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Abstract We consider centralized and distributed algorithms for the numerical
solution of a hemivariational inequality (HVI) where the feasible set is given by the
intersection of a closed convex set with the solution set of a lower-level monotone
variational inequality (VI). The algorithms consist of a main loop wherein a sequence
of one-level, strongly monotone HVIs are solved that involve the penalization of the
non-VI constraint and a combination of proximal and Tikhonov regularization to han-
dle the lower-level VI constraints. Minimization problems, possibly with nonconvex
objective functions, over implicitly defined VI constraints are discussed in detail.
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The methods developed in the paper are then used to successfully solve a new power
control problem in ad-hoc networks.
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1 Introduction

In a standard constrained optimization problem: minimize x∈S φ(x), with S being a
closed convex subset R

n and φ a continuous function defined on S,1 it is often assumed
that the feasible set S is explicitly defined by a system of finitely many equalities and
inequalities. However, in some cases the set S is only implicitly defined as the solution
set of a second (lower-level) optimization problem, or more generally, a variational
inequality. Formally the problem is then defined as

minimize
x

φ(x)

subject to x ∈ argmin{ f (z) | z ∈ K } (1)

where f : K → R is the lower-level objective function and K ⊆ R
n is the feasible set

of the lower-level optimization problem. This kind of problem is usually referred to as a
bilevel program and its practical solution cannot be achieved by standard optimization
methods, which invariably require an explicit representation of the feasible set in terms
of differentiable equations and inequalities. We consider a generalization of (1), which
we call Variational Inequality-Constrained HemiVariational Inequality (VI-C HVI).
We preliminarily recall that the Hemivariational Inequality problem HVI (X, Φ, h),
where X is a closed convex subset of R

n , Φ is a continuous function from X into
R

n , and h : X → R is a convex function that is not necessarily differentiable, is the
problem of finding a vector x ∈ X such that

Φ(x)T (y − x)+ h(y)− h(x) ≥ 0, ∀ y ∈ X.

Hemivariational inequalities (also known as variational inequalities of the second
kind) are a powerful modelling tool that encompass both (convex) optimization, when
Φ ≡ 0, and VIs, when h ≡ 0, as particular instances. In its full generality, HVIs
have been mainly considered in infinite-dimensional settings, see e.g. [29,31,32];
nevertheless, finite-dimensional HVIs have recently attracted attention in the mathe-
matical programming literature; see e.g. [1,20,28]. If the set X is implicitly defined
as the solution set SOL(K , F) of a lower-level Variational Inequality VI (K , F), with

1 Here and in all the paper, when we say that a function is continuous or continuously differentiable on a
closed set, we intend that the function is (defined and) continuous or continuously differentiable on an open
set containing the closed set.
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VI-constrained hemivariational inequalities 61

K ⊆ R
n closed and convex and F : K → R

n continuous, the HVI (SOL(K , F),Φ, h)
becomes the VI-C HVI defined by the tuple (K , F, Φ, h), which is nothing else than
the problem of finding a vector x ∈ SOL(K , F) such that

Φ(x)T (y − x)+ h(y)− h(x) ≥ 0, ∀ y ∈ SOL(K , F),

where

SOL(K , F) �
{

z ∈ K | F(z)T (y − z) ≥ 0, ∀y ∈ K
}
.

Denoting the same problem, the notations: HVI (SOL(K , F),Φ, h) and VI-C HVI
(K , F, Φ, h), will be used interchangeably. A particularly interesting case that often
arises in applications is the VI-Constrained Variational Inequality, which is the problem
HVI (SOL(K , F),Φ, 0), i.e. VI-C HVI (K , F, Φ, 0), which we also write as VI-C
VI (K , F, Φ). As far as we know, the HVI where the feasible set is defined implicitly
as the solution set of a monotone VI is a novel problem.

Our interest in studying the VI-C HVI is several-fold. First, with F being the
gradient of the scalar-valued function f , assumed to be continuously differentiable,
it is well known that SOL(K , F) is the set of stationary solutions of the lower-level
optimization problem in the constraint of (1); thus, assuming φ to be convex, the VI-C
HVI (K ,∇ f, 0, φ) is intimately related to the bilevel program (1); in fact, the two
problems are equivalent if the lower-level objective function f is convex. Second,
with F being a monotone map [15, Definition 2.3.1] and Φ � ∇ψ being the gradient
of the (possibly nonconvex) continuously differentiable scalar-valued function ψ , the
VI-C HVI (K , F,∇ψ, 0) is the first-order variational formulation for the optimization
problem with VI constraints:

minimize
x∈SOL(K ,F)

ψ(x), (2)

which in turn is a special case of a mathematical program with equilibrium constraints
(MPEC) [24] wherein there is no (upper-level) “design variable”. Since the VI is
known [15] to provide a broad mathematical framework for a host of economic equi-
librium and game-theoretic problems (for a recent survey on the VI approach to the
latter problems, see [17]), the optimization problem (2) is a natural formulation for
the problem of selecting a particular equilibrium solution to optimize the auxiliary
objective function ψ .

By using a penalization approach and taking h � ρ dist(•,Ω) to be a (sufficiently
large) positive multiple ρ of the distance function (in the Euclidean norm) to the closed
convex set Ω ⊆ R

n , the VI-C HVI (K , F,∇ψ, h) will allow us to treat, for example,
an extended version of (2) wherein the variable x , in addition to being a solution of
the VI (K , F), is required to belong to the side feasible set Ω , i.e., the problem

minimize
x∈Ω∩SOL(K ,F)

ψ(x). (3)

123



62 F. Facchinei et al.

It should be noted that

minimum
x∈Ω∩SOL(K ,F)

ψ(x) ≥ minimum
x∈SOL(K∩Ω,F)ψ(x).

Since equality does not necessarily hold, the two problems (2) and (3) are in general
not the same.

Our main motivation in dealing with a VI-C HVIs comes from the problem of
selecting a Nash equilibrium in some power-control games in ad-hoc networks. This
application will be considered in Sect. 7; however here we describe more in detail
the Nash equilibrium selection problem in full generality, since this gives an interest-
ing, concrete example of the use of our results and also prepares the reader for the
developments in Sect. 7.

In a general noncooperative game there are N players, each associated to a cost
function that may depend on the other players’ actions and to a given strategy set
Kν which is a closed and convex subset of R

nν . Player ν’s cost function θν(xν, x−ν)
depends on all players’ strategies which are described by the vector x � (x1, . . . , x N ),
where xν ∈ Kν is the action of the player ν and x−ν � (x1, . . . , xν−1, xν+1, . . . , x N )

denotes the vector of all players’ strategies except that of player ν. The joint strategy
set of the game is given by K �

∏N
i=1 Kν . In the Nash Equilibrium Problem (NEP),

player ν, anticipating the other players’ strategies x−ν , aims at solving

minimize xν θν(xν, x−ν)
subject to xν ∈ Kν .

(4)

A Nash Equilibrium or, more simply, a solution of the NEP, is a feasible point x̄ such
that

θν(x̄
ν, x̄−ν) ≤ θν(xν, x̄−ν), ∀xν ∈ Kν (5)

holds for each player ν = 1, . . . , N ; that is, x̄ is a solution if no single player can
benefit from a unilateral deviation from x̄ν . There is an easy equivalence between
a NEP and a suitably defined VI. Given K as indicated above, let F : K → R

n

(with n �
∑N
ν=1 nν) be defined by F(x) = (∇xν θ(xν, x−ν))N

ν=1. The following result
follows easily from the minimum principle for convex problems and the Cartesian
structure of the joint strategy set K , see for example [17, Prop. 1.4.2].

Proposition 1 Given a NEP as described above, suppose that for each player ν the
following assumptions hold:

(i) The (nonempty) strategy set Kν is closed and convex;
(ii) For every fixed x−ν ∈ K−ν �

∏
μ�=ν Kμ, the function θν(xν, x−ν) is convex and

continuously differentiable.

Then, the game is equivalent to the VI (K , F), with K and F defined just before the
proposition.

Suppose now that we are dealing with a monotone game, i.e. a NEP with a monotone
function F . Then the set of Nash equilibria is the closed convex set SOL(K , F). In
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case this set is not a singleton, in some applicative contexts the problem arises (see
for example Sect. 7) to select the “best” equilibrium according to some criterion.
Having Proposition 1 in mind, it is now clear that this problem can be formulated
as in (2), where the function ψ represents the chosen criterion. If we further want to
find an optimal equilibrium which satisfies some other conditions represented by a set
Ω ⊂ R

n , our selection problem can instead be formulated as in (3).
The main contributions of this paper can be summarized as follows:

• we establish an exact penalization result that reduces a HVI with VI constraints
and side constraints to a VI-C HVI (without side constraints);
• we present a centralized solution method for solving the VI-C HVI and establish

its convergence;
• we present a distributed algorithm for solving a “partitioned” VI-C HVI, i.e., the

case where the pair (K , h) has a certain partitioned structure;
• we present an iterative descent framework for computing a stationary point of a

VI constrained minimization problem, whose objective function is not necessarily
convex;
• we apply the developed framework to solve a new power control problem in ad-hoc

networks.

To the best of our knowledge, these contributions are new and expand considerably
existing results. In particular, the proposed distributed algorithm, in which we are
particularly interested as motivated by applications in non-cooperative game problems,
see [17, Chapter 12] and Sect. 7, is novel even for a hierarchical optimization problem.
Furthermore, the power control problem analyzed in Sect. 7 is new and our results
expand considerably the applicability and flexibility of game-theoretic models in ad-
hoc networks and also bring considerable gains over existing techniques.

The paper is organized as follows. In the next section we discuss existing results in
the literature. In Sect. 3 we show how to penalize side constraints and reduce an HVI
problem with side constraints to one without side constraints. Section 5 presents and
analyzes the main centralized algorithm, considering both the exact and approximate
versions. Section 5 describes a broad decomposition scheme for a partitioned HVI
that enables the development of distributed versions of the algorithm described in
Sect. 4. Section 6 deals specifically with VI-constrained minimization problems and
shows how it is possible to use the results developed in the previous sections for
computing stationary solutions to nonconvex VI constrained minimization problems.
Finally, Sect. 7 introduces a new power control problem in ad-hoc networks which
gives the original motivation for our interest in VI-C HVIs. The experimental results
reported amply demonstrate the significance of the algorithms developed in this paper.

2 Background results and related works

The study of the VI-C HVI is based on the theory of the VI; basic concepts and results
from the monograph [15] will be used freely in the paper. For ease of reference, we
list below several well-known monotonicity and related definitions.

Definition 1 Let X ⊆ R
n be a convex set. A function G : X → R

n is
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– monotone on X if for all x and y in X it holds that

[G(y)− G(x)]T (y − x) ≥ 0;

– monotone plus (or paramonotone) on X if it is monotone on X and in addition for
all x and y in X it holds that

[G(y)− G(x)]T (y − x) = 0 ⇒ G(x) = G(y);

– pseudo monotone on X if for all x and y in X it holds that

G(x)T (y − x) ≥ 0 ⇒ G(y)T (y − x) ≥ 0;

– pseudo monotone plus on X if it is pseudo monotone on X and in addition for all
x and y in X it holds that

[
G(x)T (y − x) ≥ 0 and G(y)T (y − x) = 0

]
⇒ G(x) = G(y).

We also need an extension of the definition of monotonicity (plus) to point-to-set
mappings. Specifically, a set-valued map G : X → R

n is monotone on X if for all
x and y in X and ζ ∈ G(x) and ξ ∈ G(y) it holds that (ξ − ζ )T (y − x) ≥ 0. If in
addition (ξ − ζ )T (y − x) = 0 implies ζ ∈ G(y) and ξ ∈ G(x), then G is termed
monotone plus. It is well-known that the subdifferential of a convex function is a
monotone plus set-valued map [19]. Further conditions implying monotonicity plus
are discussed in [15, Chapter 2]. Subsequently, in Lemma 1, we present a new class
of monotone plus functions that seemingly is fairly natural and yet we have not seen
this result in the literature. Along with the survey given below, this lemma justifies the
blanket assumption (D) that we impose on the VI-C HVI (K , F, Φ, h):

(A) K is a closed and convex set in R
n ,

(B) F : K → R
n is a continuous monotone map,

(C) SOL(K , F) �= ∅.
(D) Φ : K → R

n is continuous and monotone plus, and
(E) h : K → R is convex and continuous.

