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Abstract One of the foremost difficulties in solving Mixed-Integer Nonlinear
Programs, either with exact or heuristic methods, is to find a feasible point. We address
this issue with a new feasibility pump algorithm tailored for nonconvex Mixed-Integer
Nonlinear Programs. Feasibility pumps are algorithms that iterate between solving a
continuous relaxation and a mixed-integer relaxation of the original problems. Such
approaches currently exist in the literature for Mixed-Integer Linear Programs and
convex Mixed-Integer Nonlinear Programs: both cases exhibit the distinctive prop-
erty that the continuous relaxation can be solved in polynomial time. In nonconvex
Mixed-Integer Nonlinear Programming such a property does not hold, and therefore
special care has to be exercised in order to allow feasibility pump algorithms to rely
only on local optima of the continuous relaxation. Based on a new, high level view of
feasibility pump algorithms as a special case of the well-known successive projection
method, we show that many possible different variants of the approach can be devel-
oped, depending on how several different (orthogonal) implementation choices are
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taken. A remarkable twist of feasibility pump algorithms is that, unlike most previous
successive projection methods from the literature, projection is “naturally” taken in
two different norms in the two different subproblems. To cope with this issue while
retaining the local convergence properties of standard successive projection methods
we propose the introduction of appropriate norm constraints in the subproblems; these
actually seem to significantly improve the practical performance of the approach. We
present extensive computational results on the MINLPLib, showing the effectiveness
and efficiency of our algorithm.

Keywords Feasibility pump · MINLP · Global optimization · Nonconvex NLP

Mathematics Subject Classification 90C11 Mixed integer programming · 90C26
Nonconvex programming, global optimization · 90C59 Approximation methods and
heuristics

1 Introduction

Mixed-Integer Nonlinear Programming (MINLP) problems are mathematical pro-
grams of the following form:

min
{

f (x, y) : g(x, y) ≤ 0, (x, y) ∈ X , x ∈ Z
p
}

(1)

where x are integer decision variables, y are continuous decision variables, X ⊆
R

p+q is a polyhedron (which possibly include variable bounds), f : R
p+q → R and g

: R
p+q → R

m . We remark that f can be assumed convex without loss of generality
(if it were not, we might replace it by an added variable v and adjoin the constraint
f (x) − v ≤ 0 as a further component of g).

The exact solution of nonconvex MINLP is only possible for certain classes of
functions f, g (e.g. if f is linear and g involve bilinear terms xy [2,11]). In general, the
spatial Branch-and-Bound (sBB) algorithm is used to obtain ε-approximate solutions
for a given positive constant ε. The sBB computes upper and lower bounds to the
objective function value within sets belonging to an iteratively refined partition of
the feasible region. The search is pruned when the lower bound on the current set is
worse than the best feasible so far (the incumbent), when the problem restricted to
the current set is infeasible, and when the two bounds for the current set are within ε.
Otherwise, the current set is partitioned and the search continues recursively [6,35].
Heuristic approaches to solving MINLPs include Variable Neighbourhood Search [30],
automatically tuned variable fixing strategies [7], Local Branching [31] and others;
specifically, most exact approaches for convex MINLPs [8,21] work as heuristic for
nonconvex MINLPs. In heuristic approaches, however, one of the main algorithmic
difficulties connected to MINLPs is to find a feasible solution. From the worst-case
complexity point of view, finding a feasible MINLP solution is as hard as finding a
feasible Nonlinear Programming (NLP) solution, which is NP-hard [36].

In this paper we address the issue of MINLP feasibility by extending a well-
known approach, namely the Feasibility Pump (FP) to the nonconvex MINLP case.
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A storm of feasibility pumps for nonconvex MINLP 377

The FP algorithm was originally proposed for Mixed-Integer Linear Programming
(MILP) [20], where f, g are linear forms, and then extended to convex MINLPs [8],
where g are convex functions. In both cases the feasible region is partitioned so that two
subproblems are iteratively solved: a problem P1 involving the continuous variables y
with relaxed integer variables x , and a problem P2 involving both integer and contin-
uous variables x, y targeting, through its objective function, the continuous solution
of P1. The two subproblems are iteratively solved, generating sequences of values
for x and y. One of the main theoretical issues in FP is to show that these sequences
do not cycle, i.e., are not periodic but converge to some feasible point (x, y). This
is indeed the case for the FP version proposed for convex MINLP [8] where P2 is a
MILP, while cycling might happen for the original FP version proposed for MILP [20]
where randomization is effectively (and cheaply) used as an escaping mechanism. In
the FP for MILPs, P1 is a Linear Program (LP) and P2 a rounding phase; in the FP for
convex MINLPs, P1 is a convex NLP and P2 a MILP iteratively updated with Outer
Approximation (OA) constraints derived from the optimum of the convex NLP. In both
cases one of the subproblems (P1) can be solved in polynomial time; in the FP for
convex MINLPs, P2 is NP-hard in general. Extensions for both FPs exist, addressing
solution quality in some cases [1] and CPU time in others [9]. The added difficulty in
the extension proposed in this paper is that P1 is a nonconvex NLP, and is therefore
NP-hard: thus, in our decomposition, both subproblems are difficult, and special care
has to be exercised in order to allow FP algorithms to rely only on local optima of the
continuous relaxation.

A contribution of the present paper is to present FP algorithms as a special case
of the well-known Successive Projection Method (SPM). By doing so we show that
many possible different variants of the approach can be developed, depending on how
several different (orthogonal) implementation choices are taken. A remarkable twist
of FP algorithms is that, unlike most previous SPMs from the literature, projection
is “naturally” taken in two different norms in P1 and P2. To cope with this issue
while retaining the local convergence properties of standard SPMs we propose the
introduction of appropriate norm constraints in the subproblems, an idea that could be
generalized to other nonconvex applications of the SPM. In particular, adding a norm
constraint to P1, besides providing nice theoretical convergence properties, actually
seem to significantly improve the practical performance of the approach.

