
Math. Program., Ser. B (2013) 140:189–233
DOI 10.1007/s10107-012-0600-5

FULL LENGTH PAPER

Composite proximal bundle method

Claudia Sagastizábal

Received: 30 July 2009 / Accepted: 5 August 2012 / Published online: 25 October 2012
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2012

Abstract We consider minimization of nonsmooth functions which can be repre-
sented as the composition of a positively homogeneous convex function and a smooth
mapping. This is a sufficiently rich class that includes max-functions, largest eigen-
value functions, and norm-1 regularized functions. The bundle method uses an oracle
that is able to compute separately the function and subgradient information for the
convex function, and the function and derivatives for the smooth mapping. With this
information, it is possible to solve approximately certain proximal linearized sub-
problems in which the smooth mapping is replaced by its Taylor-series linearization
around the current serious step. Our numerical results show the good performance of
the Composite Bundle method for a large class of problems.

Keywords Nonconvex Optimization · Nonsmooth optimization · Bundle methods ·
Composite functions

Mathematical Subject Classification Primary 90C26 · 49J52; Secondary 65K10 ·
49J53 · 49M05

To C. Lemaréchal, a nonsmooth optimization giant who kindly guided the author through ridges
of nondifferentiability until a superlinear path of knowledge. Merci, Claude.

On leave from INRIA, France. Visiting researcher at IMPA.

Research partially supported by Grants CNPq 303840/2011-0, AFOSR FA9550-08-1-0370, and NSF
DMS 0707205, as well as by PRONEX-Optimization and FAPERJ.

C. Sagastizábal (B)
IMPA, Estrada Dona Castorina 110, Jardim Botânico,
Rio de Janeiro, RJ 22460-320, Brazil
e-mail: sagastiz@impa.br

123

190 C. Sagastizábal

1 Introduction and motivation

For some years already, nonsmooth optimization research has focused on exploiting
structure in the objective function as a way to speed up numerical methods. Indeed,
for convex optimization, complexity results establish that oracle based methods have
a sublinear rate of convergence; [28]. The U -Lagrangian theory [16,17], and the
V U -space decomposition [24], can be seen as tools to “extract” smooth structure
from general convex functions. The approach was extended to a class of nonconvex
functions in [26]. Similar ideas for more general nonconvex functions, having a smooth
representative on a certain manifold corresponding to the U -subspace, are explored in
[10,18]. Another line of work concentrates efforts on identifying classes of functions
structured enough to have some type of second-order developments, such as the primal-
dual gradient structured functions from [24,25], or the composite functions in [32].
Composite functions were initially considered in [34]; see also [8, Ch. 14]. Later
on these functions were studied in [4,21], and have been more recently revisited in
[19,29], in the convex and nonconvex settings, respectively.

Most of the work above is conceptual, in the sense that if some algorithmic frame-
work is considered, often it is not implementable. Among the exceptions, we find the
convex optimization algorithms in [27,29,31], and the V -space identification method
in [6]. In this paper, we develop an implementable bundle method that exploits struc-
ture for certain nonconvex composite optimization problems. More precisely, given a
smooth mapping c : �n → �m and a positively homogeneous (of degree 1) convex
function h : �m → �, we consider how to solve the unconstrained problem

min
x∈�n

(h ◦ c)(x). (1)

In this composite objective, we refer to c as the inner mapping and to h as the outer
function. Note in particular that the outer function is real-valued on �m , an assumption
that excludes indicator functions, but still covers a rich enough family of interesting
problems; see Sect. 2.

For solving the possibly nonconvex problem (1) we develop a specialized bundle
method that takes full advantage of the composite structure of the objective function.
Specifically, rather than using composite data:

(bbh◦c)For x ∈ �n a composite black-box computes (h ◦ c)(x) and γ ∈ ∂(h ◦ c)(x),

we suppose the oracle has the ability to make separate computations. More precisely,

(bbc) For x ∈ �n an inner black-box computes c(x) and its Jacobian Dc(x)
(bbh) For C ∈ �m an outer black-box computes h(C) and G ∈ ∂h(C).

While (bbh◦c) would build a classical cutting-plane model for the composite objective,
having the richer oracle (bbc)-(bbh) at hand, we can make a better approximation and
build a cutting-plane model for the so-called conceptual model. This model from [8],
considered by [19] for general composite functions, and given by (4) below, defines
certain proximal linearized subproblems in which the smooth mapping is replaced

123

Composite proximal bundle method 191

by its Taylor-series linearization. The corresponding algorithmic framework, named
ProxDescent in [19], is rather broad (outer functions can be extended-valued and
prox-regular), but relies heavily on the exact computation of proximal points at each
iteration. In this work, we provide a fully implementable variant of such an algorithmic
framework for a less general, but still large enough, class of outer functions (real-
valued, positively homogeneous, and convex).

In order to deal with approximate proximal computations, our fully implementable
variant, given by Composite Algorithm 1 below, incorporates typical features from
bundle methods, such as serious and null step iterates. But this is not the only
modification of ProxDescent: there is an additional level of approximation, intro-
duced by the need to estimate the conceptual model, which is handled in the imple-
mentable algorithm by backtracking. For these reasons, our convergence analysis
deviates significantly from that of [19]. In addition, instead of a standard proximal
term as in ProxDescent, in our development we consider a variable prox-metric that
opens the way to exploiting second-order information of the smooth mapping, when
available.

An alternative line of work, based on somewhat different richer oracles (that can
compute more than one subgradient at any given point), refers to the proximity control
bundle method [30]. These methods, devised for nonconvex optimization problems
appearing in eigenvalue optimization and automatic control, use certain “first-order
local models” that contain the conceptual model from [19] as a special case.

Our paper is organized as follows. In Sect. 2 we give several classes of functions
with composite structure. The conceptual model and the proposed cutting-plane func-
tion, that makes the conceptual model computationally tractable, are described in
Sect. 3. Sections 4 and 5 contain, respectively, the Composite Bundle method and its
convergence results. In Sect. 6 we report our numerical experience, on many functions,
including some described in Sect. 2. Our results show the good performance of the
composite algorithm, when compared to several solvers, on a large number of prob-
lems of various dimensions. In the final section with concluding remarks, we compare
the main features of our composite method with the proximity control bundle method
from [30].

2 Composite functions in the family

Our class of composite functions includes many examples from [19,29,32]. We men-
tion in passing that the wording “composite” means slightly different things for dif-
ferent authors. Specifically, while we refer to a composition that can be nonconvex
(as in [19,32]), composite functions in [29] are the sum of two terms, one convex and
the other one smooth.

We suppose the outer function is positively homogeneous and convex, so it is also
sublinear. In [13, Lesson C] there are many examples of real-valued sublinear func-
tions, such as norms, quadratic seminorms, gauges of closed convex sets containing
0 in their interior, infimal convolutions of sublinear functions, and support functions
of bounded sets. The composition of any of such (outer) function with any smooth
(inner) mapping defines a function in our family. We review below some interesting

123

192 C. Sagastizábal

special cases. In what follows, the notation c, with lower capitals, refers to the smooth
mapping while C , with upper capitals, denotes an m-dimensional vector in the mapping
image, so that C = c(x) for some x ∈ �n .

Example 1 (max-functions) The function given by the pointwise maximum of a finite
collection of C2-functions in �n , {c1(·), . . . , cm(·)}, can be defined by composing the
outer function h(C) = max(C1, . . . ,Cm) with the inner mapping with components
c j (·), for j = 1, . . . ,m.

For any x ∈ �n , the Jacobian mapping Dc(x) is the m × n matrix with rows given
by the transposed gradients ∇c j (x)�. As for the second-order derivative, D2c(x),
for any d, d̃ ∈ �n , [D2c(x)d̃]d is the vector in �m with j th component given by
d̃�∇2c j (x)d. �	

We now give a more involved function, appearing in semidefinite programming.

Example 2 (eigenvalue optimization) Let S p denote the linear space of symmet-
ric matrices of order p, and consider the function λmax(X), given by the maximum
eigenvalue of a symmetric matrix X ∈ S p, whose elements are C2-functions of a
vector x ∈ �n . Suppose that for a fixed X , r denotes the multiplicity of the maximum
eigenvalue. Then from the analysis in [2, Ex. 3.98], the orthogonal projection onto
the eigenspace corresponding to the maximum eigenvalue is an analytic function near
X . By applying Gram–Schmidt orthonormalization to the columns of such projec-
tion, it is possible to define a “diagonalizing” analytic mapping C : S p → S r ,
such that: C (X) = λmax(X)Ir where Ir is the identity matrix of order r ; the Jacobian
DC (X) is surjective; and the eigenvalues λ(C (X)) coincide with λmax(X). The inner
smooth mapping corresponds to C , while the outer function is the eigenvalue function
h(C) = λ(C), a positively homogeneous convex function. �	

The next function is typically used in applications such as wavelet-based image
restoration, sparse representations, sparse regression, and compressive sensing prob-
lems.

Example 3 (Regularized minimization maps) Many signal or image reconstruction
problems, as well as approximation problems, minimize a function of the form

1

2
|Ax − y|2 + τ |x | ,

for x ∈ �n , y ∈ �k , A a matrix k ×n, τ a positive parameter, and for given appropriate
norms. In the expression above, the first data fidelity term is smooth, and the second
term corresponds to some regularization or penalty, for example ensuring sparsity of
the solution. To fit our composite framework, it suffices to take m = n + 1,

c j (x) = x j for j = 1, . . . , n , cn+1(x) = 1

2
|Ax − y|2 ,

and define the outer function h(C1, . . . ,Cn+1) = Cn+1 + τ |(C1, . . . ,Cn)|.

123

Composite proximal bundle method 193

For any x ∈ �n , the Jacobian mapping Dc(x) is the (n + 1) × n matrix made by
appending to the identity matrix of order n a row with the transpose of A�(Ax − y).
As for the second-order derivative, D2c(x), for any d, d̃ ∈ �n , [D2c(x)d̃]d is the
vector with its first n components equal to 0, and its last component equal to d̃� A� Ad,
a constant with respect to x . �	

We now give a possibly nonconvex function, appearing in approximation problems.

Example 4 (sum of Euclidean norms) Given a collection of smooth vector functions,
{φ1, . . . , φJ } with φ j : �n → �m j for j = 1, . . . , J , the function

∑J
j=1 |φ j (x)| is

the composition of the following smooth mapping with m = ∑J
j=1 m j components,

c(x) = (φ1(x), . . . , φJ (x))

and outer function:

h(C1, . . . ,Cm1 ,Cm1+1, . . . ,Cm) =
J∑

j=1

∣
∣
∣(C∑ j−1

k=1 mk+1
, . . . ,C∑ j

k=1 mk
)

∣
∣
∣ .

When n = J = m1 = 1, letting φ1(x) = 0.5a2x2 + a1x + a0 for a2,1,0 given scalars
with a2
= 0, it is easy to see that the function f is convex if and only if a2

1 ≤ 2a0a2.
�	

The next function shows how to cast �1-penalizations of nonlinear programming
problems into the composite framework (provided no indicator function is used for
polyhedral sets, to preserve finite-valuedness of the outer function).

Example 5 (Uryasev’s exact penalty function) This is an optimal control problem over
a discrete horizon with n time steps. The control variable x ∈ �n is constrained to the
box [−0.2, 0.2]n . Given initial values (ξ0, ψ0), the state variables (ξ, ψ) ∈ �2 follow
a trajectory given by a recursive state equation of the form

ξ1(x1) = ξ0 + 0.2ψ0 , ψ1(x1) = −0.004 + 0.2x1, and
ξi+1(x1:i+1) = ξi (x1:i)+ 0.2ψi (x1:i) , ψi+1(x1:i+1) = ψi (x1:i)− cubicψi (x1:i)2

−0.004ξi (x1:i)+ 0.2xi+1 ,

for i = 1, . . . , n − 1 and where cubic ≥ 0 is a given parameter. In the expressions
above, we use the notation x1:i to refer to the dependence of the i th-state variables on
the first i th components of the control variable x . The control problem to be solved is:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minx
1
2

∑n

i=1
ξi (x1:i)2

xi ∈ [−0.2, 0.2] for i = 1, . . . , n
ψi (x1:i) ≥ −1 for i = 1, . . . , n − 1
ψn(x1:n) = 0 .

The corresponding �+1 -penalty function uses parameters c1, c2, c3 > 0, and can be
written in composite form by letting m = 3n + 1,

123

194 C. Sagastizábal

c j (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1 − ψ j (x1: j) for j = 1, . . . , n − 1
ψn(x1:n) for j = n
1
2

∑n

i=1
ξi (x1:i)2 for j = n + 1

x j−n−1 − 0.2 for j = n + 2, . . . , 2n + 1
−x j−2n−1 − 0.2 for j = 2n + 2, . . . , 3n + 1 ,

and taking the outer function

h(C) = Cn+1 + c1(|Cn+2:2n+1|+ + |C2n+2:3n+1|+)+ c2|Cn| + c3|C1:n−1|+ .

The Jacobian mapping Dc(x) can be computed using the adjoint state equations,
to obtain the trajectory derivatives ∇ξi and ∇ψi . When the parameter cubic is null,
the control problem is linear-quadratic and the composite function h ◦ c is convex.
In this case, the second-order derivative, [D2c(x)d̃]d is the vector with all of its
components equal to 0, except for the (n+1)th component, equal to d̃� ∑n

i=1 ∇ξi∇ξ�
i d

for any d, d̃ ∈ �n . When cubic > 0, the function is nonconvex, and second-order
derivatives are difficult to compute for higher dimensions. For n = 2, only c2(x) = ψ2
and c3(x) = 1

2 (ξ
2
1 + ξ2

2) have a nonzero Hessian, constantly equal to a scalar factor
of the identity matrix of order n (the corresponding factors of cubic are −0.08 and
0.0016, respectively). �	

Our final function, modifying [18, Sec.7] as in [25] to have a smooth inner mapping,
is an example of a composite function having a nonconvex positively homogeneous
outer function.