Under assumptions (A–C), SOL(K , F) is a nonempty closed convex set. To motivate
our analysis, it is useful to view HVIs and, in particular, the VI-C HVI (K , F, Φ, h) as
a particular case of the Generalized Variational Inequality (GVI) [9]. Defined by the
pair (X, T ), where X is a closed convex set in R

n and T is a set-valued map defined
on X with images T (x) being closed sets in R

n , is to find a vector x ∈ X and a vector
y ∈ T (x) such that (x ′ − x)T y ≥ 0 for all x ′ ∈ X . It is not difficult to see that the
HVI (X, Φ, h) is equivalent to the GVI (X, T ), where T � Φ + ∂h, i.e., the problem
of finding a vector x ∈ X and a subgradient ζ ∈ ∂h(x) such that

(Φ(x)+ ζ )T (y − x) ≥ 0, ∀y ∈ X, (6)
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VI-constrained hemivariational inequalities 65

a fact that we will freely use in subsequent developments. Likewise, the VI-C
HVI (K , F, Φ, h) is equivalent to the GVI (SOL(K , F), T ).

Even if the map T is monotone and SOL(K , F) is closed and convex, the GVI
(SOL(K , F), T ), and thus the VI-C HVI (K , F, Φ, h) is not guaranteed to have a
solution. For this to be true, there are two classical sufficient conditions: either T
is strongly monotone, or SOL(X, F) is compact. In this paper, we assume neither.
Instead, we rely on the well-known Tikhonov process [40,41] to regularize the map
T . For a historical account of the application of the Tikhonov process to VIs, we refer
the reader to the Notes and Comments in [15, Section 12.9]; in particular, it was noted
there that Browder [7] (and more recently, Tseng [39]) showed that given a single-
valued, monotone VI (S, T ) one can compute a solution of the VI (SOL(S, T ),G),
where G is a strongly monotone operator, by solving a sequence of “regularized”
problems of the form VI (S, T + εk G), where {εk} is a sequence of positive scalars
converging to zero. Each regularized VI (S, T +εk G) has a unique solution x(εk) and
as εk goes to zero, {x(εk)} converge to the unique solution of VI (SOL(S, T ),G).

One key feature of the above regularization method is that it requires G to be
strongly monotone. In order to weaken this assumption, it has been proposed to com-
bine Tikhonov’s regularization with the proximal-point method. One line of research
in this direction has been carried out in the context of the hierarchical optimization
problem (1). For this problem, the regularization step at iteration k amounts to solving
the following strongly convex optimization problem:

minimize
x∈K

f (x)+ εkφ(x)+ α
2
‖x − x(εk−1)‖2,

where α > 0 is a positive parameter and x(εk−1) is the (unique) optimal solution of
the above optimization problem at the previous iteration k−1. Thanks to the presence
of the strongly convex term α‖x − x(εk−1)‖2, it is not necessary to require that φ
be strongly convex. Studies related to this approach have been carried out mainly in
the the French mathematical school. Note that actually, in many of these studies, the
main focus was not on the solution of hierarchical problems. Rather, the authors were
investigating the possibility of obtaining strong convergence to the least norm solution
of an infinite dimensional monotone problem by using a combination of Tikhonov
and proximal regularization, so as to couple in a single method the good sides of the
two approaches. Early significant results include [2,6,10,21,22]. The more advanced
results in analyzing this approach in relation to hierarchical problems are probably
those obtained by Cabot [8], to which we refer the interested reader also for a detailed
bibliographical discussion and whose proof techniques have influenced our approach
in Sect. 4. Essentially the idea is to show that if εk goes to zero “slowly”, then x(εk)

converges to a solution of (1). Extension of this approach to more general problems
have been attempted recently, see [18,30]. However, in order to establish convergence
results, in these latter papers, assumptions are made on the behavior of the algorithm,
rather than on the defining functions of the problem. In other words the flavor of
the convergence results is something like: if the algorithm behaves in such and such
a way, then it converges. While this certainly gives insights on the convergence of
the algorithm itself, results obtained in this way are not totally satisfactory, because
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ideally one would like to understand what classes of problems are amenable to the
convergence of the iterations.

Among the assumptions (A)–(E), the monotone plus property of Φ requires
an explanation. This property can be traced to the existing literature where many
authors have considered solving VIs of the type (Fix(U ), I − V ), where Fix(U )
denotes the set of fixed points of a nonexpansive map U and V is another non-
expansive map. It turns out that the map I − V is monotone plus if V is
nonexpansive.

Lemma 1 If V : Rn → R
n is nonexpansive, then I − V is monotone plus.

Proof For any two vectors u and v, we have

(u − v)T [u − v − (V (u)− V (v))] ≥ 0.

Moreover, if equality holds, then we have

(u − v)T (u − v) = (u − v)T (V (u)− V (v)),

which implies

0 ≤ ‖V (u)− V (v)− (u − v)‖2 = ‖ V (u)− V (v)‖2 − ‖u − v‖2 ≤ 0.

Thus equality holds throughout and we deduce u − V (u) = v − V (v), which is the
plus property of the map I − V . ��

The line of research on the VI (Fix(U ), I − V ) was initiated by [42] and we cite
the interesting papers [26,27] for recent results and bibliographic references. While
we [15, Proposition 1.5.8] can always write the solution set of the VI (K , F) as the set
of fixed points of the natural map: Fnat

K (x) � PK (x − τ F(x)), where PK denotes the
(Euclidean) projection on K and τ is a positive constant, if F is simply monotone one
can not guarantee that U � Fnat

K be nonexpansive. For example, it suffices to consider
the univariate VI (R, ex ) whose natural map Fnat

K (x) = x − τex cannot be nonex-
pansive. In general, probably the weakest condition that guarantees Fnat

K to be non-
expansive (for τ sufficiently small) is that F be co-coercive; see [15, Lemma 12.1.7].
Similarly, while any map of the type I − V , with V nonexpansive, is monotone plus,
as shown by Lemma 1, clearly not all monotone plus maps can be put into this form.
For example take G(x) = ex which is strictly monotone; if we write x − V (x) = ex

we have V (x) = x − ex which is not nonexpansive. Therefore, when applied to VI-C
VIs, the setting originally introduced by Yamada imposes rather strong limitations.
Nevertheless, the algorithms obtained by considering this fixed-point structure are
rather interesting and simple to implement. It is worth pointing out that, if U and V
are nonexpansive, by taking K = R

n and F = I − U , then the VI (Fix(U ), I − V )
becomes the VI (SOL(K , F), I −V )with F and I −V monotone. The upshot of this
review is that even for the VI-C VI, let alone the HVI, our setting extends the ones in
the existing literature. By considering the HVI, we are able to deal with the VI-C VI
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with additional side constraints on the lower-level VI, a feature that is not included in
any of the cited papers on this topic.

In addition to the main algorithm, another contribution of this paper is the intro-
duction of a distributed solution method for solving the VI-C HVI with partitioned
structure. This is a novelty by itself as there is so far no such algorithms even for
structured hierarchical optimization problems. Our main convergence result for such
a distributed algorithm generalizes those in [17] for non-cooperative Nash games.
Besides being applicable to the HVI and not only to games, the main departure of
the convergence result derived in the present work from the ones in [17] is that twice
differentiability is not required.

Historically, distributed algorithms for solving VIs can be traced back to the orig-
inal work in [33] for partitioned problems; see also [5]. Our interest in algorithms of
the distributed type for solving the VI-C HVI is very much motivated by the recent
surge of interests in the signal processing area on game-theoretic problems wherein
centralized algorithms are not realistic for practical implementation; see the series of
papers [18,23,34–37,43], dealing with game-theoretic formulations of power control
problems in ad-hoc, CDMA, or Cognitive Radio networks. Several distributed algo-
rithms along with their convergence properties have been proposed in these papers.
However, all these solution methods have a common drawback, which strongly limits
their applicability in practical scenarios: they are guaranteed to converge only if the
considered power control Nash games have a unique solution, which is not the case in
many applications. In the presence of multiple solutions, the distributed computation
of even a single Nash equilibrium becomes a complex and unsolved task. In this paper
we overcome this limitation and propose a novel distributed algorithm that solves
the game-theoretic multi- channel power control problem addressed in [23,36,37,43]
even when there are multiple solutions; our main contribution is twofold: (1) our algo-
rithm converges under milder sufficient conditions that do not imply the uniqueness
of the solution of the game; and (2) in the presence of multiple solutions, we can con-
trol the quality of the reached solution by guaranteeing the convergence to the “best”
NE, according to some prescribed criterion, while keeping the distributed implemen-
tation of the algorithm. The latter feature makes our algorithm very appealing for
designing practical telecommunication systems, while algorithms with unpredictable
performance (like [23,36,37,43], when multiple solutions are present) are not accept-
able since a control on the achievable performance is required. A bi-level optimization
approach based on solving a variational inequality problem over the fixed point set
of a nonexpansive mapping has been proposed in [18] to solve a scalar power control
problem in CDMA data networks; such a problem falls in the class of so-called scalar
games, modelling narrower and simpler scenarios than those considered in this paper
(e.g., in [18], each users is assumed to have a scalar variable to optimize rather than a
vector as in this paper). Hence, theoretical results in [18] cannot be applied to design
multi-channel networks, as considered in this paper.

A last but not least contribution of the paper is the treatment of side constraints
via a penalty technique. While having its origin in classical constrained optimization,
[12,13,16], the idea of applying penalization to treat variational problems with side
constraints is new and deserves further investigation, which regrettably is beyond the
scope of this work.
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3 Penalization of HVIs with side constraints

This section shows that, provided some weak assumptions are satisfied, the hemi-
variational inequality HVI (SOL(K , F) ∩ Ω,Φ, h) with VI (K , F) and side con-
straints Ω is equivalent to the penalized HVI without side constraints: VI-C HVI
(SOL(K , F),Φ, h+ρ dist(•,Ω)) for all suitably large values of the penalty parameter
ρ > 0. This result is of independent interest and extends classical results in optimiza-
tion. Our specific motivation for studying the penalization of side constraints lies in the
development in the following section, where we show that Algorithm 1 successfully
solves problems of the form HVI (SOL(K , F),Φ, h). However, the employed proof
technique cannot directly be extended to handle the presence of the side constraint set
Ω . The main result in this section, Theorem 1, allows us to apply Algorithm 1 to the
penalized problem HVI (SOL(K , F),Φ, h + ρ dist(•,Ω)) as a way of solving the
HVI (SOL(K , F) ∩Ω,Φ, h).

Since in this section the particular structure of the set SOL(K , F)will play no role,
we derive the desired penalty results in a slightly more general framework than is
necessary for our purposes. Specifically, we consider the HVI (X ∩Ω,Φ, h), where
X and Ω are closed convex sets and Φ and h satisfy the blanket assumptions (D)
and (E). We need three preliminary lemmas that are reminiscent of similar results in
optimization. The first lemma says that, in the setting above, the values of Φ over
the solution set of the HVI are a constant. This extends the notable fact valid for
pseudomonotone VIs; see e.g. [15, Corollary 2.3.10]. The noteworthy point here is
that, while the sum of the two monotone plus mappingsΦ and ∂h is surely monotone,
the plus property does not necessarily hold for the sum. So the following lemma does
not readily follow from known results such as the cited corollary.

