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Abstract We propose to solve a general quasi-variational inequality by using its
Karush–Kuhn–Tucker conditions. To this end we use a globally convergent algorithm
based on a potential reduction approach. We establish global convergence results for
many interesting instances of quasi-variational inequalities, vastly broadening the class
of problems that can be solved with theoretical guarantees. Our numerical testings are
very promising and show the practical viability of the approach.
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1 Introduction

We propose and analyze a globally convergent algorithm for the solution of a finite-
dimensional quasi-variational inequality (QVI), which is the problem of finding a
point x∗ ∈ K (x∗) such that
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370 F. Facchinei et al.

F(x∗)T (y − x∗) ≥ 0, ∀y ∈ K (x∗), (1)

where F : Rn → R
n is a (point-to-point) mapping and K : Rn ⇒ R

n is a point-to-set
mapping with closed and convex images.

QVIs were introduced by Bensoussan and Lions in a series of papers [4–6] in
connection with the study of impulse control problems and soon they turned out to be
a powerful modeling tool capable of describing complex equilibrium situations that
can appear in such different fields as generalized Nash games (see e.g. [3,24,27,44]),
mechanics (see e.g. [2,7,25,29,38,39]), economics (see e.g. [27,48]), statistics (see
e.g. [28]), transportation (see e.g. [8,11]), and biology (see e.g. [23]). We refer the
reader to the monographs of Mosco [33] and Baiocchi and Capelo [2] for a more
compehensive analysis of QVIs.

In spite of their modeling power, relatively few studies have been devoted to
the numerical solution of finite-dimensional QVIs; a topic which, beside being of
great interest in its own, also forms the backbone of solution methods for infinite-
dimensional QVIs. Motivated by earlier research on the implicit complementarity
problem [33,41,42], Chan and Pang introduced in [9] what is probably the first glob-
ally convergent algorithm for a QVI. In this seminal paper, the authors use a fixed point
argument to prove convergence of a projection-type algorithm in the case in which
K (x) = c(x) + Q, where Q is a closed convex set and c : R

n → R
n a mapping

satisfying certain conditions. It is safe to say that practically all subsequent papers,
where globally convergent algorithms are analyzed, consider variants or extensions
of the basic setting proposed in [9] and also follow the fixed point approach, see
e.g. [34–36,45,47] and references therein. In a departure from this setting, Pang and
Fukushima [44] proposed a sequential penalty approach to general QVIs. The method
in [44] reduces the solution of a QVI to the solution of a sequence of variational
inequalities (VIs); however, even if this approach is very interesting and promising,
its global convergence properties are in jeopardy since they ultimately hinge of the
capability of solving a sequence of possibly very challenging VIs. More recently,
Fukushima [20] studied a class of gap functions for QVIs, reducing the solution of a
QVI to the global minimization of a nondifferentiable gap function, but no algorithms
are explicitly proposed in [20] (see [30] for a further and more detailed application of
this approach in a specialized game setting). This essentially completes the picture of
globally convergent proposals for the solution of QVIs. We also mention that Outrata
and co-workers studied some interesting local Newton methods, see [38–40], but the
globalization of these methods is not discussed.

In this paper we propose a totally different approach to the solution of a QVI.
Assuming that the feasible set mapping K (·) is described by a finite number of para-
metric inequalities, we consider the Karush–Kuhn–Tucker (KKT) conditions of the
QVI, reformulate them as a system of constrained equations and then apply an interior-
point method. It turns out that the convergence properties of the resulting algorithm
depend essentially on the nonsingularity of a certain Jacobian matrix JH . Our main
contributions are therefore:

– An in-depth analysis of the nonsingularity of JH , showing that global convergence
of the proposed method can be obtained in the case in which K (x) = c(x) + Q,
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QVIs and KKT conditions 371

but also in many other situations covering a wide array of new and significant
settings, thus enlarging considerably the range of QVIs that it is possible to solve
with theoretical guarantees;

– A discussion of the boundedness of the sequence generated by the algorithm;
– A numerical testing on a set of test problems demonstrating the effectiveness of

the new method and its robustness even if compared to the PATH solver [19].
We remark that our set of test problems is by far the largest in the literature and
includes problems with up to 4,900 variables and 4,900 constraints.

The approach we consider in this paper is based on an interior-point-like frame-
work introduced in [32] and it can be viewed as a generalization of the method pro-
posed in [14] for the solution of Generalized Nash Equilibrium Problems (GNEPs).
Indeed, it is well-known that, under mild conditions, GNEPs can be reformu-
lated as QVIs, so that the extension might appear quite natural. But we remark
that the technical issues that we must deal with when facing a QVI are consid-
erably different from those encountered in the analysis of GNEPs. This forced us
to take a quite different path from that used in [14] and, as a consequence, the
results in this paper are considerably deeper than those in [14], and the analy-
sis is more sophisticated. This is shown also by the fact that, when we specialize
some of the results in this paper to the GNEP setting, we improve on the results of
[14].

The paper is organized as follows. In the next section, we first describe in detail
our setting and then, based on the general framework introduced in [32], introduce
the interior-point algorithm along with its main convergence properties. In Sect. 3, we
identify several classes of QVIs for which the nonsingularity of JH can be established.
Section 4 deals with the boundedness of the sequence generated by our algorithm while
in Sect. 5 we report the results of our numerical experimentation. Some definitions
and auxiliary results are discussed and proved in the “Appendix”.

Notation R+ denotes the set of nonnegative numbers, while R++ is the set of pos-
itive numbers. The symbol ‖v‖ denotes the Euclidean norm of a vector v ∈ R

n .
Similarly, given a matrix M ∈ R

m×n, ‖M‖ is the spectral norm, i.e. the norm induced
by the Euclidean vector norm. We recall that ‖M‖ = max{√λ | λ is an eigenvalue
of M T M}. The spectral norm is compatible with the Euclidean norm in the sense
that ‖Mv‖ ≤ ‖M‖‖v‖. For a differentiable mapping F : R

n → R
m , we denote

its Jacobian at x by JF(x), whereas ∇F(x) is the transposed Jacobian. Similarly,
when F : R

n × R
n → R

m depends on two sets of variables (y, x), the notation
Jy F(y, x) and ∇y F(y, x) denote the corresponding partial Jacobian and its trans-
pose, respectively, where the derivatives are taken only with respect to y. A matrix
A ∈ R

n×n (not necessarily symmetric) is positive semidefinite (definite) if x T Ax ≥ 0
holds for all x ∈ R

n (x T Ax > 0 for all x ∈ R
n \ {0}), whereas A ∈ R

n×n is
a P0-matrix (P-matrix) if, for each x �= 0, there exists an index j ∈ {1, . . . , n}
such that x j �= 0 and x j [Ax] j ≥ 0 (x j [Ax] j > 0). Note that every positive semi-
definite (definite) matrix is a P0-matrix (P-matrix). For more details, we refer to
[10]. The symbol μm(A) denotes the minimum eigenvalue of a square, symmet-
ric matrix A, whereas μ+m(A) denotes its minimum positive eigenvalue. Similarly,
μs

m(A) indicates the minimum eigenvalue of the symmetric part of the square matrix
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372 F. Facchinei et al.

A, that is the minimum eigenvalue of the matrix 1
2 (AT + A). Finally, given two vec-

tors x, y ∈ R
n , we denote by x ◦ y := (xi yi )

n
i=1 ∈ R

n their Hadamard (compo-
nentwise) product, by x−1 its componentwise inverse vector

( 1
x1

, . . . , 1
xn

)
and by

y/x := y ◦ x−1 the componentwise quotient of two vectors (provided that xi �= 0 for
all i).

2 Problem definition and interior-point algorithm

Let F : R
n → R

n be a (point-to-point) continuous mapping and K : R
n ⇒ R

n a
point-to-set mapping with closed and convex images. The Quasi-Variational Inequal-
ity QVI (K , F) is the problem of finding a point x∗ ∈ K (x∗) such that (1) holds.
For sake of simplicity, we always assume that all functions involved are defined
over R

n , even if this request could easily be weakened. A particularly well known
and studied case occurs when K (x) is actually independent of x , so that, for all
x, K (x) = K for some closed convex set K . In this case, the QVI becomes the
Variational Inequality VI (K , F), that is the problem of finding x∗ ∈ K such that
F(x∗)T (y− x∗) ≥ 0, ∀y ∈ K . For this latter problem, an extensive theory exists, see
for example [18].

In most practical settings, the point-to-set mapping K is defined through a para-
metric set of inequality constraints:

K (x) := {y ∈ R
n | g(y, x) ≤ 0}, (2)

where g : Rn × R
n → R

m . We will use the following assumption.

Assumption 1 gi (·, x) is convex and continuously differentiable on R
n , for each

x ∈ R
n and for each i = 1, . . . , m.

The convexity of gi (·, x) is obviously needed in order to guarantee that K (x) be
convex, while we require the differentiability assumption to be able to write down the
KKT conditions of the QVI. We say that a point x ∈ R

n satisfies the KKT conditions
if multipliers λ ∈ R

m exist such that

F(x)+ ∇y g(x, x)λ = 0,

0 ≤ λ ⊥ g(x, x)≤0.
(3)

Note that g(x, x) ≤ 0 means that x ∈ K (x) and recall that ∇y g(x, x) indicates the
partial transposed Jacobian of g(y, x) with respect to y evaluated at y = x . These
KKT conditions parallel the classical KKT conditions for a VI, see [18], and it is quite
easy to show the following result, whose proof we omit.

Theorem 1 Suppose Assumption 1 holds. If a point x, together with a suitable vector
λ ∈ R

m of multipliers, satisfies the KKT system (3), then x is a solution of the QVI
(K , F). Vice versa, if x is a solution of the QVI (K , F) and the constraints g(·, x)

satisfy any standard constraint qualification, then multipliers λ ∈ R
m exist such that

the pair (x, λ) satisfies the KKT conditions (3).
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QVIs and KKT conditions 373

In the theorem above, by “any standard constraint qualification” we mean any classical
optimization constraint qualification for g(·, x) at y = x such as the linear indepen-
dence of the active constraints, the Mangasarian–Fromovitz constraint qualification,
Slater’s one and so on.

The KKT conditions (3) are central to our approach as our solution algo-
rithm aims at finding KKT points of the QVI (K , F). In view of Theorem 1,
the solution of these KKT conditions is essentially equivalent to the solution
of the underlying QVI and, in any case whenever we can find a solution of
the KKT conditions, we are sure that the corresponding x-part solves the QVI
itself.

As we already mentioned, we propose to solve the KKT conditions (3) by
an interior-point method designed to solve constrained systems of equations.
In order to reformulate system (3) as a constrained system of equations (CE
for short), we introduce slack variables w ∈ R

m and consider the CE sys-
tem

H(z) = 0, z = (x, λ,w) ∈ Z (4)

with

H(x, λ,w) :=
⎛

⎝
L(x, λ)

h(x)+ w

λ ◦ w

⎞

⎠

and where

L(x, λ) := F(x)+ ∇y g(x, x)λ, h(x) := g(x, x) (5)

and

Z := {z = (x, λ,w) | x ∈ R
n, λ ∈ R

m+, w ∈ R
m+}.

It is clear that the couple (x, λ) solves system (3) if and only if (x, λ), together with
a suitable w, solves the CE (4). From now on, we will aim at solving the CE (4) by
the interior-point method described next.

Let p : Rn × R
m++ × R

m++ → R be the function

p(u, v) := ζ log(‖u‖2 + ‖v‖2)−
2m∑

i=1

log(vi ),

(u, v) ∈ R
n × R

m++ × R
m++, ζ > m,

and let

ψ(z) := p(H(z))
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be the potential function of the CE, which is defined for all

z ∈ Z I := H−1(Rn × R
m++ × R

m++) ∩ int Z ,

where intZ denotes the interior of the set Z . In order to be able to define our potential
reduction interior-point method we need some further differentiability conditions.

Assumption 2 F(x), h(x) and ∇y g(x, x) are continuously differentiable on R
n .

The following algorithm is precisely the interior-point method from [32]; see also [18]
for further discussion and [14] for an inexact version.

Algorithm 1: Potential Reduction Algorithm (PRA) for QVIs

(S.0) : Choose z0 ∈ Z I , β, γ ∈ (0, 1), and set k := 0, aT = (0T
n , 1T

2m).

(S.1) : If H(zk) = 0: STOP.

(S.2) : Choose ρk ∈ [0, 1) and find a solution dk of the linear system

JH(zk)dk = −H(zk)+ ρk
aT H(zk)

‖a‖2 a. (6)

(S.3) : Compute a stepsize tk := max
{
β� | � = 0, 1, 2, . . .

}
such that

zk + tkdk ∈ Z I

and

ψ(zk + tkdk) ≤ ψ(zk)+ γ tk∇ψ(zk)T dk . (7)

(S.4) : Set zk+1 := zk + tkdk, k ← k + 1, and go to (S.1).

Algorithm 1 is well-defined as long as the Jacobians JH(zk) in (6) are nonsingular.
Actually, the following theorem, which can be found in [32] and [18], shows that
this condition also guarantees that every limit point of the sequence generated by the
algorithm is a solution.