Example 6 (Modified Lewis function) For x = (x1, x2)
� consider the following func-

tion, defined on a partition of �2:

f (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

x2
1 − x2 on {(x1, x2) ∈ �2 : x2 ≤ 0}

x2
1 + x2 on {(x1, x2) ∈ �2 : 0 < x2 ≤ x2

1 }
3x2

1 − x2 on {(x1, x2) ∈ �2 : 0 < x2
1 ≤ x2 ≤ 4x2

1 }
−5x2

1 + x2 on {(x1, x2) ∈ �2 : 4x2
1 < x2} .

This nonconvex function has the origin as unique critical point. The composite form,
f = h ◦ c, has smooth inner mapping c : �2 → �2 defined by c1(x) = x2

1 and
c2(x) = x2; and outer function h : �2 → � given by

h(C) :=

⎧
⎪⎪⎨

⎪⎪⎩

|C1|+ − C2 on C ∈ {(C1,C2) ∈ �2 : C2 ≤ 0}
|C1|+ + C2 on C ∈ {(C1,C2) ∈ �2 : 0 < C2 ≤ C1}
3|C1|+ − C2 on C ∈ {(C1,C2) ∈ �2 : 0 < C1 ≤ C2 ≤ C1}
−5|C1|+ + C2 on C ∈ {(C1,C2) ∈ �2 : 4C1 < C2} .

This outer function is posivitely homogeneous, but not convex, so h ◦c is not included
in our family. �	

123

Composite proximal bundle method 195

3 Outer function and conceptual model

Even though the composite function h ◦ c may be nonconvex, it is always locally
Lipschitz continuous and directionally differentiable. Furthermore, at any point
x ∈ �n such that c(x) = 0, the composite function is semismooth [23], and
strongly semismooth if the inner mapping is twice continuously differentiable; see
[32, Prop.3.2]. Moreover, since the outer function is assumed to be positively homo-
geneous of degree 1, the relation h′(0; ·) = h(·) holds. As a result, whenever
c(x) = 0, the directional derivative of the composite function satisfies the relation
(h ◦ c)′(x, d) = h′(c(x), Dc(x)d) = h(Dc(x)d), [32, Sec.3].

The optimality condition for x̄ to be a critical point of (1) is 0 ∈ ∂(h ◦ c)(x̄).
Being real-valued and convex, the outer function is continuous and, using a chain rule
[2, Ch.3.4.1],

∀x ∈ �n ∂(h ◦ c)(x) = Dc(x)�∂h(C) for C = c(x) . (2)

In particular, critical points satisfy the inclusion

0 ∈ Dc(x̄)�∂h(c̄) for c̄ = c(x̄).

Another important consequence of positive homogeneity is the generalized Euler
formula, stating that

∀C ∈ �m and for any G ∈ ∂h(C) it holds that h(C) = G�C. (3)

(the result follows from the subgradient inequality h((α + 1)C) ≥ h(C)+ G�((α +
1)C − C), using that h((α + 1)C) = (α + 1)h(C) for any α ≥ −1). This particular
structural property will be exploited in the bundle method to define a cutting-plane
approximation of the conceptual model.

The conceptual model from [19] composes the outer function with the linearization
of the inner mapping around a point xk . Specifically, if Dk = Dc(xk) denotes the
Jacobian mapping at xk , then for any d ∈ �n , letting

ck(d):= c(xk)+ Dkd ,

the conceptual model is given by the function

h(ck(d)). (4)

To make tractable this conceptual model, we use a cutting-plane approximation ȟ for
the outer function and, for each pair (Hi := h(Ci),Gi ∈ ∂h(Ci)), define the plane

Hi + Gi �(ck(d)− Ci) = h(c(xk))−Δk
i + Gi �ck(d),

with

Δk
i := h(c(xk))− Hi + Gi �Ci ≥ Gi �c(xk), (5)

123

196 C. Sagastizábal

by the subgradient inequality. The cutting-plane model for the conceptual model has
the form

ȟ(ck(d)) = h(c(xk))+ max
i∈B

{
−Δk

i + Gi �ck(d)
}
, (6)

where the set B represents a bundle of information, varying along iterations. By con-
vexity of h, the cutting-plane model is always a lower approximation for the conceptual
model.

When h is positively homogeneous, equality (3) implies in (5) thatΔk
i := h(c(xk)),

so each plane has the form Gi �ck(d), and the bundle only needs to keep the subgradient
information (Gi). Accordingly, the composite cutting-plane model can be rewritten as

ȟ(ck(d)) = max
i∈B

{
Gi �ck(d)

}
(7)

where the symbolism i ∈ B means for all i such that Gi is in the current bundle B.
The composite model may not be a lower approximation for h ◦ c. However, since

the conceptual model is a good estimate for h ◦ c, eventually the composite model is a
good approximation for the objective function. This feature is particularly important
for nonconvex bundle methods, which need to handle very carefully cutting-plane
models (in some cases a tangent line of a nonconvex function can cut-off a section of
the graph of the function, leaving out a critical point, for example), [11].

4 Composite bundle method

At iteration number �, the composite model ȟ�(ck(d)), given by (7) written with
bundle set B = B�, is used to generate a direction d�. The inner mapping is linearized
at a point xk with k = k(�). It is possible for k to be fixed for several consecutive
values of �. The quadratic programming problem (QP) solved by d� is nothing but the
computation of the proximal point of the composite model, with prox-center xk and a
variable prox-metric depending on matrices M�

k detailed below.
The bundle of information B� is formed from (some of the) past information, cor-

responding to past directions di with i < �, generated using a prox-center xk(i) and
for which a call to the outer black-box (bbh) with Ci = ck(i)(di) gave the value
Hi = h(Ci) and the subgradient Gi ∈ ∂h(Ci).

The variable prox-metric is induced by a positive definite matrix M�
k of order n

having the form

M�
k = Mk + μ�I with Mk a symmetric n × n matrix, μ� ≥ 0,

and I the identity matrix of order n. The corresponding primal and dual metrics in �n

are

∀x, γ ∈ �n |x |2k,� := x� M�
k x and ‖γ ‖2

k,� := γ �
(

M�
k

)−1
γ ,

123

Composite proximal bundle method 197

respectively. The eigenvalues of M�
k are obtained by adding μ� to those of

Mk , while the eigenvectors of M�
k coincide with those of Mk . As a result,

if for a matrix M the symbol λ(M) (respectively λmin /max(M)) denotes an
eigenvalue (resp., minimum/maximum eigenvalues), then λ(M�

k) = λ(Mk) +
μ�,

λmin

(
M�

k

)
= λmin(Mk)+ μ� , and λmin

(
(M�

k)
−1

)
= 1

λmax(Mk)+ μ�
.

In particular, letting | · | denote the Euclidean norm in �n ,

|x |2k,� ≥ (λmin(Mk)+ μ�)|x |2 and ‖γ ‖2
k,� ≥ 1

λmax(Mk)+ μ�
|γ |2 . (8)

Having the elements above, the next direction d� ∈ �n solves the quadratic pro-
gramming problem

min
d∈�n

ȟ�(ck(d))+ 1

2
|d|2k,� . (9)

Letting C� = ck(�)(d�), the corresponding optimality condition with k = k(�) is

∃Ĝ� ∈∂ ȟ�(C
�)=conv{Gi ∈B�} :

{
M�

k d�+D�
k Ĝ� =0

ȟ�(C�)= Ĝ��C� = Ĝ��c(xk)−‖D�
k Ĝ�‖2

k,� .

(10)

The optimal gradient Ĝ� is a convex combination of active Gi ’s such that ȟ�(C�) =
Gi �

C� = Ĝ��C�.
Without loss of clarity, and depending on the context, we sometimes use the short

notations k and C�, instead of the longer ones k(�) and ck(�)(d�).

Algorithm 1 (Composite Bundle) Inner and outer black-boxes, (bbc) and (bbh)
respectively, are available.

Step 0 (Input and initialization)

Select a stopping tolerance tolstop ≥ 0, two parameters m1,m2 > 0, and a
minimum positive threshold 0 < μmin < +∞.
Initialize the iteration and serious step counters to � = 0 and k = k(�) = 0.
For a starting point x0 ∈ �n , call (bbc) to compute the inner oracle values C0 =
c(x0) and D0 = Dc(x0). Call (bbh) to compute the outer oracle values H0 =
(h ◦ c)(x0), G0 ∈ ∂h(C0). Set B0 := {G0}.
Choose a symmetric matrix M0 of order n and a prox-parameter μ0 ≥ 0 ensuring
that the matrix M0

0 = M0 + μ0I is positive definite.

123

198 C. Sagastizábal

Step 1 (Model Generation and QP Subproblem)

Having the current serious step iterate xk , c(xk), its associated Jacobian Dk , and
the bundle {Gi }i∈B� , define the composite cutting-plane model function ȟ�(ck(·))
from (7). A matrix Mk and a scalar μ� ≥ 0 such that M�

k = Mk + μ�I is positive
definite are also available.
Compute d� by solving the quadratic program (9). These calculations include
finding optimal simplicial multipliers α� such that in (10)

Ĝ� =
∑

i∈B�
α�i Gi .

Define the aggregate error ê� = (h ◦ c)(xk) − Ĝ� �c(xk), noting that ê� ≥ 0 by
(5) and (3). Compute the predicted decrease

δ� = (h ◦ c)(xk)− ȟ�(ck(d
�))− 1

2
|d�|2k,� = ê� + 1

2
‖D�

k Ĝ�‖2
k,� , (11)

where the last equality follows from (10).

Step 2 (Stopping test)

If max(ê�, ‖D�
k Ĝ�‖2

k,�) ≤ tolstop, stop.

Otherwise, call (bbh) to obtain h(ck(d�)) and G� ∈ ∂h(ck(d�)).

Step 3 (Serious/backtrack/null step test)

Check the descent condition

h(ck(d
�)) ≤ (h ◦ c)(xk)− m1δ� . (12)

If (12) does not hold, declare a null step: take μ�+1 ≥ μ�, M�+1
k = Mk + μ�+1I,

and go to Step 4.
If (12) is true, call the inner oracle (bbc) to compute c(xk + d�). Call the outer
oracle (bbh) to compute Γ � ∈ ∂h(c(xk + d�)), and check the condition below:

Γ ��[ck(d
�)− c(xk + d�)] ≥ −m2δ� . (13)

If (13) holds, declare a serious step, and go to Step 4. Otherwise, if (13) does not
hold, declare a backtracking step: take μ�+1 ≥ μmin +μ�, M�+1

k = Mk +μ�+1I,
B�+1 = B�, set k(�+ 1) = k(�), increase � by 1, and loop to Step 1.

Step 4 (Bundle update and management)

If needed, compress B� either by keeping all strongly active elements (Gi ∈ B� :
α�i > 0), or by replacing some strongly active subgradients by the aggregate

gradient Ĝ� . Define B�+1 by adding to the possibly compressed set the new outer
gradient G�.

123

Composite proximal bundle method 199

If the step was declared null, set k(� + 1) = k(�), increase � by 1, and loop to
Step 1. If the step was declared serious, set k(�+1) = k +1, xk+1 = xk +d�, call
(bbc) to compute Dk+1 = Dc(xk+1), compute a new symmetric matrix Mk+1 and
a prox-parameter μ�+1 ≥ 0 such that M�+1

k+1 = Mk+1 +μ�+1I is positive definite.
Increase k and � each by 1, and loop to Step 1.

In Step 3, the decision to declare a null-step is different from standard bundle
methods, and exploits the structure knowledge in the composite case. Namely, while
condition (12) checks if there is descent for the outer function, (13) checks adequacy
between the inner mapping and its conceptual model.

The prox-parameter increases at backtracking steps, and can be increased at null
steps or decreased at serious steps. In this context, the wording “backtrack” may sound
odd, since it corresponds to choosing a larger prox-parameter. The explanation comes
from noticing that, due to (10) and the definition of M�

k , the value 1/μ� can be seen
as a stepsize. In this sense, when the algorithm detects the need for backtracking,
increasing the prox-parameter results indeed in a smaller stepsize. Our setting allows
the prox-parameter to be zero if the matrix Mk is positive definite; for this reason in the
backtracking step we force positivity of the prox-parameter by means of the positive
threshold μmin, set at the Initialization step.

In order to ensure that matrices M�
k remain positive definite, the prox-parameter

update can be done as follows:

μ� =
{

0 if λmin(Mk(�)) ≥ μmin ,

−λmin(Mk(�))+ μmin otherwise.
(14)

We mention that there is a difference between the Composite Algorithm 1 and usual
bundle methods, in terms of oracle calls. A standard bundle method makes one call
to both the inner and outer oracles per iteration, independent of getting a serious or a
null step. Instead, Step 2 in Composite Algorithm 1 makes one call to the outer oracle
(bbh) at all iterations, needing additional calls to both oracles (bbh/c) at Step 3, for
deciding between serious or backtracking steps. In this case, the additional subgradient
Γ � ∈ ∂h(c(xk +d�))may enter the bundle. For comparisons to be fair, an appropriate
measure for (bb)-calls is used in our numerical experience; see Sect. 6.3.