Lemma 2 Let an HVI (X, Φ, h) be given, where X ⊆ R
n is a closed convex set,

Φ : X → R
n is continuous and monotone plus on X and h : X → R is convex. Let

x and x̄ be two solutions of the HVI, so that (see (6)), for suitable ζ ∈ ∂h(x) and
ζ̄ ∈ ∂h(x̄),

(Φ(x)+ ζ )T (z − x) ≥ 0 and (Φ(x̄)+ ζ̄ )T (w − x̄) ≥ 0, (7)

for all z and w in X. Then Φ(x) = Φ(x̄), i.e. Φ is constant on the solution set;
moreover, ζ ∈ ∂h(x̄) and ζ̄ ∈ ∂h(x).

Proof Summing the two inequalities in (7), with z = x̄ and w = x , we get

[
(Φ(x)+ ζ )− (Φ(x̄)+ ζ̄ ) ]T (x̄ − x) ≥ 0.

The monotonicity of Φ + ∂h shows that the inequality above is actually an equality
so that, rearranging terms, we get

[Φ(x)−Φ(x̄)]T (x̄ − x)+ (ζ − ζ̄ )T (x̄ − x) = 0. (8)
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Monotonicity of Φ and h then shows that

[Φ(x)−Φ(x̄)]T (x − x̄) = 0 = (ζ − ζ̄ )T (x − x̄)

and this, in turn, by the plus property of Φ and ∂h, completes the proof. ��
Consider the HVI (X ∩Ω,Φ, h). By (6), a vector x̄ ∈ X ∩Ω is a solution of this

HVI if and only if there exists ζ̄ ∈ ∂h(x̄) such that

(y − x̄)T (Φ(x̄)+ ζ̄ ) ≥ 0, ∀y ∈ X ∩Ω,

or equivalently, −(Φ(x̄) + ζ̄ ) ∈ N (X ∩ Ω; x̄), where N (S; x) denotes the normal
cone of the closed convex set S at x ∈ S. Under the constraint qualification that

N (X ∩Ω; x̄) = N (X; x̄)+N (Ω; x̄), (9)

it follows that a vector x̄ ∈ X ∩Ω is a solution of HVI (X ∩Ω,Φ, h) if and only if
there exist ζ̄ ∈ ∂h(x̄) and η̄ ∈ N (Ω; x̄) such that −(Φ(x̄) + ζ̄ + η̄) ∈ N (X; x̄), or
equivalently, that

(y − x̄)T (Φ(x̄)+ ζ̄ + η̄) ≥ 0, ∀y ∈ X. (10)

Let E(x̄) be the set of such vectors η̄ associated with the solution x̄ ; i.e., η̄ ∈ E(x̄) if
and only if η̄ ∈ N (Ω; x̄) and there exists ζ̄ ∈ ∂h(x̄) such that (10) holds. Note that
(9) provides a sufficient condition for E(x̄) to be nonempty. Equality (9) is a rather
weak requirement that is implied by the condition ri X ∩ riΩ �= ∅, where ri S denotes
the relative interior of the convex set S. The latter relative condition, in turn, can be
further relaxed if, as it is often the case in applications,Ω is polyhedral, in which case
(9) is implied by Ω ∩ ri X �= ∅.

Assuming that Φ is monotone plus, the next lemma establishes that the set E(x̄) is
independent of the solution x̄ .

Lemma 3 Let an HVI (X ∩ Ω,Φ, h) be given, where X and Ω are closed convex
subsets of R

n, Φ : X ∩ Ω → R
n is continuous and monotone plus on X, and h :

X ∩ Ω → R is continuous and convex. Let x̂ be a solution of this HVI such that
E( x̂ ) is nonempty. Then, if x̃ is any other solution of the HVI, E (̃x) is nonempty and
E( x̃ ) = E( x̂ ).

Proof We first show that E( x̃ ) is nonempty. Suppose by contradiction that E( x̃ ) = ∅.
We know that

(Φ( x̃ )+ ζ̃ )T (w − x̃) ≥ 0, ∀w ∈ X ∩Ω (11)

for some ζ̃ ∈ ∂h(̃x). Let η̂ ∈ E( x̂ ) be arbitrary, by definition there exists ζ̂ ∈ ∂h( x̂ )
such that

(v − x̂ )T (Φ( x̂ )+ ζ̂ + η̂ ) ≥ 0, ∀v ∈ X. (12)
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Substituting w = x̂ in the former inequality and v = x̃ in the latter inequality, and
adding, we obtain

(̃x − x̂ )T (Φ( x̂ )−Φ(̃x))+ (̃x − x̂ )T (̂ζ − ζ̃ ) + (̃x − x̂ )T η̂ ≥ 0.

But the left-hand side is also non-positive by the monotonicity of Φ and ∂h and the
fact that x̃ ∈ Ω, x̂ ∈ Ω, η̂ ∈ N (Ω; x̂ ). Hence the three addends are all zero and, in
particular, it holds ( x̃− x̂ )T η̂ = 0,which easily implies that η̂ ∈ N (Ω; x̃). Moreover,
since the sum of the two inequalities (11) and (12), with w = x̂ in the former and
v = x̃ in the latter, is equal to zero, we have

(̃x − x̂ )T (Φ( x̂ )+ ζ̂ + η̂) = 0. (13)

Since we assumed E (̃x) = ∅, there exists ỹ ∈ X such that

(ỹ − x̃)T (Φ( x̂ )+ ζ̂ + η̂) < 0. (14)

because Φ(̃x) = Φ( x̂ ), ζ̂ ∈ ∂h(̃x) by Lemma 2 and we have just established that
η̂ ∈ N (Ω; x̃). We get, by (12), (13) and (14),

0 ≤ (ỹ − x̂ )T (Φ( x̂ )+ ζ̂ + η̂) = (ỹ − x̃ + x̃ − x̂ )T (Φ( x̂ )+ ζ̂ + η̂) < 0

which is impossible so that E( x̃ ) is nonempty.
Let now η̂ ∈ E( x̂ ) and η̃ ∈ E (̃x) be arbitrary. There exist ζ̂ ∈ ∂h( x̂ ) and ζ̃ ∈

∂h( x̃ ) such that for all y ∈ X ,

(y − x̂ )T (Φ( x̂ )+ ζ̂ + η̂) ≥ 0, and (y − x̃)T (Φ(̃x)+ ζ̃ + η̃) ≥ 0. (15)

Substituting y = x̂ in the former inequality and y = x̃ in the latter inequality, and
adding, we obtain

(̃x − x̂ )T
[
(Φ( x̂ )−Φ( x̃))+ (̂ζ − ζ̃ )]+ ( x̃ − x̂ )T η̂ + ( x̂ − x̃)T η̃ ≥ 0;

but the left-hand side is also non-positive because all its addends are non-positive by
the monotonicity of Φ and ∂h and the fact that x̃ ∈ Ω, x̂ ∈ Ω, η̂ ∈ N (Ω; x̂ ),
and η̃ ∈ N (Ω; x̃). Hence, all the addends above are zero and, in particular, it holds
(̃x− x̂ )T η̂ = 0 = ( x̂ − x̃)T η̃, which easily implies η̃ ∈ N (Ω; x̂ ) and η̂ ∈ N (Ω; x̃).

Moreover, since the sum of the two inequalities in (15), with y = x̃ in the former
and y = x̂ the latter, is equal to zero, we have

(̃x − x̂ )T (Φ( x̂ )+ ζ̂ + η̂) = 0 = ( x̂ − x̃)T (Φ(̃x)+ ζ̃ + η̃).
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Therefore, recalling that by Lemma 2Φ(̃x) = Φ( x̂ ), ζ̃ ∈ ∂h( x̂ ), and ζ̂ ∈ ∂h(̃x), we
have for any y ∈ X ,

(y − x̃)T (Φ(̃x)+ ζ̂ + η̂ )
= (y − x̂ )T (Φ( x̂ )+ ζ̂ + η̂)+ ( x̂ − x̃)T (Φ( x̂ )+ ζ̂ + η̂)
= (y − x̂ )T (Φ( x̂ )+ ζ̂ + η̂) ≥ 0.

Thus η̂ ∈ E( x̃ ). Similarly, we also have

(y − x̂ )T (Φ( x̂ )+ ζ̃ + η̃ ) ≥ 0,

which implies η̃ ∈ E( x̂ ). This is enough to show that E( x̂ ) = E( x̃ ). ��
Remark 1 Lemma 3 is reminiscent of the fact that for a convex program with non-
unique optimal solutions, the set of optimal Lagrange multipliers does not depend on
the optimal solutions; see e.g. the remark on page 354 in [4].

The next lemma deals with the minimization problem:

minimize
x∈Ω∩X

f (x), (16)

where f : X ∩ Ω → R is a continuously differentiable convex function and X and
Ω are closed convex sets in R

n .

Lemma 4 Let x̂ be an optimal solution of (16) for which there exist λ ≥ 0 and
ξ ∈ ∂ dist( x̂ ,Ω) such that

(∇ f ( x̂ )+ λξ)T (y − x̂ ) ≥ 0, ∀y ∈ X. (17)

Then, for every ρ > λ the optimal solution sets of (16) and the penalized problem

minimize
x∈X

[ f (x)+ ρ dist(x,Ω)] (18)

coincide.

Proof It follows from the inequality (17) that x̂ is a minimizer on X of the convex
function f + λ dist(•,Ω). Let x̄ be a solution of (16) and let ρ > λ. We have, for any
y ∈ X ,

f (y)+ ρ dist(y,Ω) ≥ f (y)+ λ dist(y,Ω)
≥ f ( x̂ )+ λ dist( x̂ ,Ω)
= f ( x̂ ) = f (x̄)+ ρ dist(x̄,Ω),

thus showing that every solution of (16) is also a solution of (18).
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Conversely, suppose that x̄ is a solution of (18). If x̄ belongs toΩ , it is obvious that
x̄ is a also a solution of (16). Assume then that x̄ /∈ Ω , or equivalently, dist(x̄,Ω) > 0.
We can write

f (x̄)+ ρ dist(x̄,Ω) > f (x̄)+ λ dist(x̄,Ω)
≥ f ( x̂ )+ λ dist( x̂ ,Ω) = f ( x̂ )+ ρ dist( x̂ ,Ω),

where the second inequality follows from the fact that x̂ is a global minimizer of
f+λ dist( x̂ ,Ω)on X and the third from dist( x̂ ,Ω) = 0. But this chain of inequalities
contradicts the optimality of x̄ . Thus x̄ ∈ Ω and so x̄ is also a solution of (16). ��

The following is the main result of this section; it shows that, under mild assump-
tions, a VI-C VI with side constraints can be converted to a HVI.

Theorem 1 Let x̂ be a solution of the HVI (X ∩ Ω,Φ, h) with E( x̂ ) �= ∅, where
Φ is continuous and monotone plus, h is continuous and convex on the feasible set
X ∩Ω , and X and Ω are both closed and convex. Let η ∈ E( x̂ ) be arbitrary. Then
for every ρ > ‖η‖, the solution set of the HVI (X ∩Ω,Φ, h) and that of the penalized
HVI (X, Φ, h + ρ dist(•,Ω)) coincide.

Proof Let x̄ be any solution of HVI (X ∩ Ω,Φ, h). By Lemma 3, it follows that
η ∈ E(x̄). Let λ � ‖η‖ and

η̄ �
{

any elementin∂ dist(x̄,Ω) if η = 0
η

‖η‖ if η �= 0.

Since ∂ dist(x̄,Ω) = B∩N (Ω; x̄), where B is the Euclidean unit ball, it follows that
η̄ ∈ ∂ dist(x̄,Ω). Moreover, by definition of the elements of the set E(x̄), ζ̄ ∈ ∂h(x̄)
exists such that

x̄ ∈ argmin
y∈X

[
Φ(x̄)+ ζ̄ + λη̄ ]T (y − x̄)

Lemma 4 tells us that x̄ is also a minimizer of

minimize
y∈X

[(
Φ(x̄)+ ζ̄ )T (y − x̄)+ ρ dist(y,Ω)

]
(19)

if ρ > λ. Applying the minimum principle we immediately get that x̄ is a solution of
the penalized HVI (X, Φ, h + ρ dist(•,Ω)).