Theorem 2 Suppose that Assumptions 1 and 2 hold. Assume that JH(z) is nonsingular
for all z ∈ Z I , and that the sequence {ρk} from (S.2) of Algorithm 1 satisfies the
condition lim supk→∞ ρk < 1. Let {zk} be any sequence generated by Algorithm 1.
Then the following statements hold:

(a) the sequence {H(zk)} is bounded;
(b) any accumulation point of {zk} is a solution of CE (4).

In view of Theorem 2, the main question we must answer in order to make our approach
viable is: for which classes of QVIs can we guarantee that the Jacobian matrices JH(z)
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QVIs and KKT conditions 375

are nonsingular for all z ∈ Z I ? A related, albeit practically less crucial, question is
whether we can guarantee that the sequence {zk} generated by Algorithm 1 is bounded.
This obviously would guarantee that the algorithm actually has at least a limit point
and therefore that a solution is certainly found. The first question will be answered in
detail in the next section, whereas the second question will be dealt with in Sect. 4.

3 Nonsingularity conditions

As noted before, the main topic in order to guarantee global convergence of Algorithm
1 to a solution of CE (4) is the nonsingularity of JH(z). The structure of this Jacobian
is given by

JH(x, λ,w) =
⎛

⎜
⎝

Jx L(x, λ) ∇y g(x, x) 0

Jx h(x) 0 I

0 diag(w) diag(λ)

⎞

⎟
⎠ .

This section is devoted entirely to the study of QVI classes for which the nonsingularity
of JH can be established. It is not too difficult to give conditions that guarantee
the nonsingularity of JH ; what is less obvious is how we can establish sensible and
significant conditions for interesting classes of QVIs. This we achieve in two stages: in
the next subsection we give several sufficient or necessary and sufficient conditions for
the nonsingularity of JH which are then used in the following subsections to analyze
various QVI classes. In particular, we will discuss and establish nonsingularity results
for the following QVI classes:

– Problems where K (x) = c(x) + Q (the so called “moving set” case, already
mentioned in the introduction);

– Problems where K (x) is defined by a linear system of inequalities with a variable
right-hand side;

– Problems where K (x) is defined by box constraints with parametric upper and
lower bounds;

– Problems where K (x) is defined by “binary constraints”, i.e. parametric inequal-
ities g(x, y) ≤ 0 with each gi actually depending only on two variables: x j

and y j ;
– Problems where K (x) is defined by bilinear constraints.

While we refer the reader to the following subsections for a more accurate description
of the problem classes, we underline that, as far as we are aware of and with the
exception of the moving set case, these problem classes are all new and we can establish
here for the first time convergence results, according to Theorem 2.

3.1 General nonsingularity conditions

The results in this subsection do not make explicit reference to a specific structure of the
QVI and, in particular, of the feasible set mapping K . However, they are instrumental
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in proving the more specific results in the following subsections. The first result we
present is a necessary and sufficient condition for the nonsingularity of JH .

Theorem 3 Suppose that Assumptions 1 and 2 hold. Let (x, λ,w) ∈ R
n×R

m++×R
m++

be given. Then the matrix

N (x, λ,w) := Jx L(x, λ)+∇y g(x, x) diag
(
w−1 ◦ λ

)
Jx h(x) (8)

is nonsingular if and only if JH(x, λ,w) is nonsingular.

Proof We first prove the only-if-part. Let q = (
q(1), q(2), q(3)

)
be a suitably parti-

tioned vector such that JH(x, λ,w)q = 0. This equation can be rewritten in partitioned
form as

Jx L(x, λ)q(1) + ∇y g(x, x)q(2) = 0, (9)

Jx h(x)q(1) + q(3) = 0, (10)

diag(w)q(2) + diag(λ)q(3) = 0. (11)

Solving (11) for q(3) gives

q(3) = − diag
(
λ−1 ◦ w

)
q(2). (12)

Inserting this expression into (10) yields

Jx h(x)q(1) − diag
(
λ−1 ◦ w

)
q(2) = 0

which, in turn, gives

q(2) = diag
(
w−1 ◦ λ

)
Jx h(x)q(1). (13)

Substituting this expression into (9) finally yields

[
Jx L(x, λ)+∇y g(x, x) diag

(
w−1 ◦ λ

)
Jx h(x)

]
q(1) = 0.

However, the matrix in brackets is precisely the matrix N (x, λ,w) from (8) and,
therefore, nonsingular. Hence, it follows that q(1) = 0 which then also implies q(2) = 0
and q(3) = 0.

Now, to prove the if-part, we show that if N (x, λ,w) is singular, then JH(x, λ,w)

is singular, too. If N (x, λ,w) is singular, there exists a nonzero vector q(1) such that

[
Jx L(x, λ)+∇y g(x, x) diag

(
w−1 ◦ λ

)
Jx h(x)

]
q(1) = 0.

Now, let q(2) and q(3) be vectors defined by (13) and (12), respectively. Then (9)–(11)
hold, and hence JH(x, λ,w)q = 0 for q = (

q(1), q(2), q(3)
) �= 0. This shows that

JH(x, λ,w) is singular and, therefore, completes the proof. ��
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We next state a simple consequence of Theorem 3.

Corollary 1 Suppose that Assumptions 1 and 2 hold and let (x, λ,w) ∈ R
n×R

m++×
R

m++ be given. Suppose that Jx L(x, λ) is positive definite and one of the following
conditions holds:

(a) ∇y g(x, x) diag
(
w−1 ◦ λ

)
Jx h(x) is positive semidefinite, or

(b) ∇y g(x, x) diag
(
w−1 ◦ λ

)
Jx g(x, x) is positive semidefinite.

Then JH(x, λ,w) is nonsingular.

Proof In view of Theorem 3, it suffices to show that the matrix N (x, λ,w) from (8)
is nonsingular. Since Jx L(x, λ) is positive definite by assumption, the statement is
trivially satisfied under condition (a). Hence, suppose that (b) holds. Since h(x) =
g(x, x), we have Jx h(x) = Jy g(x, x)+ Jx g(x, x). This implies

N (x, λ,w) = Jx L(x, λ)+∇y g(x, x) diag
(
w−1 ◦ λ

)
Jx h(x)

= Jx L(x, λ)+∇y g(x, x) diag
(
w−1 ◦ λ

)
Jy g(x, x)

+∇y g(x, x) diag
(
w−1 ◦ λ

)
Jx g(x, x).

Now, the first term Jx L(x, λ) in the last expression is positive definite by assumption,
the second term is obviously positive semidefinite since λ,w > 0, and the third term is
positive semidefinite by condition (b). Consequently, N (x, λ,w) is positive definite,
hence nonsingular. ��
Note that the previous proof actually shows that condition (b) from Corollary 1 implies
condition (a) which, therefore, is a weaker assumption in general, whereas condition
(b) might be easier to verify in some situations.

We now state another consequence of Theorem 3.

Corollary 2 Suppose that Assumptions 1 and 2 hold and let (x, λ,w) ∈ R
n×R

m++×
R

m++ be given. Suppose that Jx L(x, λ) is nonsingular and

M(x, λ) := Jx h(x)Jx L(x, λ)−1∇y g(x, x)

is a P0-matrix. Then JH(x, λ,w) is nonsingular.

Proof For notational simplicity, let us write

A(x, λ,w) := Jx L(x, λ)−1∇y g(x, x) diag
(
w−1 ◦ λ

)
Jx h(x).

We note that diag
(
w−1 ◦ λ

)
is a positive definite diagonal matrix and can therefore

be written as a product DD, where D is another positive definite diagonal matrix.
We have that the matrix N (x, λ,w) is nonsingular if and only if I + A(x, λ,w)

is nonsingular. In turn, recalling that μ is an eigenvalue of A(x, λ,w) if and only if
1 + μ is an eigenvalue of I + A(x, λ,w), we see that N (x, λ,w) is surely nonsin-
gular if A(x, λ,w) has all real eigenvalues nonnegative. But it is well known that,
given two square matrices A, B, the matrix product AB has the same eigenvalues as
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the matrix product B A, see [26, Theorem 1.3.20], hence it follows that A(x, λ,w)

has the same eigenvalues as D Jx h(x)Jx L(x, λ)−1∇y g(x, x)D which is exactly the
matrix DM(x, λ)D. By assumption, we have that M(x, λ) is a P0 matrix, hence
DM(x, λ)D is also a P0 matrix since D is diagonal and positive definite, and then
it has all real eigenvalues nonnegative, see [10, Theorem 3.4.2]. This completes the
proof. ��
The remaining part of this section specializes the previous results to deal with specific
constraint structures.

3.2 The moving set case

As we mentioned in the Introduction, this is the most studied class of problems in the
literature and (variants and generalizations apart) essentially the only class of problems
for which clear convergence conditions are available. In this class of problems, the
feasible mapping K (·) is defined by a closed convex set Q ⊆ R

n and a “trajectory”
described by c : Rn → R

n according to:

K (x) = c(x)+ Q.

In order to proceed in our analysis, we suppose that Q is defined by a set of convex
inequalities:

Q = {x ∈ R
n|q(x) ≤ 0},

where q : Rn → R
m and each qi is convex on R

n . It is easy to see that, in this setting,
we have

K (x) = {y ∈ R
n | q(y − c(x)) ≤ 0}. (14)

By exploiting this structure, we can prove the following theorem.

Theorem 4 Let K (x) be defined as in (14), with qi convex for every i = 1, . . . , m.
Let a point x ∈ R

n be given and assume that around x it holds that F and c are C1

and q is C2. Suppose further that JF(x) is nonsingular and that

‖Jc(x)‖ ≤ μs
m(JF(x)−1)

‖JF(x)−1‖ . (15)

Then JH(x, λ,w) is nonsingular for all positive λ and w.

Proof We are going to show that the conditions from Theorem 3 are satisfied. First of
all note that the hypotheses imply Assumptions 1 and 2. Taking into account (14), we
have, using the notation in (2) and (5),

g(y, x) = q(y − c(x)), h(x) = q(x − c(x))
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and, hence,

∇y g(x, x) = ∇q(x − c(x)), Jx h(x) = Jq(x − c(x))(I − Jc(x)).

Therefore we can write

N (x, λ,w) = JF(x)+ S̄(I − Jc(x)),

where

S̄ =
m∑

i=1

λi∇2qi (x − c(x))+∇q(x − c(x)) diag(w−1 ◦ λ)Jq(x − c(x)).

Note that, for any positive λ and w, S̄ is positive semidefinite and symmetric. There-
fore, we can write S̄ = SST for some suitable square matrix S. Recalling that JF(x)

is nonsingular by assumption, we have that the matrix N (x, λ,w) is nonsingular if
and only if

I + JF(x)−1SST (I − Jc(x))

is nonsingular. In turn, since μ is an eigenvalue of JF(x)−1SST (I− Jc(x)) if and only
if 1+μ is an eigenvalue of I+JF(x)−1SST (I−Jc(x)), we see that N (x, λ,w) is surely
nonsingular if JF(x)−1SST (I − Jc(x)) has all real eigenvalues nonnegative. But,
similar to the proof of Corollary 2, it follows that JF(x)−1SST (I−Jc(x)) has the same
eigenvalues as ST (I − Jc(x))JF(x)−1S. If we can show that (I − Jc(x))JF(x)−1 is
positive semidefinite, we obviously also have that ST (I − Jc(x))JF(x)−1S is positive
semidefinite and, therefore, has all the real eigenvalues (if any) nonnegative. Hence, to
complete the proof, we only need to show that (15) implies that (I − Jc(x))JF(x)−1

is positive semidefinite. In order to see this, it is sufficient to observe that for any
v ∈ R

n we can write

vT Jc(x)JF(x)−1v ≤ ‖Jc(x)‖‖JF(x)−1‖‖v‖2 ≤ μs
m(JF(x)−1)‖v‖2

≤ vT JF(x)−1v,

where the second inequality follows from (15). From this chain of inequalities the
positive semidefiniteness of (I − Jc(x))JF(x)−1 follows readily and this concludes
the proof. ��
Note that (15) is a condition purely in terms of F and c, neither q nor the values of λ and
w are involved. The fact that q is not involved simply indicates that the nonsingularity
of N is not related to the “shape” of the set Q, but only to the trajectory the moving set
follows. More precisely, as will also become more clear in the following corollary, (15)
requires the trajectory described by c to be not “too steep”, where the exact meaning
of “too steep” is given by (15). The following corollary shades some further light on
this condition.
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Remark 1 In part (d) of the following Corollary, and in the rest of this section we
freely use some notation and definitions for Lipschitz and monotonicity constants that
are fully explained and discussed at length in the “Appendix”.

Corollary 3 Assume the setting of Theorem 4 and consider the following conditions:

(a) The matrix N (x, λ,w) is nonsingular on R
n × R

m++ × R
m++;

(b) Condition (15) holds for all x ∈ R
n;

(c) It holds that

sup
x∈Rn
‖Jc(x)‖ ≤ inf

x∈Rn

μs
m(JF(x)−1)

‖JF(x)−1‖ ;

(d) c is Lipschitz continuous on R
n with Lipschitz modulusα, F is Lipschitz continuous

on R
n and strongly monotone on R

n, the moduli of Lipschitz continuity and strong
monotonicity of F−1 are L−1 and σ−1, respectively, and

α ≤ σ−1

L−1
. (16)

Then it holds that

(d) �⇒ (c) �⇒ (b) �⇒ (a).