In Step 4 we see that the bundle is formed only by outer gradients, corresponding
either to Gi ∈ ∂h(Ci) or to some past aggregate gradient Ĝi . By convexity of h, the
cutting-plane model is always a lower approximation to h:

for all � ≥ 1 and C ∈ �m ȟ�(C) ≤ h(C). (15)

Moreover, since Ĝ� ∈ ∂ ȟ�(C�) by (10), after some algebra involving δ� and ê�, we
see that

h(c(xk))− ȟ�(C
�)− ‖D�

k Ĝ�‖2
k,� = δ� − 1

2
‖D�

k Ĝ�‖2
k,� = ê�,

123

200 C. Sagastizábal

In particular, since h(C) ≥ Ĝ� �C , the definition of ê� in Step 1 implies that and,
hence,

∀� and C ∈ �m h(C) ≥ (h ◦ c)(xk)+ Ĝ��(C − c(xk))− ê�. (16)

Remark 1 (The trivial composite case) To see how a classical bundle method compares
to the Composite Algorithm 1, consider a convex nonsmooth function f , and the,
somewhat artificial, outer function h ≡ f and inner mapping c(x) = x . With respect
to our composite structure, h is not necessarily positively homogeneous, Dc = I ,
ck(d) = xk +d = c(xk +d), and, instead of (7), the cutting-plane model has the form
(6). Since the inner mapping is affine, there is no second order information to exploit,
and the matrices Mk ≡ 0 in Composite Algorithm 1. The QP optimality condition in
(10) becomes

∃Ĝ� ∈ ∂ ȟ�(x
�) = conv{Gi ∈ B�} :

{
μ�d� + Ĝ� = 0
ȟ�(x�) = h(xk)− Δ̂k

� + Ĝ��x� ,

for Δ̂k
� := ∑

i∈B� α
�
i Δ

k
i . The aggregate error is defined by ê�:=Δ̂k

�− Ĝ��xk , consistent

with the error definition in Step 1, because when h is positively homogenous, Δk
i =

h(xk), by (3). As a result, the expression for the predicted decrease in (11) remains true.
Finally, in Step 3, because ck(d�) = xk + d� = c(xk + d�), there is no backtracking
step, because the inequality in (13) trivially holds:

0 = Γ ��(ck(d
�)− c(xk + d�)) ≤ −m2δ� .

From the above it follows that Composite Algorithm 1 with Mk ≡ 0 is applicable for
the trivial composite case, becoming a classical bundle method for convex functions
without any particular structure. �	

5 Convergence results

Since matrices M�
k are always positive definite, they induce a norm and (8) holds.

Together with (11) and (10), this means that the relations

δ� ≥

⎧
⎪⎨

⎪⎩

max
(

1
2‖D�

k Ĝ�‖2
k,�, ê�

)
≥ 1

2(λmax(Mk)+ μ�)
|D�

k Ĝ� |2 (a)

max
(

1
2 |d�|2k,�, ê�

)
≥ 1

2

(
λmin(Mk)+ μ�

)
|d�|2 (b)

(17)

are always satisfied.
We start our convergence analysis showing that there can only be a finite number

of consecutive backtracking steps.

Proposition 1 (Finite backtracking loop) Suppose the inner mapping is C2. If after
some iteration �̂, Composite Algorithm 1 makes a last serious step and thereafter
generates only null and backtracking steps, the following holds:

123

Composite proximal bundle method 201

(i) If the sequence {d�}
�≥�̂ is bounded, then there exists μnoBT > 0 such that (13)

holds for any μ� > μnoBT .
(ii) There cannot be infinitely many consecutive backtracking steps.

Proof For convenience, let k̂ = k(�̂), x̂ = xk̂(= xk(�) for all � ≥ �̂), and M̂ = Mk̂
denote, respectively, the k-iteration index, prox-center and matrix corresponding to
the last serious step.

Since c is a C2-mapping, a mean-value theorem applies to each component c j ,
j = 1, . . . ,m:

c j (x̂ + d�)− c j (x̂)− ∇c j (x̂)
�d� = 1

2
∇2c j (ξ j)(d

�, d�) for some ξ j ∈ [x̂, x̂ + d�] .

Recall that | · | is the Euclidean matrix norm. By assumption, {x̂ + d�} is bounded
so |Γ �| ≤ L for all � and some constant L . Similarly, boundedness of {d�} implies
that |∇2c j (ξ j)| ≤ D for all j = 1, . . . ,m, for some constant D. By Cauchy–Schwarz
inequality,

Γ ��[c(x̂ + d�)− c(x̂)− Dk̂d�] ≤
√

m

2
L D|d�|2 .

Using the rightmost inequality in (17)(b), we obtain

δ� ≥ 1

2
|d�|2

k̂,�
≥ 1

2
(λmin(M̂)+ μ�)|d�|2 .

In the notation used in this proof, c(xk + d�) = c(x̂ + d�) and ck(d�) = c(x̂)+ Dk̂d�.
Suppose that (13) is not satisfied and multiply by −1 the corresponding inequality:

m2δ� < −Γ ��[ck(d
�)− c(xk + d�)] = Γ ��[c(x̂ + d�)− c(x̂)− Dk̂d�] .

Using the bounds above we see that

1

2
m2(λmin(M̂)+μ�)|d�|2 ≤m2δ� < Γ ��[c(x̂+d�)− c(x̂)−Dk̂d�] ≤

√
m

2
L D|d�|2 .

Therefore, nonsatisfaction of (13) implies μ� <
√

mL D/m2 − λmin(M̂). Item (i)
follows, by taking μnoBT ≥ √

mL D/m2 − λmin(Mk).
The claim in item (ii) is shown by contradiction, assuming that (13) does not hold, with
� → ∞ due to backtracking. An infinite backtracking loop drivesμ� to infinity, as well
as the minimum eigenvalue of the matrix M�

k̂
, because M�

k̂
= M̂ + μ�I. Since there

are only backtracking steps, the bundle does not change, and the composite model
ȟ�(ck̂(·)) is a fixed function, say ϕ. Hence, by [12, Prop. XV.4.1.5], the minimand
in (9) converges to ϕ(0) with d� → 0 as � → ∞. Therefore, x̂ + d� → x̂ with
ϕ(d�)+ 1

2 |d�|2
k̂,�

→ ϕ(0). In particular, this means that the sequence {d�} is bounded,

and the contradiction follows from item (i). �	

123

202 C. Sagastizábal

As a consequence, if the algorithm loops forever, it generates either an infinite
sequence of serious steps, or a finite one, followed by infinitely many null steps (pos-
sibly nonconsecutive, due to backtracking). Both situations are considered below,
adapting classical developments for bundle methods [12, Ch.XV.3, XV.4] to the com-
posite setting.

We start with the case of infinitely many serious steps.

Lemma 1 (Infinitely many serious steps) Suppose the Composite Algorithm 1 gener-
ates an infinite sequence {xk} of serious steps. Denote by �k an iteration index yielding
a serious step: xk+1 = xk + d�k . The following holds:

(i) If 0 < m2 < m1 then, as k → ∞, either (h ◦ c)(xk) → −∞ or δ�k → 0.
(ii) Suppose δ�k → 0. Then lim ê�k = 0 and,

if the series
∑

k

1

μ�k + λmax(Mk)
is divergent, (18)

then lim inf ‖D�
k Ĝ�k ‖k,�k = 0.

(iii) If, in addition, the sequence {xk} is bounded, then it has at least one accumulation
point that is critical for (1).

(iv) If, instead of (18), the stronger condition

the sequence {μ�k + λmax(Mk)} is bounded above (18’)

holds, then all accumulation points are critical for (1).

Proof By (13), since Γ �k ∈ ∂h(c(xk + d�k)), we have that

h
(

c(xk)+ Dkd�k
)

≥ h(c(xk + d�k))− m2δ�k = (h ◦ c)(xk+1)− m2δ�k . (19)

Together with satisfaction of (12), this means that (h ◦c)(xk+1) ≤ (h ◦c)(xk)−(m1 −
m2)δ�k . The telescopic sum yields that either (h ◦ c)(xk)↘−∞ or 0 ≤ δ�k → 0,
because m1 − m2 > 0. In the first case, problem (1) does not have a minimizer
and there is nothing to prove. The second case is addressed by the next item. The
first assertion in (ii) follows from (11). The rightmost inequality in (17)(a), together
with our assumption (18) gives the second result. To show item (iii), consider a
k-subsequence such that ‖D�

k Ĝ�k ‖k,�k → 0 and extract a further subsequence of seri-
ous steps with accumulation point xacc. By boundedness of {xk} and local Lipschitzian-
ity of h, there is an associated subsequence {Ĝ�} with accumulation point Ĝacc. Passing
to the limit in (16) and using that ê�k → 0, we obtain in the limit that Ĝacc ∈ ∂h(Cacc)

for Cacc = c(xacc). By smoothness of c, Dk → Dacc = Dc(xacc), and by (2),
D�

accĜacc ∈ ∂(h ◦ c)(xacc). The result follows from item (ii). Item (iv) is similar to
item (iii), noticing that if L > 0 denotes an upper bound for {μ�k + λmax(Mk)}, then
the relation 1

2(μ�k +λmax(Mk)
≥ 1/2L in (17)(a) gives that |D�

k Ĝ�k | → 0 as k → ∞
(for the whole sequence). �	

123

Composite proximal bundle method 203

The remaining case refers to an infinite null-step loop and makes use of the aggre-
gate linearization

hagg
� (ck(d)) = ȟ�(ck(d

�))+ Ĝ�� Dk(d − d�) ,

the associated strongly convex function

H�(d) = hagg
� (ck(d))+ 1

2
|d|2k,� , (20)

and the result [12, Lem. XV.4.3.3]:

H�−1(d) = H�−1(d
�−1)+ 1

2
|d − d�−1|2k,�−1 . (21)

Finally, and similar to [5, Sec. 4], note that Step 4 in the Composite Algorithm 1
updates the bundle of information in a way ensuring that not only

if iteration �−1 was declared a null step, then hagg
�−1(ck(d))≤ ȟ�(ck(d)), (22)

but also

if iteration �−1was declared a null step, then ȟ�(ck(d))≥G�−1 �ck(d) (23)

for all d ∈ �n .

Lemma 2 (Finitely many serious steps) Suppose that, after some iteration �̂, the Com-
posite Algorithm 1 makes a last serious step x̂ = x̂ k(�) and thereafter generates an
infinite number of null steps, possibly nonconsecutive, due to intermediate backtrack-
ing steps. The following holds:

(i) The sequence {d�}
�>�̂

is bounded and there is an iteration �′ > �̂ such that only
null steps are done for all � ≥ �′.

(ii) If m1 < 1, then δ� → 0 and ê� → 0.
(iii) If, in addition, for the (fixed) matrix M̂ = Mk(�̂).

the series
∑

�≥�′
μ�−1 + λmin(M̂)

(μ� + λmax(M̂))2
is divergent, (24)

then lim inf |Dc(x̂)�Ĝ� | = 0, x̂ + d� → x̂ for some �-subsequence, and x̂ is
critical for (1).

Proof For convenience, let k̂ = k(�̂), x̂ = xk̂(= xk(�) for all � ≥ �̂), and M̂ = Mk̂
denote, respectively, the k-iteration index, prox-center and matrix corresponding to
the last serious step.

123

204 C. Sagastizábal

Consider � > �̂ and recall that, since M�
k = M̂ +μ�I and {μ�} is nondecreasing at

null and backtracking steps,

1

2
|d|2

k̂,�−1
≤ 1

2
|d|2

k̂,�
.

The sum of this inequality and (22), together with (20) written with � replaced �− 1,
results in the relation

H�−1(d) ≤ ȟ�(ck̂(d))+ 1

2
|d|2

k̂,�
.

In particular, for d = d�, we obtain that H�−1(d�) ≤ H�(d�) from (20), using the
identity ȟ�(ck̂(d

�)) = hagg
� (ck̂(d

�)). Together with (21), written at d = d�, we see that

H�−1(d
�−1) ≤ H�−1(d

�−1)+ 1

2
|d� − d�−1|2

k̂,�−1
= H�−1(d

�) ≤ H�(d
�) . (25)

By the definitions of hagg
� and H�, the optimal value in (9) equals H�(d�). Hence,

(25) implies that the sequence of optimal values in (9) is strictly increasing, with
H�(d�) ≤ ȟ�(ck(0)) = ȟ�(c(x̂)). Since, by (15), ȟ� ≤ h, then

H�(d
�) ≤ (h ◦ c)(x̂) . (26)

So {H�(d�)} ↑ H∞ for someH∞ ≤ (h◦c)(x̂), with |d�−d�−1|2
k̂,�−1

→ 0 as � → ∞, by

(25). Butμ� ≥ μ
�̂

(at null and backtracking steps prox-parameters are nondecreasing),
so the left relation in (8) implies that

d� − d�−1 → 0 . (27)

Using (20) with d = 0, we see that H�(0) = hagg
� (ck̂(0)). Together with the definition

of hagg
� , the left inequality in the second line in (10), and the definition of ck(d�), this

implies that that H�(0) = ȟ�(ck̂(d
�))− Ĝ�� Dk̂d� = Ĝ��c(x̂). Since Ĝ� ∈ conv{Gi :

i ∈ B�}, using (5) and (3) we obtain that H�(0) ≤ (h ◦ c)(x̂). Therefore, writing (21)
with �− 1 replaced by � at d = 0 yields the relations

1

2
|d�|2

k̂,�
= H�(0)− H�(d

�) ≤ (h ◦ c)(x̂)− H
�̂+1(d

�̂+1),

because the sequence {H�(d�)} is increasing, by (25), since � > �̂. Using once more
the left relation in (8) we conclude that the sequence {d�} is bounded, and item (i)
follows from Proposition 1(i).

To show item (ii), consider iteration indices � − 1, � ≥ �′, giving two consec-
utive null steps, and set C� = c(x̂) + Dc(x̂)d� and C�−1 = c(x̂) + Dc(x̂)d�−1.

123

Composite proximal bundle method 205

Since δ� ≥ 0, we substract the inequality δ� ≤ (h ◦ c)(x̂) − ȟ�(C�), obtained from
(11), from nonsatisfaction of (12), both with xk = x̂ , to see that

0 ≤ (1 − m1)δ� ≤ h(C�)− ȟ�(C
�). (28)

By (3),

h(C�−1) = G�−1 �C�−1 ,

and by (23),

ȟ�(ck̂(d
�)) = ȟ�(C

�) ≥ G�−1 �C� .

Since {d�} is bounded, any Lipschitz constant L for h gives an upper bound for {|G�|};
as a result,

h(C�)− ȟ�(C
�) = h(C�)− h(C�−1)+ h(C�−1)− ȟ�(C

�)

≤ L|C� − C�−1| + G�−1 �(C�−1 − C�)

≤ 2L|Dc(x̂)||d� − d�−1| . (29)

From (28) and (27) it follows that δ� → 0, and by the right hand side expression in
(11), ê� → 0, as stated.