Conversely, suppose that x̄ is a solution of HVI (X, Φ, h + ρ dist(•,Ω)) for some
ρ > λ. We only need to show that x̄ ∈ Ω . Suppose the contrary, so that dist(x̄,Ω) > 0.
We first note that by the first part of the theorem we know that also x̂ is a solution
of the same HVI, so that by Lemma 2 we have Φ( x̂ ) = Φ(x̄). Let now θ be a
number in (λ, ρ). Since by the first part of the theorem x̂ is still a solution of HVI
(X, Φ, h + θ dist(•,Ω)) we can write, noting that x̄ belongs to X and recalling that
dist( x̂ ,Ω) = 0,

Φ( x̂ )T (x̄ − x̂ )+ h(x̄)− h( x̂ )+ θ dist(x̄,Ω) ≥ 0.
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By Φ( x̂ ) = Φ(x̄) this immediately gives, recalling again that dist( x̂ ,Ω) = 0,

Φ(x̄)T ( x̂ − x̄)+ h( x̂ )− h(x̄)+ ρ dist( x̂ ,Ω)

≤ θ dist(x̄,Ω)

< ρ dist(x̄,Ω)

≤ Φ(x̄)T (x̄ − x̄)+ h(x̄)− h(x̄)+ ρ dist(x̄,Ω).

But this contradicts the fact that x̄ solves the HVI (X, Φ, h + ρ dist(•,Ω)) which, in
turn, implies that x̄ minimizesΦ(x̄)T (y− x̄)+ h(y)− h(x̄)+ ρ dist(y,Ω) on X . ��
Remark 2 In the above developments, the norm used was the Euclidean norm. Theo-
rem 1 remains valid if the distance function is in terms of any other norm; it suffices to
note that for any norm ‖•‖with ‖•‖D as its dual norm, ∂dist(x,Ω) = N (x;Ω)∩BD ,
where BD is the unit ball in the norm ‖ • ‖D . Then it is immediate to check that
Theorem 1 still holds for ρ > ‖η‖D .

4 The main algorithm: centralized version

This section presents a centralized iterative algorithm for the solution of the VI-C
HVI (K , F, Φ, h). Before doing so, we should describe alternative ways to solve this
problem by a centralized algorithm that depends on available representations of the set
SOL(K , F). Foremost is the affine case where K is a polyhedron and F(x) = q+Mx
is an affine mapping with a positive semidefinite (albeit not necessarily symmetric)
matrix M . In this case, provided that a solution of the affine VI (K , q,M) is known,
SOL(K , q,M) has the polyhedral representation given by [15, Expression 2.5.11].
While the solution of the (A)VI-C HVI (K , F, Φ, h) by a centralized algorithm can
therefore be accomplished by any known approach for a linearly constrained monotone
HVI, it is not immediately clear that any such algorithm, which is based on the polyhe-
dral representation of the SOL(K , q,M), would admit a distributed implementation
when the problem (K , F, Φ, h) has the requisite Cartesian structure; see Sect. 5.
Another case where SOL(K , F) has an explicit representation that could be exploited
by a centralized algorithm is when F(SOL(K , F)) is a singleton (such as when F
is pseudomonotone plus on F). However, the representation [15, Proposition 2.3.12]
of SOL(K , F) in this case is not so easy to take advantage of, unless more details
are available on the pair (K , F). Lastly, even though SOL(K , F) is a closed convex
set for a convex-monotone pair (K , F), its representation in general, cf. [15, Expres-
sion 2.3.2], is in terms of a semi-infinite system of linear inequalities that is not helpful
for practical calculations. While the algorithm that we describe below does not depend
on any special representation of the pair (K , F), it requires solving sub-HVIs each
defined on the set K and by the mapping F + εk(Φ + ∂h) + α(• − xk) for positive
scalars εk and α.

Specifically, given the current iteration xk ∈ K , the core step of the algorithm
consists of calculating an approximate solution of the

HVI (K , Fk, εkh), where Fk � F + εkΦ + α( • − xk). (20)
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We denote by x̄k+1 the exact solution of this HVI, which is equivalent to the GVI
(K , Fk + εk∂h); i.e., x̄k+1 ∈ K is such that for some ζ̄k+1 ∈ ∂h(x̄k+1) and all y ∈ K ,

[
F(x̄k+1)+ εk(Φ(x̄k+1)+ ζ̄k+1)+ α(x̄k+1 − xk)

]T
(y − x̄k+1) ≥ 0. (21)

Since Fk + εk∂h is a strongly monotone set-valued mapping because of (B), (D), and
(E), the HVI (20) has one and only one solution, so that x̄k+1 is well defined.

Algorithm 1: Inexact Prox-Tikhonov Algorithm
(S.0): Let {ek } be a sequence of nonnegative scalars, and {εk } a sequence of positive scalars,

both tending to zero. Let α > 0 be arbitrary. Choose x0 ∈ K and set k = 0.
(S.1): If xk is a solution of VI-C HVI (K , F, Φ, h), stop.
(S.2): Find xk+1 ∈ K such that ‖xk+1 − x̄k+1‖ ≤ ek , where x̄k+1 ∈ K is an exact solution of (20).
(S.3): Set k ← k + 1 and return to Step 1.

Note that if ek = 0 we solve (20) exactly at iteration k, while if ek > 0 we permit
inaccurate solution of the same problem. To establish the convergence of the algorithm,
we assume, in addition to the blanket setting (A–E), the following condition:

(F) the solution set of the VI-C HVI (K , F, Φ, h), denoted SOL(K , F, Φ, h), is non-
empty and bounded; moreover, the set L defined below is bounded:

L � {x ∈ K | ∃y ∈ SOL(K , F, Φ, h)
such that Φ(x)T (y − x)+ h(y)− h(x) > 0

}
.

Since SOL(K , F, Φ, h) is the solution set of the monotone GVI (SOL(K , F),Φ+ ∂h),
SOL(K , F, Φ, h) is a non-empty, compact, convex set. The boundedness requirement
of the two sets, SOL(K , F, Φ, h) and L is automatically satisfied if K is bounded.
The boundedness of the set L is reminiscent of a sufficient condition for the existence
of a solution to the HVI; see [15, Exercise 2.9.11]. The following example shows that
neither K nor SOL(K , F) need to be bounded under all the assumptions made herein.

Example 1 Take K = [−1,+∞), F(x) � 0, Φ(x) = max(0, x) and h � 0. It
is clear that F and Φ are both monotone plus. Obviously, since F is identically
zero, SOL(K , F) coincides with K , which is unbounded. It is easy to check that
SOL(K , F;Φ, h) = [−1, 0] and L = ∅.

We also need to impose two technical conditions on the sequences of scalars {ek}
and {εk}. Note that these are not assumptions on the problem, but merely conditions
we enforce in the algorithmic scheme.

C1
∑∞

k=0εk = ∞;

C2 {ek/εk} → 0.

Condition C1 states that εk cannot go to zero too fast. The reason for this requirement
is rather intuitive, for if εk becomes “too small, too soon”, then the term α(• − xk)

dominates the term εkΦ and the sequence {xk} “collapses” to the sequence generated
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by the proximal-point algorithm; the role of Φ then becomes negligible so that we
cannot guarantee that we find anything more than a point in SOL(K , F). By the same
token, Condition C2 says that the inexact solution we employ in place of the exact
solution of the GVI (20) should not deviate too far from the exact solution and that
the smaller εk is the more precise xk+1 should be to x̄k+1, so much so as to guarantee
{ek/εk} → 0; if this were not so, once again the influence of Φ would be lost in the
solution process.

In order to prove convergence of Algorithm 1 we need a preliminary lemma.

Lemma 5 Let X ⊆ R
n be a closed convex set, G : X → R

n a monotone plus and
continuous function, and f : X → R a convex function. If a solution y to the HVI
(X,G, f ) and a point x ∈ X exist such that

G(x)T (y − x)+ f (y)− f (x) ≥ 0, (22)

then x is also a solution to the HVI (X,G, f ).

Proof Since y is a solution we can write

G(y)T (z − y)+ f (z)− f (y) ≥ 0 ∀z ∈ X.

In particular, by taking z = x we get

G(y)T (x − y)+ f (x)− f (y) ≥ 0. (23)

Summing (22) and (23) we have

(G(x)− G(y))T (y − x) ≥ 0,

which implies, by monotonicity,

(G(x)− G(y))T (x − y) = 0.

By the plus property, we obtain

G(x) = G(y).

Therefore we can write, for any z ∈ X ,

G(x)T (z − x)+ h(z)− h(x)
= G(y)T (z − y)+ G(x)T (y − x)+ f (z)− f (y)+ f (y)− f (x) ≥ 0,

thus showing that x is a solution of the HVI (X,G, f ). ��
Remark 3 If f ≡ 0, it is easy to see that Lemma 5 still holds if we only require G to
be pseudo monotone plus on X instead of monotone plus.
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The next theorem is the main result of this section. In this theorem we use a global Lisp-
chitz continuity assumption that, however, is only required if inexactness is allowed
in the solution of the sub-HVI in (20). This Lipschitz condition is certainly satisfied
if, for example, K is bounded and F, Φ are locally Lipschitz. We recall that since h
is required to be convex and continuous, it is automatically locally Lipschitz.

Theorem 2 Assume that (A–F), and C1 and C2 hold. Assume further that either ek = 0
eventually, or K is bounded and F, Φ and h are Lipschitz on K . Then Algorithm 1 is
well defined and produces a bounded sequence {xk} such that each of its limit points
is a solution of VI-C HVI (K , F, Φ, h).

Proof Write Sh
Φ � SOL(K , F, Φ, h), which is assumed to be bounded. To prove the

theorem it is enough to show that the sequence {δk} converges to zero, where

δk � 1

2
dist(xk, Sh

Φ) =
1

2
‖xk − PSh

Φ
(xk)‖2.

By (21), we get, for y ∈ K ,

[
F(x̄k+1)+ α(x̄k+1 − xk)

]T
(y − x̄k+1)

≥ εk

[
(h(x̄k+1)− h(y))+Φ(x̄k+1)

T (x̄k+1 − y)
]
. (24)

We have for every y ∈ K

α(xk − xk+1)
T (y − xk+1)

≤ α
[
(xk − x̄k+1)

T (y − x̄k+1)+ (x̄k+1 − xk+1)
T (y − xk+1)

+ (xk − x̄k+1)
T ( x̄k+1 − xk+1 )

]

≤ α(x̄k+1 − xk+1)
T ( y − xk+1)+ F(x̄k+1)

T ( y − x̄k+1)

+α ( xk − x̄k+1)
T ( x̄k+1 − xk+1 )

+ εk

[
h(y)− h(x̄k+1)+Φ(x̄k+1)

T ( y − x̄k+1)
]

≤ ηk + F(xk+1)
T ( y − xk+1)

+ εk

[
( h(y)− h(xk+1))+Φ(xk+1)

T ( y − xk+1)
]
, (25)

where ηk is equal to zero if ek = 0, and is a positive scalar satisfying ηk ≤ Mek for
some constant M > 0 if ek > 0. More precisely, if we denote by D the diameter of K ,
by L a (common) Lipschitz constant for F, Φ, and h on K , by U a (common) upper
bound for ‖F(x)‖ and ‖Φ(x)‖ on K , and by ε̄ a constant such that εk ≤ ε̄ for all k,
we can take

M = 2αD + ε̄(L +U + D)+U + L D.
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We can write

δk+1 − δk = 1

2
‖ xk+1 − PSh

Φ
(xk+1) ‖2 − 1

2
‖ xk − PSh

Φ
(xk) ‖2

≤ 1

2
‖xk+1 − PSh

Φ
(xk)‖2 − 1

2
‖ xk − PSh

Φ
(xk) ‖2

= −1

2
‖xk+1 − xk‖2 + (xk − xk+1)