The rest of this paper is organized as follows. In Sect. 2 we frame the FP algorithm
within the class of Successive Projection Methods, describing their convergence prop-
erties. In Sect. 3 we discuss the use of different norms within the two subproblems of
the FP algorithm. In Sect. 4 we list our solution strategies for both subproblems. In
Sect. 5 we present comparative computational results illustrating the efficiency of the
proposed approach. Section 6 concludes the paper.

2 A view on feasibility pumps

A hitherto seemingly unremarked fact is that FP algorithms are instantiations of a more
general class of algorithms, called Successive Projection Methods, for finding a point
in a set intersection A ∩ B under the (informal) assumption that “optimization over
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each set separately is much easier than optimization over the intersection”. SPMs have
been proposed more than 60 years ago (cf. [37]), have found innumerable applications,
and have been developed in very many variants: the excellent—and not particularly
recent—survey of [5] provides more than one hundred references. The basic idea of
SPM is to restate the feasibility problem in terms of the optimization problem

min{‖z − w‖ | z ∈ A ∧ w ∈ B}. (2)

Given an initial point w0, a SPM generates a sequence of iterates (z1, w1), (z2, w2), . . .

defined as follows:

zi ∈ argmin{‖z − wi−1‖ | z ∈ A } (3)

wi ∈ argmin{‖zi − w‖ | w ∈ B}, (4)

where on first reading the norm could be assumed Euclidean. It is easy to see that, as
discussed below, each iteration improves the objective function of (2), so that one can
hope that the sequence will converge to some fixed point (z∗, w∗) where z∗ = w∗,
which therefore provides a positive answer to the feasibility problem. The standing
assumption simply says that (3)–(4) are much easier problems than the whole of (2)
is, and therefore that the iterative approach may make sense.

While in the vast majority of the applications A and B are “easy” convex sets, and
it was intended that optimization was to be exact, our nonconvex FP setting also fits
under the basic assumption of the approach. Indeed, X is the coarsest relaxation of
the feasible region of (1) and let C ⊆ {1, . . . , m} be the set of constraint indices such
that gi (x, y) is a convex function of (x, y) (note that these do not include the linear
defining inequalities of X , if any), and N = {1, . . . , m} � C . We denote the list of
all convex constraints by gC , so that C = {(x, y) | gC (x, y) ≤ 0} ⊆ R

p+q also is a
convex relaxation of the feasible region of (1). We also denote by gN the constraints
indexed by N and let N = {(x, y) | gN (x, y) ≤ 0}. We remark that deciding
whether N is empty involves the solution of a nonconvex NLP and is therefore a
hard problem. This hardness, by inclusion, extends to the continuous relaxation of
the feasible region P = C ∩ N ∩ X . Now, let Z = {(x, y) | x ∈ Z

p}, so that
I = C ∩ X ∩ Z is the relaxation of the feasible region involving all the convex
and integrality constraints of (1). Deciding emptiness of I involves solving a convex
MINLP and is therefore also hard, but for different reasons than P . More specifically,
solving nonconvex NLPs globally requires solving nonconvex NLPs locally as a sub-
step, whereas solving convex MINLPs involves the solution of convex NLPs (globally)
as a sub-step. The numerical difficulties linked to these two tasks are very different, in
particular with respect to the reliability of finding the solution: with nonconvex NLPs,
for example, Sequential Quadratic Programming (SQP) algorithms might yield an
infeasibile linearization step even though the original problem is feasible. It therefore
makes sense to decompose F = I ∩ P , the feasible region of (1), into its two
components I and P , in order to address each of the difficulties separately.

Thus, by taking e.g. A = P and B = I one can fit the FP approach under the
generic SPM framework. Note that with this choice the (nonlinear) convex constraints
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gC are included in the definition of both P and I (although they can possibly be outer-
approximated in the latter, as discussed below). This makes sense since C represents,
in this context, an “easy” part of (1): adding it to either set of constraints do not
fundamentally change the difficulty of the corresponding problems, while clearly
helping to convey as much information of F as possible. Yet, other decompositions
could make sense as well. For instance, one may alternatively set B = X ∩ Z in
order to keep P2 a linear problem without having to resort to outer approximation
techniques (assuming that C only contains the nonlinear convex constraints, with all
the linear ones represented in X ). Alternatively, B = Z could also make sense, since
then P2 actually simplifies to a simple rounding operation (the choice of the original
FP [20], cf. §4.2). Thus, different variants of FP for (1) can be devised which can all
be interpreted as special cases of SPM for proper choices of A and B. Therefore,
in the following we will keep the “abstract” notation with the generic sets A and
B whenever we discuss general properties of the approach which do not depend on
specific choices within the FP application.

Convergence of SPMs has been heavily investigated. An easy observation is that,
directly from (3)–(4),

‖zi−1 − wi−1‖ ≥ ‖zi − wi−1‖ ≥ ‖zi − wi‖,

i.e., the sequence given by {δi = ‖zi − wi‖} is nonincreasing, hence the method is at
least locally convergent (in the sense that δi → δ∞ ≥ 0). Global convergence results
can be obtained under several different conditions, typically requiring convexity of
A and B (so that (2) is a convex feasibility problem) [5]. For instance, the original
result of [37] for the case of hyperplanes (where projection (3)–(4) is so easy that it
can be accomplished by a closed formula) proves convergence of the whole sequence
to the point of A ∩ B closest to the starting point w0. Convergence results (for the
convex case) can be obtained for substantially more complex versions of the approach,
although many of these results become particularly significant when the number of
intersecting sets is (much) larger than two. For instance, the general scheme analyzed
in [5] considers the iteration

vi = λi
0

(
(1 − αi

0)v
i−1 + αi

0 PB(vi−1)
) + λi

1

(
(1 − αi

1)v
i−1 + αi

1 PA (vi−1)
)

where αi
h ∈ [0, 2] are the (over/under)relaxation parameters and λi

h ≥ 0 are the
weights for h = 0, 1, λi

0 + λi
1 = 1, and

PA (v̄) ∈ argmin{‖v − v̄‖ | v ∈ A }, PB(v̄) ∈ argmin{‖v̄ − v‖ | v ∈ B}.