Finally, to see item (iii), the left hand side expression in (11) of δ� and the definitions
of hagg

� and H� give the identity δ� = (h ◦ c)(x̂) − H�(d�). Therefore, by the right
inequality in (25), (21) with d = d�, and the left relation in (8),

δ�−1 ≥ δ� + 1

2
|d� − d�−1|2

k̂,�−1

≥ δ� + λmin(M̂)+ μ�−1

2
|d� − d�−1|2 .

From (29) and (28), we obtain that δ� ≤ 2L|Dc(x̂)|
1−m1

|d� − d�−1|, so

δ�−1 − δ� ≥ λmin(M̂)+ μ�−1

2

(1 − m1

2L|Dc(x̂)|
)2
δ2
� .

Letting K := (1 − m1)
2/

(
8|Dc(x̂)|2L2

)
, and summing over � > �̂,

K
∑

�>�̂

(λmin(M̂)+ μ�−1)δ
2
� ≤ δ

�̂
< +∞ .

Furthermore, using (17)(a), the series

123

206 C. Sagastizábal

∑

�>�̂

μ�−1 + λmin(M̂)

(μ� + λmax(M̂))2
|Dc(x̂)�Ĝ� |4

converges too. With our assumption (24), this implies that lim inf |Dc(x̂)�Ĝ� |4 = 0.
Consider indices � in a corresponding convergent subsequence of {d�}. Since from
the expression for d� in (10), |Dc(x̂)�Ĝ� |2 = |M�

k d�|2 ≥ (λmin(M̂) + μ
�̂
)2|d�|2,

we see that the subsequence fo {d�} converges to zero and, hence, x̂ + d� → x̂
on this subsequence. Finally, by boundedness of {C� = c(x̂) + Dc(x̂)d�}, all outer
subgradients are bounded and, hence, the subsequence {Ĝ�} has some accumulation
point Ĝacc such that Dc(x̂)�Ĝacc = 0. The result follows from passing to the limit in
(16) to give Ĝacc ∈ ∂h(c(x̂)), and using the chain rule (2). �	
Remark 2 (The trivial composite case, suite and end.) In the setting of Remark 1,
when h is not positively homogeneous but merely convex, and c is the identity, the
cutting-plane model having the form (6), then (23) states that

if iteration �− 1 was declared null, then ȟ�(ck(d)) ≥ h(xk)−Δk
�−1 + G�−1 �ck(d) ,

which is consistent with the fact that h(xk) = Δk
�−1 when h is positively homogenous,

by (5) and (3).
In fact, when Mk ≡ 0 for all k, as considered in the trivial structure, Lemmas 1 and

2 boil down to [12, pp.309 and 311, vol.II, Thms.XV.3.2.2 and XV.3.2.4]. �	
Putting together Proposition 1 and Lemmas 1 and 2, we can show convergence for

objective functions that are inf-compact, i.e., functions having some level set that is
nonempty and compact (sometimes also referred to as level-bounded functions). In
this case, by lower semicontinuity, h ◦ c always attains its minimum and the sequence
of serious steps is bounded.

Theorem 1 (Convergence) Consider solving problem (1) with Composite Algorithm
1 and suppose that in (1) the objective function h ◦ c is inf-compact. If 0 < m2 <

m1 < 1, tolstop = 0, with both (18) and (24) being satisfied, the following holds.

(i) Either the sequence of serious steps is infinite and bounded, and at least one of
its accumulation points is critical for (1).

(ii) Or the last serious step x̂ is critical for (1), with {x̂ + d�} → x̂ for some �-
subsequence.

If, instead of (18), the stronger condition (18’) holds, item (i) can be replaced by

(i’) Either the sequence of serious steps is infinite and bounded, and all its accumu-
lation points are critical for (1). �	

Our conditions (18) and (24), on the variable prox-metric, are fairly general and
not difficult to enforce. For (18) to hold, it is enough to take matrices M�

k that are
uniformly bounded from above at serious steps (when � = �k). As for null steps,
choosing μ�+1 ∈ [μ�,μmax] for some finite bound μmax > −λmin(M̂), rule (14)

123

Composite proximal bundle method 207

ensures satisfaction of (24). Depending on the particular problem, the more general
condition (24) may help in preventing bad choices (too small) for the bound μmax.

We finish our analysis by supposing the stopping tolerance is positive. In this case,
if (18’) and (24) hold, by Lemmas 1 and 2, the nominal decrease goes to 0. Then,
by (11), both ê� and Ĝ� go to 0, and eventually the stopping test will be triggered.
For such an iteration index, say �best, (16) gives the following approximate optimality
condition for the last serious step xbest = xk(�best):

(h ◦ c)(x)≥ (h ◦ c)(xbest)+Ĝ�best �
(

c(x)−c(xbest)
)
−ê�best

≥ (h ◦ c)(xbest)−Ĝ�best �
(

Dc(xbest)(x−xbest)+o(|x − xbest|)
)
−ê�best

≥ (h ◦ c)(xbest)−tolstop|x − xbest|−tolstop+o(|x − xbest|) .
for all x ∈ �n . The relation above ensures approximate optimality for xbest, even when
the composite function is nonconvex.

6 Numerical experience

To assess practical performance of the Composite Bundle method, we coded the
Composite Algorithm 1 in matlab and ran it on many collections of functions, includ-
ing some from Sect. 2, using a one 3GHz processor and 1.49GB RAM computer.

6.1 Solvers in the benchmark

We compared the performance of the Composite Bundle method with that of the
Matlab HANSO package, implementing a “Hybrid Algorithm for NSO”, and down-
loadable from http://cs.nyu.edu/overton/software/index.html. In [20] it is explained
that, for nonsmooth optimization problems, BFGS may fail theoretically. However,
our results below showthe that HANSO package can provide good benchmarks for
the purpose of comparison, helping to shed some light on important NSO issues. The
HANSO package is organized in two phases:

– Input to a first phase consists of multiple starting points. For each starting point
this phase runs a BFGS method for smooth minimization, with a linesearch that
attemps to avoid kinks as explained in [20]. If the termination test is not satisfied
at the best point found by BFGS, HANSO continues to the next phase.

– Starting from the best point found by BFGS, the second phase executes up to
three runs of the Gradient Sampling method in [3] with decreasing sampling radii.
For initial information, this methods uses BFGS final bundle defined as the last
min[100, 2n, n + 10] generated points and their (bb) information. For locally
Lipschitz functions, the method converges to Clarke critical points in a probabilistic
sense; [3].

We also created another hybrid algorithm, the Hybrid Composite Bundle, which
after the BFGS phase switches to the Composite Bundle method, starting as does
Hanso from BFGS’s final bundle.

123

http://cs.nyu.edu/overton/software/index.html

208 C. Sagastizábal

Therefore, the benchmark considers the following four solvers:

– CBun, the Composite Bundle method,
– BFGS, the first phase in the HANSO package,
– Hanso, the hybrid variant combining BFGS and Gradient Sampling methods; and
– HyCB, the hybrid variant combining BFGS and CBun.

6.2 Parameters for the different solvers

Letting n be the problem dimension, the maximum number of iterations and calls
to the oracle were set to maxit = 150 min(n, 20) and maxsim = 300 min(n, 20),
respectively. We set the stopping tolerance tolstop = 10−5 if n < 50 and multiply
it by

√
n when n ≥ 50.

6.2.1 Parameters for CBun and HyCB

The two parameters in (12) and (13) are m1 = 0.9 and m2 = 0.55, respectively. The
minimum and maximum positive thresholds are μmin = 10−6 and μmax = 108. In all
of our runs, only strongly active bundle elements are kept at each iteration, but, when
there are more than |Bmax | = 50 strongly active elements, the bundle is compressed.

If no second-order information is available for the inner mapping, in the variable
prox-metric we take Mk = 0. Otherwise, we use the combination of Hessian matrices

Mk =
m∑

j=1

Ĝ�k
j ∇2c j (x

k), (30)

exploiting sparsity patterns, if they exist. To update the prox-parameter, we use an
estimate for λmin(Mk), obtained by a modified Cholesky factorization.

The prox-parameter was started at

μ0 = 5|γ (x0)|210−fact

1 + |(h ◦ c)(x0)| .

The parameter fact is 0 if the function is convex, and 3 otherwise (such a value
constrains the search of the next iterate in a region close to x0, which makes sense for
a nonconvex function). At later iterations, every time a serious step is declared, the
update is done as follows with k = k(�):

μ�+1 = min(μ,μmax) for μ =
⎧
⎨

⎩

max(μmin, μ�,−1.01λmin(Mk)) if λmin(Mk) < 0
max(μmin, μ

qN
�) if λmin(Mk) = 0

max(0, λmin(Mk)− μAN�) if λmin(Mk) > 0.

In these relations, μqN� is computed using the reversal quasi-Newton scalar update

123

Composite proximal bundle method 209

in [1, § 9.3.3]:

μ
qN
� := min

⎧
⎨

⎩

|γ k − γ k−1|2
(γ k − γ k−1)�(xk − xk−1)

, for
γ k ∈

{
Dc�

k Ĝ�k , Dc�
k G�k

}

γ k−1 ∈
{

Dc�
k Ĝ�k−1 , Dc�

k G�k−1

}

⎫
⎬

⎭
,

recalling that �k and �k−1 denote the last two iterations declaring a serious step (xk +
d�k and xk−1 + d�k−1 , respectively). In all cases, if λmin(Mk) < 0, then μ�+1 ≥
−1.1λmin(Mk).

Backtracking steps multiply the current prox-parameter by a factor of two. At
consecutive null steps, the prox-parameter is defined as

μ�+1 = max(μ�,
√
(μ� + λmin(Mk))nul),

for nul a counter of null steps. This update satisfies the convergence condition (24).
If necessary, μ�+1 is projected so that μ�+1 ∈ [μmin, μmax].

6.2.2 Parameters for BFGS and Hanso

Both tolerances normtol and evaldist are set to
√
tolstop. In the linesearch,

Armijo’s and Wolfe’s parameters were taken equal to 0.01 and 0.5, respectively. The
option for a so-called Strong Wolfe criterion is not activated, and the method quits when
the linesearch fails. As for the quasi-Newton updates, they are of the full memory type,
with scaling of the initial Hessian. Finally, the final bundle keeps min[100, 2n, n +10]
past gradients.

6.3 Benchmark rules

In an effort to make comparisons fair, we adopted the following rules:

– All solvers use the same black-boxes.
– Each solver has a different computational effort per iteration, which depends not

only on the solver, but also on how many times the black-box is called per iteration.
The number of iterations is not a meaningful measure for comparison, and the
number of (bb) calls is different for each solver. While each iteration of Hanso
calls (bbc) and (bbh), CBun calls (bbh) at Step 2, and may or may not call (bbc)
and (bbh) at Step 3. Moreover, Hanso always uses gradient values, but CBun
requires additional first order information for the inner mapping only at a serious
step, to define a new inner model. Striving for fairness, we defined the counters
below:
– For Hanso, one call to both (bbc) and (bbh) counted as one (bb)-call.
– For CBun, we kept separate counters for the number of c, Dc, and h/G eval-

uations: nc, nDc, nf, respectively. To each counter corresponds a number of
scalars needed for the corresponding calculation: m, mn, and 1 + m, respec-
tively. This gives the number of scalars required for a single evaluation of h ◦ c

123

210 C. Sagastizábal

and a subgradient (as in Hanso):

OneEval = m(1 + n)+ 1 + m.

Accordingly, the number of oracle evaluations in CBun was defined as

#(bb)-calls = ncm + nDcmn + nf(1 + m)

OneEval
.

At this point a potential advantage of CBun becomes clear: when for a given function
the method makes many consecutive null steps, this is not expensive in terms of (bb)
calls, since in this case only (bbh) is needed.

– We also computed total CPU time for each solver to reach its stopping test. This
information should mostly be taken as a complement to the counter of (bb) calls.
The reason is that CPU times can be misleading, because for almost all the tested
functions the (bb) calls take a negligible amount of time, a feature that is rare in
real-life problems. For example, for the nuclear generation planning problems in
[7, Sec.7], 95 % of the total CPU time is spent in producing the black-box informa-
tion. By contrast, for all but one instance in all of our runs, (bb) calls represent
less than 10 % of the total CPU times (taking up to 40 % for one test-function,
written in Fortran and requiring a mex-interface).

– All solvers use the same quadratic programming packages, for which there are
two possibilities: a Fortran library with a mex-interface, or a special Matlab
solver. Quadratic programs such as (9) can be solved by quadprog, the built-in
matlab QP solver, but we prefer the method in [15], and made a mex-interface
for the Fortran code developed by the author. This method is specially tailored for
quadratic minimization over a simplex, as it is the case for the problem dual to (9)
and, hence, often outperforms quadprog, which is a general solver. Hanso also
has a special QP solver, written in Matlab. Since Hanso QP problems amount
to setting M�

k ≡ 0 in the inclusion 0 ∈ conv{Gi ∈ B�} + M�
k d�, which is the

optimality condition for (9), we could modify the Hanso QP solver to handle (9).
Reciprocally, it is possible to use the Fortran QP solver based on [15] to solve
Hanso QP problems.

– For large-scale instances, Hanso offers a limited memory BFGS method explained
in [33]. However, since for the prox-variable metric the calculation of Mk corre-
sponds to that of a full Hessian, the limited-memory option was not activated in
the comparisons.

– Each solver has specific stopping tests, and since BFGS uses a smooth method,
the triggers terminating its runs are only heuristic. For each solver we declare a
run a success as follows:
– For BFGS and Hanso, when the tolerance on the shortest vector in the convex

hull of certain subgradients is met (for BFGS, these are the subgradients in its
final bundle).

– For CBun and HyCB, when the stopping test in Step 2 is reached.
– All non-successful runs are declared failures, with a special counter for when

a solver reached the maximum number of iterations or calls to the black-box

123

Composite proximal bundle method 211

(maxit or maxsim, denoted by max in the tables). Hanso does not check if
max is attained during the Gradient Sampling cycles. Other possible reasons for
failures are detection of unboundedness in x or in the function values, errors in the
QP solver, and, for BFGS, a nondescent direction, or a problem in the linesearch
subroutine.