T (PSh
Φ
(xk)− xk+1)

≤ −1

2
‖xk+1 − xk‖2 + 1

α
F(xk+1)

T (PSh
Φ
(xk)− xk+1)

+ εk

α

[
(h(PSh

Φ
(xk))− h(xk+1))+Φ(xk+1)

T (PSh
Φ
(xk)− xk+1)

]
+ ηk

α

≤ −1

2
‖xk+1 − xk‖2

+ εk

α
[(h(PSh

Φ
(xk))− h(xk+1))+Φ(xk+1)

T (PSh
Φ
(xk)− xk+1)]︸ ︷︷ ︸

Vk+1

+ηk

α

(26)

The first inequality is obvious by the definition of projection; the second is obtained
from (25) evaluated at y = PSh

Φ
(xk) ∈ K . The third inequality can be obtained by

observing that since PSh
Φ
(xk) ∈ Sh

Φ ⊆ SOL(K , F), we have F(PSh
Φ
(xk))

T (xk+1 −
PSh

Φ
(xk)) ≥ 0, which yields in turn, by the monotonicity of F, F(xk+1)

T (PSh
Φ
(xk)−

xk+1) ≤ 0. We now consider three cases.
Case 1: Eventually, εk Vk+1 + ηk ≤ 0.
In this case the nonnegative sequence {δk} is (eventually) non-increasing and therefore
convergent. Since Sh

Φ is bounded, this implies that also {xk} is bounded. Furthermore
{δk+1 − δk} converges to zero. From (26), we have

δk+1 − δk ≤ −1

2
‖xk+1 − xk‖2,

which shows that

lim
k→∞ ‖xk+1 − xk‖ = 0. (27)

Summing over i from k0 to k − 1 we get from (26)

δk − δk0 ≤
1

α

k−1∑
i=k0

εi Vi+1 + 1

α

k−1∑
i=k0

ηi . (28)

Since εk−1Vk ≤ εk−1Vk + ηk−1 ≤ 0 we have that all Vk are non positive. We show
that lim supk→∞ Vk = 0. Suppose by contradiction this is not the case, so that a
positive constant V̄ exists such that Vk ≤ −V̄ < 0 for all k. This implies that the
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right-hand side in (28) goes to −∞. In fact, tacking into account C2, we can write
ηi ≤ Mei ≤ ci Mεi , for some sequence {ci } of positive constants converging to zero.
Assuming, without loss of generality, that all ci are such that ci M ≤ V̄ /2 we can
write, by (28),

δk − δk0 ≤
1

α

k−1∑
i=k0

εi Vi+1 + 1

α

k−1∑
i=k0

ηi ≤ − V̄

2α

k−1∑
i=k0

εi .

Since {δk} converges, we get a contradiction to C1 and have thus proved that
lim supk→∞ Vk = 0. Therefore a subsequence J exists such that

lim
k∈J

k→∞
Vk = 0. (29)

Since {xk} is bounded, we may assume, without loss of generality, that

lim
k∈J

k→∞
xk = x̃ .

Note that since K is closed, x̃ ∈ K . We show that actually x̃ ∈ SOL(K , F). If this is
not so, there exists a point y ∈ K such that F(x̃)T (y − x̃) < 0. By (25) we can write

[
F(xk)+ α ( xk − xk−1)

]T
( y − xk)

+εk−1

[
h(y)− h(xk)+Φ(xk)

T ( y − xk)
]
≥ −ηk−1. (30)

By continuity, the definition of y, the boundedness of {xk} and (27), we have, without
loss of generality (after a suitable renumeration),

lim
k∈J

k→∞
F(xk)

T (y − xk) < 0, lim
k∈J

k→∞
α(xk − xk−1)

T (y − xk) = 0,

and

lim
k∈J

k→∞
εk−1

[
h(y)− h(xk)+Φ(xk)

T ( y − xk)
]
= 0,

Then we get a contradiction to (30) since {ηk} ↓ 0. Therefore x̃ ∈ SOL(K , F).
Thanks to (27) we have limk∈J,k→∞ xk−1 = x̃ . Therefore, by (29) and continuity,
we get h(PSh

Φ
(̃x)) − h(̃x) + Φ(̃x)T (PSh

Φ
(̃x) − x̃) = 0. By Lemma 5, it follows that

x̃ ∈ Sh
Φ . Therefore we get

lim
k∈J

k→∞
δk = 0.
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But since the whole sequence {δk} is convergent, this implies that the entire sequence
{δk} ↓ 0, thus concluding the analysis of Case 1.
Case 2: The two index sets J and J̄ are both infinite, where

J � { k | εk−1 Vk + ηk−1 > 0}

and

J̄ �
{

k ∈ J | −1

2
‖ xk − xk−1 ‖2 + εk−1

α
Vk + ηk−1

α
> 0

}
.

By (26), if k ∈ J̄ it might happen that δk > δk−1, while if k �∈ J̄ then necessarily
δk ≤ δk−1. Therefore, since J̄ is infinite, to prove that {δk} goes to zero it is enough
to show that the subsequence {δk} J̄ converges to zero. To this end, first observe that
for every k ∈ J̄ it holds that

εk−1Vk + ηk−1 >
α

2
‖xk − xk−1‖2. (31)

The sequence {xk} J̄ is bounded. In fact, if ηk = 0 eventually (exact solution of the
subproblems), then xk belongs to L which is bounded by assumption. Otherwise, we
have dist(xk+1, K ) ≤ ‖xk+1 − x̄k+1‖ ≤ ek , from which the boundedness of {xk}
follows from that of K . By continuity, also {Vk} J̄ is bounded. Hence, (31) yields

lim
k∈ J̄

k→∞
‖xk − xk−1‖ = 0. (32)

Since {xk} J̄ is bounded, it has limit points. Let J̃ ⊆ J̄ be a subsequence such that

lim
k∈ J̃

k→∞
xk = x̃ .

Reasoning exactly as in Case 1, [(the only difference is that instead of (27) we use
(32)], we may deduce that x̃ ∈ SOL(K , F). By continuity, recalling that J̃ ⊆ J̄ ⊆
J and Condition (C2), which implies {ηk/εk} → 0, we get h(PSh

Φ
(̃x)) − h(̃x) +

Φ(̃x)T (PSh
Φ
(̃x)−x̃) ≥ 0. Thus x̃ ∈ Sh

Φ ; hence limk∈ J̃ k→∞δk = 0. Since this reasoning
can be repeated for every convergent subsequence of {xk} J̄ , we may conclude that
limk∈ J̄ k→∞ δk = 0, thus concluding the analysis of this case.
Case 3: The index set J is infinite while J̄ is finite.
In this case the sequence {δk} is non-increasing eventually. Therefore {δk} converges,
implying that {xk} is bounded. Because {δk} converges we also have that {δk+1 − δk}
converges to zero. Therefore, by (26), the boundedness of {xk} and taking into account
that both {εk} and {ηk} converge to zero, we get that (27) holds. Since J is infinite and
{xk} is bounded we can now consider a convergent subsequence {xk} J̃ → x̃ , with
J̃ ⊆ J . Reasoning as in Case 2 we can prove that x̃ ∈ Sh

Φ ; hence limk∈ J̃ k→∞δk = 0.
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But since the whole sequence {δk} converges, this is enough to show that {δk} converges
to zero, thus concluding the proof of the theorem. ��
Remark 4 It should be clear that all the results in Theorem 2 still hold if we change α
at each iteration, provided that these alpha are bounded away from zero and bounded
from above. Furthermore, it is interesting to observe that if we are dealing with VI-C
VIs, i.e. if h ≡ 0, it can be checked, going through the proof and taking into account
Remark 3, that Theorem 2 still holds with the monotonicity plus assumption on Φ
replaced by a weaker pseudo monotonicity plus assumption.

Some observations are in order. The first is that Algorithm 1 would not be imple-
mentable if we were not able to solve the subproblems at Step 2. Since these sub-
problems are instances of strongly monotone generalized VIs, a host of methods are
available for their solution; the fact that we only have to deal with strongly monotone
subproblems is one of the advantages of our approach. Another issue worth mention-
ing is that if we are implementing the inexact version of Algorithm 1, i.e., if ek > 0, we
need to translate the theoretical criterion ‖xk+1− x̄k+1‖ ≤ ek at Step 2 into something
computable, since the exact solution x̄k+1 of the sub-HVI (20) is not known. Here,
again, the strong monotonicity of the subproblems at Step 2 comes into help. Consider
for example and for simplicity the case of a VI-C VI (h ≡ 0). In this case a rather
complete theory of “error bounds” is available, see [15, Chapter 6], and can be used.
For example, by [15, Proposition 6.3.1] it follows that at each iteration we have, for
some constant C > 0

‖ xk+1 − x̄k+1 ‖ ≤ C + 1

α
‖ xk+1 − PK (xk+1 −Φ(xk+1)) ‖,

with the right-hand norm being a practically computable quantity. Therefore, in a prac-
tical implementation of Algorithm 1 we could simply stop when ‖xk+1− PK (xk+1−
Φ(xk+1))‖ ≤ ek without using any of the theoretical properties in Theorem 2. Other
possibilities are available and a choice should be made taking into account the par-
ticular problem at hand. We leave these details to the reader. The last section of this
paper give a substantial example of how the results in this and in the next section can
be used in a practical environment.

5 Distributed solution of the hemivariational inequality

This section discusses a distributed algorithm for solving a HVI on Cartesian product
of sets. Our development extends the scope and considerably improves on the treatment
in [17, Chapter 12] for non-cooperative games. The results in this section also provide
further motivation for the choice of a combined Tikhonov and proximal methods for
the solution of the HVI (K , Φ, h).

The setting is as follows. Consider the HVI (K ,G, h) defined by the product set
K �
∏N
ν=1 Kν with

∑N
ν=1 nν = n, where each Kν is a closed convex subset of R

nν ,
by the continuous function G : K → R

n , and the separable function h : K → R
n

such that h(x) = ∑N
ν=1 hν(xν), where x = (xν)N

ν=1 with each xν ∈ Kν and hν is
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a convex continuous function defined on Kν . This setting is applicable to the side-
constrained VI-C VI (SOL(K , F) ∩ Ω,Φ) via its penalized formulation, provided
that Ω has the same Cartesian structure as K , i.e., Ω �

∏N
ν=1Ων . By Remark 2, the

latter VI, which is defined on the intersection SOL(K , F) ∩ Ω , is equivalent to the
HVI (K , Φ, ρh) which is defined on the set K for all ρ > 0 sufficiently large, where
h(x) �

∑N
ν=1 dist(xν, Kν).

With the pair (K , h) having the above partitioned structure, we partition G accord-
ingly; i.e., G(x) = (Gν(x))N

ν=1 with Gν(x) ∈ R
nν for all ν = 1, . . . , N . In what

follows if x = (xν)N
ν=1, we denote by x−ν the sub-vector of x with the ν-th block

omitted: x−ν � (xμ)N
μ=1, μ�=ν , and by K−ν the corresponding set: K−ν �

∏
μ�=νKμ

with Kν removed.
We now present a synchronous Jacobi scheme. The analysis can be extended easily

to synchronous Gauss–Seidel schemes and to asynchronous versions of both the Jacobi
and Gauss–Seidel methods; we leave these details to the reader.

Algorithm 2: Distributed Algorithm for HVIs
(S.0): Choose x0 ∈ K and set k = 0.
(S.1): If xk is a solution of HVI (K ,G, h) stop.
(S.2): For ν = 1, . . . , N set (33)

xνk+1
�= solution of HVI( Kν ,Gν(•, x−νk ), hν(•) )

(S.3): Set xk+1 = (xνk+1)
N
ν=1, k ← k + 1 and go to Step 1.

