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180 W. W. Hager, J. T. Hungerford

1 Introduction

Consider the optimization problem

max f (x) subject to x ∈ P, (1.1)

where f :P → R is continuously differentiable and P ⊂ R
n is the polyhedron defined

by

P = {
x ∈ R

n :Ax ≤ b
}

(1.2)

for some matrix A ∈ R
m×n with rank(A) = n and some vector b ∈ R

m . Given any
x∗ ∈ P , the set of active constraints at x∗ is defined by

A(x∗) = {
i ∈ [1, m] :Ai x∗ = bi

}
,

where Ai denotes the i th row of A. The cone F(x∗) of first-order feasible directions
at x∗ is

F(x∗) = {d ∈ R
n :Ai d ≤ 0 for all i ∈ A(x∗)}. (1.3)

The usual first-order necessary optimality condition for (1.1) may be stated in the
following way: If x∗ is a local maximizer of (1.1), then

x∗ ∈ P and ∇ f (x∗)d ≤ 0 for every d ∈ F(x∗). (1.4)

This condition is based on the observation that for each d ∈ F(x∗), we have x∗ +αd ∈
P for α ≥ 0 sufficiently small. Hence, if x∗ is a local maximizer, then

( f (x∗ + αd) − f (x∗))/α ≤ 0

when α > 0 is sufficiently small. Take the limit as α tends to zero from the right to
obtain (1.4) [1, p. 94].

The first-order necessary condition (1.4) is equivalent to the well-known
Karush–Kuhn–Tucker conditions: There exists λ ∈ R

n such that

λ ≥ 0, b − Ax∗ ≥ 0, λT(b − Ax∗) = 0, and ∇ f (x∗) − λTA = 0. (1.5)

References for the KKT conditions include [1,6,11,13].
If f is twice continuously differentiable, then the second-order necessary optimality

condition states that any local maximizer x∗ must satisfy (1.4) in addition to the
following:

dT∇2 f (x∗)d ≤ 0 for every d ∈ C(x∗), (1.6)
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Optimality conditions for maximizing 181

where C(x∗) is the critical cone at x∗ defined by

C(x∗) = {d ∈ F(x∗) :∇ f (x∗)d = 0}
= {d ∈ F(x∗) :Ai d = 0 for all i for which λi > 0}. (1.7)

The second-order condition (1.6) is obtained from a Taylor expansion around x =
x∗. That is, if d ∈ C(x∗), then ∇ f (x∗)d = 0, x∗ + αd ∈ P for α ≥ 0 sufficiently
small, and we have

f (x∗ + αd) = f (x∗) + α∇ f (x∗)d + 1

2
α2dT∇2 f (xα)d

= f (x∗) + 1

2
α2dT∇2 f (xα)d,

where xα lies between x∗ and x∗ + αd. It follows that

dT∇2 f (xα)d = 2( f (x∗ + αd) − f (x∗))
α2 . (1.8)

Since x∗ is a local maximizer, f (x∗ + αd) ≤ f (x∗) for α > 0 sufficiently small. We
take the limit as α tends to zero from the right in (1.8) to obtain (1.6).

Borwein [2] and Contesse [3] show that when f is quadratic, the conditions (1.4) and
(1.6) are also sufficient for local optimality. For a more general function, a sufficient
condition for x∗ to be a local maximizer of (1.1) is that x∗ satisfy (1.4) in addition to
the following [13, Theorem. 12.6]:

dT∇2 f (x∗)d < 0 for every d ∈ C(x∗), d 
= 0. (1.9)

Since the cones F(x∗) and C(x∗) are infinite sets, the conditions (1.4), (1.6), and
(1.9) are in general difficult to verify. In fact, as shown in [12,16], checking local
optimality for an indefinite quadratic programming problem can be NP-hard. In the
current paper, we will derive new first-order necessary optimality conditions and new
second-order sufficient conditions which reduce to examining finite subsets of the
cones F(x∗) and C(x∗) corresponding to an edge description of the polyhedron P .
Necessary second-order conditions are derived for the case when the objective function
is convex in the edge directions. In important special cases, such as polyhedra that
include box constraints, we show that the size of the edge description is bounded by a
polynomial in n. Consequently, local optimality for a quadratic, edge-convex objective
function can be checked in polynomial time.

Edge-directions were introduced in Dantzig’s simplex method [4] for linear pro-
gramming in order to move from one basic feasible solution to another. As pointed out
in [15], the use of edge-directions in optimization has been explored more recently in
a number of works including [5,9,14,18]. Edge-directions have been studied in com-
binatorial optimization in the context of vertex enumeration problems [5,14], and in
identifying conditions under which discrete optimization problems are equivalent to
continuous optimization problems [9,18]. In [18] Tardella showed that if the objective
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182 W. W. Hager, J. T. Hungerford

f in (1.1) is convex along all edge-directions, then problem (1.1) has a vertex maxi-
mizer. A similar result, in which P is replaced by a compact, convex set was obtained
by Hwang and Rothblum [9].

In Sect. 2 we give edge reductions for the cone of first-order feasible directions
and the critical cone. In Sect. 3 these reductions are exploited to obtain a new edge
reduced version of the first-order necessary optimality condition, and the second-order
sufficient optimality condition. Moreover, when the objective function is edge convex,
we obtain a new second-order necessary optimality condition. In Sect. 4 we obtain an
estimate on the number of edges of a polyhedron that includes a box constraint. This
estimate together with the edge reduced necessary and sufficient optimality conditions
imply polynomial complexity for a class of quadratic programs. In Sect. 5 we apply
the new necessary and sufficient optimality conditions to a quadratic programming
formulation of the vertex separator problem. We obtain easily checked conditions
which can be stated in terms of properties of the graph. In Sect. 6 we carry out a
similar analysis for the edge separator problem.