– The hybrid variants are not initiated if BFGS detected unboundedness. They are
started when BFGS succeeds, reaches maxit, cannot descend from the generated
direction, or if the linesearch or the QP solver failed.

– Both BFGS and CBun use the same starting points, each function was run for 10
different starting points. Unless otherwise specified, the starting points have all
components randomly drawn in [−1, 1].

– To measure the accuracy reached by each solver, we only considered test-functions
either with a known optimal value f̄ , or such that all the solvers converged to the
same final value within a tolerance of 10−5. In this case, the optimal value f̄ is
given by the smallest function value found by all the solvers. Letting f best denote
the function value of the analyzed case, then

R A := − log10 max

(

10−16,
f best − f̄

1 + | f̄ |
)

measures the number of digits of accuracy achieved by the solver.
– We exclude from the tables results for those nonconvex cases for which different

solvers found different critical points, see Table 8 in the “Appendix” for details.
– Since full tables are large, for the reader’s convenience in this section we only

report the overall results of each full table in the “Appendix”.

6.4 Battery of convex test problems

We first consider the typical functions for convex NSO benchmarking in Table 1.
The composite structure h ◦ c for functions Maxquad and Ury is the one described

by the respective examples in Sect. 2. Both TR48 and TSP are the piecewise maximum
of affine functions, so the inner mapping is affine. However, our Fortran (bb) code
for TSP was too involved to identify the c-components (corresponding to the minimal
1-trees in the underlying graph), so we just took the trivial composite case for TSP, as in
Remark 1. Similarly for BadGuy, because it does not have a positively homogeneous
outer mapping.

Table 2 summarizes the Group 1 results from Table 9 in the “Appendix”. In Table 9,
each column corresponds to one of the four solvers, CBun, BFGS, Hanso, HyCB,
run with the Fortran or Matlab special QP solver (denoted by f and m, respectively).
For all of our runs we observed that the Matlab QP special solver is systematically
less efficient and/or less reliable than the Fortran one, the shorter Table 2 contains the
indicators for the Fortran variants only: CBunf, BFGSf, Hansof, HyCBf.

To each of the ten functions and each case in Table 1 there corresponds a row in
Table 9, reporting the numbers obtained with each solver, averaged over ten runs, with
random starting points. All solvers used the same starting points, with components

123

212 C. Sagastizábal

Table 1 Convex functions in Group 1

Name n f̄ Reference

BadGuy 10 −2,048 [12, p. 277, vol.II Ex.XV.1.1.2]

Maxquad 10 −0.84140833459641 [1, p. 153]

TR48 48 −638,565 [12, p. 21, vol.II, Ex.IX.2.2.6]

TSP family in [12, p. 22, vol.II, Ex.IX.2.2.7], data from TSPLIB95

TSP 29 −9,015 bayg29

TSP 442 −50,500 pcb442

TSP 1,173 −56,349 pcb1173

TSP 3,038 −136,601 pcb3038

Convex Ury family, low dimension Example 5 with cubic=0

Ury-cvx 10 500

Ury-cvx 20 911.833349450300716

Ury-cvx 30 1,118.219919518173128

Table 2 Group 1 overall results: functions in Table 1

CBunf BFGSf Hansof HyCBf

RA sec (bb) RA sec (bb) RA sec (bb) RA sec (bb)

BadGuy (10) 8 1.7 135 9 1.9 289 9 2.5 377 9 2.0 301

MQ (10) 11 0.2 40 8 0.2 432 8 0.3 683 12 0.2 443

TR48 (10) 12 3.5 48 13 32.6 2,738 13 291 29,439 15 33 2,746

TSP (40) 8 102 1,045 13 1,947 8,188 13 1,986 18,050 14 2,015 8,686

Ury (30) 11 1.8 45 9 2.6 1,469 11 20 17,762 15 2.7 1,475

Mean (100) 10 22 262 10 397 2,623 11 460 13,262 13 411 2,730

Max/fails 1/1 3/38 0/38 0/0

in [−1, 1] except for BadGuy, taken in [−512, 512]. Results are displayed in three
columns, with the accuracy RA, the mean CPU time in seconds sec, and the average
number of black-box calls (bb), respectively. At the end of each function family there
are two lines. A first line with the mean values averaged for all the considered cases
with different n-values (in this line the second column reports between parenthesis
the considered number of runs). The second line gives the number of failures and how
many of these failures corresponded to having reached the maximum number allowed
for iterations or evaluations (max/fails). Finally, the bottom two lines of Table 9 in the
“Appendix” contain the same indicators, averaged over all the problems in the group,
as well as of the total number of instances considered for the test. These bottom lines
and the average for each function family are reproduced in Table 2 as a summary.

For Group 1, we observe that all methods are very accurate. When compared to
CBun, BFGS exhibits a significant increase both in CPU times and number of (bb)
calls; failing to trigger its termination criteria 38 % of the times (only thrice the reason
was max). For the TSP family, BFGS is 60 % more accurate than CBun, but for

123

Composite proximal bundle method 213

getting 5 more digits, BFGS spends 19 (8) times more CPU ((bb) calls) than CBun
does. We conjecture that endowing TSP with a nontrivial composite structure can
improve CBun’s average figures (we observed a significant change for TR48, when
comparing CBun performance on TR48 black-boxes with and without composite
structure). Hanso is the slowest solver, and uses the most (bb) calls, but it is not
the most accurate method: this hybrid variant did not seem to be adequate for this
set of problems, probably because they are all convex. By contrast, HyCB eliminated
all of BFGS’s failures, with a relatively low additional computational effort: HyCB
extra CPU times and (bb) calls represent less than 5 % of BFGS totals. With respect
to CBun, the HyCB gain of 30 % in accuracy is obtained at the cost of an increase of
almost 20 and 10 times, respectively, in CPU seconds and (bb) calls. For this group
of problems, CBun performs better than all the other solvers.

6.5 Convex and nonconvex problems

The two other groups include a mix of convex and nonconvex problems given in
Table 3. Group 2 gathers together functions with low dimensions (n ≤ 50), while
Group 3 contains high dimensional ones (n ∈ {100, 500}). For each instance in Groups
2 and 3, we give the optimal values when known, or the lowest function value found
by all solvers, in Table 8 in the “Appendix”.

For the CPS, MQ, EucSum, and TiltedNorm-collections, matrices and vectors were
generated randomly. All A-matrices are symmetric positive semidefinite, with condi-
tion number equal to rank A2. The B-matrices in CPS are symmetric positive semi-
definite with condition number equal to n2. To make calculations possible in our
computer, for all the sparse matrices the density was set to 0.1, 0.01, 0.01, 0.001 for
n = 10, 50, 100, 500, respectively. For GenModRos, five different starting points

were considered, namely x0 ∈
{
[−0.1,+0.1], [−1, 1], [−2, 0], [0, 2], [−2, 2]

}
.

Tables 4 and 5 summarize the results for Groups 2 and 3, respectively. In the
appendix, Tables 10 and 11 report the respective full details.

For Group 2 the instances excluded because different solvers found different critical
points correspond to two variants of the functions NK and LV, namely F8 and T3 in
[33]; and GenModRos with starting point in [0, 2] and [−2, 2]. For this group, the
overall results show again that CBun performs better on average than the other three
solvers. However, BFGS did better for some instances of LV, as well as for GenModRos
and ModRos. CBun had difficulties solving the second instance of LV, corresponding
to T3 in [33] with n = 10. For the excluded instances of GenModRos, the optimal
value (5.337) was found often by BFGS while CBun found only a critical point (with
value 9.3283). For the function NesChebRos, nine out of the thirty starting points are
very difficult to handle by BFGS, but not by CBun, explaining the huge difference in
accuracy obtained by these solvers. For these problems, we observed that BFGS got
stuck at a nonoptimal kink and exited having triggered its heuristic stopping test (the
projection of zero on its final bundle was smaller than the tolerance). For contrast, the
Rosenbrock modifications GenModRos and ModRos put CBun into trouble: these are
the only problems for which Cbun systematically makes more (bb) evaluations than
BFGS. For these functions, CBun finds a very precise minimizer, after taking many

123

214 C. Sagastizábal

Table 3 Convex and nonconvex functions in Groups 2 and 3

Name Parameters Reference

CPS n ∈ {10, 50, 100, 500} [33, Sec. 4.2.2]

cvx rank A ∈ {0.2, 0.8}n f (x) = √
x� Ax + x� Bx

MQ n ∈ {10, 50, 100, 500} Example 1,with

cvx rank A j ∈ {0.2, 0.8}n c j (x) = 1
2 x� A j x + b�

j x

m ∈ 5, 403 {A j } ≥ 0 and {b j }m
j=1 LI

EucSum Same than MQ, but
n ∈ {4, 10, 50, 100}

Example 4 with the �1-norm, m j = 1, J = m, and

ncv φ j = c j from MQ

TiltedNorm n ∈ {10, 50, 100, 500} [33, Sec. 4.2.1]

cvx w = 4 f (x) = w|Ax | + (w − 1)e�
1 Ax

GenModRos n = 12 [33, Sec. 4.2.4]

ncv U =1, V =10 f (x)=∑n−1
i=1

(
V i

n |xi+1−x2
i /n|+U i

n (1−xi)
2
)

ModRos n = 2 [20, Sec. 5.7]

ncv w ∈ {1, 2, 4, 8} f (x) = w|x2 − x2
1 | + (1 − x2)

2

NesChebRos n ∈ {5, 10, 50, 100} [20, The nonsmooth variation in Sec. 5.8]

ncv x0 ∈ [0, 2] f (x) =
∑n−1

i=1
|xi+1 − 2x2

i + 1| + 0.25(x1 − 1)2

Ferrier n ∈ {10, 50, 100} [11]

ncv case ∈ {1, 3} f (x)=
{ ∑n

i=1 |i x2
i −2xi +

∑n
j=1 x j | if case=1

maxn
i=1 |i x2

i −2xi +
∑n

j=1 x j | if case=3
NK n ∈ {10, 50, 100, 500} Problems Fcase in [33, Sec. 5.4.2]

cvx/ncv case ∈ {1, 3, 4, 5, 8, 9} See also [9, Sec. 3]

LV n ∈ {10, 50, 100, 500} Problems T case in [33, Sec. 5.4.3]

ncv case ∈ {3, 4, 5, 6} see also [22]

Ury n ∈ {10, 20, 30, 100} Example 5

cvx/ncv cubic ∈ {0, 0.01} if n = 100,

cubic = 0.01 otherwise

serious steps (very short ones); since for each new serious step the mapping Jacobian
Dc(x̂ k) is computed, this significantly increases the total (bb) counter. Finally, and
as observed for Group 1, HyCB seems to be a better hybrid variant than Hanso.

For Group 3 the instances excluded because different solvers found different critical
points correspond to four variants of the functions NK and LV, namely F8 and T3, T5,
and T6 in [33]; and EucSum with n = 100 and rank A j = 400.

As expected, functions in this higher dimensional group are more difficult for all the
solvers. The low mean (bb) for CBun indicates that the methods often stalled making
many null/backtracking steps, rather than serious steps. However, the second instance
of Ferrier functions (corresponding to outer function h(·) = max(·) and n = 100) was
difficult for CBun, which made many short serious steps, expensive in terms of (bb)
calls. Function MQ with n = 500 and rank A j = 400 was very difficult to minimize
for all methods. The 100 runs of the NK family did not seem difficult for any solver.
CBun exited problem TiltedNorm having reached the maximum number of iterations,

123

Composite proximal bundle method 215

Table 4 Group 2 overall results: functions in Table 3, n ≤ 50

CBunf BFGSf Hansof HyCBf

RA sec (bb) RA sec (bb) RA sec (bb) RA sec (bb)

CPS (60) 10 0.1 10 6 0.2 348 6 0.3 470 8 0.2 352

EucSum (50) 9 0.7 17 6 0.8 574 6 2.2 3,708 14 0.9 578

Ferrier (40) 6 0.5 21 4 0.6 777 4 0.9 1,775 7 0.6 783

GenModRos (30) 10 1.5 839 8 0.2 472 8 1.0 1,821 14 0.3 514

LV (60) 8 1.4 334 11 1.9 1,292 11 8.5 6,355 13 1.9 1,297

MQ (40) 9 0.1 11 7 3.8 2,212 7 20 9,611 9 3.9 2,217

ModRos (40) 6 0.1 130 6 0.1 104 6 0.1 124 9 0.2 260

NK (100) 11 0.5 28 8 0.7 577 8 6.1 6,195 14 0.9 589

NesChebRos (30) 16 0.2 71 1 0.7 775 2 8.8 10,335 2 1.2 1,021

TiltedNorm (30) 11 1.0 62 7 0.1 434 7 0.4 1,132 10 0.1 439

Ury (30) 12 2.0 58 11 2.7 1,444 11 20 19,460 14 3.0 1,456

Mean (510) 10 0.7 143 7 1.1 819 7 6.2 5,544 10 1.0 864

Max/fails 29/29 9/76 0/60 23/23

Table 5 Group 3 overall results: functions in Table 3, n = 100 and n = 500

CBunf BFGSf Hansof HyCBf

RA sec (bb) RA sec (bb) RA sec (bb) RA sec (bb)

CPS (60) 6 0.7 7 5 83 1,945 5 107 2,925 7 84 1,948

EucSum (10) 16 0.3 8 5 0.8 433 5 1.08 734 6 0.9 435

Ferrier (20) 4 6.5 64 10 5.8 3,203 10 9.41 10,437 10 5.9 3,207

LV (40) 4 4.0 65 13 102 8,856 16 232 29,816 13 102 8,860

MQ (40) 4 1,398 40 3 3,951 6,646 9 20,484 33,343 8 5,350 6,657

NK (100) 9 6.5 19 10 86 5,189 10 195 21,102 14 87 5,193

NesChebRos (10) 16 0.9 19 1 29.6 5,247 1 113 44,548 1 29 5,251

TiltedNorm (10) 3 7.9 105 7 1.6 1,372 7 2.0 2,776 7 1.6 1,374

Ury (20) 0 48.0 92 12 62 5,770 12 274 45,070 16 92 5,836

Mean (310) 7 164 47 7 481 4,295 8 2,380 21,195 9 639 4,307

Max/fails 29/29 21/53 0/47 15/15

while BFGS found a good point and triggered its heuristic stopping test. For Ury,
both CBun and BFGS ended by having reached the maximum number of iterations,
but BFGS terminated at a point that is much better than the one found by CBun. For
NesChebRos, BFGS fails in the linesearch, stuck at a nonoptimal kink, and none of
the hybrid variants succeeds in getting away from it.