Thus, SPMs can allow weighted simultaneous projection and relaxation; we mention
in passing that these algorithms bear more than a casual resemblance with subgradient
methods [18], as discussed in [5, §7]. The scheme (3)–(4) clearly corresponds toαi

h = 1
(“unrelaxed”) and λi

(i mod 2) = 1 (“cyclic control”), so that only one among the two

projections actually need to be computed at any iteration (zi = v2i−1 and wi = v2i ).
While simultaneous projection is unlikely to be attractive in the FP setting, relaxation
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is known to improve the practical performance of SPMs in some cases, and it could
be considered.

All these global convergence results rely on convexity, but in our case the involved
sets are far from being convex; convergence of an SPM applied to the nonconvex
MINLP is therefore an issue. In order to consider the nonconvex case, the typical
strategy is that of recasting SPMs in terms of block Gauss-Seidel approaches applied to
the minimization of a block-structured objective function Q(z, w). These approaches,
based on the same idea to iteratively minimize over one block of variables at a time,
can be shown to be (locally) convergent under much less stringent conditions than
convexity, especially in the two-blocks case of interest here. Different convergence
results, under different assumptions, can be found e.g. in [23,34] for the even more
general setting where the objective function of is

L(z, w) = h(z) + Q(z, w) + k(w),

with h : R
p → R ∪ {+∞} and k : R

q → R ∪ {+∞} proper lower semicontinuous
functions, neither convex nor differentiable, and Q : R

p+q → R is regular, i.e.,

Q′(z, w; dz, 0) ≥ 0 ∧ Q′(z, w, 0, dw) ≥ 0 ⇒ Q′(z, w; dz, dw) ≥ 0 (5)

for all feasible z, w, where Q′(z, w; dz, dw) is the directional derivative of Q at (z, w)

along the direction (dz, dw). Smooth functions are regular, while in general nonsmooth
ones are not. With stricter conditions on Q (e.g. C1) the results can be extended and
somewhat strengthened [3] to the stabilized version

zi ∈ argmin{h(z) + Q(z, wi−1) + λi‖z − zi−1‖2
2 | z ∈ A } (6)

wi ∈ argmin{Q(zi , w) + k(w) + μi‖w − wi−1‖2
2 | w ∈ B}, (7)

where the penalty terms are added to discourage large changes in the current z,
w iterates. The method (6)–(7) holds under mild assumptions such as upper and lower
boundedness of λi and μi ; the whole sequence (zi , wi ) is shown to converge to a
critical point of L (as opposed to only convergence of subsequences like in [23]).

One can then fit the FPs for the nonconvex MINLP case in the above setting by
choosing e.g. h = k = 0, Q(z, w) = ‖z − w‖2

2, λi = μi = 0, and A ,B in any
one of the possible ways discussed above. Note that different variants could be also
discussed, such as using non-zero h(z) and k(w) to include a weighted contribution of
the objective function to try to improve on the quality of the obtained solutions, a-la
[1]. Sticking to the simplest case, one has that the sequence defined by

(x̄ i , ȳi ) ∈ argmin{‖(x, y) − (x̂ i−1, ŷi−1)‖ |g(x, y) ≤ 0 ∧ (x, y) ∈ X } (8)

(x̂ i , ŷi ) ∈ argmin{‖(x, y) − (x̄ i , ȳi )‖ |gC (x, y) ≤ 0 ∧ (x, y) ∈ X ∧ x ∈ Z
p}. (9)

(or any other appropriate splitting of the constraints) converges to a local optimum
of the (nonconvex) problem (2). Thus, if δi → δ∞ > 0, then either F = ∅ or the
algorithm has converged to a critical point which is not a global minimum. Telling
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A storm of feasibility pumps for nonconvex MINLP 381

these two cases apart is unfortunately difficult in general; however, because we are
proposing a MINLP heuristic, rather than an exact algorithm, we shall typically assume
the latter case holds, and we shall therefore employ some Global Optimization (GO)
techniques to reach a putative global optimum.

It should be remarked that (3)–(4) is only the most straightforward application of
SPM in our setting. A number of issues arises:

– The algorithm alternates between solving the nonconvex NLP (8) and the convex
MINLP (9). In order to retain the local convergence property, both problems would
need to be solved exactly: a difficult task in both cases.

– Being (9) a mixed-integer program, it would be very attractive to be able to use
the efficient available MILP solvers to tackle it. However, in order to do that one
would — as the very first step — need to substitute the Euclidean norms with
“linear” ones (L1, L∞).

– In the standard FP approach [8,20] the distance is actually only measured on the
integer (x) variables, as opposed to the full pair (x, y).

In the rest of the paper, we discuss several modifications to this approach in order
to address the above issues and better exploit the structure of the problem at hand.

3 Using different norms

In this section we consider employing two different norms ‖ · ‖A and ‖ · ‖B in the two
subproblems (3)–(4):

zi ∈ argmin{‖z − wi−1‖A | z ∈ A } (10)

wi ∈ argmin{‖zi − w‖B | w ∈ B}. (11)

The Euclidean norm is appropriate in (8) because of its smoothness property and
because (8) is already nonlinear. In the case of (9), however, the L1 or L∞ norms yield
a convex MINLP whose objective function can be linearized by means of standard
techniques [28]. Provided the constraints indexed by C are linear, or they are outer
linearized, (9) then becomes a MILP, which allows use of the available efficient off-
the-shelf general-purpose solvers. Replacing the norm in (9), however, prevents us
from establishing monotonicity of the sequence {δi | i ∈ N}: assuming A = 2 and
(say) B = ∞, for example, one uses ‖ · ‖A ≥ ‖ · ‖B to derive

||zi − wi ||A ≥ ||zi+1 − wi ||A ≥ ||zi+1 − wi ||B ≥ ||zi+1 − wi+1||B,

but nothing ensures ||zi+1 −wi+1||B ≥ ||zi+1 −wi+1||A. A way to deal with this case
is to replace (10) by

zi ∈ argmin{‖z − wi−1‖A | z ∈ A ∧ ‖z − wi−1‖B ≤ β‖zi−1 − wi−1‖B}, (12)
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382 C. D’Ambrosio et al.

for β ∈ (0, 1]. This implies monotonicity for all β ≤ 1 and strict monotonicity for all
β < 1:

||zi − wi ||B ≥ β||zi − wi ||B ≥ ||zi+1 − wi ||B ≥ ||zi+1 − wi+1||B .