Notation 0 and 1 denote vectors whose entries are all 0 and all 1 respectively, the
dimensions should be clear from context. If x ∈ R

n , then the support of x is defined
by supp(x) = {i ∈ [1, n] : xi 
= 0}. If f : R

n → R, then ∇ f (x) denotes the gradient
of f at x, a row vector, and ∇2 f (x) is the Hessian. The positive span of a set S,
denoted span+(S), is the set of linear combinations of vectors in S with nonnegative
coefficients. |S| denotes the number of elements in S. If A ∈ R

m×n is a matrix and
I ⊂ {1, 2, . . . , m}, then AI denotes the submatrix obtained by only including the
rows in I. The null space of A is denoted null(A).

2 Edge reductions of C and F

A face of the polyhedron P defined in (1.2) is a non-empty set of the form

H = {x ∈ P :AIx = bI}

for some I ⊂ {1, 2, . . . , m}. The dimension of the face H is one less than the maximum
number of affinely independent points in H and is denoted dim(H). If dim(H) = 0,
then H is a vertex of P . If dim(H) = 1, then H is an edge of P . If H is an edge and J
is the index set of constraints that are active at more than one point on the edge, then
the set of solutions to AJ x = bJ is a line containing the edge, and null(AJ ) is the
collection of vectors with the same direction as that of the line. We refer to any nonzero
vector d ∈ null(AJ ) as an edge direction. Note that if d is an edge direction for P ,
then −d is an edge direction for P . A set D is an edge description of P if for each edge
of P , there is a parallel direction in D. If −d ∈ D when d ∈ D, then we say that D is
a reflective edge description of P . Edge directions play a central role in our analysis.
A polyhedron may have a huge number of vertices or edges, but a relatively small
edge description. We will reformulate the first and second-order optimality conditions
in terms of edge directions in F(x∗) and C(x∗).
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Optimality conditions for maximizing 183

Lemma 2.1 Let P be the polyhedron defined in (1.2) where A has full column rank,
and let D be a reflective edge description of P . For any x∗ ∈ P and I ⊂ A(x∗), the
cone defined by

KI(x∗) = {d ∈ F(x∗) : AId = 0}
has the property that

KI(x∗) = span+(KI(x∗) ∩ D). (2.1)

Proof First, suppose that x∗ is a vertex of P , in which case F(x∗) contains no
lines. Since KI(x∗) ⊂ F(x∗), KI(x∗) also contains no lines. By a result of Klee
[10, Corollary 2.3], there exist vectors d1, d2, . . . , dl ∈ KI(x∗) such that for each
i, di is an edge-direction of KI(x∗) and

KI(x∗) = span+(d1, d2, . . . , dl). (2.2)

We will now show that each edge direction di for KI(x∗) is also an edge direction
of P . Let E be an edge of KI(x∗) associated with the edge direction di . Since KI(x∗)
is a face of F(x∗), E is also an edge of F(x∗). Therefore, x∗ + E contains an edge of
P . Hence, di is also an edge direction of P . Since D is reflective, it follows that each
di is a positive multiple of an element δi ∈ D. Since KI(x∗) is a cone, δi ∈ KI(x∗).
Hence, (2.2) with di replaced by δi implies that (2.1) holds in the case that x∗ is a
vertex of P .

Now suppose that x∗ is not a vertex of P . Since KI(x∗) is a convex cone, we have

KI(x∗) = span+(KI(x∗)) ⊃ span+(KI(x∗) ∩ D).

We will show the reverse containment. Let d ∈ KI(x∗). Consider the following face
of P:

F = {x ∈ P : AA(x∗)x = bA(x∗)}.
Since rank(A) = n, there exists a vertex v of the polyhedron F . This vertex is found
by making a series of moves in the face; each move is in the null space associated
with the active constraints while maintaining nonorthogonality to at least one of the
rows of A associated with an inactive constraint. Each move stops at a point where
a previously inactive constraint becomes active. Since rank(A) = n, we eventually
reach a vertex where n constraints are active. For this vertex we have A(v) ⊃ A(x∗)
and rank(AA(v)) = n. Since d ∈ KI(x∗) ⊂ F(x∗), there exists some t > 0 such
that v + (x∗ − v) + td ∈ P . This implies that (x∗ − v) + td ∈ F(v). Furthermore,
AId = 0 since d ∈ KI(x∗), and AI(x∗ − v) = 0 since I ⊂ A(x∗) ⊂ A(v). Hence
AI((x∗ − v) + td) = 0 and therefore (x∗ − v) + td ∈ KI(v). Thus,

td ∈ (v − x∗) + KI(v). (2.3)

We will show that the right side of (2.3) is contained in span+(KI(x∗) ∩ D).
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Since A(v) ⊃ A(x∗), we have F(v) ⊂ F(x∗), and therefore KI(v) ⊂ KI(x∗).
And since v is a vertex of F , it is also a vertex of P . Earlier we showed that (2.1) holds
at any vertex of P . Therefore, replacing x∗ by v in (2.1), we have