For this group, and especially for its nonconvex functions, we see a more erratic
behaviour of CBun, even though it still has the best performance on average.

123

216 C. Sagastizábal

6.6 Performance profiles

Figures 1, 2 and 3 contain performance profiles over all the 920 runs, excluding cases
converging to different critical points, but including failures, like in the tables of
results. This choice was done not to handicap BFGS, whose heuristic stopping test
may sometimes fail to be triggered.

Each curve in a performance profile can be interpreted as a cumulative probability
distribution of a resource of interest: accuracy, CPU time, (bb) calls. In general,
for a particular solver s, the ordinate φs(θ) gives information on the percentage of
problems that the solver will solve if given a maximum amount of resource. This
maximum amount is equal to θ times the minimum amount of resource employed by
all solvers. Therefore, for an abscissa θ = θmin in a graph, the probability φs(θmin)

of a particular solver is the probability that the solver will win over all the others.
As a result, the solver with higher value of φs(θmin) should be preferred if a user
is only interested in the number of actual wins. On the other hand, for large values
of θ , the probability φs(θ) informs if a solver actually solves a problem. Thus, if a
user is concerned only in the probability that a solver will be succesful, the solver
with highest φs(θ) as θ becomes large should be considered. The above explanation
supposes that “smaller” values of θ mean “better performance” of the considered
resource. Since for accuracy such is not the case, for this indicator we plotted the
reciprocal of the figures obtained by each solver. In this manner in all the profiles
below, the solver with the highest curve is the best one for the given indicator of
performance.

The first profile, in Fig. 1, shows the performance in terms of accuracy. Looking at
the highest value for the leftmost abscissa, we conclude that the hybrid variant HyCB
is the most precise solver in 72 % of the runs. The three other solvers, CBun, Hanso,
and BFGS, are the most accurate solvers in 37, 36, 31 % runs, respectively.

Profile 2 measures the performance in terms of CPU time in seconds, and shows
that CBun is the fastest solver in 56 % of the runs, followed by BFGS, which was
fastest in 33 % of the runs.

Fig. 1 Performance profile: (reciprocal of) accuracy

123

Composite proximal bundle method 217

Fig. 2 Performance profile: CPU time

Fig. 3 Performance profile: (bb) calls

The final profile, in Fig. 3, measures the performance of the different solvers in
terms of (bb) calls, and shows a clear superiority of CBun, which appears as the
most economic solver in 88 % of the cases. Hanso makes extensive use of (bb)
calls, so it should mostly be used for unstructured nonconvex functions that are not
too difficult to evaluate (possibly like the matrix problems in [33, Sec.5.3]). The
curves for BFGS and HyCB practically coincide, making both methods indistin-
guishable in terms of (bb) calls. Since BFGS is faster and HyCB is more pre-
cise, the choice between these two solvers should be driven by the user’s preference
(speed or accuracy), keeping in mind that HyCB is more reliable in terms of stopping
test.

Finally, by examining the right end of the curves in the three profiles, we conclude
that all solvers can be deemed similarly successful in solving the considered battery
of problems.

123

218 C. Sagastizábal

6.7 Determining V -dimension

Many composite functions are partly smooth [18], a notion that generalizes to the
nonconvex setting the V U -space decomposition for convex functions in [16,24].

Identification of the V U subspaces can be used to determine directions along which
the function behaves smoothly so that a (manifold restricted) Newton-like method is
likely to succeed. Such smooth directions lie in the U -subspace; its orthogonal com-
plement, the V -subspace, concentrates all the relevant nonsmoothness of the function,
at least locally. At a critical point x̄ , the V -subpace is spanned by the subdifferential
Dc(x̄)�∂h(C̄), with C̄ = c(x̄), and the U -subspace is the orthogonal complement of
V . Alternatively, in the wording of [18], the U -subspace is the subspace tangent to
the smooth activity manifold at x̄ , and V = U ⊥.

In [20,33] it is observed that BFGS can retrieve V U -information by analyzing the
eigenvalues of the inverse Hessian used to define a new iterate. For comparison pur-
poses, we consider CBun and BFGS only and estimate the dimension of the respective
generated V -subspaces as follows:

– For CBun we compute the dimension of the subspace spanned by the final strongly
active gradients in the bundle:

dim VCBun := rank
{

Dc(xk)�(Gi − Ĝ�) : i ∈ B� with α�i > 0
}
,

for xk the last generated serious step and � the iteration triggering the stopping
test; recalling that in Step 4 of Composite Algorithm 1 the bundle sizes are kept
controlled by a parameter |Bmax |,

– For BFGS we count how many eigenvalues of the final inverse Hessian H cluster
near 0:

dim VBFGS := card

{

i ≤ n : λi (H)

λmax(H)
≤ ε

}

,

for ε a given tolerance.

Table 6 reports the obtained results for some of the problems in Groups 1 and 2, with
low dimension and V -dimensionality depending on the case. The parameter settings
were |Bmax | = 50 and ε ∈ {0.1, 0.01} (which gave identical results for this group
of runs). Each problem was run 10 times with random starting points. For TR48 the
exact V-dimension is reported as ??, because it is unknown.

Table 6 V dimensions for BadGuy, EucSum, Maxquad, MQ, and TR48

BadGuy EucSum Maxquad MQ TR48

n 10 10 10 10 10 10 10 10 10 10 48
dim V 10 8 6 4 2 3 8 6 4 2 ??
CBun 10 10 8 6 4 4 8 7 4 3 47

BFGS 2.3 8 3.8 3.4 2.6 3.2 8 6.1 5 7 47

123

Composite proximal bundle method 219

Even though the rules adopted for determining the V -dimensions are rather rough,
both CBun and BFGS estimations are reasonable, with a few exceptions. For both
solvers the worst results are those obtained for the nonconvex EucSum functions.
The extremely low V -dimension estimated by BFGS for BadGuy comes from the
fact that it is hard to automatically determine when a very small eigenvalue should
be considered equal to zero. An a posteriori (visual) examination of the eigenvalues
obtained for each starting point shows a rather erratic behaviour of BFGS for this
function over the different starting points, even though BFGS’s heuristic stopping test
was always triggered. Such oscillation could be explained by a lack of stability of the
Hessian with respect to small perturbations, a common phenomenon for a nonsmooth
function near a kink.

We made a second group of runs, to determine the impact of smaller or larger
V -dimension, with respect to the dimension of the full space. We considered the
CPS function, with dimension n ∈ {10, 50, 100} and varying V -dimension. For this
example, the V -dimension coincides with the rank of the matrix A (taken with sparse
density equal to 0.1 for all cases).

Table 7 reports the V -dimensions estimated by CBun and BFGS for different
parameters. For CBun, the maximum bundle size was set to 50 and 100: we expect
results to be worse if |Bmax | < dim V +1 and the bundle needs to be compressed to
an insufficient number of elements. For BFGS, we took two values of ε, as before. In
the table, the parameter values appear between parentheses next to the name of each
solver.

We observe that problems with larger V -subspaces are more difficult for both
solvers. In general, CBun(100) seems to give a reasonable estimate, but this is not
always true, especially when n = 100.

We conclude our analysis with Fig. 4, with the real and estimated V -dimensions
for all the 30 different functions considered in this subsection. In general, we observe
that BFGS overestimates the size of the V -space. We emphasize that this set of
tests determining V -dimensionality is only preliminary, and rather crude. For this
reason, the conclusions above should not be taken as an indication of goodness
or badness of a solver. The subject of determining V U subspaces is still rather
unexplored, with a few exceptions in [20,33], and the MQ functions considered in
[6].

Table 7 V dimensions for CPS

CPS

n 10 10 10 10 50 50 50 50 50 100 100 100 100 100 100 100 100 100 100
dim V 8 6 4 2 40 30 20 10 2 90 80 70 60 50 40 30 20 10 2
CBun (50) 8 6 4 2 40 28 20 10 2 8 46 36 44 44 30 29 20 10 2

CBun (100) 8 6 4 2 40 30 20 10 2 77 78 70 56 50 40 30 20 10 2

BFGS (10−2) 8 6 4 3 44 40 36 36 36 96 91 77 88 86 85 86 86 87 86

BFGS (10−3) 8 6 4 2 43 37 31 24 19 93 86 81 80 75 71 67 61 63 64

123

220 C. Sagastizábal

CBUN

BFGS

Fig. 4 True and estimated V -dimensions for the 30 functions

7 Concluding remarks

The composite bundle method presented in this work makes tractable the algorithm
ProxDescent in [19] for a large class of composite functions, having real-valued,
positively homogeneous, and convex outer functions. In particular, the method can be
applied to minimize some nonconvex nonsmooth functions, a challenging issue for
bundle methods. Our composite cutting-plane model, approximating the conceptual
model, avoids typical pitfalls in nonconvex bundle methods.

The numerical experience reported in this work shows the good performance of
method for problems of moderate size. For large dimensions, the use of variable prox-
metrics may increase the solution times too much, even if there are sparse patterns to
exploit. The impact of such an increase is problem dependent: for some functions (such
as CPS and TSP) there is a clear advantage in applying a bundle method (n ≤ 500
in CPS, and n ≤ 3038 in TSP, but Mk ≡ 0). The advantage is less clear for other
functions, especially some of the nonconvex ones in Group 3. Since we sometimes
also observed that too many short serious steps made CBun stall, we conjecture that a
linesearch (replacing or complementing the curved search modifyingμ�) can improve
the performance of Composite Algorithm 1 for nonconvex functions, but this is a
subject of future research.

Although BFGS is accurate and fast (at least for our examples, with computationally
light blackboxes), neither BFGS nor Hanso appeared as the best alternative for many
classes of functions considered in our runs. However, conclusions can be different
for a different set of test-functions. Also, the usefulness of a solver depends on the
specific purpose sought by the user: since BFGS descends fast from a starting point,
it could be an interesting alternative if not much accuracy is required, or if the user
seeks a “better” point, without caring if it is the best one. For some problems, we
observed that BFGS got stuck at a nonoptimal kink and exited having triggered the
heuristic stopping test (the projection of zero onto its final bundle was smaller than

123

Composite proximal bundle method 221

the tolerance). If reliability is a concern, the output of BFGS can be plugged into a
bundle method, as in HyCB, to satisfy a theoretical stopping test.

However, if too much accuracy is desired, the hybrid variant is likely to increase
the computational effort of BFGS too much (at least when compared to applying
directly CBun). As for Hanso, since it makes extensive use of (bb) calls, we think it
should mostly be used for unstructured nonconvex functions that are not too difficult
to evaluate (possibly like the matrix problems in [33, Sec. 5.3]).

Another important issue to consider for a heavy duty application is that, even in
the presence of a composite structure, the resulting smooth mapping may be large, or
have no special second order sparse patterns to exploit. In this case, it can be sound
to use null or diagonal matrices Mk in Composite Algorithm 1, or apply the limited
memory variants in [9,33].

We mention the work [14], comparing several NSO general purpose solvers for
different type and size of problems, as well as for different(bb) available information.
Table 3 therein, analizing the efficiency and reliability of the considered solvers, can be
useful as complementary information for the conclusions drawn from our numerical
results, keeping in mind that solvers are different and that the test-functions are not
exactly the same, although there is some intersection.

Comparison with [30]. The proximity control bundle algorithm [30] for nonconvex
optimization considers models for functions such that several Clarke subgradients at
one point can be computed at reasonable cost. The proposed scheme is fairly general
and bears some resemblance to our composite approach, which we explain next.

Instead of assuming that the objective function enjoys some particular structure,
in [30] the authors suppose there is available a certain local model, φ(·, xk), for the
objective function f at the current iterate serious xk . In our notation, f = h ◦ c,
and the local model is φ(xk + ·, xk) = h(ck(·)). As explained in [30, Rems. 2.9 and
6.3], such a composite model is both a strong and strict first-order model for f . At
each iteration � the local model is approximated by a working model, φ�(·, x), which
would correspond to our composite cutting-plane model, ȟ�(ck(·)), keeping in mind
that k = k(�). Contrary to our model, the cutting-plane model ȟ� needs to satisfy both

ȟ�(c(x
k))=(h ◦ c)(xk) and conv{Gi ∈B� : ȟ�(c(xk))=Gi �c(xk)}⊂∂(h ◦ c)(xk).

Such relations (equivalent to the conditions φ�(x, x) = (h ◦ c)(x) and ∂1φ�(x, x) ⊂
∂1φ(x, x) imposed to the first-order working model in [30, Def. 3.3]) only hold if the
outer subgradient information for C = c(xk)was kept in the bundle. For our composite
bundle method, such is not a requirement for convergence: only the aggregate and the
last generated gradient (Ĝ� and G�+1, respectively) need to enter the bundle.

Furthermore, the method in [30] drops all the accumulated information every time
there is a serious step. More precisely, whenever k(�+ 1) = k + 1, the next working
model φ�+1 uses the singleton bundle B = {G�+1}. This procedure, which can be
seen as restarting the method from a different initial point, may be justified for general
nonconvex functions. However, for our composite functions such a clearing of the
bundle may harm efficiency: in our setting the outer function h is convex, and past
information can (and should) be kept along iterations to improve the algorithm’s

123

222 C. Sagastizábal

performance. Indeed, thanks to the convexity of the outer function, our method ends
up with a point that is approximately optimal (recall the last paragraphs in Sect. 5).