For B = ∞, the required reformulation for (10) only amounts to restricting variable
bounds; as this restricts the feasible region, it is also expected to facilitate the task of
solving (12). Local convergence — that is, no cycling—of the sequence of iterates
generated by the FP algorithm given by (12) and (11) can be established by ensuring
that the sequence ‖zi − wi‖B converges. A convergence failure might occur if (12)
becomes infeasible because of the restricted variable bounds.1 This shows that

min{||z − wi−1||B | z ∈ A } ≥ β||zi−1 − wi−1||B,

which in turn implies that, for β ≈ 1, zi−1 is a good candidate for a local minimum,
leading to the choice zi = zi−1. If the mixed-integer iterate (11) also cannot improve
the objective, then (zi , wi ) can be assumed to be a local minimum; this case will be
dealt with later.

We remark that the fact that

∀z ∈ A ||z − w̄||B ≥ ||z̄ − w̄||B

∀w ∈ B ||z̄ − w||B ≥ ||z̄ − w̄||B
(13)

is not sufficient to ensure that (z̄, w̄) is a local minimum: this is because ‖ · ‖B is not
regular in the sense of (5) if B ∈ {1,∞}. Indeed, it is clear that for Q(z, w) = g(z−w),
one has Q′(z, w; dz, dw) = g(z − w; dz − dw), which means that Q′(z, w; dz, 0) =
g(z−w; dz) and Q′(z, w; 0, dw) = g(z−w;−dw). Thus, for (z, w) such that || · ||B is
not differentiable at z − w, it is not difficult to construct a counterexample to (5). One
is shown in Fig. 1 for the case B = 1, where Q′(z, w; dz, 0) = Q′(z, w; 0, dw) = 0,
but Q′(z, w; dz, dw) = −1.

Example 1 Based on Fig. 1, we construct an example of nonconvergence of the FP
with A = 2 and B = 1. Let A = {(x, y) | x ≥ 3} and B = {(x, y) | 2x ≤ y}, and
consider z̄ = (3, 4) and w̄ = (2, 4). It is easy to verify that

z̄ ∈ argmin{‖(x, y) − (2, 4)‖2 | (x, y) ∈ A }
w̄ ∈ argmin{‖(3, 4) − (x, y)‖1 | (x, y) ∈ B},

which implies that (z̄, w̄) is a fixed point for the sequence generated by the FP.
However, (z̄, w̄) is not a local minimum of (2): by moving a step of length 2
along the feasible direction (dz, dw) = (0, 1, 1/2, 1) we obtain z′ = (3, 6) and
w′ = (3, 6), and ‖z′ − w′‖1 = ‖z′ − w′‖2 = 0 < 1 = ‖z̄ − w̄‖1 = ‖z̄ − w̄‖2.

��

1 These failures happen in practice as shown in Sect. 5.4.
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Fig. 1 Non-reguarity of || · ||1

Hence, the modification (12) of the FP still guarantees convergence of the δi

sequence, and therefore (at least for β < 1) ensures that no cycling can occur. Con-
vergence may occur to a local minimum when using “nonsmooth” norms such as L1
and L∞ even if A and B were convex, but this is not a major issue since the sets are
nonconvex, and therefore there is no guarantee of convergence to a global minimum
anyway. Other mechanisms in the algorithm (cf. §4.2) are designed to take care of
this.

3.1 Partial norms

A structural property of the specific nonconvex MINLP setting is that whenever
z = (x, y) ∈ A has the property that there exists some z̃ = (x, ỹ) ∈ B, then
z ∈ F ; in other words, the difficulty of optimizing over B is given by the integer
constrained variables x . Thus, for our purposes we can consider

(x̄ i , ȳi ) ∈ argmin{||x − x̂ i−1|| | (x, y) ∈ A } (14)

(x̂ i , ŷi ) ∈ argmin {||x̄ i − x || | (x, y) ∈ B}. (15)

instead of (10)–(11). This means that we need only to consider the distance between
the projection of A and B on the x-subspace, as opposed to the distance between the
full (x, y) iterates. This does not have any significant impact on the approach. From
the theoretical viewpoint, it just says that the function Q(z, w) in (6)–(7) is constant
(hence, smooth) on a subset of the variables, i.e.,

Q( (x̄, ȳ) , (x̂, ŷ) ) = ||x̄ − x̂ ||.

Things are, in theory, rather more complex when two different norms ‖·‖A and ‖·‖B are
used in (14)–(15) (respectively), since then there is no longer a well-defined function
Q to minimize. However, this is as well the case when using different norms on the
whole iterates, as advocated in the previous section. From the practical viewpoint,
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using different partial norms only amounts to the fact that the norm constraint in (12)
actually reads

‖x − x̂ i−1‖B ≤ β‖x̄ i−1 − x̂ i−1‖B (16)

which of course is still enough to guarantee the (strict, if β < 1) monotonicity of
the sequence {δi }. This still provides all the local convergence properties that the FP
requires.

4 Approximate solution of the subproblems

The convergence theory for SPMs would require solving (8) and (9) to global optimal-
ity. As already remarked, this is extremely challenging and not very likely to be effec-
tive in the context of what, overall, remains a heuristic method, which at any rate does
not provide any theoretical guarantee of success. Furthermore, even if the subproblems
were actually solved to global optimality, several variants of the FP approach—most
notably, those employing two different norms–would not still entirely fit into the theo-
retical framework for which convergence proofs are readily available. This frees us to
consider several different options and strategies to solve both (8) and (9), as discussed
in this section, which give rise to “a storm” of many different configurations that we
extensively tested computationally. The results are reported in Sect. 5, either in detail
for the most successful algorithms or in summary for the unsuccessful ones.