KI(v) = span+(KI(v) ∩ D) ⊂ span+(KI(x∗) ∩ D). (2.4)

The last inclusion is since A(x∗) ⊂ A(v) which implies that KI(v) ⊂ KI(x∗).
Next we show that

(v − x∗) ∈ span+(KI(x∗) ∩ D). (2.5)

Since v is a vertex of F , the cone FF (v) of first-order feasible directions for F at
v contains no lines. Since x∗ − v ∈ FF (v), it again follows from the result of Klee
[10, Corollary 2.3] that x∗ − v is a positive linear combination of edge directions
D′ ⊂ D for F . Since D is reflective, we may choose D′ to be reflective. Hence, we
have

v − x∗ = −(x∗ − v) ∈ span+(D′
). (2.6)

Since any edge-direction of F lies in null(AA(x∗)) ⊂ KI(x∗), we have D′ = KI(x∗)∩
D′

. Therefore, by (2.6)

(v − x∗) ∈ span+(KI(x∗) ∩ D′
) ⊂ span+(KI(x∗) ∩ D), (2.7)

which establishes (2.5).
Combining (2.3) with (2.4) and (2.7), we have td ∈ span+(KI(x∗) ∩ D). Since

t > 0, this implies

d ∈ span+(KI(x∗) ∩ D).

Since d was an arbitrary vector in KI(x∗), the proof is complete. ��
Corollary 2.2 Let P be the polyhedron defined in (1.2) where A has full column rank,
and let D be a reflective edge description of P . For any x∗ ∈ P , we have

F(x∗) = span+(F(x∗) ∩ D). (2.8)

Furthermore, if x∗ satisfies the first-order optimality conditions (1.5) for problem (1.1),
then

C(x∗) = span+(C(x∗) ∩ D). (2.9)

Proof The identity (2.8) follows immediately from Lemma 2.1 by taking I = ∅. If x∗
satisfies (1.5), then define I = {i : λi > 0}. By complementary slackness, I ⊂ A(x∗).
And by the Definition (1.7) for the critical cone, we have
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Optimality conditions for maximizing 185

C(x∗) = KI(x∗).

Hence, (2.9) also follows from Lemma 2.1. ��

The identities (2.8) and (2.9) are related to a conformal circuit decomposition [9,17].
Consider the polyhedron Q defined by

Q = {x ∈ R
n : Bx = b and x ≥ 0},

where B ∈ R
m×n and b ∈ R

m . For any x ∈ Q we have

F(x) = {d ∈ R
n : Bd = 0 and d j ≥ 0 whenever x j = 0}.

A circuit of the matrix B is a non-zero vector d ∈ null(B) such that ||d||∞ = 1, and
supp(d) is inclusion-minimal. That is, if d′ ∈ null(B) and supp(d′) ⊂ supp(d), then
d′ = αd for some scalar α. As pointed out in [15], it follows from [17, ex. 10.14, p.
506] that any non-zero vector d ∈ null(B) has a conformal circuit decomposition; that
is, there exist scalars αi > 0 and circuits di of B such that

d =
∑

i

αi di , (2.10)

where for each i we have di
j d j > 0 for all j ∈ supp(di ). Hence if d ∈ F(x), then

di ∈ F(x) for each i . If every circuit of B is parallel to an edge of Q, then (2.8)
follows from the decomposition (2.10). A similar argument proves (2.9). However, it
is not true in general that every circuit of B is parallel to an edge of Q (see [9]), and
conversely, some edges may not be circuits. Our proof of (2.8) and (2.9) is valid for
any polyhedron P of the form (1.2), as long as the matrix A has full column rank.
When the columns of A are linearly dependent, Lemma 2.1 may not hold; for example,
consider the case where P is a half-space.

The assumption that A has full column rank in Lemma 2.1 is used to ensure the
existence of an extreme point (a vertex) of P. However, Corollary 2.2 is false if the
polyhedron P is replaced by a general convex set containing an extreme point. For
example, consider the unit sphere

X =
{
(x1, x2) ∈ R

2 : x2
1 + x2

2 ≤ 1
}

.

Every point on the boundary of X is an extreme point. However, X contains no extreme
directions. Therefore D = ∅. So (2.8) would imply that F(x∗) = ∅ for every x∗ ∈ X .
This is clearly false; for instance if x∗ = (−1, 0), then F(x∗) = {d ∈ R

2 : d1 ≥ 0}.
Thus, Lemma 2.1 and Corollary 2.2 are properties of polyhedra, not general convex
sets.
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186 W. W. Hager, J. T. Hungerford

3 Edge reductions of optimality conditions

In this section we focus on edge reductions of the first and second-order optimality
conditions. We start with the first-order optimality conditions:

Proposition 3.1 If f : P → R is continuously differentiable, A ∈ R
m×n has full

column rank, and D is a reflective edge description of P , then x∗ satisfies the first-
order optimality conditions (1.4) if and only if

x∗ ∈ P and ∇ f (x∗)d ≤ 0 for every d ∈ F(x∗) ∩ D. (3.1)

Proof Obviously, (1.4) implies (3.1). Conversely, suppose x∗ satisfies (3.1) and let
d ∈ F(x∗). By Corollary 2.2, we have

d =
k∑

i=1

αi di ,

for some vectors di ∈ F(x∗) ∩ D and some scalars αi > 0. Thus (3.1) implies

∇ f (x∗)d =
k∑

i=1

αi∇ f (x∗)di ≤ 0,

which yields (1.4). ��
Since the conditions (1.4), (1.5), and (3.1) are all equivalent, we will refer to these

conditions collectively as the “first-order optimality conditions” for (1.1). Next, we
consider second-order optimality conditions.