Another related important difference is that the working model in [30], in addition
to (15), (22), and (23), needs to incorporate exact cutting planes, which corresponds
to requiring that

∀� ≥ 1, given some γ ∈ ∂(h ◦ c)(xk), (h ◦ c)(xk)+ γ �· ≤ ȟ�(ck(·)).

Instead, in (13) we use the outer subgradient Γ � ∈ ∂h(C�) for C� = c(xk + d�)
to detect if the linearization of the inner mapping is not good enough and trigger
the backtracking process. But if xk + d� is declared a serious step, the corresponding
subgradientΓ � does not enter the bundle (but nothing prevents the bundle management
step to incorporate this data).

Like ours, the quadratic programming subproblem in [30] includes a second-order
term with a possibly nonpositive definite matrix Mk , augmented by a (positive enough)
matrixμ�. The acceptance test in [30], corresponding to (12)–(13) in our method, does
not distinguish between serious and backtracking steps. As for null steps, the decision
on whether or not to increase the parameter μ� is done by checking if, for some
parameter m3 ∈ (m1 − m2, 1),

h(c(xk)+ Dkd�) ≤ (h ◦ c)(xk)− m3δ�

(the prox-parameter is left unchanged if the inequality above does not hold).
Convergence results for the proximity control bundle method with strong first-order

models are similar to ours. The method keeps matrices Mk bounded from above and
below by ±qI for some 0 < q < +∞, so (18) always holds. The case of an infinite
number of null steps is treated in [30, Lem. 4.1], where it is shown that a subsequence
of the prox-parameter sequence diverges and, hence, checking satisfaction of our
condition (24) is not straightforward.

Finally, once again because the method does not exploit any underlying convexity,
the stopping test [30, (10.7)] checks approximate criticality by computing the shortest
element in the full subdifferential at xk . In applications, to perform such test may be
too expensive or simply impossible, depending on the function. Sections 7–10 in [30]
contain several cases showing the good numerical behavior of the algorithm for difficult
functions arising in H∞-controller synthesis. An interesting subject of future research
would be to compare the performance of both algorithms on composite objective
functions.

Appendix

See Tables 8, 9, 10, and 11.

123

Composite proximal bundle method 223

Table 8 Optimal (opt) or best (best) function values, for problems in Groups 2 and 3

Name Parameters h ◦ c

CPS n ∈ {10, 50, 100, 500} 0 (opt)

cvx rank A ∈ {0.2, 0.8}n
MQ n ∈ {10, 50, 100, 500} 0 (opt)

cvx rank A ∈ {0.2, 0.8}n
m = rank A + 3

EucSum

ncv n = 4, rank A = 2 0.930538450443740 (best)

ncv n = 10, rank A = 8 0.465587005455171 (best)

ncv n = 10, rank A = 2 0.666424291184390 (best)

ncv n = 50, rank A = 40 0.399571129728750 (best)

ncv n = 50, rank A = 10 0.002143493387185 (best)

ncv n = 100, rank A = 80 Excluded

ncv n = 100, rank A = 20 0.333869560359649 (best)

TiltedNorm n ∈ {10, 50, 100, 500} 0 (opt)

cvx w = 4

GenModRos n = 12 5.377690121369670 (best)

ncv U = 1, V = 10

ModRos n = 2 0 (opt)

ncv w ∈ {1, 2, 4, 8}
NesChebRos n ∈ {5, 10, 50, 100} 0 (opt)

ncv x0 ∈ [0, 2]
Ferrier n ∈ {10, 50, 100} 0 (opt)

ncv case ∈ {1, 3}
NK

ncv case = 8 Excluded

cvx/ncv case ∈ {1, 3, 4, 5, 9} {0,−√
2(n − 1), 2(n − 1), 2(n − 1), 0} (opt)

LV

ncv case = 3, n ∈ {10, 50, 100, 500} Excluded

ncv case = 4, n = 10 106.059118520625645 (best)

ncv case = 4, n = 50 587.997761620671213 (best)

ncv case = 4, n = 100 1, 190.421065495747825 (best)

ncv case = 4, n = 500 6, 009.807496496680869 (best)

ncv case ∈ {5, 6}, n ≤ 100 0 (best)

ncv case ∈ {5, 6}, n = 500 (excluded)

Ury

ncv n = 10, cubic=0.01 500 (best)

ncv n = 20, cubic=0.01 909.889558838787480 (best)

ncv n = 30, cubic=0.01 1,114.734712066170232 (best)

cvx n = 100, cubic=0 1,159.869805021747879 (best)

ncv n = 100, cubic=0.01 1,162.455887489049701 (best)

123

224 C. Sagastizábal

Ta
bl

e
9

R
es

ul
ts

fo
r

G
ro

up
1:

pr
ob

le
m

s
in

Ta
bl

e
1

(
b
b
)

#-
n

C
B

u
n
f

C
B

u
n
m

B
FG

Sf
B

FG
Sm

H
a

n
so
f

H
a

n
so
m

H
y

C
B
f

H
y

C
B
m

R
A

s
e
c

(b
b
)

R
A
s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

B
ad

G
uy

1–
10

8
1.

70
13

5
1

24
.3

2
1,

50
1

9
1.

92
28

9
9

1.
94

28
9

9
2.

53
37

7
9

2.
52

37
8

9
2.

00
30

1
9

22
.1

2
1,

79
3

M
ea

n
(1

0)
8

1.
70

13
5

1
24
.3

2
1,

50
1

9
1.

92
28

9
9

1.
94

28
9

9
2.

53
37

7
9

2.
52

37
8

9
2.

00
30

1
9

22
.1

2
1,

79
3

M
ax

/f
ai

ls
0/

0
10

/1
0

0/
0

0/
0

0/
0

0/
0

0/
0

10
/1

0

M
Q

1–
10

11
0.

16
40

11
1.

20
62

8
0.

20
43

2
8

0.
77

44
1

8
0.

32
68

3
8

1.
66

1,
45

1
12

0.
24

44
3

12
0.

84
45

2

M
ea

n
(1

0)
11

0.
16

40
11

1.
20

62
8

0.
20

43
2

8
0.

77
44

1
8

0.
32

68
3

8
1.

66
1,

45
1

12
0.

24
44

3
12

0.
84

45
2

M
ax

/f
ai

ls
0/

0
0/

0
0/

1
0/

1
0/

0
0/

1
0/

0
0/

0

T
R

48
1–

48
12

3.
51

48
3

13
3.

67
19

6
13

32
.5

7
2,

73
8

13
46

.0
2

2,
73

8
13

29
0.

53
29

,4
39

13
23

2.
43

20
,5

37
15

33
.1

6
2,

74
6

13
11

5.
59

2,
81

6

M
ea

n
(1

0)
12

3.
51

48
3

13
3.

67
19

6
13

32
.5

7
2,

73
8

13
46

.0
2

2,
73

8
13

29
0.

53
29

,4
39

13
23

2.
43

20
,5

37
15

33
.1

6
2,

74
6

13
11

5.
59

2,
81

6

M
ax

/f
ai

ls
0/

0
10

/1
0

0/
10

0/
10

0/
10

0/
10

0/
0

4/
4

T
SP

1–
29

16
0.

11
50

6
9.

68
60

8
9

0.
12

17
3

9
0.

09
17

3
9

0.
20

31
9

9
0.

19
31

3
9

0.
12

18
0

9
0.

10
18

0

2–
44

2
7

13
.3

8
99

6
7

20
.3

0
1,

00
0

16
60

.3
9

5,
14

5
16

68
.1

1
5,

14
5

16
21

7.
17

44
,4

46
16

24
1.

89
44

,4
46

16
66

.8
9

5,
66

0
16

77
.1

3
5,

66
4

3–
1,

17
3

6
91

.0
9

2,
04

4
6

83
.8

5
1,

36
3

16
35

2.
03

5,
65

7
16

36
0.

70
5,

65
7

16
35

2.
03

5,
65

7
16

36
0.

70
5,

65
7

16
37

4.
85

6,
20

2
16

39
1.

58
6,

21
6

4–
30

38
4

30
3.

63
1,

09
0

4
33

0.
90

1,
09

2
10

7,
37

5.
32

21
,7

77
10

7,
35

2.
68

21
,7

77
10

7,
37

5.
33

21
,7

77
10

7,
35

2.
68

21
,7

77
16

7,
61

7.
81

22
,7

01
11

7,
58

6.
84

22
,5

92

M
ea

n
(4

0)
8

10
2.

05
1,

04
5

6
11

1.
18

1,
01

6
13

1,
94

6.
97

8,
18

8
13

1,
94

5.
40

8,
18

8
13

1,
98

6.
19

18
,0

50
13

1,
98

8.
87

18
,0

48
14

2,
01

4.
92

8,
68

6
13

2,
01

3.
91

8,
66

3

M
ax

/f
ai

ls
1/

1
0/

0
2/

6
2/

6
0/

6
0/

6
0/

0
0/

0

U
ry

1–
10

11
0.

18
18

0
66
.2

0
38

4
8

0.
51

5,
78

14
3.

40
82

3
14

7.
39

9,
85

5
14

6.
60

3,
93

2
16

0.
53

58
4

14
13

.2
0

96
1

3–
20

12
1.

08
39

0
17

5.
27

41
5

13
2.

12
1,

39
5

13
10

.1
3

1,
39

5
13

20
.2

9
19

,6
96

13
25

.2
0

8,
77

0
14

2.
18

1,
40

1
16

14
.5

9
1,

43
0

5–
30

10
4.

20
77

−1
19

9.
46

28
5

7
5.

29
2,

43
3

7
41

.3
8

2,
50

3
7

32
.4

2
2,

37
34

7
82

.8
2

18
,5

43
16

5.
44

2,
44

0
12

84
.6

0
2,

63
5

M
ea

n
(3

0)
11

1.
82

45
−0

14
6.

98
36

2
9

2.
64

1,
46

9
11

18
.3

0
1,

57
4

11
20

.0
3

17
,7

62
11

38
.2

0
10

,4
15

15
2.

72
1,

47
5

14
37

.4
6

1,
67

5

M
ax

/f
ai

ls
0/

0
30

/3
0

1/
21

1/
29

0/
22

0/
29

0/
0

6/
6

M
ea

n
(1

00
)

10
22

26
2

4
83

62
7

10
39

7
2,

62
3

11
40

2
2,

64
6

11
46

0
13

,2
62

11
45

3
10

,1
66

13
41

1
2,

73
0

12
43

8
3,

08
0

M
ax

/f
ai

ls
1/

1
50

/5
0

3/
38

3/
46

0/
38

0/
46

0/
0

20
/2

0

123

Composite proximal bundle method 225

Ta
bl

e
10

R
es

ul
ts

fo
r

G
ro

up
2:

pr
ob

le
m

s
in

Ta
bl

e
3,

n
≤

50

(
b
b
)

#-
n

C
B

u
n
f

B
FG

Sf
H

a
n

so
f

H
y

C
B
f

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

C
PS

1-
10

12
0.

07
14

7
0.

07
18

4
7

0.
11

24
5

8
0.

09
18

7

2-
10

12
0.

03
14

7
0.

05
13

1
7

0.
09

19
6

9
0.

06
13

4

3-
10

11
0.

02
8

6
0.

04
94

6
0.

07
15

6
9

0.
05

98

4-
50

6
0.

07
9

5
0.

51
77

2
5

0.
65

95
3

5
0.

54
77

4

5-
50

6
0.

08
9

6
0.

39
56

0
6

0.
53

74
1

10
0.

42
56

3

6-
50

10
0.

07
8

6
0.

27
34

9
6

0.
41

53
0

9
0.

29
35

2

M
ea

n
(6

0)
10

0.
06

10
6

0.
22

34
8

6
0.

31
47

0
8

0.
24

35
2

M
ax

/f
ai

ls
0/

0
0/

0
0/

0
0/

0

E
uc

Su
m

1-
4

10
0.

34
9

6
0.

08
40

6
0.

12
65

16
0.

10
43

2-
10

7
0.

09
27

7
0.

21
59

0
7

6.
36

15
,6

22
16

0.
25

60
1

3-
10

16
0.

01
6

5
0.

02
75

5
0.

06
14

3
5

0.
03

77

4-
50

5
3.

02
30

6
3.

35
1,

41
1

6
3.

79
1,

62
6

16
3.

49
1,

41
6

5-
50

6
0.

13
11

7
0.

34
75

2
7

0.
50

1,
08

5
16

0.
36

75
4

M
ea

n
(5

0)
9

0.
72

17
6

0.
80

57
4

6
2.

17
3,

70
8

14
0.

85
57

8

M
ax

/f
ai

ls
1/

1
0/

0
0/

0
0/

0

Fe
rr

ie
r

1-
10

8
0.

04
8

4
0.

11
14

2
4

0.
16

25
4

7
0.

12
14

8

2-
10

7
0.

02
9

4
0.

03
14

1
5

0.
11

34
8

9
0.

05
14

7

3-
50

5
0.

26
13

2
1.

65
1,

86
5

2
2.

76
4,

82
0

6
1.

76
1,

87
4

4-
50

5
1.

51
53

4
0.

39
96

1
5

0.
69

1,
67

8
5

0.
46

96
5

M
ea

n
(4

0)
6

0.
46

21
4

0.
55

77
7

4
0.

93
1,

77
5

7
0.

60
78

3

M
ax

/f
ai

ls
0/

0
0/

5
0/

0
0/

0

G
en

M
od

R
os

1-
12

9
1.

93
1,

05
0

7
0.

24
48

9
7

1.
10

2,
04

4
16

0.
35

54
7

123

226 C. Sagastizábal

Ta
bl

e
10

co
nt

in
ue

d

(
b
b
)

#-
n

C
B

u
n
f

B
FG

Sf
H

a
n

so
f

H
y

C
B
f

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

2-
12

6
2.

19
1,

22
9

8
0.

21
44

7
8

0.
83

1,
56

8
16

0.
32

50
3

2-
12

6
2.

19
1,

22
9

8
0.

