-
uniformity has as a base all sets of the form

[F, ε]l := {(g, h) : ∀x ∈ F, |g(x)− h(x)| < ε and ∃ a neighborhood V of F

such that ∀x ∈ V, h(x) < g(x)+ ε} (F ∈ F0(X), ε > 0).

We denote the induced topology by Tl .

3 Results

For a (Hausdorff) space 〈X, τ 〉, since C(X) contains the constant functions, the fol-
lowing properties are obviously equivalent:
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Semicontinuous limits 75

(1) whenever x1 �= x2, ∃ f ∈ C(X) such that f (x1) �= f (x2);
(2) whenever x1 �= x2 and α1 ∈ R and α2 ∈ R, ∃ f ∈ C(X) such that f (x1) = α1 and

f (x2) = α2.

We call 〈X, τ 〉 functionally Hausdorff [24] if it satisfies these conditions.

Proposition 3.1 Let 〈X, τ 〉 be a Hausdorff space. The following conditions are equiv-
alent.

(1) 〈X, τ 〉 is functionally Hausdorff;
(2) C(X) is Tp-dense in R

X ;
(3) The Tp-closure of C(X) includes U(X).
Proof (1) ⇒ (2). Let g ∈ R

X be arbitrary. It suffices to show that whenever F ∈
F0(X), there exists hF ∈ C(X) such that hF |F = g|F , for directing F0(X)
by inclusion, the net F �→ hF is pointwise convergent to g. We prove this by
induction on the number of elements of F . Our above discussion provides adequate
justification when n = 2. Suppose we know this to be true whenever F has n = k
elements and {x1, x2, . . . , xk, xk+1} are k+1 distinct elements of X . Putαi = g(xi )

for i = 1, 2, . . . , k + 1. Since C(X) contains the constant functions and is closed
under addition, there is no loss of generality in assuming that αk+1 = 0. Choose
by the induction hypothesis f ∈ C(X) with f (xi ) = αi for i = 1, 2, . . . , k, and
then choose fi ∈ C(X) mapping xk+1 to zero and xi to one. For each i ≤ k, put
gi = fi ∧ 1; then h{x1,x2,...,xk ,xk+1} defined by

h{x1,x2,...,xk ,xk+1}(x) := f (x)(g1(x) ∨ g2(x) ∨ . . . gk(x))

does the job.
(2) ⇒ (3). This is trivial.
(3) ⇒ (1). Suppose (1) fails; then there exists distinct x1 and x2 such that ∀ f ∈

C(X), we have f (x1) = f (x2). Then [{x1, x2}, 1
3 ]p(χ{x1}) contains no continuous

function, and so (3) fails.

Proposition 3.2 Let 〈X, τ 〉 be a Hausdorff space. If 〈 fλ〉λ∈� is a net in C(X) that is
Tp-convergent to g ∈ U(X), then the net is Tu-convergent to g.

Proof Fix F ∈ F0(X) and ε > 0. We will show that fλ ∈ [F, ε]u(g) eventually. By
Tp-convergence, choose λ0 ∈ � such that λ � λ0 ⇒ fλ ∈ [F, ε3 ]p(g). Fix λ1 � λ0.
Clearly if x ∈ F , then |g(x)− fλ1(x)| < ε

3 . By continuity, for each x ∈ F, ∃Ux ∈ τ
such that x ∈ Ux and whenever w ∈ Ux , we have | fλ1(x) − fλ1(w)| < ε

3 . By upper
semicontinuity, there exists for each x ∈ F a second open neighborhood Wx such that
w ∈ Wx ⇒ g(w) < g(x)+ ε

3 . Put V := ∪x∈F (Ux ∩ Wx ), a neighborhood of F . Let
v ∈ V be arbitrary; choosing x with v ∈ Ux ∩ Wx , we compute

g(v) < g(x)+ ε

3
< fλ1(x)+ 2

3
ε < fλ1(v)+ ε,

and so fλ1 ∈ [F, ε]u(g) as required.
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The following example shows that Tp-convergence in U(X) does not ensure Tu-
convergence, even if the limit is continuous.

Example 3.3 Let g : R → R be the constant function g(x) ≡ 1, and ∀n ∈ N, let
fn = χEn where En := {0} ∪ {x ∈ R : |x | ≥ 1

n }. Since each En is closed, each fn

is upper semicontinuous. While the sequence 〈 fn〉 is pointwise convergent to g, for
each n, fn /∈ [{0}, 1

2 ]u(g).

A point is in the closure of a set if and only if there exists a net in the set conver-
gent to the point. Putting together Propositions 3.1 and 3.2, we obtain the following
proposition which says that in a functionally Hausdorff space, the Tu-closure of C(X)
includes U(X).
Proposition 3.4 Let 〈X, τ 〉 be a functionally Hausdorff space. Then for each g ∈
U(X), there exists a net 〈 fλ〉λ∈� in C(X) that is Tu-convergent to g.

We next show that U(X) is Tu-closed.