Proof The only implication that needs a proof is (d) �⇒ (c). By Proposition 3(a) in
the “Appendix”, we have α = supx∈Rn ‖Jc(x)‖. We now recall that since F is strongly
monotone on R

n , its range is R
n , see [37, Theorem 5.4.5]. Therefore, by Proposition

3 in the “Appendix” and taking into account that JF−1(F(x)) = JF(x)−1, we can
write

σ−1

L−1
= inf y∈Rn μs

m(JF−1(y))

supy∈Rn ‖JF−1(y)‖ =
infx∈Rn μs

m(JF(x)−1)

supx∈Rn ‖JF(x)−1‖ ≤ inf
x∈Rn

μs
m(JF(x)−1)

‖JF(x)−1‖ .

This completes the proof. ��
Although the sufficient condition (16) is the strongest one among those we analyzed, it
gives a clear geometric picture of the kind of conditions we need in order to guarantee
nonsingularity. Note that Lipschitz continuity and strong monotonicity of F imply that
also the inverse of F enjoys the same properties, see Proposition 5 in the “Appendix”,
so that L−1 and σ−1 are well defined. Furthermore, observe that (σ−1/L−1) ≤ 1 (this
is obvious from the very definition of these constants, see “Appendix”). Therefore (16)
stipulates that c(x) is rather “flat” and consequently, K (x) varies “slowly”, in some
sense.

Remark 2 Reference [34] is one of the most interesting papers where the moving set
structure has been used in order to show convergence of some algorithm for QVIs. It
is shown in [34] that if α ≤ σ

L , where α and L are the Lipschitz moduli of c and F ,
respectively, and σ is the strong monotonicity modulus of F , then a certain gradient
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projection type method converges to the unique solution of the QVI. It is then of interest
to contrast this condition to our condition α ≤ σ−1

L−1
in Corollary 3 (d) (which is the

strongest among the conditions we considered). If the function F is a gradient mapping,
then Proposition 6 in the “Appendix” implies that σ/L = σ−1/L−1, so that our
condition and that in [34] are exactly the same. However, in general σ−1/L−1 < σ/L
and σ−1/L−1 > σ/L can both occur. In fact, consider the function

F(x) =
⎛

⎜
⎝

1 0 1

0 1 0

0 1 1

⎞

⎟
⎠ x .

It is easy to see that σ(Rn, F) = 1− 1√
2

and L(Rn, F) � 1.8019. Moreover, we have

F−1(x) =
⎛

⎜
⎝

1 1 −1

0 1 0

0 −1 1

⎞

⎟
⎠ x .

Again, it is easy to see that σ(Rn, F−1) = 1
2 and L(Rn, F−1) � 2.2470. Therefore,

we have

σ(Rn, F)

L(Rn, F)
� 0.1625 < 0.2225 � σ(Rn, F−1)

L(Rn, F−1)
,

and then for this function our condition is less restrictive than that in [34]. But it is
sufficient to switch the function with its inverse to get exactly the opposite. Therefore
there is no one condition that dominates the other one in general. ��
The following example shows how condition (c) in Corollary 3 simplifies in certain
situations and the way it can be used (i) to show how interesting classes of problems
can be analyzed and (ii) to easily check whether this condition is actually satisfied in
a concrete situation.

Example 1 The discretization of many (elliptic) infinite-dimensional QVIs involving
suitable partial differential operators often leads to linear mappings of the form F(x) =
Ax + b for some positive definite matrix A, see e.g. [21,22]. Furthermore, in many
applications in mechanics an implicit-obstacle-type constraint described by the set
K (x) := {y | y ≤ c(x)} for some smooth mapping c is present, see [29]. In these
cases K (x) belongs to the class of moving sets with q being the identity mapping in

(14). Taking into account that JF(x) = A, we can easily calculate μs
m (JF(x)−1)

‖JF(x)−1‖ which is
obviously a positive constant. It actually turns out that there are interesting applications
where A is symmetric. Furthermore the minimum and maximum eigenvalues of A,
here denoted by λmin(A) and λmax(A) respectively, are even known analytically in
some cases, e.g., if A corresponds to a standard finite difference-discretization of the
two-dimensional Laplace operator on the unit square (0, 1) × (0, 1). In this setting
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we can write

μs
m(JF(x)−1)

‖JF(x)−1‖ =
λmin(A−1)

‖A−1‖ = 1/λmax(A)

1/λmin(A)
= λmin(A)

λmax(A)
> 0.

Hence condition (c) in Corollary 3 holds provided that ‖Jc(x)‖ is less or equal to this
positive constant, i.e. provided that c is Lipschitz continuous with a sufficiently small
Lipschitz constant. ��

3.3 Linear constraints with variable right-hand side

We now pass to consider the case in which the feasible set K (x) is given by

K (x) = {y ∈ R
n | g(y, x) := Ey − b − c(x) ≤ 0}, (17)

where E ∈ R
m×n is a given matrix, c : Rn → R

m and b ∈ R
m . In this class of QVIs,

the feasible set is defined by linear inequalities in which the right-hand side depends
on x .

Theorem 5 Let g be defined as in (17), let x ∈ R
n be a given point, and assume that

F and c are C1 around x. Suppose further that JF(x) is positive definite and that

‖Jc(x)‖ ≤ μ+m(x)

‖JF(x)−1‖‖E‖ , (18)

where

μ+m(x)=min{μ+m(A) | A is a principal submatrix of
1

2
E(JF(x)−1+ JF(x)−T )E T },

μ+m(A) denotes the minimum positive eigenvalue of the matrix A, and A−T is the
transpose of the inverse of A. Then JH(x, λ,w) is nonsingular for all positive λ

and w.

Proof We will show that the assumptions from Corollary 2 hold. First of all note
that the hypotheses imply Assumptions 1 and 2. Taking into account (17), we have
∇y g(x, x) = E T and Jx h(x) = E − Jc(x). Since JF(x) is nonsingular by assump-
tion, we can write

M := M(x, λ) = (E − Jc(x))JF(x)−1 E T .

In view of Corollary 2, we need to show that M is a P0 matrix.
To this end, we first observe that the rank of M is obviously less or equal to n (the

rank of JF(x)). Hence each principal minor of M with dimension greater than n is
equal to zero. Therefore, it suffices to show that each principal minor of M with size
less or equal to n is nonnegative.
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A generic principal submatrix of M with dimension s ≤ n is defined by

(Ei∗ − Jc(x)i∗)i∈Is JF(x)−1(Ei∗)T
i∈Is

where Is is a subset of {1, . . . , m} with cardinality equal to s. Therefore, each of
these subsets of indices defines a principal submatrix of M . Now we have two cases:
EIs := (Ei∗)i∈Is has full row rank or not. If not, the principal minor corresponding
to Is is equal to zero. Otherwise, if EIs has full row rank, then we can prove that the
principal submatrix corresponding to Is is positive semidefinite. In fact, we can write

vT EIs JF(x)−1 E T
Is
v ≥ μ+m(x)‖v‖2

(18)≥ ‖Jc(x)‖ ‖JF(x)−1‖ ‖E‖ ‖v‖2
≥ ‖Jc(x)Is‖ ‖JF(x)−1‖ ‖EIs‖ ‖v‖2
≥ vT Jc(x)Is JF(x)−1 EIs v, ∀v ∈ R

n,

where the third inequality follows from the fact that the spectral norm of a submatrix
is less or equal to the spectral norm of the matrix itself. Then we have

vT (EIs − Jc(x)Is )JF(x)−1 E T
Is
v ≥ 0, ∀v ∈ R

n .

Hence M is a P0 matrix, and using Corollary 2, we have the thesis. ��
By the inclusion principle (see, for example, [26, Theorem 4.3.15]) and recalling
condition (18), it is clear that if the matrix E has full row rank, then we have

μ+m(x) = μs
m(E JF(x)−1 E T ).

This allows us to state the following immediate corollary.

Corollary 4 Let g be defined as in (17), let x ∈ R
n be a given point, and assume that

F and c are C1 around x. Moreover, suppose that E has full row rank. Suppose that
JF(x) is positive definite and that

‖Jc(x)‖ ≤ μs
m(E JF(x)−1 E T )

‖JF(x)−1‖‖E‖ .

Then JH(x, λ,w) is nonsingular for all positive λ and w.

Technicalities apart, the meaning of Theorem 5 is that c(x) should not vary “too
quickly”. Note, however, that, in contrast to the case from the previous section,
this does not immediately imply that K (x) changes “slowly” with x , since a
polyhedron can have abrupt changes even when the right-hand side changes only
slightly.

The following result parallels Corollary 3 and gives stronger, but more expressive
conditions for the nonsingularity of JH .
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Corollary 5 Assume the same setting as in Theorem 5 and consider the following
conditions:

(a) The matrix N (x, λ,w) is nonsingular on R
n × R

m++;
(b) For all x ∈ R

n, JF(x) is positive definite and condition (18) holds;
(c) For all x, JF(x) is positive definite and it holds that

‖Jc(x)‖ ≤ μs
m(JF(x)−1)

‖JF(x)−1‖
μ+m
‖E‖ ,

where μ+m = min{μ+m(A) | A is a principal submatrix of E E T };
(d) The Jacobian JF(x) is positive definite for all x ∈ R

n, and it holds that

sup
x∈Rn
‖Jc(x)‖ ≤ inf

x∈Rn

μs
m(JF(x)−1)

‖JF(x)−1‖
μ+m
‖E‖;

(e) c is Lipschitz continuous on R
n with Lipschitz modulus α, F is Lipschitz contin-

uous on R
n and strongly monotone on R

n, the moduli of Lipschitz continuity and
strong monotonicity of F−1 are L−1 and σ−1, respectively, and

α ≤ σ−1

L−1

μ+m
‖E‖ ,

where μ+m is defined as before.

Then the following implications hold:

(e) �⇒ (d) �⇒ (c) �⇒ (b) �⇒ (a).

Proof We only prove the implication (c) �⇒ (b), the other ones are very similar to
those of Corollary 3, hence they are left to the reader.

In order to verify the implication (c) �⇒ (b), we have to show that

μ+m(x) ≥ μs
m(JF(x)−1)μ+m, ∀x ∈ R

n (19)

holds. Take an arbitrary x , and let I ∗s be a set of indices such that 1
2 EI ∗s (JF(x)−1 +

JF(x)−T )E T
I ∗s is a submatrix of 1

2 E(JF(x)−1 + JF(x)−T )E T for which one obtains

the minimum positive eigenvalue μ+m(x) for the given x . Let v̄ be an eigenvector of the
matrix 1

2 EI ∗s (JF(x)−1+ JF(x)−T )E T
I ∗s associated to μ+m(x); we may assume without

loss of generality that ‖v̄‖ = 1. Then we have

v̄T EI ∗s JF(x)−1 E T
I ∗s v̄= 1

2
v̄T EI ∗s (JF(x)−1+ JF(x)−T )E T

I ∗s v̄

=μ+m(x)‖v̄‖2=μ+m(x). (20)

Since the eigenvectors corresponding to different eigenvalues of a symmetric matrix
are orthogonal to each other, we have v̄ ⊥ null

( 1
2 EI ∗s (JF(x)−1 + JF(x)−T )E T

I ∗s
)
.
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However, it is easy to see that, for any positive definite (not necessarily sym-
metric) matrix A, the two matrices EI ∗s AE T

I ∗s and EI ∗s E T
I ∗s have the same null

space. Hence we also have v̄ ⊥ null
(
EI ∗s E T

I ∗s
)
. Now, assuming that EI ∗s E T

I ∗s is

an s × s-matrix, let EI ∗s E T
I ∗s = Q DQT with Q ∈ R

s×s orthogonal and D =
diag(λ1, . . . , λs) be the spectral decomposition of EI ∗s E T

I ∗s , i.e. λi are the eigen-
values with corresponding eigenvectors vi being the i-th column of Q. Suppose
further that the null space of this matrix has dimension r ≤ s and that the eigen-
values are ordered such that λ1 ≤ · · · ≤ λs . Then λ1 = · · · = λr = 0 (and
λr+1 ≥ μ+m in our notation) and the eigenvectors v1, . . . , vr form a basis of the
null space of EI ∗s E T

I ∗s . We therefore have v̄T vi = 0 for all i = 1, . . . , r . Con-

sequently, wi = 0 for all i = 1, . . . , r , where w := QT v̄. It therefore follows
that

v̄T EI ∗s E T
I ∗s v̄ = v̄T Q DQT v̄ = wT Dw =

s∑

i=1

λiw
2
i

=
s∑

i=r+1

λiw
2
i ≥ μ+m

s∑

i=r+1

w2
i = μ+m

s∑

i=1

w2
i = μ+m‖w‖2

= μ+m‖v̄‖2 = μ+m .