4.1 Addressing the nonconvex NLP (8)

As already mentioned solving (8) to global optimality is difficult by itself, mainly
because of the nonconvex constraints. Indeed, if only convex constraints were present,
every local optimum would be guaranteed to be also a global optimum. For this reason,
considering both the convex and nonconvex constraints does not make the subprob-
lem much harder in practice than only considering the nonconvex ones. Although
applying GO techniques to obtain a provably optimal solution would likely be too
time consuming, we still attempt to solve the problem globally by using two different
approaches:

1. a simple stochastic multi-start approach [33] in which the NLP solver is provided
with different randomly generated starting points in order to try to escape from
possible local minima;

2. a Variable Neighborhood Search (VNS) [24] scheme [29,30].

In general, finding any feasible solution for (8) such that ||x̄ − x̂ i−1||A < ||x̄ i−1

− x̂ i−1||B is enough to retain the monotonicity property of the sequence; thus, the
solution process to (8) can be terminated as soon as this happens. Failure to obtain
this condition may lead to declare the failure of a local phase, without identifying
a feasible solution, even if one could be found if a globally optimal (or, at least,
better) solution for (8) be determined, as shown in Fig. 2. In particular, we consider
a nonconvex MINLP in two variables. On the x-axis we have an integer variable,
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• 0

11,... 1

• 0

1 1

22

•

Fig. 2 Solving (8) heuristically (left) or to global optimality (right): helping to prevent cycling

• 0

•̄ 1 •̂ 1•̄ 2 •̂ 2•̄ 3 •̂ 3

•̄ 4

• 0

•̄ 1 •̂ 1

•̄ 2

Fig. 3 Solving (8) without (left) and with (right) the fixing strategy b: accelerating convergence

while on the y-axis a continuous one. The gray part is the feasible region of the NLP
relaxation of P while the set of the bold lines represents the feasible region of P .
The symbols •̂ represent solutions x̂ i where i is the iteration number. Similarly, the
symbols •̄ represent solutions x̄ i where i is again the iteration number. The figure
shows that only requiring local optimality in (8) can lead to cycling: on the left, the a
local optimum •̂ to (8) does not allow the algorithm to proceed to •̄2 and eventually
to the feasible MINLP solution •̂2 (on the right).

However, sometimes both strategies 1 and 2 might fail in finding a feasible solution
for (8) (for example due to a time limit, see Sect. 5) and that can happen even if they
claim the returned solution is NLP feasible. In such case we experimented two options:

a. we define (9) by using any infeasible solution of (8);
b. we fix the integer variables x and we solve again (locally) a modified version of

problem (8) in which the objective function is replaced by the original objective
of (1).

The fixing strategy b might improve convergence speed, as shown in Fig. 3:
if x1 is fixed to the value given by •̂1 then the next NLP solution is likelier to directly
lead to the feasible MINLP region.
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Finally, as discussed in Sect. 3, one might implement the overall FP scheme by
using the Euclidean norm for (8) and a different norm in (9), like L1 or L∞, to
simplify it. As previously discussed, this may well impair the only remaining (weak)
convergence property of the approach, i.e., monotonicity of the sequence {δi }, making
it harder to declare that a “local optimum” has reached. For this case, two options can
be implemented:

i. we forget about such a difference in norms and we hope for the best;
ii. we amend (8) by the norm constraint (16), and solve it as usual. We remark here

that preliminary computational experiments have shown that the value of β does
not strongly influence the results, thus we used β = 1 in the computational results
of Sect. 5.

In summary, three main decisions have to be taken to define and solve (8):

I. solution algorithm: multi-start (1. above) versus VNS (2. above),
II. additional fixing step: NO (a. above) versus YES (b. above), and

III. norm correction: NO (i. above) versus YES (ii. above).

4.2 Addressing the convex MINLP (9)

The first decision that has to be taken for addressing problem (9) concerns the norm
to use in the objective function, i.e., how to formulate (9) in practice.

1. Of course, the most trivial option is to keep the Euclidean norm so as (9) is a
convex MINLP.

2. As discussed in Sect. 3, the main alternative is to employ either the L1 or the
L∞ norm in the objective function so that it can be linearly reformulated in stan-
dard ways (via the introduction of a few auxiliary continuous variables). This
is in the attempt to replace (9) with a MILP relaxation, because MILP solution
technology is currently more advanced than its convex MINLP equivalent. This,
however, requires the constraints to be linearized as well. This can be done by
means of standard Outer Approximation approaches. That is, assuming C con-
tains only nonlinear convex constraints (the linear ones being left in X ), one
can approximately solve (9) at the generic iteration i ∈ N by means of its MILP
relaxation

min ‖x̄ i − x‖B (17)

g�(x̄ k, ȳk) + ∇g�(x̄ k, ȳk)

(
x − x̄ k

y − ȳk

)
≤ 0 � ∈ C̄k, k ≤ i (18)

(x, y) ∈ X , x ∈ Z
p (19)

where the norm B in (17) can be either L1 or L∞ and C̄k ⊆ C is the set of
convex nonlinear constraints that are active at (x̄ k, ȳk). In other words, one keeps
collecting the classical Outer Approximation cuts [19] (18) along the iterations
and uses them to define a polyhedral outer approximation of I . Note that while
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• 0 •̄ 1,...•̂ 1,... • 0 •̄ 1 •̂ 1

Fig. 4 Solution of (9) without (left) and with (right) OA cuts: helping to prevent cycling

(18) could seem to require that each g� for � ∈ C be a differentiable function, this
is only assumed for the sake of notational simplicity: notoriously, subgradients of
nondifferentiable convex functions can be used as well (e.g. [17]).

In both cases, we employ partial norms as detailed in Sect. 3.1 so as to take into
account in the objective function only its integral part.

The second decision is how to formulate the feasibility space of problem (9), i.e.,
how to deal with the original set of constraints and relaxing them if needed. This
depends on the first decision as well, i.e., on the objective function, either 1. or 2. above,
which has been selected. Of course, such a decision is inherently linked to the solution
algorithm.

a. If the Euclidean norm is used in (9), then we investigate three options:
1. we solve the convex MINLP as is by means of a sophisticated general-purpose

MINLP solver, in our case Bonmin solver [10],
2. we solve a convex mixed-integer quadratic problem (MIQP) relaxation of the

MINLP. Precisely, the MIQP is obtained by using the objective function2

min ‖x̄ i − x‖2 instead of (17) but with the same set of (linear) constraints
(18)-(19). This is done to simplify the problem and being able to use a sophis-
ticated general-purpose MIQP solver, in our case CPLEX [25].