Proposition 3.5 Let 〈X, τ 〉 is Hausdorff space. Suppose 〈 fλ〉λ∈� is a net in U(X)
Tu-convergent to g ∈ R

X . Then g ∈ U(X).
Proof To prove upper semicontinuity, fix x0 ∈ X and ε > 0. There exists λ0 ∈ � such
that λ � λ0 ⇒ fλ ∈ [{x0}, ε3 ]u(g). By definition, there exists V such that x0 ∈ V ∈ τ
and ∀v ∈ V, g(v) < fλ0(v)+ ε

3 and |g(x0)− fλ0(x0)| < ε
3 . By upper semicontinuity,

we may also assume that for each v ∈ V, fλ0(v) < fλ0(x0) + 1
3ε. Fixing v ∈ V , we

compute

g(v) < fλ0(v)+ 1

3
ε < fλ0(x0)+ 2

3
ε < g(x0)+ ε,

establishing upper semicontinuity of g at x0.

We can associate with each closed subset C of X its upper semicontinuous char-
acteristic function χC . If a net of such characteristic functions is Tu-convergent to
some function g, then by pointwise convergence, the range of g is contained in {0, 1},
i.e., g is a characteristic function of a (possibly empty) subset of X , which, by the last
result, must be a closed subset. Denoting the family of closed subsets by C , we see
that {χC : C ∈ C } is Tu-closed. Identifying each closed subset with its characteristic
function, we get a so-called hyperspace topology [5,19] on C . It is left to the reader
to show that a net of closed subsets 〈Cλ〉λ∈� is convergent to a closed set C in the
hyperspace if and only if both of the following conditions are satisfied:

– {x ∈ X : x ∈ Cλ residually} = C = {x ∈ X : x ∈ Cλ cofinally};
– ∀c ∈ C, ∃λ0 ∈ � such that ∀λ � �0 ∃ V (c, λ) ∈ τ with c ∈ V (c, λ) ∩ C ⊆ Cλ.

Returning to the main line of discussion, our last three results yield the result we
are after.

Theorem 3.6 Let 〈X, τ 〉 be a functionally Hausdorff space. Then U(X) is the Tu-
closure of C(X) in R

X . Further, any net in C(X) that is pointwise convergent to an
upper semicontinuous limit is already Tu-convergent.

We now introduce a property ♦ of a net 〈 fλ〉λ∈� of real-valued functions with
respect to a prospective limit function g that plays a significant role in our investigation.
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Semicontinuous limits 77

♦ Whenever C is a nonempty compact subset of X, λ0 ∈ � and ε > 0, there
exist a neighborhood V of C and indices {λ1, λ2, . . . , λn} such that for each i ≤
n, λi � λ0 and ∀x ∈ V, ∃i ≤ n with g(x) < fλi (x)+ ε.

Our next result constitutes a separate argument for the fact that U(X) is Tu-closed in
R

X .

Proposition 3.7 Let 〈X, τ 〉 be a Hausdorff space, and suppose 〈 fλ〉λ∈� is a net in R
X

pointwise convergent to g ∈ R
X .

(1) If the net is actually Tu-convergent, then property ♦ holds;
(2) If the net lies in U(X) and property ♦ holds, then g ∈ U(X) also holds.

Proof For (1), by Tu-convergence to g, for each c ∈ C we can choose λc � λ0 such
that (g, fλc ) ∈ [{c}, ε]u . Choose for each c ∈ C an open neighborhood Vc of c such
that x ∈ Vc ⇒ g(x) < fλc (x)+ ε. Extracting a finite subcover {Vc1, Vc2 , . . . , Vcn } of
C , the prescriptions

V := ∪n
i=1Vci and λi := λci for i ≤ n

satisfy condition ♦.
For (2), to prove g is upper semicontinuous at x0 ∈ X , we apply condition ♦ where

C = {x0}. Let ε > 0 be arbitrary and choose λ0 ∈ � such that λ � λ0 ⇒ | fλ(x0)−
g(x0)| < ε

3 . Next choose by ♦ an open neighorhood V of {x0} and {λ1, λ2, . . . , λn}
such that for each i ≤ n, λi � λ0 and ∀x ∈ V, ∃i ≤ n with g(x) < fλi (x)+ ε

3 . Choose
by upper semicontinuity an open set V1 such that x0 ∈ V1 ⊆ V and ∀x ∈ V1, ∀i ≤
n, fλi (x) < fλi (x0)+ ε

3 . Fixing x ∈ V1 and choosing i ≤ n with g(x) < fλi (x)+ ε
3 ,

we compute

g(x) < fλi (x)+ ε

3
< fλi (x0)+ 2

3
ε < g(x0)+ ε.

This establishes upper semicontinuity at x0.

The converse of (1) fails, that is, pointwise convergence plus ♦ do not ensure
Tu-convergence, even if the net is in U(X) and the limit is continuous.