Proposition 3.2 Suppose f : P → R is twice continuously differentiable, A has full
column rank, D is a reflective edge description of P , and x∗ satisfies the first-order
optimality conditions.

1. x∗ is a local maximizer of (1.1) if

(d1)T∇2 f (x∗)d2 < 0 for every d1, d2 ∈ C(x∗) ∩ D. (3.2)

If f is quadratic, then the strict inequality in (3.2) can be replaced by an inequality.
2. If x∗ is a local maximizer of (1.1) and

dT∇2 f (x∗)d ≥ 0 for every d ∈ D, (3.3)

then

(d1)T∇2 f (x∗)d2 ≤ 0 for every d1, d2 ∈ C(x∗) ∩ D. (3.4)
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Optimality conditions for maximizing 187

Proof Suppose that x∗ satisfies the first-order optimality conditions. To prove part 1,
we need only show that (3.2) implies the usual second-order sufficient condition (1.9).
By Corollary 2.2, for any d ∈ C(x∗) we have

d =
k∑

i=1

αi di ,

for some vectors di ∈ C(x∗) ∩ D and some scalars αi > 0. Therefore

dT∇2 f (x)d =
(

k∑

i=1

αi di

)
T∇2 f (x)

(
k∑

i=1

αi di

)

=
k∑

i, j=1

αiα j di∇2 f (x)d j < 0,

if (3.2) holds. Consequently, (1.9) holds and x∗ is a local maximizer.
If f is quadratic and the strict inequality (3.2) is replaced by an inequality, then

the same argument yields (1.6), which is sufficient for local optimality when f is
quadratic [2,3]. This completes the proof of part 1.

Next, we consider part 2. The second-order necessary condition (1.6) states that

dT∇2 f (x∗)d ≤ 0 for every d ∈ C(x∗). (3.5)

If (3.3) holds, then

dT∇2 f (x∗)d = 0 for every d ∈ C(x∗) ∩ D. (3.6)

Since C(x∗) is a convex cone, it follows that for any d1, d2 ∈ C(x∗) ∩ D, we have
d1 + d2 ∈ C(x∗). Therefore, (3.5) and (3.6) imply

0 ≥ (
d1 + d2)T∇2 f (x∗)

(
d1 + d2) = 2(d1)T∇2 f (x∗)d2,

which yields (3.4). ��
The following corollary is an immediate consequence of Proposition 3.2.

Corollary 3.3 Let P be the polyhedron defined in (1.2) where A has full column rank,
and let D be a reflective edge description of P . If f is quadratic and (3.3) holds, then
x∗ is a local maximizer of (1.1) if and only if (3.1) (the first-order condition) and (3.4)
(the second-order condition) hold.

Remark We now observe that if f is quadratic, (3.3) holds, and x∗ satisfies the first-
order optimality condition (3.1), then when any of the conditions (3.4) are violated,
there is a easily computed ascent direction. In particular, if Q = ∇2 f then by a Taylor
expansion, we have

f (x∗ + αd) = f (x∗) + 1

2
α2dTQd (3.7)
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for any d ∈ C(x∗) and α > 0, since ∇ f (x∗)d = 0 by (1.7). If dTQd > 0 for
some d ∈ C(x∗) ∩ D, then d is an ascent direction. Otherwise, dTQd ≤ 0 for every
d ∈ C(x∗)∩D. So by (3.3), dTQd = 0 for every d ∈ C(x∗)∩D. If (d1)TQd2 > 0 for
some d1 and d2 ∈ C(x∗)∩D, then (di )TQdi = 0 for i = 1, 2. Since d1 +d2 ∈ C(x∗),
it follows from (3.7) that

f
(

x∗ + α
(

d1 + d2
))

= f
(
x∗) + α2

(
d1

)
TQd2 > f

(
x∗)

for any α > 0. This shows that d = d1 + d2 ∈ C(x∗) is an ascent direction.

4 A complexity result

We define a minimal edge description of P to be an edge description which does not
properly contain any other edge description. Under the assumptions of Corollary 3.3,
the computational complexity of checking whether a given point is a local maximizer
is proportional to the size of a minimal edge description squared. Suppose the num-
ber of columns of A is held fixed, but the number of rows of A is allowed to vary.
A trivial upper bound on the size of a minimal edge description is

( m
n−1

)
. Since this is

a polynomial in m when n is fixed, it follows that local optimality can be checked in
polynomial in m time.

If m is fixed and n is allowed to vary, then we cannot apply Corollary 3.3 since the
columns of A are linearly dependent when n > m. On the other hand, we can apply
Corollary 3.3 when the polyhedron includes a box constraint:

PB = {x ∈ R
n :Ax ≤ b and � ≤ x ≤ u}. (4.1)

Here A ∈ R
m×n is any matrix, � ∈ R

n , and u ∈ R
n . Due to the box constraint, the

constraint matrix associated with the polyhedron has full column rank. Hence, we
consider the optimization problem

max f (x) subject to x ∈ PB . (4.2)

We now show that for the box constrained polyhedron where m is fixed and n is allowed
to increase, the size of a minimal edge description is bounded by a polynomial in n.