3. we remove all constraints (18)–(19), only keeping x ∈ Z
p and bound con-

straints, and solve (9) by rounding. This is in the spirit of both [20] and [9].
b. If instead the L1/L∞ norm is used and the MILP relaxation (17)–(19) is defined,

we solve the MILP as is by means of a sophisticated general-purpose MILP solver,
in our case CPLEX [25].

The third decision is how to address the issue of cycling. Indeed, because problem
(9) only takes into account the subset of convex constraints (or a relaxation of them
in the MILP case) the resulting FP algorithm might cycle, i.e., visit the same mixed-
integer solution more than once. Note that if (1) is instead a convex MINLP, OA cuts
are shown to be sufficient to guarantee that the FP algorithm does not cycle [8] as
shown for example in Fig. 4.

2 Note that again the objective function is defined in the MIQP case only on the integer variables.
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Fig. 5 The OA cut from γ does not cut off x̂

• 0

•̄ 1 •̂ 1,... •̄ 2,...

Fig. 6 OA cuts may not prevent the FP from cycling

In the nonconvex case, however, OA cuts are not enough, as discussed in Example 2.
In addition, in the testbed we used to computationally test our approach, the number
of OA cuts we could generate is somehow limited as discussed in detail in Sect. 5.1.

Example 2 In Fig. 5 a nonconvex feasible region and its current linear approximation
are depicted. Let us consider x̄ being the current solution of subproblem (8). In this
case, only one OA cut can be generated, i.e., the one corresponding to convex constraint
γ . However, it does not cut off x̂ , i.e., the solution of (9) at the previous iteration. In
this example, the FP would not immediately cycle, because x̂ is not the solution of
(9) which is closest to x̄ . This shows that there is a distinction between cutting off
and cycling. In general, however, failure to cut off previously visited integer solutions
might lead to cycling, as shown in Fig. 6. ��

One elegant possibility to prevent cycling is that of adding no-good cuts at iteration i
to make (x̂ k, ŷk) infeasible for all k < i . This is possible if (as it happens in some of the
variants) any of the minimum distance problems is solved (even if only approximately)
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with an exact approach, which not only provides good feasible solutions, but also a
lower bound on the optimal value of the problem to provide a guarantee of the accuracy.
Indeed, if the solution method proves that the inequality

||x − x̂ i ||A ≥ ε (20)

is satisfied for all (x, y) ∈ A , then one has

A ∩ B = (A ∩ {(x, y) : (20)}) ∩ B = A ∩ (B ∩ {(x, y) : (20)}).

In other words, the nonlinear and nonconvex “cut” (20) can be added to B without
changing the feasible set of the problem. The interesting part is that, of course, x̂ i vio-
lates (20), and therefore (20) provides—at least in theory–a convenient globalization
mechanism.

No-good cuts [17] were originally introduced in [4] with the name of “canonical”
cuts and recently used within the context of MINLP [17,32]. If x are binary variables
and ‖ · ‖ is the L1 norm, we can take ε = 1 and reformulate (20) linearly as

∑
j≤p

x̂ j =0

x j +
∑
j≤p

x̂ j =1

(1 − x j ) ≥ 1.

For general integer variables, an exact linear reformulation is given, for example, in
[17] and involves adding 2p new continuous variables, p new binary variables and
adding 3p + 1 linear equations to the problem. Thus, the size of such a reformulation
could rapidly become prohibitive in the context of an iterative method like FP. This is
why no-good cuts are used in a limited form in our scheme and we instead implement
two alternative, less elegant, approaches:

i. We employ a tabu list in order to prevent a MILP solver from finding the same
solutions (x̂, ŷ) at different iterations.

ii. We configure our solver to find a pool of solutions from which we choose the best
non-forbidden one.

Clearly, the issue of preventing the FP scheme to cycle is not confined to the solution
of problem (9) but is more a globalization strategy. Indeed, problem (8) could in turn
be amended by no-good cuts in the form ||x − x̂ i−1||22 ≥ ε which are reverse-convex
constraints not different from those already in (8). However, we decided to concentrate
our attention to (9) for two reasons. On the one side, this is the way both previous FP
algorithms worked, namely the one for MILP, through random flipping of the rounding
step, and that for convex MINLP, by means of OA cuts. On the other hand, the value
to be assigned to ε would be any lower bound greater than 0 on the optimal solution
of (9). However, we never really solve such a problem to optimality and in at least one
case, the rounding option 3 above, we do not compute any lower bound either.

In summary, three main decisions have to be taken to define and solve (9):

I. the norm to be used in the formulation of (9): L2 (1. above) versus L1/L∞
(2. above),
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II. how to define the feasible region of (9) and solve it: MINLP (1 above) versus
MIQP (2 above) versus rounding (3 above) or MILP (b above), and

III. how to avoid cycling: tabu list (ii. above) versus solution pool (ii. above).

5 Computational results

In this section we discuss the outcome of our extensive computational
investigation.

5.1 Computational setting

The algorithms were implemented within the AMPL environment [22]. We chose
to use this framework to make it easy to change subsolver. In practice, the user can
select the preferred solver to solve NLPs, MINLPs, MIQPs or MILPs, exploiting their
advantages.

We also use a new solver/reformulator called ROSE (Reformulation Optimization
Software Engine, see [28,27]), of which we exploit the following features:

– Model analysis: getting information about nonlinearity and convexity of the con-
straints and integrality requirements of the variables, so as to define subproblems
(8) and (9).

– Solution feasibility analysis: necessary to verify feasibility of the provided solu-
tions.

– OA cut generation: necessary to update (9). In order to determine whether a con-
straint is convex, ROSE performs a recursive analysis of its expression tree [26] to
determine whether it is an affine combination of convex functions. We call such
a function “evidently convex” [28]. Evident convexity is a stricter notion than
convexity: evidently convex functions are convex but the converse may not hold.
Thus, it might happen that a convex constraint is labeled nonconvex; the informa-
tion provided is in any case safe for our purposes, i.e., we generate OA cuts only
from constraints which are certified to be convex. Unfortunately, the number of
problems in the testbed (see next section) in which we are able to generate OA
cuts is limited, around 15% of them, surely because of such a conservative (but
safe) policy adopted by ROSE.