Combining this inequality with (20), we obtain

μ+m(x) = v̄T EI ∗s JF(x)−1 E T
I ∗s v̄ ≥ μs

m(JF(x)−1)v̄T EI ∗s E T
I ∗s v̄ ≥ μs

m(JF(x)−1)μ+m,

and this shows that (19) holds. ��
We illustrate the previous result by the following example which comes from a realistic
model described in [39], and which is also used as a test problem in Sect. 5 (test
problems OutKZ31 and OutKZ41).

Example 2 Consider the problem of an elastic body in contrast to a rigid obstacle. In
particular assume that Coulomb friction is present. After discretization, this class of
QVIs is characterized by a linear function F(x) := Bx − g with a positive definite
matrix B, and by the following constraints:

ai − yi ≤ 0, ai =
{

l, if i ∈ {1, . . . , n} is even,

φ xi+1, if i ∈ {1, . . . , n} is odd,

yi − bi ≤ 0, bi =
{

u, if i ∈ {1, . . . , n} is even,

−φ xi+1, if i ∈ {1, . . . , n} is odd,

with l < u ≤ 0 and where φ ∈ R is the friction coefficient. Let x∗ ∈ R
n be a

solution of the described QVI, then odd elements of x∗ are interpreted as tangential
stress components on the rigid obstacle in different points of such obstacle, while even
elements are interpreted as outer normal stress components. This example fits into the
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framework of this subsection with

E :=
(−I

I

)
, ‖Jc(x)‖ = √2φ, ‖E‖ = √2,

μ+m = min

{
μ+m(A) : A is a principal submatrix of

(
I −I
−I I

)}
= 1.

According to Corollary 5 (c)→(a), we can say that if

φ ≤ 1√
2

μs
m(B−1)

‖B−1‖
μ+m
‖E‖ =

1√
2

μs
m(B−1)

‖B−1‖
1√
2

(
≤ 1

2

)
,

then we are sure that JH(x, λ,w) is nonsingular for all λ and w positive. Note that
this condition holds for all sufficiently small friction coefficients φ. ��
So far, in this subsection we have considered only QVIs that are linear in the y-part.
This restriction has allowed us to give conditions that do not depend on the multipliers
λ. However, we can extend the results we have obtained to the more general setting in
which

K (x) = {y ∈ R
n | g(y, x) := q(y)− c(x) ≤ 0}, (21)

where both q and c are functions from R
n to R

m . We can prove the following theorem,
in which nonsingularity conditions now also depend on the Lagrange multiplier λ.
The proof follows lines identical to those of Theorem 5 and is therefore omitted.

Theorem 6 Let g be defined as in (21), let a point (x, λ) ∈ R
n × R

m++ be given and
assume that F and c are C1 while q is C2 around x. Suppose further that Jx L(x, λ)

is positive definite and that

‖Jc(x)‖ ≤ μ+m(x, λ)

‖Jx L(x, λ)−1‖‖Jq(x)‖ ,

where μ+m(x, λ) = min{μ+m(A) | A is a principal submatrix of 1
2 Jq(x)(Jx L(x, λ)−1+

Jx L(x, λ)−T ) Jq(x)T } and μ+m(A) denotes once again the minimum positive eigen-
value of a symmetric matrix A. Then JH(x, λ,w) is nonsingular for all positive w.

We conclude by considering a particular structure of the constraints of the QVI that is
a subclass of that studied in this section. Suppose that

g(y, x) :=
⎛

⎝
l − y
y − u

I± (y − c(x))

⎞

⎠ ≤ 0, (22)

where I± is a diagonal matrix with elements equal to 1 or −1, that is there are
box constraints for y with lower bounds l and upper bounds u, and n special linear
constraints with variable right-hand side.
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Theorem 7 Let g be defined as in (22), let a point x ∈ R
n be given and assume that

around x it holds that F and c are C1. Suppose that JF(x) and I − Jc(x) are row
diagonally dominant with positive diagonal entries. Then JH(x, λ,w) is nonsingular
for all positive λ and w.

Proof Let

D :=
⎛

⎜
⎝

D1 0 0

0 D2 0

0 0 D3

⎞

⎟
⎠ := diag(w−1 ◦ λ),

where D1, D2, D3 ∈ R
n×n and w = (w1, w2, w3), λ = (λ1, λ2, λ3) denote the slack

variables and Lagrange multipliers corresponding to the three blocks in the definition
of the inequality constraints from (22), respectively. Then we can write

N (x, λ,w) = JF(x)+ (−I I I±
)

D

⎛

⎝
−I
I

I±(I − Jc(x))

⎞

⎠

= JF(x)+ D1 + D2 + D3 (I − Jc(x)) .

Note that D3 (I − Jc(x)) is a row diagonally dominant matrix with positive diagonal
entries for all λ and w positive. Hence N (x, λ,w) is a strictly row diagonally dominant
matrix for all λ and w positive since it is the sum of two row diagonally dominant
matrices with positive diagonal entries (JF(x) and D3 (I − Jc(x))) and two strictly
row diagonally dominant matrices with positive diagonal entries (D1 and D2). Recall-
ing that every strictly row diagonally dominant matrix is nonsingular, we obtain the
thesis. ��
It is possible to generalize constraints (22) by imposing that lower or upper bounds
may not exist for every variable and that the number of special linear constraints with
variable right-hand side may be less or greater than n:

g(y, x) :=

⎛

⎜
⎜⎜⎜⎜
⎝

(li − yi )i∈L

(yi − ui )i∈U
(

yi − c j
i (x)

) j∈C(i)

i∈S+(
−yi + d j

i (x)
) j∈D(i)

i∈S−

⎞

⎟
⎟⎟⎟⎟
⎠
≤ 0, (23)

where L , U, S−, S+ ⊆ {1, . . . , n} and for any i ∈ S+, C(i) ⊆ {1, 2, . . .} and for
any i ∈ S−, D(i) ⊆ {1, 2, . . .}. For QVIs with these constraints a result similar to
Theorem 7 can be given. The proof of this theorem is akin to that of Theorem 7 and
hence it is left to the reader.

Theorem 8 Let g be defined as in (23), let a point x ∈ R
n be given and assume that

around x it holds that F, c and d are continuously differentiable. Suppose that JF(x)

is row diagonally dominant with positive diagonal entries and such that for every
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i /∈ L ∪U it holds that JF(x)i i >
∑

k=1,...,n, k �=i |JF(x)ik |. Suppose further that for
all i ∈ S+ and all j ∈ C(i) it holds that

1− ∂c j
i (x)

∂xi
≥

∑

k=1,...,n, k �=i

∣∣∣∣∣
∂c j

i (x)

∂xk

∣∣∣∣∣
,

and that for all i ∈ S− and all j ∈ D(i) it holds that

1− ∂d j
i (x)

∂xi
≥

∑

k=1,...,n, k �=i

∣∣∣∣
∣
∂d j

i (x)

∂xk

∣∣∣∣
∣
.

Then JH(x, λ,w) is nonsingular for all positive λ and w.

3.3.1 Generalized Nash equilibrium problems

As we mentioned in Sect. 1, the approach used in this paper is motivated by some
recent results obtained in [14] for the case of Generalized Nash Equilibrium Problems
(GNEPs). In this subsection, we consider GNEPs, reformulate them as QVIs and show
that our new results improve on the specialized ones in [14]. For more background
material on GNEPs, we refer the interested reader to the survey paper [16].

We consider GNEPs where each player solves a problem whose feasible set is
defined by a system of linear inequalities with variable right-hand side, i.e., player
ν (ν = 1, . . . , N ) controls xν ∈ R

nν and tries to solve the optimization problem

min
xν

θν(xν, x−ν) s.t. Eνxν − bν − cν(x−ν) ≤ 0 (24)

with given θν : Rn → R, Eν ∈ R
mν×nν and cν : Rn−nν → R

mν , bν ∈ R
mν . Here,

n := n1 + · · · + nN denotes the total number of variables, m := m1 + · · · +m N will
be the total number of (inequality) constraints, and (xν, x−ν) is a short-hand notation
for the full vector x := (x1, x2, . . . , x N ), so that x−ν subsumes all the block vectors
xμ with μ �= ν. In what follows, we assume that θν(·, x−ν) is convex for every x−ν ,
and for every ν = 1, . . . , N . Moreover, we assume that θν are C1 functions for every
ν = 1, . . . , N .

It is well known that a solution of the GNEP (24) can be computed by solving the
following QVI:

Find x̄ ∈ {x ∈ R
n : Eνxν − bν − cν(x−ν) ≤ 0, ν = 1, . . . , N } such that

(∇xν θν(x̄))N
ν=1

T
(y−x̄) ≥ 0, ∀y ∈ R

n : Eν yν−bν−cν(x̄−ν)≤0, ν = 1, . . . , N .

(25)
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To simplify the notation, we write

F(x) := (∇xν θν(x))N
ν=1 , E :=

⎛

⎜
⎝

E1 0
. . .

0 E N

⎞

⎟
⎠ , c(x) :=

⎛

⎜
⎝

c1(x−1)
...

cN (x−N )

⎞

⎟
⎠ . (26)

Note that the QVI (25) belongs to the class of QVIs whose constraints are defined by
(17). This fact allows us to rewrite Theorem 5 for the GNEP (24).

Theorem 9 Consider a GNEP in which each player tries to solve (24). Recalling the
notation in (26), let a point x ∈ R

n be given and assume that F and c are C1 around
x. Suppose further that JF(x) is positive definite and that

‖Jc(x)‖ ≤ μ+m(x)

‖JF(x)−1‖‖E‖ , (27)

where μ+m(x) = min{μ+m(A) | A is a principal submatrix of 1
2 E(JF(x)−1 +

JF(x)−T )E T }, and μ+m(A) is again the minimum positive eigenvalue of the matrix
A. Then JH(x, λ,w) is nonsingular for all positive λ and w.

Note that a similar result is stated in [14]. In particular, Theorem 4.7 in [14] gives

JF(x) positive definite and ‖Jc(x)‖ ≤ μs
m(E JF(x)−1 E T )

‖JF(x)−1‖‖E‖ , (28)

as a sufficient condition for the nonsingularity of the Jacobian of H for all λ and w

positive, in the case of the QVI (25). However, Theorem 9 gives better conditions, in
fact it is clear that

μs
m(E JF(x)−1 E T ) ≤ μ+m(x)

and then conditions (28) imply those of Theorem 9. The following example describes
a GNEP that satisfies the conditions of Theorem 9, but violates those from (28) for
all x.

Example 3 Consider a GNEP in which there are two players controlling one variable
each one, x1 and x2 respectively. The optimization problems of the players are the
following:

min
x1

(x1 − 2)2

s.t. x1 + 1
2 x2 ≤ 1,

x1 ≥ 0,

min
x2

(x2 − 2)2

s.t. x2 + 1
2 x1 ≤ 1,

x2 ≥ 0.
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This GNEP has only one equilibrium in ( 2
3 , 2

3 ). Referring to the notation in (26), we
write

F(x) =
(

2x1 − 4
2x2 − 4

)
, E =

⎛

⎜⎜
⎜
⎝

1 0

−1 0

0 1

0 −1

⎞

⎟⎟
⎟
⎠

, c(x) =

⎛

⎜⎜
⎜
⎝

− 1
2 x2

0

− 1
2 x1

0

⎞

⎟⎟
⎟
⎠

.

Then

JF(x) =
(

2 0
0 2

)
� 0, JF(x)−1 =

(
1
2 0

0 1
2

)

, Jc(x) =

⎛

⎜⎜⎜
⎝

0 − 1
2

0 0

− 1
2 0

0 0

⎞

⎟⎟⎟
⎠

.

Since ‖JF(x)−1‖ = 1
2 , ‖E‖ = √2, ‖Jc(x)‖ = 1

2 , and

EJF(x)−1 E T = 1

2

⎛

⎜⎜
⎝

1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

⎞

⎟⎟
⎠ ,

conditions (28) do not hold since μs
m(E JF−1 E T ) = 0 and therefore 1

2 �≤ 0. However,
condition (27) holds because, recalling the notation of Theorem 9, μ+m(x) = 1

2 , and

then we have 1
2 <

1
2

1
2

√
2
= 1√

2
. ��

Remark 3 In the previous development we concentrate our attention on games whose
feasible region is defined by a system of linear inequalities with variable right-hand
side, see (24), because we wanted to compare to the results in [14], which are among
the few in the literature about GNEPs where convergence can be guaranteed. However
we can consider games with totally different structure and still get convergence results.
In particular we can consider GNEPs that can be reformulated as QVIs with moving
sets (see Sect. 3.2). Suppose that each player ν has to solve the following optimization
problem

min
xν

θν(xν, x−ν) s.t. qν(xν − cν(x−ν)) ≤ 0

with given θν : R
n → R, qν : R

nν → R
mν and cν : R

n−nν → R
nν . Here, n :=

n1+ · · · + nN denotes the total number of variables, m := m1+ · · · +m N will be the
total number of (inequality) constraints. The feasible region of player ν is therefore a
“moving set” whose position depends on the variables of all other players. The GNEP
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can be reformulated as a QVI(F, K ) with

F(x) := (∇xν θν(x))N
ν=1 , K (x) := c(x)+ Q,

c(x) :=
⎛

⎜
⎝

c1(x−1)
...

cN (x−N )

⎞

⎟
⎠ , Q :=

N∏

ν=1

{
yν ∈ R

nν | qν(yν) ≤ 0
}
,

that is a QVI with a moving set to which the nonsingularity results in Sect. 3.2 can
readily be applied.