Corollary 4.1 If m is held fixed, f :Rn → R is quadratic, and for some edge descrip-
tion D of PB, we have

dT∇2 f d ≥ 0 for every d ∈ D,

then local optimality of any feasible point in problem (4.2) can be checked in time that
is bounded by a polynomial in n.

Proof To prove this result, we obtain a bound on the size of a minimal edge description
for PB . Any edge of PB is contained in the solution set of a linear system of the form
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Optimality conditions for maximizing 189

Mx = c where M ∈ R
(n−1)×n has rank n −1. An edge direction is any nonzero vector

in null(M); M will be called the edge matrix. Note that multiplying a row of M and the
corresponding component of c by −1 has no effect on either null(M) or the solution
set of Mx = c. When building an edge matrix corresponding to some edge of PB ,
up to m of the rows of M can be taken from rows of A while the remaining rows are
taken from the identity matrix; these latter rows correspond to the constraints xi ≥ �i

or xi ≤ ui that are active on the edge. For an edge along which either xi = �i or
xi = ui , the corresponding row of the edge matrix will be the i th row of the identity
matrix. Hence, when constructing the edge matrix, it does not matter whether xi is at
the upper bound or at the lower bound, all that matters is whether the i th box constraint
is active. For n > m, an upper bound on the number of edge directions is given by the
expression

m∑

i=1

(
n
n − 1 − i

)(
m
i

)
. (4.3)

Here i represents the number of rows of A to be inserted into the edge matrix and
n − 1 − i is the number of rows of the identity matrix to be inserted into the edge
matrix. There are

(m
i

)
different collections of rows of A that could be placed in the

edge matrix. And for each selection of the rows in A, another n − 1 − i rows are
selected from the identity matrix. There are

( n
n−1−i

)
different collections of rows from

the identity matrix. Since m is fixed, the expression (4.3) is a polynomial in n. ��
Note that we could have either �i = −∞ or ui = +∞, but not both, and

Corollary 4.1 still holds. The reason is that the columns of the constraint matrix remain
linearly independent when either one of the constraints �i ≤ xi or xi ≤ ui is dropped
(but not both).

In [18] Tardella gives a condition that ensures edge convexity for a function defined
over a polyhedron PB that includes a box constraint. If f : X → R where X ⊂ R

n is
a convex set, then f is k −convex over X if f (αx+(1−α)y) ≤ α f (x)+(1−α) f (y)

for every α ∈ [0, 1] and for every x, y ∈ X such that xi = yi for at least n − k indices
i ∈ [1, n]. With this terminology, Tardella’s result is as follows:

Proposition 4.2 Suppose f : P → R is twice continuously differentiable, rank(A) =
k − 1 for some k, and D is an edge description of PB. If f is k − convex over PB,
then

dT∇2 f (x∗)d ≥ 0 for every d ∈ D.

We combine Corollary 3.3, 4.1, and Proposition 4.2 to obtain the following result:

Corollary 4.3 If rank(A) = k − 1 for some k, the objective function f is quadratic,
f is k − convex over PB, and D is a reflective edge description of PB, then a feasible
point x∗ of problem (4.2) is locally optimal if and only if (3.1) and (3.4) hold. Hence,
under these assumptions, local optimality in (4.2) can be checked in time bounded by
a polynomial in n.
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In the next two sections, we apply Corollary 3.3 to two box constrained quadratic
programs arising in discrete optimization, the vertex and edge separator problems.
We show that these programs satisfy the edge-convexity condition (3.3), from which
it follows that a vertex maximizer exists [18] and local optimality can be checked in
polynomial time (Corollary 4.1).

5 Vertex separator problem

Let G be an undirected graph on vertex set V = {1, 2, . . . , n} with nonnegative vertex
weights c1, c2, . . . , cn , not all zero. Here we use the word vertex to refer to a node in
a graph and edge to refer to a connection between two vertices in a graph. While these
words were also defined in the context of polyhedra, the intended meaning should
always be clear from context. Let A be the adjacency matrix for G; that is, ai j = 1 if
there is an edge between vertices i and j and ai j = 0 otherwise. Given positive integers
�a ≤ ua and �b ≤ ub, the vertex separator problem is to partition the vertices of G
into three disjoint sets A, B, and S such that the following conditions are satisfied:

1. There are no edges between the sets A and B.
2. The size constraints �a ≤ |A| ≤ ua and �b ≤ |B| ≤ ub are satisfied.
3. The sum of the weights of vertices in S is minimal.

In [7] Hager and Hungerford develop an equivalence between the vertex separator
problem and the following quadratic program:

max
x,y∈Rn

cT(x + y) − γ xT(A + I)y (5.1)

subject to 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, �a ≤ 1Tx ≤ ua, and �b ≤ 1Ty ≤ ub.

Here γ is any scalar greater than or equal to max{ci : i = 1, 2, . . . , n}. Given any
solution to (5.1), there exists an easily computed binary solution (x, y) such that an
optimal partition is

A = {i : xi = 1}, B = {i : yi = 1}, and S = {i : xi = yi = 0}. (5.2)

Let f be the objective function in (5.1):

f (x, y) = cT(x + y) − γ xT(A + I)y.