The defining equation (33) implicitly assumes that the HVI in (33) has one and
only one solution. As we will see, this is true under the assumptions we make below.
Our aim is to determine when the sequence {xk} produced by Algorithm 2 is well
defined and converges to a solution of HVI (K ,G, h). This is done by showing that,
under appropriate assumptions, Algorithm 2 is nothing else but a fixed-point iteration
for a certain contractive mapping, whose unique fixed point is the desired solution
of HVI (K ,G, h). The key assumption we need is stated next; it requires a certain
N × N matrix to be of the P kind. We recall that a (not necessarily symmetric) square
matrix is P if all its principal minors are positive. If H : X ⊆ R

n → R
m is Lipschitz

continuous, we denote by β(X, H) its Lipschitz constant defined by

β(X, H) � sup
z,z′∈X,z �=z′

‖H(z)− H(z′)‖
‖z − z′‖ .

If furthermore X is convex and H : X → R
n is strongly monotone, we define the

modulus of strong monotonicity by

γ (X, H) � inf
z,z′∈X,z �=z′

(H(z)− H(z′))T (z − z′)
‖z − z′‖2 .

The two quantities β(X, H) and γ (X, H) have simple expressions if, for example,
H is continuously differentiable with Jacobian matrix at z denoted by J H(z). The
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following proposition is elementary and does not need a proof. For a real square matrix
M , we let λS

m(M) denotes the minimum eigenvalue of the symmetric part of M .

Proposition 2 If H : X → R
m is continuously differentiable on an open

set containing the convex set X ⊆ R
n and ‖J H(z)‖ is bounded on X, then

β(X, H) = supz∈X ‖J H(z)‖ is finite. Furthermore if m = n and H is strongly
monotone on X, then γ (X, H) = inf z∈X λ

S
m(J H(z)) is finite and positive.

The following is the key assumption necessary to prove convergence of Algorithm 2
for solving the HVI (K ,G, h).

Assumption P Each function Gν(•, z−ν) is strongly monotone on Kν with a uni-
formly positive strong monotonicity modulus for all z−ν ∈ K−ν ; i.e.,

γν � inf
z−ν∈K−ν

γ (Kν,Gν(•, z−ν)) > 0, ∀ ν = 1, . . . , N .

For each zν ∈ Kν , the function Gν(zν, •) is Lipschitz continuous on K−ν with a
Lipschitz modulus that is independent of zν ∈ Kν : thus positive constants βνμ exist
for all μ �= ν such that for all zν ∈ Kν and all u−ν and v−ν in K−ν ,

‖Gν(zν, u−ν)− Gν(zν, v−ν) ‖ ≤
∑
μ�=ν

βνμ ‖ uμ − vμ ‖.

Most importantly, the N × N matrix ϒ defined below is P

ϒ �

⎡
⎢⎢⎢⎣

γ1 −β12 · · · −β1N

−β21 γ2 · · · −β2N
...

. . .
...

−βN1 −βN2 · · · γN

⎤
⎥⎥⎥⎦ .

[The matrix ϒ has the “Z-property”, i.e., its off-diagonal entries are all non-positive.]

Remark 5 The constant βνμ is given by

sup
zν∈Kν

sup
uμ,vμ∈Kμ
uμ �=vμ

sup

⎧⎨
⎩

Gν(zν, y, uμ)− Gν(zν, y, vμ)

‖ uμ − vμ ‖ | y ∈
∏

ν′ �=ν,μ
Kν′

⎫⎬
⎭

= sup
zν∈Kν

sup

⎧⎨
⎩β(Kμ,Gν(zν, y, •)) | y ∈

∏
ν′ �=ν,μ

Kν ′

⎫⎬
⎭ .

By Proposition 2 the condition of the finiteness of the β’s and γ ’s translates, in the
case of a continuously differentiable G, into simple requirements on J G. However,
the meaning of the β’s and γ ’s is independent of the differentiability of G. Note
also that if all the β’s were 0, HVI (K ,G, h) would decompose in N uncoupled
HVIs. In an informal sense, then, the terms βνμ can be seen as a measure of the
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coupling of the problem. In this vein, the finiteness of the β’s can be read as a
requirement that if we want to solve HVI (K ,G, h) in a distributed way, the “inter-
actions” between the sub-HVIs in which we decompose the original HVI should
be limited. But this alone would not be sufficient for Algorithm 2 to work prop-
erly, and we also need the matrix ϒ to be of the P-kind. In this latter requirement
a role is played also by the quantities γν . These quantities essentially measure the
degree of “uniform strong monotonicity” of the HVIs in which we decompose the
problem. If the γν are positive, this means that all the HVI (Kν,Gν(•, x−ν), hν)
in which we decompose the original HVI (K ,G, h) (see also Step 2 of Algorithm
2) are uniformly strongly monotone with a common strong monotonicity constant.
From this point of view, requiring the matrix ϒ to be P means, in a very loose
sense, that the HVIs (Kν,Gν(•, x−ν), hν) are “strongly monotone enough to dom-
inate the interactions from the other blocks”. We note that if ϒ is P , it must hold
that all the γν are positive. In turn this implies that for any z ∈ K and any ν, the
HVI (Kν,Gν(•, z−ν), hν) is strongly monotone and therefore has one and only one
solution, which we denote by xν(z); we then let x(z) � (xν(z))N

ν=1. This is a self-map
from the set K into itself; Algorithm 2 is easily seen to be the fixed-point iteration:
xk+1 = x(xk).

We are now ready to state the main result of this section. Besides treating the HVI,
this result extends the treatment in [17, Section 12.6] for a Nash game in that G is not
required to be twice continuously differentiable here.

Theorem 3 Let the HVI (K ,G, h) be given with the Cartesian product structure set
forth at the beginning of this section. Suppose that Assumption P holds. Algorithm 2
generates a well-defined sequence {xk} that converges to the unique solution of HVI
(K ,G, h).

Proof It suffices to show that x(z) is a contraction on K . Let z̄ and z̃ be two points in
K ; for a generic ν we can write,

Gν(xν(z̄), z̄−ν)T ( yν − xν(z̄))+ hν(yν)− hν(xν(z̄)) ≥ 0, ∀ yν ∈ Kν
Gν(xν(z̃), z̃−ν)T ( yν − xν(z̃))+ hν(yν)− hν(xν(z̃)) ≥ 0, ∀ yν ∈ Kν .

By taking yν = xν(z̃) in the former inequality and yν = xν(z̄) in the latter and
summing, we deduce

[
Gν(xν(z̄), z̄−ν)− Gν(xν(z̃), z̃−ν)

]T
( xν(z̃)− xν(z̄)) ≥ 0. (34)

Adding and subtracting Gν(xν(z̄), z̃−ν) in the square parenthesis and using the uniform
monotonicity hypothesis in Assumption P, we get

γν ‖ xν(z̄)− xν(z̃) ‖2 ≤ [Gν(xν(z̄), z̄−ν)− Gν(xν(z̄), z̃−ν)
]T
( xν(z̃)− xν(z̄))

from which we deduce

‖ xν(z̄)− xν(z̃) ‖ ≤ 1

γν
‖Gν(xν(z̄), z̄−ν)− Gν(xν(z̄), z̃−ν) ‖.
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In turn, the uniform Lipschitzian hypothesis in Assumption P permits us to write

‖Gν(xν(z̄), z̄−ν)− Gν(xν(z̄), z̃−ν)‖ ≤
∑
μ�=ν

βνμ‖z̄μ − z̃μ‖

The last two inequalities immediately give

‖xν(z̄)− xν(z̃)‖ ≤ 1

γν

∑
μ�=ν

βνμ‖z̄μ − z̃μ‖

Since this relation is valid for all ν, we readily get

⎛
⎜⎝
‖ x1(z̄)− x1(z̃) ‖
...

‖ x N (z̄)− x N (z̃) ‖

⎞
⎟⎠ ≤ Γ

⎛
⎜⎝
‖ z̄1 − z̃1 ‖
...

‖ z̄N − z̃N ‖

⎞
⎟⎠ , (35)

where

Γ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
β12

γ1
· · · β1N−1

γ1

β1N

γ1
β21

γ2
0 · · · β2N−1

γ2

β2N

γ2
...

...
βN1

γN

βN2

γN
· · · βN N−1

γN
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Taking into account Assumption P, [11, Lemma 5.13.14] implies that Γ has spectral
radius less than 1 (see [17, Proposition 12.7] for details) thus concluding the proof.

��
The significance of the previous result is that it fits very well with the results in

Sect. 4. In fact, note that the parameter α can be chosen large enough so that the HVI
(K , Fk, εkh) in Step 2 of Algorithm 1, where Fk � F + εkΦ + α(• − xk), can be
solved by the distributed algorithm described in this section, provided that the pair
(K , h) has the required Cartesian structure. The upshot is that we can finally obtain a
desired distributed algorithm for the solution of HVIs and, on the basis of the results
in Sect. 3, also of VI-C HVIs with side constraints.

Corollary 1 Consider the HVI (K , F + εkΦ + α(• − xk), εkh) (arising from Step 2
of Algorithm 1) and suppose that F andΦ are Lipschitz continuous on K with moduli
L F and LΦ , respectively, and that all γν are nonnegative. Let ε̄ be such that εk ≤ ε̄
for all k and let α be a positive constant such that

α > ᾱ
�=
⎛
⎝ max

1≤ν≤N

∑
μ�=ν

(βνμ + ε̄LΦ)

⎞
⎠− min

1≤ν≤N
γν, (36)
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where βνμ and γν are the constants defined in Assumption P, with G = F. Then
all subproblems appearing at Step 2 of Algorithm 1 can be solved by the distributed
Algorithm 2.

Proof According to Theorem 3 we only need to show that the matrix ϒ associated
with a generic HVI (K , F + εkΦ + α(• − xk), εkh) has the P-property. Invoking
[11, Lemma 5.13.14] this is equivalent to the following matrix

⎡
⎢⎢⎢⎢⎣

0
β12 + ε̄LΦ
γ1 + α . . .

β1N + ε̄LΦ
γ1 + α

...
...

βN1 + ε̄LΦ
γN + α . . .

βN (N−1) + ε̄LΦ
γN + α 0

⎤
⎥⎥⎥⎥⎦

having spectral radius less than 1. It can now be checked that (36) guarantees this latter
condition by Gershgorin circle theorem. ��
Note that this Corollary clarifies very well the role of α, at least from the point of

view of the distributed implementation of the algorithm: it ensures that enough strong
monotonicity is present; and in fact the larger the γν , the smaller α can be.

6 VI-C minimization problems

A particularly important case of the general HVI is the hierarchical minimization
problem (2), whose stationarity condition is precisely the VI-C VI (K , F,∇ψ). The
developments in the previous sections can certainly be applied to this VI when ψ is a
convex function. In this case, a simple level-set condition can be given to ensure the
boundedness of the set L in assumption (F). Indeed, we have

L =
{

x ∈ K | ∃ y ∈ argmin
z∈SOL(K ,F)

ψ(z) such that ∇ψ(x)T ( y − x) > 0

}

⊆
{

x ∈ K | ψ(x) < minimum
y∈SOL(K ,F)

ψ(y)

}
.

Thus, if ψ has bounded level sets on K , then L is bounded.
It turns out that the convex case can be used as the basis for designing iterative

feasible descent methods [3] for computing a stationary point of (2) when ψ is not
convex; such a point is by definition a solution to the VI-C VI (K , F,∇ψ). This class
of algorithms requires the calculation of a search direction that involves the solution
of a VI constrained optimization problem with a linear, or convex quadratic objective
function. Algorithm 1 can be used as a “black-box” for computing such a direction. A
line-search is then performed. In what follows, we present a scaled projected gradient
method as an illustration of the overall iterative procedure for solving the VI-C VI
(K , F,∇ψ) with a nonconvex ψ .