3.4 Box constraints and “binary constraints”

We now consider the situation where each component gi of the constraint function
from (2) depends only on a single pair (y j , x j ) for some index j ∈ {1, . . . , n}. In
particular, this includes the case of bounds having parametric bound constraints. We
use the terminology “binary constraints” for this class of problems. The following
result shows how the nonsingularity Theorem 3 can be applied.

Theorem 10 Let x ∈ R
n and λ > 0 be given. Suppose that each constraint

gi (·, ·) (i = 1, . . . , m) depends only on a single couple (y j (i), x j (i)) for some
j (i) ∈ {1, . . . , n} and that Assumptions 1 and 2 hold. Assume further that one of
the following conditions holds:

(a) Jx L(x, λ) is a P-matrix and ∇y j (i) gi (x j (i), x j (i))∇x j (i)hi (x j (i)) ≥ 0 for all i , or
(b) Jx L(x, λ) is a P0-matrix and ∇y j (i) gi (x j (i), x j (i))∇x j (i)hi (x j (i)) > 0 for all i .

Then JH(x, λ,w) is nonsingular for all positive w.

Proof We verify the statement under condition (a) since the proof under (b) is essen-
tially identical.

We assume without loss of generality that the constraints g are ordered in such
a way that the first m1 constraints depend on the pair (y1, x1) only, the next m2
constraints depend on the couple (y2, x2) only, and so on, with the last mn constraints
depending on (yn, xn) only. Note that mi might be equal to zero for some of the indices
i ∈ {1, . . . , n}, and that we have m1 +m2 + · · · +mn = m. Taking this ordering into
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account, it is not difficult to see that

Jx h(x) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

∇x1 h1(x1) 0 · · · 0

∇x1 h2(x1) 0 · · · 0

...
...

...

∇x1 hm1(x1) 0 · · · 0

0 ∇x2 hm1+1(x2) 0

...
...

...

0 ∇x2 hm1+m2(x2) 0

0 0
. . . 0

...
...

...

...
... 0 ∇xn hm−mn+1(xn)

...
...

...
...

0 0 0 ∇xn hm(xn)

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,

whereas ∇y g(x, x) is given by

⎛

⎜
⎜⎜
⎝

∇y1 g1(x1, x1) · · · ∇y1 gm1 (x1, x1) 0 · · · · · · 0

0 · · · 0
. . . 0 · · · 0

0 · · · · · · 0 ∇yn gm−mn+1(xn, xn) · · · ∇yn gm(xn, xn)

⎞

⎟
⎟⎟
⎠

.

Then, an easy calculation shows that the matrix N (x, λ,w) from (8) is given by

N (x, λ,w) = Jx L(x, λ)+ D

with the diagonal matrix

D :=

⎛

⎜
⎜
⎜
⎝

∑m1
i=1

λi
wi
∇y1 gi (x1, x1)∇x1 hi (x1) 0

. . .

0
∑m

i=m−mn+1
λi
wi
∇yn gi (xn, xn)∇xn hi (xn)

⎞

⎟
⎟
⎟
⎠

.

In view of assumption (a) together with λ,w > 0, it follows that Jx L(x, λ) is a P-
matrix and the diagonal matrix D is positive semidefinite. This implies that N (x, λ,w)

is nonsingular for all positive w, and then from Theorem 3 we obtain the thesis. ��
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We give below a specialization which deals with the most important case of Theorem
10: the case in which the constraints are bound constraints of the type

ui (yi , xi ) := yi − ai xi ≤ ci ∀i = 1, . . . , n and (29)

li (yi , xi ) := −yi + bi xi ≤ di ∀i = 1, . . . , n. (30)

For this class of QVIs, Theorem 10 easily gives the following corollary.

Corollary 6 Let x ∈ R
n be given, and consider a QVI whose feasible set is defined

by the constraints (29) and (30) and suppose that F is C1 around x. Assume that one
of the following conditions hold:

(a) J F(x) is a P0-matrix and ai < 1, bi < 1 for all i = 1, . . . , n, or
(b) J F(x) is a P-matrix and ai ≤ 1, bi ≤ 1 for all i = 1, . . . , n.

Then JH(x, λ,w) is nonsingular for all positive λ and w.

In principle, QVIs with box constraints can be viewed as a subclass of QVIs with
linear constraints and variable right-hand sides, see (23). However, the conditions we
got here are somewhat weaker. Note in particular that the conditions in Theorem 8
require JF to be diagonally dominant with positive diagonal elements, which implies
that JF must be P0, while a P0 matrix is not necessarily diagonally dominant.

3.5 Bilinear constraints

We conclude this section on nonsingularity results for JH by considering the case of
bilinear constraints which can be considered as a natural variant of the case of (linear)
constraints with variable right-hand side in which the right-hand sides are fixed, but
the coefficients of the linear part vary. Specifically, we consider a QVI in which the
feasible set is defined by some convex “private” constraints qi (y) ≤ 0 (that depend
only on y) and some bilinear constraints of the form

x T Qi y − ci ≤ 0

in which each matrix Qi is symmetric and positive semidefinite. Hence we consider
constraints of the form

g(y, x) :=

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

q1(y)

...

qp(y)

x T Q1 y − c1

...

x T Qb y − cb

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

≤ 0. (31)
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In order to deal with these constraints we give a preliminary result on QVIs in which
the feasible set satisfies the condition

∇x h(x) = ∇y g(x, x) D+, (32)

where D+ is a diagonal matrix with nonnegative entries. Although this is a technical
result, it is the key to the analysis of QVIs with bilinear constraints.

Theorem 11 Suppose that Assumptions 1 and 2 hold. Let x ∈ R
n and λ > 0 be given.

Assume that g and h satisfy Eq. (32) in x, and that Jx L(x, λ) is a positive definite
matrix. Then JH(x, λ,w) is nonsingular for all positive w.

Proof It is easy to see that the matrix M from Corollary 2 is given by

M(x, λ) = D+ ∇y g(x, x)T Jx L(x, λ)−1∇y g(x, x),

which is the product of a diagonal matrix with nonnegative entries and a positive
semidefinite matrix. It is well known that a matrix with this form is P0, and then by
Corollary 2 the thesis holds. ��
Now, it is not difficult to see that the constraints (31) satisfy condition (32) with D+
having the first p entries equal to 1 and the last b entries equal to 2. Therefore, the
nonsingularity of JH follows immediately from Theorem 11.

Corollary 7 Consider the constraints (31), with each qi , i = 1, . . . , p, convex and
C2 and each Q j , j = 1, . . . , b, positive semidefinite and symmetric and suppose that
F is C1. Let x ∈ R

n and λ > 0 be given and assume that Jx L(x, λ) is a positive
definite matrix. Then JH(x, λ,w) is nonsingular for all positive w.

Note that Jx L(x, λ) is certainly positive definite if either F is strongly monotone, or
at least one qi is strongly convex or at least one Q j is positive definite.

4 Boundedness

In this section, we consider conditions guaranteeing that a sequence generated by
Algorithm 1 is bounded and, therefore, has an accumulation point. We first discuss
a general result and then its application to the moving set case. Application of the
general result to the remaining settings considered before does not require any specific
investigation, so we conclude the section with a few more examples and general
considerations.

4.1 General boundedness conditions

We begin with a general result that shows that under a sort of coercivity condition [(a1)
below] and constraint qualification [(a2) below] we can guarantee boundedness of the
sequence generated by Algorithm 1. We recall that we assume that K (x) is defined by
(2) and that h(x) := g(x, x).

123



QVIs and KKT conditions 395

Theorem 12 Let the setting and the assumptions of Theorem 2 be satisfied and sup-
pose, in addition, that

(a1) lim‖x‖→∞ ‖max{0, h(x)}‖ = ∞,
(a2) for all x ∈ R

n there exist a d such that ∇y gi (x, x)T d < 0 for all i ∈ {i :
hi (x) ≥ 0}.

Then any sequence generated by Algorithm 1 remains bounded, and any accumulation
point is a solution of the QVI.

Proof By Theorem 2(a), it is enough to show that ‖H(x, λ,w)‖ has bounded level
sets over Z I . To this end, suppose that a sequence {(xk, λk, wk)} ⊆ Z I exists such
that limk→∞ ‖(xk, λk, wk)‖ = ∞. We will show that ‖H(xk, λk, wk)‖ → ∞ as
k →∞.

We first claim that the sequence {xk} is bounded. Assume we have‖xk‖ → ∞. Then
condition (a1) would imply ‖max{0, h(xk)}‖ → ∞. Hence there would exist an index
j ∈ {1, . . . , m} such that, on a suitable subsequence, h j (xk) → +∞, and therefore
also ‖h(xk)+wk‖ → ∞ since wk > 0. But this would imply ‖H(xk, λk, wk)‖ → ∞
and gives the desired contradiction. Hence it remains to consider the case in which
‖(λk, wk)‖ → ∞ and {xk} is bounded.

Suppose that ‖wk‖ → ∞ and {xk} is bounded. Then {h(xk)} is also bounded due
to the continuity of h. We therefore obtain ‖h(xk)+wk‖ → ∞. This, in turn, implies
‖H(xk, λk, wk)‖ → ∞ which, again, is a contradiction. Thus we have to consider
only the case where ‖λk‖ → ∞ and {(xk, wk)} is bounded.

For ‖λk‖ → ∞, let Jλ be the set of indices such that {λk
j } → ∞, whereas, subse-

quencing if necessary, we may assume that the remaining components stay bounded.
Without loss of generality, we may also assume that xk → x̄ and wk → w̄. If, for
some j ∈ Jλ, we have w̄ j > 0, it follows that λk

jw
k
j → +∞ and, therefore, again

‖H(xk, λk, wk)‖ → ∞. Consequently, it remains to consider the case where w̄ j = 0
for all j ∈ Jλ.

Since (xk, λk, wk) belongs to Z I , we have h j (xk)+wk
j > 0 which implies h j (x̄) ≥

0 for all j ∈ Jλ. Hence we can apply condition (a2) and obtain a vector d such that
∇y g j (x̄, x̄)T d < 0, ∀ j ∈ Jλ. This implies

lim
k→∞ L(xk, λk)T d = lim

k→∞

⎛

⎝F(xk)T d +
∑

j �∈Jλ

λk
j∇y g j (xk, xk)T d

⎞

⎠

+ lim
k→∞

⎛

⎝
∑

j∈Jλ

λk
j∇y g j (xk, xk)T d

⎞

⎠ = −∞

since the first term is bounded (because {xk} → x̄ and the functions F and ∇y g are
continuous, and because all sequences {λk

j } for j �∈ Jλ are bounded by definition

of the index set Jλ), whereas the second term is unbounded since λk
j → +∞

and ∇y g j (x̄, x̄)T d < 0 for all j ∈ Jλ. Using the Cauchy–Schwarz inequality,
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we therefore obtain

‖L(xk, λk)‖ ‖d‖ ≥ |L(xk, λk)T d| → ∞

for k → ∞. Since d is a fixed vector, this implies ‖L(xk, λk)‖ → ∞ which, in
turn, implies ‖H(xk, λk, wk)‖ → ∞ for k → ∞. This contradiction, together with
Theorems 1 and 2, completes the proof. ��
Note that condition (a1) in Theorem 12 guarantees boundedness of the x- and w-parts,
whereas (a2) is needed for the λ-part. In principle, if we knew an upper bound for the
multipliers value, we could add this bound to the constrained equation reformulation
of the KKT system and dispense with assumption (a2) altogether; we do not elaborate
further on this idea for lack of space.

Condition (a1) is a mild coercivity condition that implies neither the boundedness
of K (x) for any x nor the existence of a compact set K such that K (x) ⊆ K for all x ,
as one might think at first sight.

Example 4 Consider a problem with K (x) = {y ∈ R | y + x2 ≤ 1}. In this case,
for every x , the set K (x) is unbounded and yet (a1) is easily seen to hold, since
h(x) = x + x2 − 1.

Example 5 Consider a problem with K (x) = {y ∈ R
2 | ‖y+x‖2 ≤ 1}. In this case, for

every x , the set K (x) is a ball of radius 1 and center in−x . We have∪x∈Rn K (x) = R
n .

But h(x) = 4‖x‖2 − 1 and so (a1) holds.

However, uniform boundedness of K (x) does imply (a1) if some, very common and
natural, further structure is assumed. So suppose K (x) = K ∩ K ′(x), i.e. suppose
that K (x) is given by the intersection of a fixed set K and a point to set mapping K ′.
Analytically, this simply means that if K (x) = {y ∈ R

n | g(x, y) ≤ 0}, then some
of the gi actually only depend on y. Obviously, if K is bounded, K (x) is uniformly
bounded when x varies. In the proposition below we assume for simplicity that K
is a bounded polyhedron (a quite common case, but see the remark following the
proposition for a simple generalization).