5.2 FP variants and preliminary results

Because of the multiple options which can be put in place to solve both (8) and (9), we
had to implement and test more than twenty FP versions/variants to assert the effective-
ness of each of the algorithmic decisions discussed in the two previous sections. Some
of these options have been ruled out after a preliminary set of experiments involving
243 MINLP instances from MINLPlib [12] and used, among others, in [16,30]. Only
65 among such 243 instances are those in which the open-source Global Optimization
solver COUENNE 0.1 [6] (available from COIN-OR [14]) is unable to find a feasible
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solution within a time limit of 5 min on an Intel Xeon 2.4 GHz with 8 GB RAM
running Linux.

Thus, the goal of the preliminary set of computational experiments was twofold.
On the one side, we wanted to be quick and competitive on the “easy” instances, i.e.,
the 178 instances on which COUENNE is able to find a solution within 5 min of
CPU time. This is because FP can clearly be used as a stand-alone heuristic algorithm
for nonconvex MINLP, and must be competitive with a general-purpose solver used
as well as a heuristic, i.e., truncated within a short time limit. That was achieved by
the “best” FP versions/variants that will be discussed in the remainder of the section.
To give an example, the version denoted as FP-1 (see Sect. 5.4) finds a feasible solution
for 156 of the 178 “easy” instances within 5 min, encounters numerical troubles in 13
of them (because of the NLP solver) and requires more than 5 min in the remaining 9
instances. Because COUENNE 0.1 (like most GO solvers) mainly implemented simple
heuristics based on reformulations and linearizations, it would have been relatively
easy to recover those few instances with longer computing times (9) by ad-hoc policies.
On the other hand, however, we wanted to be effective (in possibly longer computing
times) on the 65 “hard” instances where simple heuristics and partial enumeration
failed. In particular, FP should be effective on the instances in which the nonlinear
aspects of the problems play a crucial role, thus suggesting its fruitful integration within
COUENNE or any other GO solver (as happened for FP algorithms in MILP). Indeed,
the current trunk version of COUENNE is more sophisticated in terms of heuristics
also due to our investigation preliminary reported in [15,16] and some results at the
of Sect. 5.4 seem promising in this concern.

The FP variants which did not “survive” the preliminary tests3 are those that, at the
same time, did not perform particularly well in the “easy”instances and did not add
anything special on the “hard” ones. Namely,

1. Solving (8) by VNS was always inferior with respect to solve it by the stochastic
multi-start approach. Such a poor performance of the VNS approach might be due
to its iterative implementation within AMPL: at each iteration, a different search
space is defined, starting from a small one and incrementing it so that at the last
iteration the entire feasible region is considered. In particular, this approach seems
to be too “conservative” with respect to the previous solution.

2. The additional fixing step which can be performed in case of fail when solving (8)
by fixing the integer variables has a slight positive effect when the norm constraint
is added while turns out to be crucial in case it is not. In a sense the theoretical
convergence guaranteed by the use of norm constraints seems to make problems
(8) easier, thus the benefit of the fixing step is particularly high if such constraints
are not added. We then decided to always include the fixing step as well.

3. In case the Euclidean norm is kept in problem (9), we decided to solve the convex
MIQP instead of the convex MINLP. The main reason (besides some technical
issues related to modify a convex MINLP solver like Bonmin to implement mech-
anisms to prevent cycling) is that the number of evidently convex constraints as

3 No detailed computational results are reported here for the preliminary computational investigation, some
of them are discussed in detail in [16].
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discovered by ROSE is very limited in the testbed. Thus, if the constraints in (9)
are linear, then the MIQP solver of CPLEX is clearly more efficient than a fully
general convex MINLP solver line Bonmin.

4. Preventing cycling by using a pool of solutions was always inferior with respect
to use the tabu list. Again, this might be due to the lack of flexibility of the (nice)
solution pool feature of CPLEX 11 that we used in our experiments. Every time
we need to solve (9), we ask CPLEX to produce a number of solutions equal to
the number of tabu list solutions plus one. Once obtained the solutions pool, we
analyze the solutions starting from the first and set (x̂ i , ŷi ) as the first solution of
the pool which is not present in the tabu list. However, we have to consider the two
following drawbacks: (i) the solution pool is populated after the branch and bound
is finished. Because we have a time limit for solving (9), it is not guaranteed that
we would have a number of solutions sufficient to provide a non-forbidden solu-
tion (especially because providing a solution pool is a time-consuming feature);
(ii) we cannot force CPLEX to measure the diversity of the solutions in the pool by
neglecting the continuous part of the problem. Unfortunately, CPLEX can provide
us a set of solutions which has the same integer values, but different continuous val-
ues. More generally, it might happen that only forbidden solutions are generated,
for example if the continuous relaxation of (9) is integer feasible but forbidden. In
this case the solution would be discarded, but no further solution can be generated.

Due to the above discussion, the only surviving subproblems to be solved are
nonconvex NLPs and convex MILPs and MIQPs. The NLP solver used is IPOPT
3.5 trunk [13], while the MILP and MIQP solvers are those of CPLEX 11 [25].
Before ending the section we need to specify two more implementation details for the
surviving FP variants.

Implementing a tabu list in CPLEX. Discarding a solution in the tabu list within
the CPLEX branch and bound is possible using the incumbent callback function. The
tabu list is stored in a text file which is then exchanged between AMPL and CPLEX.
Every time CPLEX finds an integer feasible solution, a specialized incumbent callback
function checks whether the new solution appears in the tabu list. If this is the case, the
solution is rejected, otherwise the solution is accepted. CPLEX continues executing
until either the optimal solution (excluding those forbidden) is found or a time limit
is reached. In the case where an integer solution found by CPLEX at the root node
appears in the tabu list, CPLEX stops and no new integer feasible solution is provided
to FP4. In such a case, we amend problem (9) with a no-good cut [17] which excludes
the solution and we call CPLEX again.