Convergence of Algorithm 3 follows easily from standard results, once one can
show that it is well defined.
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Algorithm 3: A descent method for non-convex ψ
(S.0): Choose x0 ∈ K , β ∈ (0, 1), δ ∈ (0, 1) and set k = 0.
(S.1): If xk ∈ SOL(SOL(K , F),∇ψ), stop.
(S.2): Use Algorithm 1 to calculate a solution yk of the following problem: (37)

minimize
y∈SOL(K ,F)

∇ψ(xk )
T y + 1

2 yT Qk y,

where Qk is a symmetric positive semidefinite matrix. Set dk � yk − xk .
(S.3): Compute the smallest nonnegative integer i such that (38)
ψ(xk + βi dk ) ≤ ψ(xk )+ δβi∇ψ(xk )

T dk
and set xk+1 � xk + βi dk .
(S.4): Set k ← k + 1 and return to Step 1.

Theorem 4 Consider the VI-C VI (K , F,∇ψ), with ψ continuously differentiable
on K . Suppose that the assumptions (A), (B), and (C) hold and the matrices Qk are
uniformly positive definite, i.e. m‖d‖2 ≤ dT Qkd ≤ M‖d‖2 for some positive m and
M and for all d ∈ R

n. Then Algorithm 3 is well defined and every limit point of the
sequence {xk} it generates is a stationary point of the minimization problem (2).

Proof We only need to show that we are able to solve subproblem (37); convergence
then follows by well-established results on the conditional gradient method, see for
example [3]. Subproblem (37) is just the VI-C HVI (K , F, 0, hk), where hk(y) �
∇ψ(xk)

T y + 1
2 yT Qk y; so it is enough to check that (A–F) hold for this subproblem.

Conditions (A–C) hold by assumption. Condition (D) obviously holds and (E) is
satisfied because Qk is positive definite. Finally (F) holds because of the discussion
at the beginning of this section, by noting the level sets of hk are clearly bounded. ��

7 An application to a rate maximization game

In this section, we illustrate the application of the theoretical framework developed
in the paper to a resource allocation problem in wireless networks, namely the power
control problem over parallel Gaussian interference channels (IC). This problem in
fact provided the motivation of our work and, in particular, the need of devising distrib-
uted solution methods of monotone VI-constraints (Hemi)VIs. We begin with a very
informal description of the problem and then give a more detailed technical account.

System model. The IC model is of great interest in the signal processing and commu-
nications community; it is in fact sufficiently general to encompass many multiuser
communication systems of practical interest, such as peer-to-peer networks, digital
subscriber lines (DSL), wireless frequency-selective ad-hoc networks, and orthogo-
nal frequency-division multiplexing (OFDM)/time division multiple access (TDMA)
single/multicell cellular systems.

In the IC, there are Q transmitter-receiver pairs; each transmitter wants to com-
municate with its corresponding receiver over a set of N independent noisy channels;
these channels may represent either time or frequency physical channels (here, for the
sake of terminology and without loss of generality, we consider transmissions over
ICs in the frequency domain, termed as frequency-selective ICs). We associate with
each of the Q users a nonnegative vector variable p ν � (p νn )

N
n=1 ≥ 0, representing
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the power allocated over the N channels by the transmission-receiver pair ν. As such,
these variables satisfy some bound constraints 0 ≤ pνn ≤ pν,max

n , ν = 1, . . . , Q,
n = 1, . . . , N , where pν,max

n are given upper bounds; technically, they represent
the so-called “mask constraints”, imposed by the regulator to limit the amount of
power radiated by user ν over licensed bands. Furthermore, each transmitter has a
power budget limit denoted by Pν , so that the power vector p ν is constrained to∑N

n=1 p νn ≤ Pν . The set of power constraints of each user ν is thus defined as

P ν �
{

pν ∈ R
N+ :

N∑
n=1

p νn ≤ Pν, 0 ≤ pν ≤ pν,max � (pν,max
n )N

n=1

}
. (39)

The IC is used to model practical multiuser systems that do not have any infrastruc-
ture, meaning that there is neither a centralized authority scheduling the transmissions
in the network nor coordination among the users. It follows that the communications
of the Q pairs may occur simultaneously; this implies that, in addition to the desired
signal, each user receives also the signal transmitted by the other Q−1 pairs, which is
an undesired signal, termed as Multi-User Interference (MUI). Stated in mathematical
terms, the quality of the transmission of each pair ν over the channel n is measured
by the Signal-to-Noise-plus-Interference ratio (SINR):

SINR ν
n (p

ν
n , p−νn ) = |Hνν(n)|2 p νn

σ νn
2 +∑μ�=ν |Hνμ(n)|2 pμn

, (40)

where |Hνν(n)| > 0 is the channel gain of pair ν over the frequency band n, and
|Hνμ(n)| ≥ 0 is the (cross-)channel gain between the transmitterμ and the receiver ν;
σ νn

2 is the power spectral density (PSD) of the noise at receiver ν over the band n; and

p−νn �
(

p 1
n , . . . , pν−1

n , p ν+1
n , . . . , p Q

n

)
is the set of all the users power allocations

over the channel n, except the ν-th one. The useful power signal of pair ν over the
channel n is thus |Hνν(n)|2 p νn , whereas

∑
μ�=ν |Hνμ(n)|2 pμn is the PSD of MUI

measured by the receiver ν over the channel n. The overall performance of each
transmission ν is measured in terms of the maximum achievable information rate
rν(p ν, p−ν) over the set of the N parallel channels, which depends on the power
allocation of all the users (p ν, p−ν), with p−ν � (p 1, . . . , pν−1, p ν+1, . . . , p Q).
Under basic information theoretical assumptions (see, e.g., [36,43]) and given the
users’ power allocation profile p 1, . . . , pQ , rν(pν, p−ν) is

rν(pν, p−ν) =
N∑

n=1

log
(
1+ SINR ν

n (p
ν
n , p−νn )

)
. (41)

Problem Formulation. The system design consists of finding the optimal power allo-
cation of the users in order to maximize the information rates of the links, according
to some performance metrics. A natural objective function would be the sum-rate of
the users

∑Q
ν=1 rν(p). However, the resulting optimization problem has been showed

to be NP hard [25]. Several attempts have been pursued in the literature to deal with
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the nonconvexity of such a problem; however all the proposed schemes are centralized
and computationally expensive, which makes them non-implementable in a network
with no infrastructure. Thus, it seems natural to concentrate on decentralized power
control solutions, where the users are able to self-enforce the negotiated agreements on
the usage of the available spectrum without the intervention of a centralized authority.
This motivates the formulation of the system design as a Nash Equilibrium Problem
(NEP): the aim of each player (link) ν, given the strategy profile p−ν of the others, is
to choose a feasible power allocation p ν that maximizes the rate r ν(p ν, p−ν), i.e.,

maximize
p ν

r ν(p ν, p−ν) (42)

subject to p ν ∈ P ν,

for all ν = 1, . . . , Q, where P ν and r ν(p ν, p−ν) are defined in (39) and (41),
respectively. We will denote the above NEP as G =< P, (ri )

Q
i=1 >, with P �

∏
ν P ν .

In this setting, the design aim becomes the computation of a Nash Equilibrium (NE),
i.e., the calculation of power allocation p � such that pν,� is optimal for (42), given
p−ν,�.

Note that, for any fixed p−ν ≥ 0, the single-user optimization problem in (42)
admits a unique solution pν, �, given by the well-known waterfilling expression
[36,43]:

pν, �n = wf νn
(

p−νn

)
�
(
λν − σ

ν
n

2 +∑μ�=ν |Hνμ(n)|2 pμn

|Hνν(n)|2
)+

, (43)

with n = 1, . . . , N , where [x]+ � max(0, x), p−νn � (p 1
n , . . . , pν−1

n , p ν+1
n , . . . ,

p Q
n ) and the waterlevel λν is chosen to satisfy the transmit power constraint∑N

n=1 p�νn = Pν ; λν can be computed very efficiently in at most N extremely simple
steps. Interestingly, the best-response (43) can be computed locally and distributively
by the players, since each user only needs to measure the overall interference-plus-
noise PSD σνn

2+∑μ�=ν |Hνμ(n)|2 pμn and “waterfill” over it. The Nash equilibria p� of

the NEP are thus the fixed-points of the waterfilling mapping wf(p) � (wf ν(p−ν))Q
ν=1,

with wf ν(p−ν) � (wf νn
(

p−νn

)
)N
n=1.

Related Work. Since the seminal paper of Yu et al. [43] in 2002 (and the conference
version in 2001), the NEP G has been studied in a number of works during the past
nine years for the case of SISO frequency-selective channels or, equivalently, a set of
parallel non-interfering scalar channels [23,34–37,43]. Several sufficient conditions
have been derived that guarantee the uniqueness of the Nash Equilibrium (NE) and the
convergence of alternative distributed waterfilling based algorithms; the state-of-the-
art algorithm is the asynchronous iterative waterfilling algorithm (IWFA) [37]. In this
algorithm, all the users update their power allocation according to the best-response
waterfilling solution (43) in a totally asynchronous way (in the sense of [37]), meaning
that some users may update their power allocation more frequently than others and
they may even use an outdated measurement of the MUI caused from the others. These
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features make the asynchronous IWFA appealing for many practical scenarios, either
wired or wireless, since it strongly relaxes the constraints on the synchronization of
the users updates with respect to those imposed, for example, by the simultaneous or
sequential updating schemes.

The main properties of the NEP G are summarized in Theorem 5 below, where the set
P is defined as P in (39) but with the power budget inequalities

∑
n p νn ≤ P ν , replaced

by
∑

n p νn = P ν for all ν = 1, . . . , Q, and the vector function F(p) � (F ν(p))Q
ν=1

and the matrices M � (Mνμ)
Q
ν, μ=1 ∈ R

N Q×N Q and � ∈ R
Q×Q are defined as

F ν(p) = σ̂ ν +
Q∑
μ=1

Mνμ p μ, (44)

with

σ̂ ν �
(

σ νn
2

|Hνν(n)|2
)N

n=1

and Mνμ � diag

{( |Hνμ(n)|2
|Hνν(n)|2

)N

n=1

}
.

and

[�]νμ �

⎧⎨
⎩

1, i f ν = μ;
−maxn

|Hνμ(n)|2
|Hνν(n)|2 , otherwise.

(45)

Theorem 5 Given the NEP G =< P, (ri )
Q
i=1 >, then the following hold.

(a) The NEP is equivalent to the affine VI(P, F) [23], which has a nonempty and
bounded solution set;

(b) If M is positive definite (semidefinite), then the VI(P, F) is strongly monotone
(monotone); therefore, if M is positive definite, G has a unique NE;

(c) If � is a P-matrix, then the asynchronous IWFA based on the waterfilling
best-response (43) converges to the unique Nash equilibrium of G [37].

Theorem 5, which represents the state-of-the-art results on G, provides a satisfac-
tory characterization of G (namely, conditions for the existence/ uniqueness of the
solution and global convergence of distributed algorithms) when M is positive def-
inite. Interestingly, such a condition has also a physical interpretation: it quantifies
the maximum level of MUI that can be tolerated in the system for the asynchronous
IWFA to converge to the (unique) NE of the game. However, the positive definiteness
of M may be too restrictive in practice; there are indeed networks having multiple
Nash equilibria and thus for which M cannot be positive definite; roughly speaking,
this happens, for example, when the users are located quite close to each other. In such
cases, the asynchronous IWFA is not longer guaranteed to converge, and the calcula-
tion of even a single NE becomes a complex task. If M is positive semidefinite, the
VI(P, F) is monotone, implying that one could apply double loop schemes based on
Tikhonov [15, Algorithm 12.2.9] or proximal [15, Algorithm 12.3.8] regularization to
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the VI(P, F) and still compute a Nash equilibrium of G. The main drawback of these
algorithms is that they may converge to any of the solutions of G, meaning that there
is no a priori guarantee or control about the quality of the solution they reach and thus
the achievable performance of the network. This unpredictable behaviour makes the
aforementioned algorithms not applicable to design real systems.