We will apply the first and second-order optimality conditions of Sect. 3 to the ver-
tex separator problem. Since (5.1) involves 4 lower bounds and 4 upper bounds, the
standard statement of the KKT conditions (1.5) involves 8 multipliers, 8 inequal-
ity constraints, and 8 complementary slackness conditions. A more compact way of
expressing these 16 conditions is as follows: If (x, y) is a local maximizer of (5.1),
then there exist multipliers μa and μb ∈ R

n and λa and λb ∈ R such that

∇ f (x, y) + μa + μb + λa1 + λb1 = 0, (5.3)
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where

μa ∈ M(x), μb ∈ M(y), λa ∈ L(x, �a, ua), λb ∈ L(y, �b, ub)

with

M(z) = {μ ∈ R
n : μi zi ≥ max{μi , 0} for all 1 ≤ i ≤ n},

and

L(z, �, u) =
{
λ ∈ R : λ1Tz ≥ max{λu, λ�}

}
.

According to [7], the following set is a reflective edge description of the polyhedron
associated with (5.1):

D =
n⋃

i, j=1
i 
= j

{±[ei , 0], ±[0, ei ], [0, ei − e j ], [ei − e j , 0]}.

Since

∇2 f =
(

0 −γ (A + I)
−γ (A + I) 0

)
,

it can be checked that dT(∇2 f )d ≥ 0 for every d ∈ D. Therefore, by Corollary 3.3, a
feasible point (x, y) of (5.1) is a local maximizer if and only if the first-order optimality
conditions (5.3) hold and

(d1)T(∇2 f )d2 ≤ 0 for every d1, d2 ∈ C(x, y) ∩ D. (5.4)

Table 1 gives all the different possible values for (d1)T(∇2 f )d2, where d1 and
d2 are edge directions, in terms of H = A + I. Since D is described in terms of
6 different vectors, there are 36 products (d1)T(∇2 f )d2 corresponding to the 6 × 6
different pairs among the vectors describing D. However, 15 of these products are
known by symmetry. The remaining 21 products are shown in Table 1. The blank
entries correspond to entries known from symmetry.

Suppose (x, y) satisfies the first-order optimality conditions (5.3). The condition
(5.4) states that (x, y) is a local maximizer if and only if the entries of Table 1 are
non-positive whenever the vectors in the corresponding row and column lie in C(x, y).
For example, if (x, y) is a local maximizer, then whenever (ei , 0) and (0,−ek) lie in
the cone C(x, y) for some i and k, we must have hik ≤ 0 (since γ > 0). This implies
that aik = 0. Moreover, since hii = 1, it follows that both (ei , 0) and (0,−ei ) cannot
be contained in C(x, y) at a local maximizer.
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Table 1 Values of (d1)T(∇2 f )d2 for d1, d2 ∈ D

(ek , 0) (0, ek ) (−ek , 0) (0, −ek )

(ei , 0) 0 −γ hik 0 γ hik

(0, ei ) 0 γ hik 0

(−ei , 0) 0 −γ hik

(0, −ei ) 0

(ek − el , 0) (0, ek − el )

(ei , 0) 0 −γ (hki − hli )

(0, ei ) −γ (hki − hli ) 0

(−ei , 0) 0 −γ (hli − hki )

(0, −ei ) −γ (hli − hki ) 0

(ei − e j , 0) 0 −γ (hik −hil −h jk + h jl )

(0, ei − e j ) 0

In order to verify either the first or second-order optimality conditions, we need to
determine when a vector in the edge description D lies in F(x, y) or C(x, y). From
the Definitions (1.3) and (1.7), we have

F(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩
(d1, d2) ∈ R

2n :
1Td1 ≤ 0 if 1Tx = ua, d1

i ≤ 0 ∀ i with xi = 1,

1Td1 ≥ 0 if 1Tx = �a, d1
i ≥ 0 ∀ i with xi = 0,

1Td2 ≤ 0 if 1Ty = ub, d2
i ≤ 0 ∀ i with yi = 1,

1Td2 ≥ 0 if 1Ty = �b, d2
i ≥ 0 ∀ i with yi = 0

⎫
⎪⎪⎬

⎪⎪⎭
,

C(x, y) =
{

d ∈ F(x, y) : 1Td1 = 0 if λa 
= 0, di = 0 ∀ i with μa
i 
= 0

1Td2 = 0 if λb 
= 0, di = 0 ∀ i with μb
i 
= 0

}
.

Now define the following sets:

A0 = {
i : xi > 0, μa

i = 0
}

and Ā0 = {
i : xi < 1, μa

i = 0
}
,

B0 =
{

i : yi > 0, μb
i = 0

}
and B̄0 =

{
i : yi < 1, μb

i = 0
}

.

Table 2 shows when each element of D also lies in C(x, y). Combining the information
in Tables 1 and 2, we will establish the following theorem.

Theorem 5.1 If (x, y) is feasible in (5.1), then (x, y) is a local maximizer of (5.1) if
and only if (V1)–(V5) hold:

(V1) The first-order conditions (5.3) hold.
(V2) Suppose λa = 0.

a. If 1Tx < ua, i ∈ Ā0, j ∈ B̄0, and k ∈ B0, then hi j ≥ hik .
b. If 1Tx > �a, i ∈ A0, j ∈ B0, and k ∈ B̄0, then hi j ≥ hik .
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Table 2 A description of D ∩ C(x, y)

(V3) Suppose λb = 0.
a. If 1Ty < ub, i ∈ B̄0, j ∈ Ā0, and k ∈ A0, then hi j ≥ hik .
b. If 1Ty > �b, i ∈ B0, j ∈ A0, and k ∈ Ā0, then hi j ≥ hik .