Proposition 1 Let K (x) be defined by (2) with g continuous and convex in y for every
x ∈ R

n. Suppose that the first p inequalities of g are of the form Ay ≤ b and that the
polyhedron defined by these inequalities is bounded. Then (a1) in Theorem 12 holds.

Proof Denote by K the bounded polyhedron defined by the inequalities Ay ≤ b. By
Hoffman’s error bound, we know there exists a positive constant c such that for every
x ∈ R

n we have dist(x, K ) ≤ c ‖max{0, Ax − b}‖. Since K is bounded, this shows
that lim‖x‖→∞ ‖max{0, Ax − b}‖ = ∞. But then (a1) in Theorem 12 follows readily.

Remark 4 It is clear that the polyhedrality of the set K is only used to deduce that
an error bound holds. Therefore, it is straightforward to generalize the above result
in the following way: Suppose that the first inequalities of g define a bounded set
K = {gi (y) ≤ 0, i = 1, . . . , p} and that an error bound holds for this system of p
inequalities. Then (a1) in Theorem 12 holds. The literature on error bounds is vast and
there are many conditions that ensure the error bound condition, polyhedrality is just
one of them. We refer the interested reader to [18,43].
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Condition (a2) in Theorem 12 is a very mild constraint qualification. It is related to
the well-known extended Mangasarian–Fromovitz constraint qualification (EMFCQ)
for a system of inequalities.

Definition 1 We say that a system of continuously differentiable inequalities f (x) ≤
0, with f : Rn → R

m , satisfies the EMFCQ if, for all x ∈ R
n , there exists a vector

d ∈ R
n such that ∇ fi (x)T d < 0, for all i such that fi (x) ≥ 0.

For each given x , the set K (x) is defined by the system of inequalities g(y, x) ≤ 0.
It is then clear that condition (a2) is the requirement that an EMFCQ-like conditions
holds just at the point y = x and that this is a much weaker requirement than requiring
the EMFCQ to hold for the system g(y, x) ≤ 0. We give an example to clarify this
point.

Example 6 Consider a problem with K (x) = {y ∈ R | y2 + x2 − 1 ≤ 0}. We have
∇y g(x, x) = 2x . It is clear that we can find a d ∈ R such tht 2xd < 0 at any point
except at x = 0. Therefore, (a2) holds because we have h(0) < 0. The EMFCQ,
instead, is not satisfied for the set K (1). In fact ∇y g(y, 1) = 2y and for y = 0 it
is immediate to verify that the EMFCQ fails. It is interesting to observe that for this
problem also (a1) clearly holds.

Furthermore, if x is greater than 1, we have K (x) = ∅, hence this simple example
also shows that (a1) and (a2) together do not imply K (x) �= ∅ for all x . The latter
is a condition often encountered in papers dealing with algorithms for the solution of
QVIs.

Armed with the developments so far, we can now study the applicability of Theorem
12 to the moving set case, which is the only setting, among those considered in the
previous section, for which an additional analysis is useful.

4.2 The moving set case

Consider the QVI structure defined in Sect. 3.2:

K (x) := c(x)+ Q = {y ∈ R
n | q(y − c(x)) ≤ 0}, Q := {y ∈ R

n | q(y) ≤ 0}.

We recall that, in the previous section, we have given sufficient conditions for nonsin-
gularity of JH . Such conditions presuppose that ‖Jc(x)‖ ≤ 1 for all x ∈ R

n . In the
next proposition, we show that if the constraints q(x) ≤ 0 define a full-dimensional
bounded set and ‖Jc(x)‖ is uniformly bounded away from 1, then conditions (a1) and
(a2) of Theorem 12 hold.

Proposition 2 In the setting described above, assume that c and q are continuously
differentiable. Suppose that:

(b1) ‖Jc(x)‖ ≤ α < 1 for all x ∈ R
n;

(b2) Q is compact and the system q(y) ≤ 0 satisfies Slater’s condition, i.e. there
exists ȳ such that q(ȳ) < 0.

Then conditions (a1) and (a2) of Theorem 12 hold.

123



398 F. Facchinei et al.

Proof Since ‖Jc(x)‖ ≤ α for all x ∈ R
n , the Cauchy–Schwarz inequality implies

yT Jc(x)y ≤ α‖y‖2 for all x, y ∈ R
n . Therefore, yT (I − Jc(x))y ≥ (1 − α)‖y‖2

for all x, y ∈ R
n , hence the function x − c(x) is strongly monotone on R

n and,
consequently, lim‖x‖→∞ ‖x−c(x)‖ = ∞. Now, since qi is convex for all components
i , it follows that max{0, qi } and, therefore, also ‖max{0, q(z)}‖ is convex. Hence,
the corresponding level sets are bounded for all levels if and only if at least one
level set is bounded. But the level set with level zero is precisely the set Q which
was assumed to be compact. It therefore follows that all level sets of the function
z �→ ‖max{0, q(z)}‖ are bounded. But then lim‖x‖→∞ ‖x − c(x)‖ = ∞ implies
lim‖x‖→∞ ‖max{0, q(x − c(x))}‖ = ∞, hence condition (a1) holds.

To show that also (a2) is satisfied, we first note that ∇y g(x, x) = ∇q(x − c(x)).
Therefore, taking d := ȳ− (x − c(x)), with ȳ being the Slater point from assumption
(b2), the convexity of qi implies

0 > q(ȳ) ≥ qi (x − c(x))+ ∇qi (x − c(x))T
(
ȳ − (x − c(x)

)

for all components i such that hi (x) = qi (x − c(x)) ≥ 0. But this immediately gives
∇y gi (x, x)T d < 0 for all i with hi (x) ≥ 0. ��

4.3 Final examples and comments

We complete our discussion by giving a few additional examples on which we apply
the results of both this and the previous section in order to show the ability of our
algorithm to solve problems that are not solvable by other methods. This will also give
us the opportunity to discuss very briefly some existence implications of the results
obtained so far.

An often used assumption in the analysis of algorithms and also in many existence
proofs is that either K (x) is nonempty for all x ∈ R

n or that there exists a convex
compact set T ⊂ R

n such that K (T ) ⊆ T and K (x) is nonempty for all x ∈ T . The
following example shows that this assumption is not implied by our conditions.

Example 7 Consider a one dimensional QVI with F(x) = x3 and K (x) = {y ∈
R

n | y2 + x2 + x4 − 1 ≤ 0}. First of all note that K (x) = ∅ if x �∈ [−a, a], where
a ≈ 0.7862 is the only positive root of the equation x2 + x4 = 1. Furthermore, it is
not difficult to see that there cannot exist a convex compact set T (which would be
a closed interval in our case) such that K (T ) ⊆ T holds and K (x) is nonempty for
all x ∈ T . In fact, it should be T ⊆ [−a, a] since otherwise K (x) is empty for some
x ∈ T . Furthermore, 0 can not belong to T , otherwise K (0) = [−1, 1] �⊆ T . Then T
should be an interval of either all negative or all positive numbers. But if nonempty,
K (x) always contains both positive and negative points.

Nevertheless, we can show that the conditions of Theorem 10(a) are satisfied. We
have h(x) = 2x2+x4−1, so that∇y g(x, x)∇x h(x) = (2x)(4x+4x3) = 8(x2+x4) ≥
0. Furthermore Jx L(x, λ) = 3x2 + 2λ which, for every x and positive λ, is positive.
So Theorem 10(a) tells us that JH(x, λ,w) is nonsingular for any x and positive λ

and w.

123



QVIs and KKT conditions 399

We next verify that also the assumptions of Theorem 12 are met. Condition (a1) is
obvious from the expression of h(x), so we consider (a2). We have ∇y g(x, x) = 2x ,
and if x �= 0, it is sufficient to take d = −x to have ∇y g(x, x)d < 0. If x = 0, this
is not possible, but in this case we also have h(x) < 0 so that (a2) is satisfied. We
can then conclude that every sequence generated by our interior-point method will
be bounded and that every limit point is a solution of the QVI. Note that this also
gives an algorithmic proof of the existence of a solution. We do not know any method
that could provably solve this example. Also proving existence by using other known
results seems not obvious.

As far as we are aware of, all methods for which convergence to a solution can be proved
make assumptions that imply the existence of a (at least locally) unique solution and
require the function F to be strongly monotone. In the following example, we present
a problem with a monotone, but not strongly monotone F , that has infinitely many
solutions and for which we can prove convergence of our method.

Example 8 Consider again a one dimensional problem with

F(x) =
⎧
⎨

⎩

−(x + 1)4 if x ≤ −1,

0 if x ∈ [−1, 0],
x4 if x ≥ 0

and K (x) = {y ∈ R | − 10 ≤ y ≤ −2x}. The function F is monotone, but not
strongly monotone, and the solutions of the problem are all points in [−1, 0]. The
assumptions of Corollary 6 are easily checked to be satisfied; in fact a1 = −2, b1 = 0
and since F is monotone, its Jacobian is positive semidefinite. Also condition (a1)
in Theorem 12 holds trivially. Consider then (a2) in the same theorem. We have
h(x) = (−x − 10, 3x)T , so that it is clear that at most one component of h can be
positive at any point, a fact that easily permits to check that also (a2) is satisfied. We
conclude that the interior-point method is able to find a solution of this problem which
admits infinitely many solutions.

We remarked already several times that, when it comes to algorithms, the most studied
QVIs are those with a moving set type of constraints. One of the most interesting papers
in this category is [34] where, among other things, a wider class of problems is studied
under a condition, subsequently used also by other authors, which is implied by the
moving set structure (which actually constitutes the main case in which the condition
below can be verified). This condition is

‖ΠK (x)(z)−ΠK (y)(z)‖ ≤ α‖x − y‖, α < 1, ∀x, y, z ∈ R
n, (33)

where ΠK denotes the Euclidean projector on K and α is a positive constant whose
exact definition is immaterial here. Roughly speaking, condition (33) is a strenghtening
of a contraction property of the point-to-set mapping K (·). The following example
shows that our assumptions do not imply condition (33).
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Example 9 Consider the same problem as in the previous example and, in particular,
its feasible set mapping K (x) = {y ∈ R | − 10 ≤ y ≤ −2x}. Then

‖ΠK (0)(1)−ΠK (1)(1)‖ = ‖0− (−2)‖ = 2 ≤ α‖0− 1‖ = α

implies α ≥ 2, so that condition (33) does not hold, whereas we have already men-
tioned in Example 8 that our method provably solves this example.

5 Numerical results

In this section we report the results obtained by a preliminary implementation of the
method analyzed so far on a reasonably varied set of test problems. These results
are intended to show the viability of our approach and to give the reader a concrete
feel for the practical behavior of the interior-point method on QVI problems. All the
computations in this paper were done using Matlab 7.6.0 on an Ubuntu 10.04 64 bits PC
with Intel(R) Core(TM) i7 CPU 870 and 7.8 GiB of RAM. A larger set of experiments
and a more detailed analysis, with comparisons, is currently being performed and will
be reported elsewhere.

5.1 Implementation details

The implemented algorithm corresponds exactly to the theoretical scheme given in
Algorithm 1. In what follows we give some implementation details.

At step (S.2), Algorithm 1 calls for the solution of an n+2m square linear system
in order to determine the search direction dk . However, this system is very structured
and some simple manipulations permit to reduce its solution to that of a linear system
of dimension n. More precisely, we must find a solution (d̄1, d̄2, d̄3) of the following
linear system of dimension n + 2m

⎛

⎜
⎝

Jx L(x, λ) ∇y g(x, x) 0

Jx h(x) 0 I

0 diag(w) diag(λ)

⎞

⎟
⎠

⎛

⎜
⎝

d1

d2

d3

⎞

⎟
⎠ =

⎛

⎜
⎝

b1

b2

b3

⎞

⎟
⎠ , (34)

where all the quantities involved are defined in detail in Sect. 2. It is easy to verify, by
substitution and by the fact that w > 0, that if we compute d̄1 as solution of

(
Jx L(x, λ)+ ∇y g(x, x) diag(w−1 ◦ λ)Jx h(x)

)
d1

= b1 − ∇y g(x, x) diag(w)−1b3 +∇y g(x, x) diag(w−1 ◦ λ)b2

and d̄2, d̄3 by d̄3 = b2− Jx h(x)d̄1 and d̄2 = diag(w)−1b3−diag(w−1 ◦λ)d̄3, respec-
tively, this is indeed a solution of (34). This shows clearly that the main computational
burden in solving the linear system (34) is actually the solution of an n × n square
linear system. In order to perform the linear algebra involved, we used Matlab’s linear
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system solver mldivide. The procedure just described has the advantage of reducing
the dimension of the system as much as possible; however this might not always be
the best strategy, since sparsity patterns could be lost. For example it might be more
convenient, from this point of view, to eliminate just the λ variables and then solve
the resulting n + m system in x and w. Or solve directly the original n + 2m system
and leave to the solver the task of exploiting sparsity. This, as well as the choice of
the most suitable linear solver, along with numerical procedures to deal with singular-
ities, are very important issues that can have huge practical impact. We are currently
investigating on these topics and will report on this research elsewhere.