We would like instead to develop distributed solution schemes for the monotone
NEP G that converge to the “best” NE, according to some prescribed criterion, while
keeping the same desired feature of the asynchronous IWFA (e.g., distributed imple-
mentation, low signalling/coordination among the users, etc. . .). Up to date, no method
has been proposed to select one specific NE, in case of multiple solutions. The frame-
work developed in this paper provides a satisfactory answer to this issue. The first step
is to choose a merit function that quantifies the quality of a NE. Different heuristics
can be used; as an example, here we focus on the following merit function: given the
vector w � (wν)

Q
ν=1 ≥ 0, let

φ(p) �
Q∑
ν=1

wν
∑
μ�=ν

N∑
n=1

|Hνμ(n)|2 pμn . (46)

This choice is motivated by the intuition that among all the Nash equilibria of G, a good
candidate is the one that minimizes the overall interference among the users, resulting
in a “higher” value of the sum-rate function

∑Q
ν=1 r ν(p). The NE selection problem

based on the merit function φ can be then formulated as a hierarchical optimization
problem with VI constraints:

minimize
p ∈SOL(P, F)

φ(p), (47)

which is an instance of the more general VI-C HVI. We can then use the machinery
developed in the previous sections to successfully study problem (47) and devise
distributed iterative algorithms. In particular, (47) can be solved using Algorithm 1,
where the VI-C HVI reduces to VI-C HVI(P, F,∇φ, 0) and the sub-HVI at iteration
k given p(k) ∈ P corresponds to the VI

VI
(
P, F + εk∇φ + α

(
• − p(k)

))
. (48)

The convergence of Algorithm 1 applied to (47) is guaranteed under the conditions of
Theorem 2; note that assumptions (A, C, D, E) in the theorem are readily satisfied by
(47), and assumption (B) is equivalent to the positive semidefiniteness of matrix M .

The last thing left to discuss is how to compute in a distributed way a(n approximate)
solution of the sub-VIs in (48). We can readily use Algorithm 2; it follows from
Theorem 3 indeed that Algorithm 2 globally converges to the unique solution of the
VI in (48) if the matrix

�α � �+ α I
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with � defined in (45), is a P-matrix, which is guaranteed for any α sufficiently large
(see Corollary 1). Interestingly, such an algorithm can be implemented in a distributed
way, without requiring any signalling among the users; indeed, given εk and p(k), at
each iteration, every user ν solves the quadratic optimization problem: given p−ν ≥ 0,

minimize
p ν∈Pν

1

2

∥∥∥∥∥∥
p ν+
⎛
⎝σ̂ ν+

Q∑
μ�=ν

Mνμ p μ

⎞
⎠
∥∥∥∥∥∥

2

+εk γ
νT pν + α

2

∥∥∥p ν − p(k),ν
∥∥∥

2
,

(49)

where γ ν � (
∑
μ�=ν wμ |Hμν(n)|2)N

n=1. The solution of (49), has a similar
waterfilling-like expression as (43) and thus can be efficiently and locally computed,
given the MUI σ̂ ν +∑Q

μ�=ν Mνμ p μ measured at each receiver ν, p(k), ν , and εk . The
asynchronous implementation of Algorithm 2 is also possible, whose convergence is
guaranteed under the same P property of matrix �α .

Remark 6 Overall, in Algorithm 1 applied to (47), there are two levels of updates: (1)
the computation of the users’ optimal power allocations [the (approximate) solution
of the sub-VI (48)], given p(k), ν ∈ P and εk ; and (2) the updates of p(k), ν and εk ,
after checking that the termination condition in Step 2 is satisfied. The former can be
performed locally and distributively by the users as previously discussed. The check
of the termination condition in the latter can be certainly accomplished but it is a
rather technical issue and we refer to [38] for practical implementations of this check,
under different level of signalling and supervision. It turns out that Algorithm 1 has
the same desired properties as the asynchronous IWFA [37]: it is fairly distributed and
requires a limited signalling/coordination among the users, which makes it appealing
for a practical implementation in telecommunication networks.

Numerical Results. We compare now the performance of our new algorithm with
those of the IWFA, which is the state-of-the-art algorithm proposed in the literature
[23,36–38] for solving the rate maximization game G.

In Fig. 1, we plot the sum-rate of the users
∑Q
ν=1 rν(p) versus the iteration index,

achieved by the following algorithms: (1) The simultaneous IWFA [36] based on the
waterfilling map wf(p) (dashed-dot line curve); (2) Algorithm 1 applied to (47) (solid
line curve), with w = 1; and (3) Algorithm 1 applied to (47), where φ(p) in (46) is
replaced by −φ(p) and w = 1. The solution of each sub-VI (48) in the inner loop of
Algorithm 1 is computed using Algorithm 2. The choice of the merit function−φ(p)
leads to the selection of the NE solution that maximizes the overall MUI in the system,
which provides a benchmark of the sum-rate variability and an estimate of the worst-
case performance over the set of the Nash equilibria of the game G. We count one
iteration of Algorithm 1 as one iteration of the inner Jacobi scheme (Algorithm 2),
which corresponds to a physical transmission of the users.

We examined the behaviour of the above algorithms under the following setup.
We considered an ad-hoc network where there are Q = 25 active users; the (cross-
)channels among the links are simulated as FIR filter of order L = 10, where each
tap is a zero mean complex Gaussian random variable with variance equal to 1/L;
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Fig. 1 Comparison of distributed algorithms solving the game G: sum-rate of the users versus the iteration
index, achieved by the simultaneous IWFA (dashed-dot line curve), Algorithm 1 based on the outer function
φ(p) in (46) (solid line curve), and Algorithm 1 based on the outer function−φ(p) (dashed line curve), in
the low/medium interference regime (i.e., M is positive definite) and high interference regime (i.e., M is
positive semidefinite)

the channel transfer functions are the FFT of the corresponding impulse responses
over N = 128 points (carriers). We focused on two scenarios, namely low/medium
interference and high interference scenario. Low/medium interference means that the
channel realizations are such that the matrix M is positive definite, whereas in the high
interference case M is positive semidefinite. The thermal noise variance σνn

2 is set to
one for all n and ν, and the transmit power budget Pν is chosen so that the Signal-to-
Noise-Ratio (SNR) of each user SNRν � 10 log10(P

ν/σ νn
2) = 5 dB for all ν and n. All

the algorithms are initialized by the same starting point, chosen randomly in the set P ,
and are terminated when the Euclidean norm of the error in two consecutive iterations
becomes smaller than 10−6. In the inner loop of Algorithm 1, we chose the center p(0)

of the regularization randomly in P, α = 3.5, and εk = ε0/(1 + k), where ε0 = 0.5
and k is the iteration index of the outer loop; the termination criterion of the inner loop
is the same as the outer loop. The above choice of the free parameters is the result of
some preliminary tests; it is important to remark however that the proposed algorithm
has been observed to be robust against the variation of the aforementioned parameters.
Finally, note that, in case of multiple solutions, the IWFA is not guaranteed to converge
[36]. In fact, in our experiments, we sometimes observed oscillating behaviours of the
IWFA. In such cases, following a common approach in signal processing, we just
terminated the algorithm after 250 iterations and used as power allocation for the
transmission of the users the value obtained in the last iteration.

The following comments are in order from Fig. 1. In the case of multiple Nash
equilibria of the game G (high interference scenario), the sum-rate performance of the
network can vary significantly over the set of the Nash equilibria; the relative sum-rate
gap between the“worst” and “best” Nash equilibrium is around 90 %. Interestingly, our
algorithm is shown to significantly outperform the classical IWFA, which validates
our heuristic (46) in choosing the Nash equilibrium. When the NE of the game is
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(a)

(b)

Fig. 2 Average sum-rate versus the SNR [subplot (a)] and outage sum-rate [subplot (b)] at the Nash
equilibria of G: simultaneous IWFA (dashed-dot line curve), Algorithm 1 based on the outer function φ(p)
in (46) (solid line curve), and Algorithm 1 based on the outer function −φ(p) (dashed line curve)

unique, as expected, both the IWFA and our algorithm converge to the same sum-rate
solution. Finally, note that even though our algorithm is in principle a double-loop
scheme, its convergence speed (measured in terms of number of iterations required
to reach the desired error accuracy) is as the same order as the simultaneous (single
loop) IWFA; this is due to the fact that the best-response Jacobi scheme used in the
inner loop converges quite fast, typically in three/four iterations.

Figure 1 refers to a specific channel scenario (realization); nevertheless, it has
been observed that the qualitative behaviour of the simulated algorithms is almost
independent of the specific channel realization (provided that the matrix M remains
positive semidefinite), making the conclusions drawn from Fig. 1 very general. This is
confirmed also by Fig. 2, where we provide the average performance of the algorithms
considered in Fig. 1. More specifically, in Fig. 2a we plotted the average sum-rate
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versus the SNR � 10 log10(P), with Pν = P and σνn
2 = 1 for all ν and k, achievable

at the NE reached by the simultaneous IWFA and our Algorithm 1; for each value of the
SNR, the curves are averaged over 5,000 random channel realizations, chosen so that
the matrix M is positive semidefinite. In Fig. 2b we plotted the outage sum-rate (which
is the probability that

∑Q
ν=1 rν(p) ≥ sr) versus sr, achieved by the aforementioned

algorithms, for a SNR � P = 5 dB; as in Fig. 2b, the outage probability has been
estimated using 5000 channel realizations, chosen so that the matrix M is positive
semidefinite. The free parameters are chosen as in Fig. 1. The outage probability
provides a quantitative indication of the dispersion of the sum-rate values (as a function
of the random channels) around the mean value: the higher the slope of the outage
curves, the less the dispersion of the sum-rate around its mean. We would like to
have each sum-rate realization as close as possible to its mean, so that the average
performance as given in Fig. 2a are meaningful in practice. Note that the discrepancy in
the sum-rate gap between Algorithm 1 and the IWFA as observed in Figs. 1 and 2 is due
to the oscillating behaviour of the IWFA experienced for some channel realizations.
The following remarks are in order from Fig. 2. As expected, the performance of all
the examined algorithms are almost the same in low SNR regime (roughly speaking
when SNR ≤ −5 dB), since in that regime the thermal noise dominates the MUI
term at the denominator of the SINR, and thus the pairs behave like decoupled links;
for medium/high SNR’s (i.e., when the MUI is the dominant factor), the proposed
algorithm significantly outperforms the state-of-the-art IWFA, which makes it a good
candidate for the design of infrastructureless networks.

8 Conclusions

In this paper we have studied algorithms for the solution of a hemivariational inequality
whose feasible set is given by the intersection of a closed convex set with the solution
set of a monotone variational inequality. A complete convergence theory is developed
covering both centralized and distributed solution methods. We remark, in particular,
that our distributed methods seem to be the first proposal of this type even in the
simpler, and relatively well researched field of hierarchical optimization. The main
assumptions needed for the centralized algorithm are (A)–(E) discussed in Sect. 2 and
the boundedness condition (F) described in Sect. 4. Although these assumptions can
possibly be slightly relaxed we believe that it would be more interesting to get a better
understanding of the convergence properties of the Distributed Algorithm 2, which
currently is based on Assumption P (see Sect. 5). In fact, Assumption P is a somewhat
strong assumption and practical experiments show that the Distributed Algorithm 2
often works even when this assumption is violated. Certainly this analysis should
be carried out also taking into account realistic settings derived from applications.
We have used our results to solve a problem of power control in ad-hoc networks
obtaining very good results. In this setting Assumption P becomes a very clear and
natural requirement on the interference level that can be tolerated by the system. And
indeed, it would seem that telecommunications can provide many settings where the
techniques developed in this paper can usefully be used, especially in networking. But,
as the discussion in the introduction clearly shows, our results apply more generally to
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the Nash equilibrium selection problem, thus paving the way to applications in many
different fields, see, for example [14].
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