(V4) Suppose λa = λb = 0.
a. If 1Tx > �a and 1Ty < ub, then A0 ∩ B̄0 = ∅ and hi j = 0 whenever i ∈ A0

and j ∈ B̄0.
b. If 1Tx < ua and 1Ty > �b, then Ā0 ∩ B0 = ∅ and hi j = 0 whenever i ∈ Ā0

and j ∈ B0.
(V5) If i ∈ Ā0, j ∈ A0, k ∈ B̄0, and l ∈ B0, then hik + h jl ≥ hil + h jk .

Proof First, suppose that the conditions (V1)–(V5) are satisfied. We wish to show
that (5.4) holds, which implies that (x, y) is a local maximizer. Consider any entry
in Table 1 that is potentially positive, such as γ hik . Referring to the row and column
edge directions in the table, we only need to consider this possibility if (a) both
(0, ei ) and (−ek, 0) ∈ C(x, y) or (b) both (ei , 0) and (0,−ek) ∈ C(x, y). If (b) holds,
then by Table 2, we have 1Tx < ua, λa = 0, i ∈ Ā0, 1Ty > �b, λb = 0, and
k ∈ B0. By (V4b), i 
= k and hik = 0. If (a) holds, then by Table 2, we have
1Tx > �a, λa = 0, k ∈ A0, 1Ty < ub, λb = 0, and i ∈ B̄0. By (V4a), i 
= k and
hik = 0. Thus the proof boils down to the following: (i) locate each potentially positive
entry in Table 1, (ii) extract the associated edge directions from the corresponding row
and column, (iii) use Table 2 to deduce associated conditions on the constraints and
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the multipliers when these edge directions lie in C(x, y), and (iv) use the conclusions
in (V2)–(V5) to deduce that the entry in Table 1 must be nonpositive.

Conversely, suppose that (x, y) is a local maximizer, or equivalently, suppose that
(V1) and (5.4) hold. We must show that (V2)–(V5) are satisfied. We start with (V2a)
and suppose that λa = 0, 1Tx < ua, i ∈ Ā0, j ∈ B̄0, and k ∈ B0. By the first and
last rows of Table 2, we have (ei , 0) and (0, e j − ek) ∈ C(x, y). By (5.4) and Table 1,
h ji − hki ≥ 0. By symmetry, this is equivalent to hi j ≥ hik . This establishes (V2a).
Thus the proof of the converse proceeds as follows: When any of the hypotheses in
(V2)–(V5) are fulfilled, we use Table 2 to determine two edge directions d1 and d2 that
must lie in C(x, y). We use Table 1 to obtain the product (d1)T(∇2 f )d2, and we use
(5.4) to obtain a relation between elements of H which corresponds to the conclusion
appearing in (V2)–(V5). ��

6 Edge separator problem

A related problem in discrete optimization is the edge separator problem: Given an
undirected, unweighted graph G and positive integers � ≤ u, partition the vertices of
G into disjoint sets A and B such that � ≤ |A| ≤ u, and the number of edges between
vertices in different sets is minimized. Let A be the adjacency matrix for the graph G.
In [8] Hager and Krylyuk showed that the edge separator problem can be formulated
as the following continuous quadratic program:

max −(1 − x)T(A + I)x (6.1)

subject to 0 ≤ x ≤ 1 and � ≤ 1Tx ≤ u.

In particular, given any solution to (6.1), there exists an easily computed binary solution
x and the optimal edge separator is given by

A = {i : xi = 1} and B = {i : xi = 0}.
Observe that the vertex separator problem (5.1) with the additional constraints x +

y = 1, �b = 0, and ub = n, becomes the edge separator problem (6.1). Consequently,
the derivation of optimality conditions for the edge separator problem is similar to that
of the vertex separator problem.

Let g denote the objective function in (6.1):

g(x) = −(1 − x)T(A + I)x

The first-order optimality conditions for (6.1) can be stated in the following way: If x
is a local maximizer of (6.1), then there exist multipliers

μ ∈ M(x) and λ ∈ L(x, �, u)

such that

∇g(x) + μ + λ1 = 0. (6.2)

Similar to the edge description for the vertex separator problem derived in [7], a
reflective edge description for the edge separator problem is given by

123



Optimality conditions for maximizing 195

Table 3 Values of
(d1)T(∇2g)d2 for d1, d2 ∈ D ek −ek ek − el

ei hik −hik hik − hil
−ei hik hil − hik
ei − e j hik − h jk − hil + h jl

D =
n⋃

i, j=1

i 
= j

{±ei , ei − e j }.

Since ∇2g = (A + I), we have

ei
T(∇2g)ei = 1 and (ei − e j )

T(∇2g)(ei − e j ) = 2 − 2ai j for i 
= j. (6.3)

The second term in (6.3) is non-negative since ai j ≤ 1. Hence,

dT(∇2g)d ≥ 0 for all d ∈ D,

which shows that the hypotheses of Corollary 3.3 are satisfied. Consequently, a feasible
point x of (6.1) is a local maximizer if and only if the first-order optimality conditions
(6.2) hold and

(d1)T(∇2g)d2 ≤ 0 for every d1, d2 ∈ C(x) ∩ D. (6.4)

Table 3 gives all the different possible values for (d1)T(∇2g)d2 when d1 and d2 are
edge directions. Since D is described in terms of 3 distinct types of vectors, we obtain
a 3 by 3 matrix of products; the entries left blank are known from symmetry.