In the line search at step (S.3) of Algorithm 1, we take β = 0.5, γ = 10−2 and
ξ = 2m. In order to stay in Z I we preliminarily rescale dk = (dk

x , dk
λ, dk

w). First we
analytically compute a positive constant α such that λk+αdk

λ and wk+αdk
w are greater

than 10−10. This ensures that the last two blocks in zk+αdk are in the interior of R
2m+ .

Then, if necessary, we further reduce this α until h(xk + αdk
x )+wk + αdk

w ≥ 10−10

thus finally guaranteeing that zk+αdk belongs to Z I . In this latter phase, an evaluation
of h is needed for each bisection. At the end of this process, we set dk ← αdk and
then perform the Armijo line-search.

The value of ρk is set to 0.1. This is only changed, and increased by 0.1, if in the
previous iteration the step size tk is smaller than 0.1. Should ρk reach the value of 0.9,
it is reset to 0.1 in the following iteration.

The stopping criterion is based on an equation reformulation of the KKT conditions
which uses the Fischer-Burmeister function that, we recall, is defined by φ(a, b) =√

a2 + b2 − (a + b) and has the property that φ(a, b) = 0 if and only if a ≥ 0, b ≥
0, ab = 0. The equation reformulation is then defined by

V (x, λ) =
(

L(x, λ)

(φ(λi ,−gi (x, x)))m
i=1

)
.

The main termination criterion is ‖V (xk, λk)‖∞ ≤ 10−4. The iterations are also
stopped if the number of iterations exceeds 1,000 or the running time exceeds 1 h.

5.2 Test problems and numerical results

We solved several test problems whose detailed description can be found in [17] and
in addition also Example 3 in Sect. 3, and Examples 7 and 8 in Sect. 4. Here we report
a few details to make the presentation as self-contained as possible; nevertheless, for
lack of space, we refer the interested reader to [17] for a complete description. In
Table 1 we report, for each problem,

– the number n of variables;
– the number m of the constraints defining the feasible set K (x) and, among these,
– the number mc of constraints that depend on x ;
– the source of the problem.

The functions of the QVIs are always linear, except for Wal2, Wal5, Box2, Box3, Ex7,
Ex8, which are non linear. The constraints of the QVIs are as follows:
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Table 1 Problems, dimensions, and sources

Problem n m (mc) Ref. Problem n m (mc) Ref.

OutZ40 2 6 (2) [40] MovSet3A1 1,000 1 (1) [17]

OutZ41 2 6 (2) [40] MovSet3A2 2,000 1 (1) [17]

OutZ42 4 8 (4) [40] MovSet3B1 1,000 1 (1) [17]

OutZ43 4 4 (4) [40] MovSet3B2 2,000 1 (1) [17]

OutZ44 4 4 (4) [40] MovSet4A1 400 801 (801) [17]

OutKZ31 62 124 (62) [39] MovSet4A2 800 1,601 (1,601) [17]

OutKZ41 82 164 (82) [39] MovSet4B1 400 801 (801) [17]

Scrim22 4,800 9,600 (4,800) [46] MovSet4B2 800 1,601 (1,601) [17]

KunR11 2,500 2,500 (2,500) [31] Box2A 500 1,000 (1,000) [17]

KunR12 4,900 4,900 (4,900) [31] Box2B 500 1,000 (1,000) [17]

KunR21 2,500 2,500 (2,500) [31] Box3A 500 1,000 (1,000) [17]

KunR22 4,900 4,900 (4,900) [31] Box3B 500 1,000 (1,000) [17]

KunR31 2,500 2,500 (2,500) [31] RHS1A1 200 199 (199) [17]

KunR32 4,900 4,900 (4,900) [31] RHS2B1 200 199 (199) [17]

Wal2 105 127 (20) [13] Ex3 2 4 (2) This paper

Wal3 186 218 (30) [13] Ex7 1 1 (1) This paper

Wal5 492 534 (40) [13] Ex8 1 2 (1) This paper

– OutZ40, OutZ41, OutZ43, OutKZ1 (all), Scrim22, Box (all), MovSet4 (all),
RHS2B1, Ex3, Ex8 : linear (in x and y)

– OutZ42, OutZ44, KunR (all), Wal (all), MovSet3 (all) , RHS1A1, Ex7 : non linear
(in at least x or y).

Problems OutZ (all), MovSet (all), Box (all) and RHS (all) are purely academic prob-
lems, while the remaining problems correspond to some kind of engineering or eco-
nomic models. A few more details on the test problems are given below.

OutZ40, OutZ41, OutZ42, OutZ43, OutZ44: small academic problems from [40],
where they were used to test a Newton type method;
OutKZ31, OutKZ41: QVI model of an elastic body in contrast to a rigid obstacle
with Coulomb friction (friction coefficient = 10), taken from Example 11.1 in [39];
the two problems differ in the fragmentation degree of the obstacle in identical
segments (in OutKZ31 the obstacle is divided into 30 segments, in OutKZ41 the
obstacle is divided into 40 segments);
Scrim22: dynamic competition on networks QVI model taken from [46], with time
instants {0, . . . , 1200};
KunR11, KunR12, Kun21, KunR22, Kun31, KunR32: discretization of an infinite
dimensional QVI formulation of the Stefan problem (described in (3.4), (3.5) in
[31], with p = 2, Ω = {

(z1, z2) ∈ R
2 | 0 < z1, z2 < 1

}
, jc(t) := t2); the

discretization is performed by using forward finite differences; the six problems
differ in the discretization degree N and in the boundary function u1 used (in
KunR11, KunR21, KunR31: N = 50; in KunR12, KunR22, KunR32: N = 70;
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in KunR11, KunR12: u1(x, y) := x + y + 1; in KunR21, KunR22: u1(x, y) :=
1− 0.1(sin(2πx)+ cos(2πy)); in KunR31, KunR32: u1(x, y) := ex+y);
Wal2, Wal3, Wal5: QVI reformulation of a Walrasian pure exchange economy
with utility function without production from [13]; the three problems differ in the
number of agents, the number of exchanged goods, the utility functions and the
initial endowments (these are taken from Example A.10 in [15]);
MovSet3 (all) MovSet4 (all): problems with the structure analyzed in Sect. 3.2,
see [17] for the details;
Box2A, Box2B, Box3A, Box3B: problems with the structure analyzed in Sect.
3.4, see [17] for the details;
RHS1A1, RHS1B1, RHS2A1, RHS2B1: problems with the structure analyzed in
Sect. 3.3, see [17] for the details.

Finally, the following is a list of problems for which the key nonsingularity assumption
of JH can be guaranteed based on the results in Sect. 3:

OutZ43, MovSet3A1, MovSet3A2, MovSet4A1, MovSet4A2,
Box2A, Box3A, RHS1A1, Ex3, Ex7, Ex8.

Note that the structure of problems OutKZ31 and OutKZ41 is the one analyzed in
Example 2 and therefore these problems are nonsingular if the friction coefficient φ is
small. However in the test problem we used, we took the friction coefficient large to
make the problems more difficult. More in general, we included many problems whose
nonsingularity is not guaranteed (i.e. we actually do not know whether nonsingularity
is satisfied or not) in order to test the robustness of the method.

In Table 2 we report the numerical results of our algorithm on the test problems
described above. For each problem we list

– the x-part of the starting point (the number reported is the value of all components
of the x-part of the starting point);

– the number of iterations, which is equal to the number of evaluations of JH ;
– the number of evaluations of the constraints vector g;
– the number of evaluations of F , which is equal to the number of evaluations of the

gradients of the constraints vector ∇g;
– the value of the K K T violation measure V (x, λ) at termination.

Note that for the (λ,w)-part of the starting vector, we always used λ0 = 5 and further
set w0 = max(5, 5−h(x0)), so as to ensure that the starting point is “well inside” Z I .

We see that overall the algorithm seems efficient and reliable and able to solve a
wide array of different problems. The four failures deserve a few more comments. The
failures on KunR31 and KunR32 are due to the limit on computing time (3,600 s),
but the algorithm actually appears to be converging in both cases. In fact, the value of
V (x, λ) at the last iteration is 1.1× 10−3 and 1.3× 10−3, respectively. In the case of
Box3A and Box3B instead, difficulties arise because of an almost singularity of the
linear system giving the search direction; this leads to a failure due to the inability of
the algorithm to find a step-size satisfying the acceptance criterion (7).

In order to better gauge the robustness of our algorithm we also solved all the prob-
lems using a C version of the PATH solver with a Matlab interface downloaded from
http://pages.cs.wisc.edu/~ferris/path/ and whose detailed description can be found
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Table 2 Potential reduction algorithm numerical results for QVIs

Problem x0 It/JF g F /∇g V (x, λ) Problem x0 It/JF g F /∇g V (x, λ)

OutZ40 0 8 9 9 7.4853e−05 Wal2 10 47 95 48 5.0181e−05

OutZ41 0 18 19 19 9.7789e−05 Wal3 0 48 84 82 4.2859e−05

OutZx42 0 8 9 9 1.4467e−05 Wal3 10 63 110 110 3.4127e−05

OutZx43 0 8 9 9 1.8955e−05 Wal5 0 46 80 47 4.6612e−05

OutZ44 0 8 9 9 2.9380e−05 Wal5 10 42 43 43 6.4139e−05

OutKZ31 0 18 19 19 2.4473e−05 MovSet3A1 0 11 12 12 2.7945e−05

OutKZ31 10 17 18 18 1.6132e−05 MovSet3A2 0 11 12 12 5.6040e−05

OutKZ41 0 20 21 21 4.6573e−05 MovSet3B1 0 11 12 12 1.8449e−05

OutKZ41 10 20 21 21 3.5913e−05 MovSet3B2 0 11 12 12 3.6660e−05

Scrim22 0 17 18 18 2.5188e−05 MovSet4A1 0 12 13 13 7.1662e−05

Scrim22 10 19 20 20 8.9414e−05 MovSet4A2 0 12 13 13 7.1632e−05

KunR11 0 14 15 15 7.9623e−05 MovSet4B1 0 12 13 13 4.5120e−05

KunR11 10 24 40 40 8.3369e−05 MovSet4B2 0 12 13 13 7.1343e−05

KunR12 0 22 35 35 7.7460e−05 Box2A 10 167 187 187 7.7965e−06

KunR12 10 25 43 43 9.0344e−05 Box2B 10 195 220 220 2.3443e−06

KunR21 0 21 35 35 6.1531e−05 Box3A 10 Failure

KunR21 10 22 33 33 4.6800e−05 Box3B 10 Failure

KunR22 0 23 40 40 7.6296e−05 RHS1A1 0 87 140 127 6.6880e−09

KunR22 10 23 40 40 8.9724e−05 RHS1A1 10 19 20 20 3.5596e−05

KunR31 0 154 764 764 4.6276e−05 RHS2B1 0 84 98 98 1.1662e−08

KunR31 10 Failure RHS2B1 10 19 20 20 2.4006e−05

KunR32 0 168 807 807 2.7577e−05 Ex3 10 8 9 9 2.1686e−05

KunR32 10 Failure Ex7 10 15 17 17 4.5143e−05

Wal2 0 34 59 35 2.5898e−05 Ex8 10 32 80 80 2.1002e−05

in [12,19]. PATH is a well-established and mature software implementing a stabilized
Josephy–Newton method for the solution of Mixed Complementarity Problems and
it can be used to solve the KKT conditions of a QVI, although with no theoretical
guarantee of convergence in our setting. We used the same x-part for the starting
point as we used in the testing of our method. For the λ part, we considered two
options. In the first we took λ0 = 5, therefore using exactly the same starting point
we used in the testing of the interior-point algorithm. In the second option we set
λ0 = 0; this latter alternative was considered because the choice of λ0 = 5 is geared
towards our interior-point method, while λ0 = 0 seems more natural for PATH. It
might be useful to remark that we run PATH with its default settings and the stop-
ping criterions using by PRA and PATH are marginally different. In spite of this,
the precision at the computed solution, measured in terms of V (x, λ), is consistently
comparable. In both the tested cases, PATH was not able to solve 4 problems (the
failures are given in Table 3, where under the heading PATH (5) we report the timings
for PATH with λ0 = 5 and analogously under PATH (0) we have the timings for
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Table 3 CPU times in seconds and failures (F)

Problem x0 PRA PATH (5) PATH (0) Problem x0 PRA PATH (5) PATH (0)

OutZ40 0 <0.1 <0.1 <0.1 Wal2 10 0.2 F 0.1

OutZ41 0 <0.1 <0.1 <0.1 Wal3 0 0.3 0.1 0.1

OutZ42 0 <0.1 <0.1 <0.1 Wal3 10 0.4 0.4 0.1

OutZ43 0 <0.1 <0.1 <0.1 Wal5 0 0.7 F F

OutZ44 0 <0.1 <0.1 <0.1 Wal5 10 0.6 F 1.4

OutKZ31 0 <0.1 <0.1 <0.1 MovSet3A1 0 2.2 5.4 4.8

OutKZ31 10 <0.1 <0.1 <0.1 MovSet3A2 0 10.1 37.5 35.2

OutKZ41 0 <0.1 <0.1 <0.1 MovSet3B1 0 2.2 5.8 5.3

OutKZ41 10 <0.1 <0.1 <0.1 MovSet3B2 0 9.9 46.8 38.1

Scrim22 0 9.5 36.8 6.3 MovSet4A1 0 0.4 7.5 0.4

Scrim22 10 10.6 37.1 22.5 MovSet4A2 0 1.3 92.0 2.0

KunR11 0 26.2 110.5 37.7 MovSet4B1 0 0.3 7.6 0.4

KunR11 10 53.8 130.0 50.0 MovSet4B2 0 1.3 96.2 2.0

KunR12 0 177.1 1382.8 161.8 Box2A 10 4.0 5.7 2.7

KunR12 10 209.0 1280.6 196.3 Box2B 10 4.7 7.2 8.7

KunR21 0 46.7 91.7 42.8 Box3A 10 F 16.0 4.6

KunR21 10 47.0 119.1 82.2 Box3B 10 F F 34.3

KunR22 0 192.5 845.4 114.1 RHS1A1 0 3.1 0.3 0.1

KunR22 10 193.6 1028.0 218.3 RHS1A1 10 0.6 0.3 0.4

KunR31 0 637.9 168.7 1225.4 RHS2B1 0 2.9 0.3 0.1

KunR31 10 F 185.3 F RHS2B1 10 0.6 0.3 0.3

KunR32 0 2531.6 552.3 F Ex3 10 <0.1 <0.1 <0.1

KunR32 10 F 817.4 F Ex7 10 <0.1 <0.1 <0.1

Wal2 0 0.1 0.2 0.3 Ex8 10 <0.1 <0.1 <0.1

PATH with λ0 = 0). These results seem to indicate that our method has the potential
to become a very robust solver for the solution of the KKT conditions arising from
QVIs.