Example 3.8 Let X = {0} ∪ { 1
n : n ∈ N}, equipped with topology it inherits from the

usual topology of R. Write N as a countable disjoint union of infinite subsets:

N = N1 ∪ N2 ∪ N3 ∪ . . . .

For each k ∈ N, put Ek := {0} ∪ { 1
n : n ∈ N\Nk}, a closed subset of X , so that

fk := χEk is upper semicontinuous. The sequence of characteristic functions 〈 fk〉 is
pointwise convergent to the constant function g(x) ≡ 1, as for each x ∈ X, fk(x) = 1
eventually. The sequence satisfies ♦ with respect to g, for if C is any compact subset
of X and k0 ∈ N, then taking V = X , we see that for each x ∈ V , either fk0(x) = 1
or f2k0(x) = 1 or both. But ∀k ∈ N, each neighborhood of the origin contains points
not in Ek , which means that [{0}, 1

2 ]u(g) contains no fk .
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Not only is Tu-convergence usually properly stronger on U(X) than pointwise
convergence plus ♦, but further, the conjunction is not a convergence on U(X) as the
term is normally understood [17, pg. 73], that is, a set-valued mapping � assigning
to each net φ in U(X) a (possibly empty) subset �(φ) of U(X) corresponding to the
set of limits of φ that satisfies some simple properties. One of these properties is
invariably the following: whenever ψ is a subnet of φ, then �(φ) ⊆ �(ψ). This fails
for pointwise convergence plus ♦ (consider the sequence f1, g, f2, g, f3, g, . . . for
the functions of Example 3.3). However, the conjunction is a convergence—in fact, a
topological convergence—restricted to C(X), as we shall now see.

Theorem 3.9 Let 〈X, τ 〉 be a Hausdorff space, let 〈 fλ〉λ∈� be a net in C(X) and let
g ∈ R

X . The following are equivalent:

(1) 〈 fλ〉λ∈� is Tu-convergent to g;
(2) 〈 fλ〉λ∈� is pointwise convergent to g and ♦ holds;
(3) 〈 fλ〉λ∈� is pointwise convergent to g and g is upper semicontinuous.

Proof (1) ⇒ (2) follows from statement (1) of Proposition 3.7, (2) ⇒ (3) follows
from statement (2) of Proposition 3.7, and (3) ⇒ (1) is established by Proposition
3.2.

Each of the above results has its counterpart for lower semicontinuous functions
which the reader can easily formulate. If we take the uniformity generated by our
standard uniformity for Tu and its conjugate, we get a uniformity having as a base all
entourages of the form

[F, ε]� := {(g, h) : ∃ a neighborhood V of F such that ∀x ∈ V,

|g(x)− h(x)| < ε} (F ∈ F0(X), ε > 0).

The topology T� induced by this uniformity, called the sticking topology by
Bouleau [11,12] and the topology of strong pointwise convergence by Beer and Levi
[7] in the context of metric spaces, is intrinsic to the preservation of continuity: C(X)
is T�-closed in R

X and T�-convergence reduces to pointwise convergence on C(X)
itself. While the following summary result appropriately modified is valid when R is
replaced by a Hausdorff uniform space [6, Theorem 4.11], we content ourselves with
a more restrictive statement. The details can be easily worked out by the reader from
the prior results of this paper.

Theorem 3.10 Let 〈X, τ 〉 be a Hausdorff space, let g ∈ R
X , and let 〈 fλ〉λ∈� be a net

in C(X) pointwise convergent to g. The following conditions are equivalent:

(1) g ∈ C(X);
(2) 〈 fλ〉λ∈� is T�-convergent to g;
(3) Whenever C is a nonempty compact subset of X, λ0 ∈ � and ε > 0, there exists

a neighborhood V of C and indices {λ1, λ2, . . . , λn} such that ∀i ≤ n, λi � λ0,
and ∀x ∈ V, ∃i ≤ n with |g(x)− fλi (x)| < ε.
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Semicontinuous limits 79

Following Arzelà [2] who worked with functions of a real variable, Bartle [4]
showed that if X is a Hausdorff space then a necessary and sufficient condition for
the continuity of a pointwise limit g of a net of continuous real functions is the
following: ∀λ0 ∈ � and ε > 0, there exist indices {λ1, λ2, . . . , λn} such that for each
i ≤ n, λi � λ0 and ∀x ∈ X, ∃i ≤ n with |g(x)− fλi (x)| < ε. He called this condition
quasi-uniform convergence. Evidently, condition (3) above is a strengthening of quasi-
uniform convergence on compacta, which may be used in lieu of (3) provided X is a
compactly generated space (see [24, p. 285] and a little more precisely [20, p. 74]).
But without further assumptions, this replacement cannot be made, in the same way
that one cannot assert in complete generality that the limit of a net of continuous
functions that is uniformly convergent on compacta is continuous. For an alternative
to condition (3) also valid in arbitrary Hausdorff spaces, the reader may consult [1,
pg. 266]. These ideas and more are considered in the recent article by Caserta et al.
[14] on the preservation of continuity of functions between metric spaces.
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