Next, we construct the sets F(x) and C(x) using the definitions (1.3) and (1.7):

F(x) =
{

d ∈ R
n : 1Td ≤ 0 if 1Tx = u, di ≤ 0 ∀ i with xi = 1,

1Td ≥ 0 if 1Tx = l, di ≥ 0 ∀ i with xi = 0

}
,

C(x) =
{

d ∈ F(x) : 1Td = 0 if λ 
= 0 and di = 0 ∀ i with μi 
= 0

}
.

Table 4 shows when each element of D also lies in C(x, y). The table makes use of
the following sets:

A0 = {i : xi > 0, μi = 0} and Ā0 = {i : xi < 1, μi = 0}.

Theorem 6.1 If x is feasible in (6.1), then x is a local maximizer of (6.1) if and only
if (E1)–(E3) hold:
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Table 4 A description of D ∩ C(x)

(E1) The first-order conditions (6.2) hold.
(E2) If i ∈ Ā0 and j ∈ A0, then hi j = 1.
(E3) Suppose λ = 0.

a. If 1Tx < u, then Ā0 = ∅.
b. If 1Tx > �, then A0 = ∅.

Proof First, suppose that the conditions (E1)–(E3) are satisfied. We wish to show that
(6.4) holds, which implies that x is a local maximizer. By Table 4, ei ∈ C(x) if and
only if 1Tx < u, λ = 0, and i ∈ Ā0. But by (E3a), Ā0 = ∅ if λ = 0 and 1Tx < u.
Hence, D ∩ C(x) contains no elements of the form ei . Similarly, D ∩ C(x) contains no
elements of the form −ei , and the only elements in D ∩ C(x) have the form ei − e j .
If ei − e j ∈ C(x), then by Table 4, i ∈ Ā0 and j ∈ A0. By (E2) we conclude that
hi j = 1. If i 
= j , this implies that ai j = 1 and consequently,

(ei − e j )
T(∇2g)(ei − e j ) = 2 − 2ai j = 0.

If (ei − e j ) and (ek − el) are distinct elements of C(x), then by Table 4, i, k ∈ Ā0
and j, l ∈ A0. By (E2) and the symmetry of H, it follows that h jk = 1 = hil . Since
hik ≤ 1 and h jl ≤ 1, we conclude that

hik − h jk − hil + h jl ≤ 0.

This completes the proof of (6.4), and x is a local maximizer.
Conversely, suppose that x is a local maximizer, or equivalently, suppose that (E1)

and (6.4) hold. We show that (E2) and (E3) hold. First consider (E3a) and suppose
that λ = 0 and 1Tx < u. If i ∈ Ā0, then by Table 4, ei ∈ C(x). By Table 3 and (6.4),
hii ≤ 0, which is impossible since hii = 1. Hence, Ā0 = ∅. (E3b) is established in a
similar fashion.

Now consider (E2). If i ∈ Ā0 and j ∈ A0, then by Table 4, ei − e j ∈ C(x). By
(6.4), it follows that when i 
= j ,

(ei − e j )
T(∇2g)(ei − e j ) = 2 − 2ai j ≤ 0.
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Hence, ai j = 1 = hi j . If i = j , then hii = 1 since the diagonal of H is the diagonal
of I. This completes the proof. ��

The conditions in Theorem 6.1 were also obtained by Hager and Krylyuk in [8],
however, the analysis there was specifically tailored to the edge separator problem,
while here these conditions are deduced from the general theory for polyhedral max-
imization of an edge-convex quadratic.

7 Conclusions

In this paper, we have developed new optimality conditions for the maximization of a
function over a polyhedron P . We have shown in Corollary 2.2 that when the constraint
matrix describing the polyhedron has full column rank, then the cone F(x∗) of first-
order feasible directions is a conical combination of edge directions of the polyhedron:

F(x∗) = span+(F(x∗) ∩ D); (7.1)

here D is a reflective edge description of P . Similarly, if x∗ satisfies the first-order
optimality conditions, then

C(x∗) = span+(C(x∗) ∩ D), (7.2)

where C(x∗) is the critical cone. A consequence of (7.1), established in Proposition
3.1, is that the usual first-order optimality condition only needs to be checked for
a finite set F(x∗) ∩ D. A consequence of (7.2), established in Proposition 3.2, is a
new second-order sufficient optimality condition, and a new second-order necessary
optimality condition for problems where the objective function is convex along the
edge-directions of P .

In [12,16] it is shown that checking local optimality for an indefinite quadratic
programming problem can be NP-hard. On the other hand, Corollary 4.1 shows that
when P also includes box constraints and the objective function is edge-convex, local
optimality can be checked in polynomial time since the size of the edge description is
bounded by a polynomial in the problem dimension.

The necessary and sufficient optimality conditions are applied to quadratic program-
ming formulations of the vertex and edge separator problems. Our theory applies to
these problems since the objective function is convex along the edges of the constraint
polyhedron. The analysis of local optimality reduces to testing conditions (V1)–(V5)
for the vertex separator problem and conditions (E1)–(E3) for the edge separator
problem. For either problem, local optimality is easily checked. In general, when the
objective function in a polyhedral constrained optimization problem is convex, our
optimality conditions are applicable since the objective function is trivially edge con-
vex. Hence, our theory could be used to test for local optimality of any feasible point
in the algorithm of [19].
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