Avoid cycling when solving (9) by rounding. When the MILP relaxation of (9) is
solved by rounding to the nearest integer the fractional values of vector x̄ , the methods
for preventing the cycling cannot be implemented in the way we described above.
The method adopted is taken from the original FP paper [20]: whenever a forbidden
solution is found, the algorithm randomly flip some of the integer values so as to obtain
a new solution.

4 Note that this is the same issue discussed in the solution pool case.
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Table 1 FP variants

Variant Problem (8) Problem (9)

Algorithm Fixing step Norm constraint Norm Algorithm Cycling

FP-1 multi-start YES YES L1 MILP tabu list

FP-2 multi-start YES NO L1 MILP tabu list

FP-3 multi-start YES YES L2 Rounding tabu list

FP-4 multi-start YES N/A L2 MIQP tabu list

FP-5 multi-start YES YES L∞ MILP tabu list

FP-6 multi-start YES NO L∞ MILP tabu list

Table 2 Comparing the six FP variants, aggregated results

FP-1 FP-2 FP-3 FP-4 FP-5 FP-6

Successes 49 45 22 23 44 46

Successes alone 0 3 0 0 1 1

Time limit reached 11 14 42 32 2 12

Fails 5 6 1 9 19 7

Wins 26 20 10 4 10 8

Time geomean 151.02 104.45 17.59 76.14 23.25 14.99

5.3 Code tuning

The algorithm terminates after the first MINLP feasible solution is found or a time
limit is reached. The parameters are set in the following way: time limit of 2 h of
user CPU time, the absolute feasibility tolerance to evaluate constraints is 1e-6, and
the relative feasibility tolerance is 1e-3 (used if absolute feasibility test fails). The
tabu list length was set adaptively to a value which was inversely proportional to the
number of integer variables of the instance, i.e., the number of values to be stored for
each solution of the tabu list. The value was 60,000 divided by the number of integer
variables. The actual mean value, over the full set of 243 instances, of the solutions
stored in the tabu list was 35.

5.4 Results

The six surviving FP variants have been extensively tested on the full set of 243 MINLP
instances and, in particular, we discuss the results on the 65 “hard” instances introduced
in Sect. 5.2. More precisely, the six variants have the characteristics reported in Table 1.

Table 2 reports the aggregated results on the 65 “hard” instances. In particular,
we consider for each FP variant the number of times the algorithm terminated with
a feasible solution within the 2-h of user CPU time limit (successes), the number of
times the algorithm was the only one to find a feasible solution (successes alone), the
number of times the time limit was reached without a feasible solution (time limit

123



394 C. D’Ambrosio et al.

reached), the number of times the algorithm encountered numerical issues (fails), the
number of times the algorithm found the best—smallest—solution (wins) and the
geometric mean of the computing time for the solved instances (time geomean).

The detailed results are reported in Tables 3 and 4 where, for each variant, we give
the solution value (value), the computing time (time) and the number of iterations
(it.s) which are roughly equal to the number of problems (8) and (9) solved. In case
of numerical issues for a pair instance / FP variant, we report in all entries for such an
instance some “++”, whereas in case of time limit reached the entry value is set to “-”
(while we correctly report the computing time of 7,200 CPU seconds and the number
of iterations within such a time).

The results of Tables 2, 3 and 4 show that FP-1 is the most successful FP variant
and is remarkably able to find a feasible solution in limited CPU time on 75 % of the
“hard” instances in the testbed. A direct comparison with the closest variant, namely
FP-2, shows that the use of the norm constraint is useful: although FP-1 does not
dominate FP-2, it is overall superior on all entries and there are many instances in
which FP-2 converges slowly whereas FP-1 reaches feasibility in a very small number
of iterations. Variant FP-3 is very fast but seems to be a bit “unsophisticated” for
those instances which look more difficult (in the “hard” testbed). However, it might
be a viable option for a “cheap” FP variant executed extensively within a GO solver.
Variant FP-4 does not look—at the moment—very competitive, although it is not
fully dominated because it finds the smallest solution four times, in one case (deb8)
a much smaller one, with respect to the other variants. One relevant issue for FP-4
seems that the MIQP solved as problem (9) is time consuming thus allowing only a
limited number of FP iterations. Things might change in the future, depending on the
solver or its settings. Finally, variants FP-5 and FP-6 are very close to FP-1 and FP-2,
respectively, and they indeed lead to similar results. Specifically, FP-5, compared to
FP-1, seems to have much more numerical troubles (due to the NLP solve, see Sect. 3)
and is inferior in terms of quality of the solutions obtained (wins) but is much faster.
Instead, variant FP-6 is almost equivalent, perhaps superior, to FP-2, the two main
differences being the number of wins (20 for FP-2 with respect to 8 for FP-6) and the
speed (104.45 CPU seconds for FP-2 with respect to 14.99 for FP-6). Overall, both
FP-5 and FP-6 seem promising for further investigation.

Concerning the interaction of FP-1 with the GO solver COUENNE (or any other),
note that in 14 cases FP-1 finds a feasible solution within 1 minute of CPU time (in
24 cases within 5 min), thus suggesting a profitable integration within the solver.

6 Conclusion

We have presented the theoretical foundation of an abstract Feasibility Pump scheme
interpreted as a Successive Projection Method in which, roughly speaking, the set
of constraints of the original problem is split (possibly in different ways) in two
sets and the overall algorithm aims at deciding if the feasibility space given by the
intersection of such two sets is empty. Such a scheme has been specialized for dealing
with nonconvex Mixed-Integer Nonlinear Programming problems, the hardest class
of (deterministic) optimization problems.
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Because the devil is in the details, we analyzed a large number of options for (i)
formulating and solving the two distinct problems originated by the above split and
(ii) guaranteeing convergence of the global algorithm. The result has been more than
twenty FP variants which have been computationally tested on a large number of
MINLP instances from the literature to assert the viability of FP both as a stand-alone
approximation algorithm and as a primal heuristic within a global optimization solver.
Six especially interesting of these variants have been discussed in detail and extensive
results have been presented on a set of 65 “hard” instances. The results show that
feasibility pumps are indeed successful in finding feasible solutions for nonconvex
MINLPs.
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