The comparison of CPU times is somewhat more problematic. In fact one should
take into account that, although the main computational burden in our algorithm is
given by the solution of linear systems, a task very efficiently performed by the Matlab
built-in function mldivide, we did use Matlab, an interpreted language, and further-
more, what we implemented is a straightforward version of our algorithm, with none
of all those crash and recover techniques that are to be found in a well developed
software as PATH. In spite of this, Sven Leyffer kindly suggested that having current
CPU times would still be of interest, and so we report them in Table 3. Note that we
do not report major, minor and crash iterations for PATH. In fact PRA and PATH are
very unlike, and the meaning of “iteration” is so different in the two methods that
we feel that, besides the number of failures, CPU time is the only other meaningful
parameter to compare. These results show that even the current prototypical Matlab
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implementation of the interior-point method compares well to PATH, also in terms of
computing times. The development of a more sophisticated C version of our method,
fully exploiting its potential for parallelism, is currently under the way and more
extended and detailed numerical results, along with more accurate comparisons, will
be reported elsewhere.

6 Conclusions

We presented a detailed convergence theory for an interior-point method for the
solution of the KKT conditions of a general QVI. We could establish convergence
for a wide array of different classes of problems including QVIs with the feasible
set given by “moving sets”, linear systems with variable right-hand sides, box con-
straints with variable bounds, and bilinear constraints. These results surpass by far
existing convergence analyses, the latter all having a somewhat limited scope. In
our view, the results in this paper constitute an important step towards the develop-
ment of theoretically reliable and numerically efficient methods for the solution of
QVIs.

Acknowledgments We are thankful to Jiří Outrata and Michal Kočvara who very kindly provided us with
the Matlab codes used to generate the data for the test problems OutKZ31 and OutKZ41.

A Appendix on monotonicity and Lipschitz properties

In this appendix we recall some well-known definitions and discuss some related
results. Although the latter are also mostly well-known, in some cases we could not
find in the literature the exact versions we needed. Therefore, for completeness we
also report the proofs of these results.

We begin by recalling the definitions of several classes of functions.

Definition 2 Let D ⊆ R
n and F : D→ R

n be a given function. Then

(a) F is strongly monotone on D with constant σ if σ > 0 and

(x − y)T
(
F(x)− F(y)

) ≥ σ‖x − y‖2, ∀x, y ∈ D;

The largest σ for which such a relation holds is termed the monotonicity modulus
of F on D:

σ(D, F) := inf
x �=y,x,y∈D

(x − y)T
(
F(x)− F(y)

)

‖x − y‖2 .

(b) F is co-coercive on D with constant ξ if ξ > 0 and

(x − y)T
(
F(x)− F(y)

) ≥ ξ‖F(x)− F(y)‖2, ∀x, y ∈ D;

(c) F is Lipschitz continuous on D with constant L ≥ 0 if

‖F(x)− F(y)‖ ≤ L‖x − y‖, ∀x, y ∈ D.
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The smallest L for which such relation holds is termed the Lipschitz modulus of
F on D:

L(D, F) := sup
x �=y,x,y∈D

‖F(x)− F(y)‖
‖x − y‖ .

(d) F is a homeomorphism of D onto F(D) if F is one-to-one on D (that is F(x) �=
F(y) whenever x, y ∈ D, x �= y, or, in other words, F has a single-valued
inverse F−1 defined on F(D)), and F and F−1 are continuous on D and F(D),
respectively. ��

Characterizations of the Lipschitz and strong monotonicity moduli are given in the
following result.

Proposition 3 Let D ⊆ R
n be an open, convex subset of R

n and let F : D→ R
n be

a continuously differentiable function. Then the following statements hold:

(a) F is Lipschitz continuous on D with constant L if and only if ‖JF(x)‖ ≤ L for
all x ∈ D; consequently

L(D, F) = sup
x∈D
‖JF(x)‖,

provided the sup on the right hand side is finite.
(b) F is strongly monotone on D with constant σ if and only if hT JF(x)h ≥ σ‖h‖2

for all x ∈ D, h ∈ R
n; consequently

σ(D, F) = inf
x∈D

μs
m(JF(x)),

provided the inf on the right hand side is positive.

Proof (a) From Theorem 3.2.3 in [37], if ‖JF(x)‖ ≤ L then L is a Lipschitz constant
for F on D. Conversely, assume that

∥∥F(x)− F(y)
∥∥ ≤ L‖x − y‖, ∀x, y ∈ D (35)

holds. Applying the differential mean value theorem to each component function
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Fi of F , it follows that, for any given x, y ∈ D, we can find suitable points
ξ (i) ∈ (x, y) such that

Fi (x)− Fi (y) = ∇Fi (ξ
(i))T (x − y) ∀i = 1, . . . , n.

Setting

G(ξ) :=
⎛

⎜
⎝

∇F1(ξ
(1))T

...

∇Fn(ξ (n))T

⎞

⎟
⎠ ∈ R

n×n,

this can be rewritten in a compact way as

F(x)− F(y) = G(ξ)(x − y). (36)

Now, let x ∈ D be fixed, and note that

G(ξ)→ JF(x) (37)

for any sequence y → x in view of the continuous differentiability of F . We
now consider a particular sequence y = x + td with a fixed (but arbitrary) vector
d ∈ R

n \ {0} and a sequence t ↓ 0. Then (35) and (36) together imply

∥∥G(ξ)td
∥∥ = ∥∥F(x)− F(x + td)

∥∥ ≤ L‖td‖.

Dividing by t and subsequently letting t ↓ 0 (note that ξ still depends on t), we
obtain

∥
∥JF(x)d

∥
∥ ≤ L‖d‖

in view of (37). Since d was taken arbitrarily, this implies ‖JF(x)‖ ≤ L , and this
inequality is true for any vector x ∈ D.

(b) See [37, Theorem 5.4.3]. ��
The following result gives a relation between the Lipschitz constants etc. of a given
mapping F and its inverse F−1.

Proposition 4 Let a function F : D → R
n be given where D is an open subset of

R
n. Assume that two positive constants � and L exist such that

�‖x − y‖ ≤ ‖F(x)− F(y)‖ ≤ L‖x − y‖, ∀x, y ∈ D. (38)

Then F is a homeomorphism from D to F(D) (which is an open set) and

1

L
‖a − b‖ ≤ ‖F−1(a)− F−1(b)‖ ≤ 1

�
‖a − b‖, ∀a, b ∈ F(D), (39)

in particular, F and F−1 are Lipschitz continuous on D and F(D), respectively.
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Proof The first inequality from (38) implies that F is one-to-one on D (therefore the
inverse F−1 exists on F(D)), and that, setting a = F(x) and b = F(y), the second
inequality in (39) holds. In particular, this implies that F−1 is Lipschitz continuous
on F(D), hence continuous, so that F(D) = (F−1)−1(D), being the pre-image of
a continuous map of the open set D, is also an open set. Finally, let a, b ∈ F(D)

be arbitrarily given. Setting x = F−1(a), y = F−1(b), we obtain from the second
inequality in (38) that

‖F−1(a)− F−1(b)‖ = ‖x − y‖ ≥ 1

L
‖F(x)− F(y)‖ = 1

L
‖a − b‖,

and this completes the proof. ��
The next result considers a strongly monotone and Lipschitz continuous mapping and
provides suitable bounds for the moduli of Lipschitz continuity and strong monotonic-
ity of the corresponding inverse function. We stress, however, that the constant of strong
monotonicity of the inverse function provided by this result is really just an estimate
and typically not exact. It seems difficult to find a stronger bound in the general context
discussed here. In a more specialized situation, much better results can be obtained,
see Proposition 6 below.

Proposition 5 Let D ⊆ R
n be an open set and F : D → R

n be strongly monotone
with modulus σ and Lipschitz continuous with modulus L on D. Then F is co-coercive
with constant σ

L2 . Furthermore, it holds that the inverse F−1 exists on F(D), is Lip-

schitz with constant 1
σ

and strongly monotone with constant σ
L2 .

Proof We can write

(
F(x)− F(y)

)T
(x − y) ≥ σ‖x − y‖2, ∀x, y ∈ D

and

‖F(x)− F(y)‖2 ≤ L2‖x − y‖2, ∀x, y ∈ D

by assumption. A combination of these two inequalities yields

‖F(x)− F(y)‖2 ≤ L2‖x−y‖2 ≤ L2

σ

(
F(x)−F(y)

)T
(x − y), ∀x, y ∈ D. (40)

Hence F is co-coercive with constant σ
L2 .

By Proposition 4 we know that F is a homeomorphism from D to F(D) and F−1

is Lipschitz continuous with constant 1
σ

. Finally writing a = F(x), b = F(y) in (40)
gives

(
F−1(a)− F−1(b)

)T
(a − b) ≥ σ

L2 ‖a − b‖2, ∀a, b ∈ F(D).

This completes the proof. ��
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The following result gives an exact estimate of the Lipschitz and strong monotonicity
moduli of the inverse of a function under the assumption that the mapping F itself is
a gradient mapping, i.e. that F = ∇ f for a differentiable real-valued function f .

Proposition 6 Let D ⊆ R
n be an open convex set and F : D → R

n be a gradient
mapping. Assume that F is strongly monotone with modulus σ and Lipschitz continu-
ous with modulus L on D. Then the inverse function F−1 exists on F(D), is Lipschitz
with modulus 1

σ
and strongly monotone with modulus 1

L .

Proof The result can easily be derived from the Baillon–Haddad Theorem, see [1],
when D = R

n . We give here a direct proof which is valid also when D �= R
n . In view

of Proposition 5, we only have to verify the statement that F−1 is strongly monotone
with constant 1

L .
To this end, first consider a symmetric positive definite matrix A ∈ R

n×n , let A1/2

be the corresponding (unique) symmetric positive definite square root of A so that
A1/2 A1/2 = A, and let A−1/2 be the inverse of A1/2. Then the symmetry of A1/2

together with the Cauchy–Schwarz inequality implies

‖d‖2 = dT d = dT A1/2 A−1/2d ≤ ‖A1/2d‖ · ‖A−1/2d‖, ∀d ∈ R
n .

Squaring both sides shows that

‖d‖4 ≤ (
dT Ad

)(
dT A−1d

)
, ∀d ∈ R

n (41)

holds. Since F is strongly monotone, the Jacobian JF(x) is positive definite for all
x ∈ D; furthermore, since F is a gradient mapping, this Jacobian is also symmetric.
Hence we can apply inequality (41) to the matrix A := JF(x) and obtain

‖d‖4 ≤ (
dT JF(x)d

)(
dT JF(x)−1d

)

≤ (
dT JF(x)−1d

)‖d‖2‖JF(x)‖
≤ (

dT JF(x)−1d
)
L‖d‖2, ∀d ∈ R

n,

where the second inequality uses the Cauchy–Schwarz inequality once again, and the
third inequality takes into account Proposition 3. This implies

1

L
dT d = 1

L
‖d‖2 ≤ (

dT JF(x)−1d
)
, ∀d ∈ R

n ∀x ∈ D.

Since JF(x)−1 = JF−1(y) for y = F(x) by the Inverse Function Theorem, this gives

1

L
dT d ≤ dT JF−1(y)d, ∀d ∈ R

n ∀y ∈ F(D).

By a well-known result, see [37, Theorem 5.4.3] this is equivalent to saying that F−1

is strongly monotone on F(D) with constant 1/L . ��
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The sharper result from Proposition 6 regarding the modulus of strong monotonicity
does, in general, not hold for non-gradient mappings, see the corresponding discussion
and (counter-) example at the end of Sect. 3.2.
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