21
44

7
8

0.
83

1,
56

8
16

0.
32

50
3

3-
12

16
0.

43
23

7
9

0.
24

48
0

9
1.

03
1,

85
0

10
0.

26
49

2

4-
12

=
cr

iti
ca

lp
oi

nt
s

5-
12

=
cr

iti
ca

lp
oi

nt
s

M
ea

n
(3

0)
10

1.
52

83
9

8
0.

23
47

2
8

0.
99

1,
82

1
14

0.
31

51
4

M
ax

/f
ai

ls
2/

2
0/

0
0/

0
0/

0

LV
1-

10

=

cr
iti

ca
lp

oi
nt

s

2-
10

4
4.

70
1,

74
0

8
0.

17
34

7
8

1.
52

2,
63

9
16

0.
18

35
1

3-
10

16
0.

02
8

5
0.

09
20

6
5

0.
29

47
9

6
0.

11
20

9

4-
10

16
0.

03
15

4
0.

15
30

5
5

0.
24

45
3

7
0.

16
31

1

5-
50

=
cr

iti
ca

lp
oi

nt
s

6-
50

3
1.

89
14

9
16

5.
16

2,
53

4
16

42
.3

2
29

,8
35

16
5.

22
2,

53
9

7-
50

3
1.

21
55

16
2.

07
1,

58
2

16
2.

33
1,

76
4

16
2.

11
1,

58
6

8-
50

5
0.

65
34

16
3.

84
2,

77
8

16
4.

10
2,

96
0

16
3.

88
2,

78
3

M
ea

n
(6

0)
8

1.
42

33
4

11
1.

91
1,

29
2

11
8.

47
6,

35
5

13
1.

94
1,

29
7

M
ax

/f
ai

ls
10

/1
0

0/
10

0/
10

0/
0

M
Q

2-
10

10
0.

06
13

8
0.

30
68

0
9

1.
66

3,
75

5
10

0.
32

68
7

3-
10

10
0.

02
10

7
0.

04
14

4
7

0.
07

20
5

10
0.

05
14

7

4-
50

7
0.

44
11

4
13
.7

4
5,

76
9

4
76
.9

4
31

,8
41

8
14

.1
1

5,
77

5

5-
50

9
0.

06
8

8
1.

08
2,

25
6

8
1.

31
2,

64
2

9
1.

13
2,

25
9

M
ea

n
(4

0)
9

0.
14

11
7

3.
79

2,
21

2
7

20
.0

0
9,

61
1

9
3.

90
2,

21
7

123

Composite proximal bundle method 227

Ta
bl

e
10

co
nt

in
ue

d

(
b
b
)

#-
n

C
B

u
n
f

B
FG

Sf
H

a
n

so
f

H
y

C
B
f

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

M
ax

/f
ai

ls
0/

0
7/

20
0/

10
0/

0

M
od

R
os

1-
2

9
0.

07
38

6
0.

02
37

6
0.

03
68

10
0.

04
67

2-
2

7
0.

04
53

6
0.

02
56

6
0.

03
80

10
0.

06
10

0

3-
2

4
0.

13
15

0
6

0.
03

10
9

6
0.

03
12

2
9

0.
27

38
2

4-
2

2
0.

24
27

8
5

0.
06

21
4

5
0.

07
22

8
6

0.
30

49
2

M
ea

n
(4

0)
6

0.
12

13
0

6
0.

03
10

4
6

0.
04

12
4

9
0.

17
26

0

M
ax

/f
ai

ls
13

/1
3

0/
0

0/
0

17
/1

7

N
K

1-
10

9
0.

10
32

6
0.

03
63

6
0.

07
12

6
16

0.
08

81

10
-5

0
16

0.
55

23
8

0.
06

75
8

0.
20

29
8

11
0.

17
79

11
-5

0

=

cr
iti

ca
lp

oi
nt

s

12
-5

0
16

0.
11

8
5

0.
04

72
5

0.
15

26
9

10
0.

13
76

2-
10

16
0.

30
82

6
0.

07
19

1
7

0.
17

40
8

9
0.

32
23

7

3-
10

13
0.

05
12

6
0.

07
19

9
6

0.
34

74
1

16
0.

09
20

5

4-
10

14
0.

09
31

7
0.

02
70

7
0.

06
14

0
16

0.
05

77

5-
10

=
cr

iti
ca

lp
oi

nt
s

6-
10

11
0.

03
12

5
0.

02
76

5
0.

06
14

1
16

0.
06

88

7-
50

8
0.

44
22

5
0.

09
23

8
5

0.
18

43
1

16
0.

43
25

1

8-
50

5
3.

01
44

16
3.

14
2,

35
1

16
23
.5

5
29

,6
52

16
3.

32
2,

35
7

9-
50

6
0.

45
11

16
3.

79
2,

43
8

16
36
.0

4
29

,7
39

16
3.

98
2,

44
3

M
ea

n
(1

00
)

11
0.

51
28

8
0.

73
57

7
8

6.
08

6,
19

5
14

0.
86

58
9

M
ax

/f
ai

ls
0/

0
0/

19
0/

19
1/

1

N
es

C
he

bR
os

1-
5

16
0.

36
18

8
1

0.
16

41
5

2
0.

58
1,

88
6

2
0.

45
61

4

123

228 C. Sagastizábal

Ta
bl

e
10

co
nt

in
ue

d

(
b
b
)

#-
n

C
B

u
n
f

B
FG

Sf
H

a
n

so
f

H
y

C
B
f

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

2-
10

16
0.

02
9

2
0.

08
18

4
2

0.
15

39
8

2
1.

09
71

6

3-
50

16
0.

21
14

1
1.

87
1,

72
7

1
25
.5

9
28

,7
20

1
1.

91
1,

73
2

M
en

(3
0)

16
0.

20
71

1
0.

70
77

5
2

8.
77

10
,3

35
2

1.
15

1,
02

1

M
ax

/f
ai

ls
3/

3
2/

3
0/

2
5/

5

T
ilt

ed
M

ax
1-

10
14

0.
10

30
6

0.
05

18
0

6
0.

13
40

7
15

0.
07

18
6

2-
20

13
0.

25
46

7
0.

09
35

8
7

0.
30

1,
04

3
9

0.
12

36
5

3-
50

6
2.

63
10

9
7

0.
22

76
3

7
0.

60
1,

94
6

7
0.

24
76

6

M
ea

n
(3

0)
11

0.
99

62
7

0.
12

43
4

7
0.

35
1,

13
2

10
0.

14
43

9

M
ax

/f
ai

ls
0/

0
0/

0
0/

0
0/

0

U
ry

2-
10

16
0.

18
20

7
0.

29
39

9
7

10
.1

6
14

,8
47

10
0.

30
40

5

4-
20

11
1.

01
42

11
1.

90
1,

30
5

11
18
.1

9
19

,6
06

16
2.

06
1,

31
6

6-
30

10
4.

66
11

0
16

5.
81

2,
62

7
16

30
.9

8
23

,9
28

16
6.

61
2,

64
9

M
ea

n
(3

0)
12

1.
95

58
11

2.
67

1,
44

4
11

19
.7

8
19

,4
60

14
2.

99
1,

45
6

M
ax

/f
ai

ls
0/

0
0/

19
0/

19
0/

0

M
ea

n
(5

10
)

10
0.

73
14

3
7

1.
07

81
9

7
6.

17
5,

54
4

10
1.

20
86

4

M
ax

/f
ai

ls
29

/2
9

9/
76

0/
60

23
/2

3

123

Composite proximal bundle method 229

Ta
bl

e
11

R
es

ul
ts

fo
r

G
ro

up
3:

pr
ob

le
m

s
in

Ta
bl

e
3,

n
=

10
0

an
d

n
=

50
0

(
b
b
)

#-
n

C
B

u
n
f

B
FG

Sf
H

a
n

so
f

H
y

C
B
f

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

C
PS

10
-5

00
6

1.
31

7
3

10
6.

27
2,

40
9

3
22

7.
11

6,
78

0
3

10
6.

60
2,

41
0

11
-5

00
5

1.
26

7
5

22
9.

58
4,

21
4

5
23

8.
07

4,
51

5
8

23
0.

25
4,

21
7

12
-5

00
5

1.
25

7
5

15
2.

19
2,

01
1

5
16

0.
79

2,
31

2
9

15
2.

93
2,

01
4

7-
10

0
6

0.
13

7
5

5.
27

1,
46

4
5

5.
95

1,
76

5
5

5.
33

1,
46

6

8-
10

0
6

0.
14

8
5

4.
26

1,
00

5
5

4.
85

1,
30

6
9

4.
34

1,
00

8

9-
10

0
6

0.
14

8
6

2.
29

56
9

6
2.

95
87

0
10

2.
36

57
2

M
ea

n
(6

0)
6

0.
70

7
5

83
.3

1
1,

94
5

5
10

6.
62

2,
92

5
7

83
.6

4
1,

94
8

M
ax

/f
ai

ls
0/

0
0/

0
0/

0
0/

0

E
uc

Su
m

6-
10

0

=

cr
iti

ca
lp

oi
nt

s

7-
10

0
16

0.
27

8
5

0.
78

43
3

5
1.

08
73

4
6

0.
84

43
5

M
ea

n
(1

0)
16

0.
27

8
5

0.
78

43
3

5
1.

08
73

4
6

0.
84

43
5

M
ax

/f
ai

ls
0/

0
0/

0
0/

0
0/

0

Fe
rr

ie
r

5-
10

0
5

0.
88

14
14

9.
07

4,
65

7
14

15
.6

4
17

,9
58

14
9.

16
4,

66
1

6-
10

0
4

12
.2

0
11

4
5

2.
58

1,
74

8
5

3.
18

2,
91

6
5

2 .
62

1,
75

2

M
ea

n
(2

0)
4

6.
54

64
10

5.
83

3,
20

3
10

9.
41

10
,4

37
10

5.
89

3,
20

7

M
ax

/f
ai

ls
1/

1
0/

2
0/

0
0/

0

LV
10

-1
00

3
0.

54
13

16
22
.0

9
4,

67
6

16
11

2.
32

43
,9

76
16

22
.1

7
4,

67
9

11
-1

00
3

5.
44

11
3

16
17
.6

9
3,

67
6

16
18
.3

8
3,

97
8

16
17
.8

1
3,

68
0

12
-1

00
4

5.
65

12
1

4
29
.2

4
5,

88
2

16
40
.5

2
10

,8
22

5
29
.4

9
5,

88
7

13
-5

00

=

cr
iti

ca
lp

oi
nt

s

14
-5

00
4

4.
25

13
16

33
8.

32
21

,1
89

16
75

7.
08

60
,4

90
16

33
8.

82
21

,1
91

15
-5

00

=

cr
iti

ca
lp

oi
nt

s

123

230 C. Sagastizábal

Ta
bl

e
11

co
nt

in
ue

d

(
b
b
)

#-
n

C
B

u
n
f

B
FG

Sf
H

a
n

so
f

H
y

C
B
f

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

16
-5

00

=

cr
iti

ca
lp

oi
nt

s

9-
10

0

=

cr
iti

ca
lp

oi
nt

s

M
ea

n
(4

0)
4

3.
97

65
13

10
1.

84
8,

85
6

16
23

2.
08

29
,8

16
13

10
2.

08
8,

86
0

M
ax

/f
ai

ls
0/

0
1/

5
0/

4
0/

0

M
Q

6-
10

0
2

90
.9

4
10

5
4

16
5.

89
6,

53
6

16
80

4.
07

42
,6

48
5

17
2.

30
6,

54
4

7-
10

0
16

0.
15

9
5

12
.1

6
5,

12
2

5
13

.2
3

6,
17

8
6

12
.2

7
5,

12
5

8-
50

0
−0

5,
02

3.
56

22
0

14
,
63

4.
68

8,
35

2
0

75
,7

35
.2

0
42

,0
86

16
20

,2
00

.7
4

8,
38

4

9-
50

0
0

47
8.

97
25

3
99

1.
68

6,
57

2
16

5,
38

2.
02

42
,4

61
3

1,
01

6.
28

6,
57

5

M
ea

n
(4

0)
4

1,
39

8.
41

40
3

3,
95

1.
10

6,
64

6
9

20
,4

83
.6

3
33

,3
43

8
5,

35
0.

40
6,

65
7

M
ax

/f
ai

ls
6/

6
6/

8
0/

5
2/

2

N
K

13
-1

00
16

1.
35

23
5

0.
63

41
0

5
0.

80
71

1
5

0.
80

41
3

14
-1

00
4

7.
81

36
16

13
.0

9
4,

44
3

16
58

.4
5

43
,7

44
16

13
.4

1
4,

44
7

15
-1

00
5

0.
91

9
16

16
.3

5
4,

75
2

16
79

.9
7

44
,0

52
16

16
.8

6
4,

75
6

16
-1

00
12

0.
88

21
8

0.
13

83
8

0.
39

38
4

16
0.

26
86

17
-1

00

=

cr
iti

ca
lp

oi
nt

s

18
-1

00
10

0.
21

8
4

0.
09

69
4

0.
29

37
0

16
0.

31
75

19
-5

00
5

19
.7

8
39

4
30
.7

9
90

2
4

32
.5

7
1,

20
4

16
39

.2
0

92
0

20
-5

00
2

11
.1

1
7

16
34

2.
25

19
,6

20
16

76
3.

23
58

,9
20

16
34

3.
85

19
,6

21

21
-5

00
6

16
.5

4
18

16
45

1.
70

21
,4

68
16

1,
00

6.
16

60
,7

69
16

45
3.

87
21

,4
70

22
-5

00
16

5.
44

22
8

2.
25

68
8

6.
47

48
9

11
3.

20
72

23
-5

00

=

cr
iti

ca
lp

oi
nt

s

24
-5

00
16

0.
83

7
5

2.
16

72
5

4.
41

37
3

8
2.

64
74

123

Composite proximal bundle method 231

Ta
bl

e
11

co
nt

in
ue

d

(
b
b
)

#-
n

C
B

u
n
f

B
FG

Sf
H

a
n

so
f

H
y

C
B
f

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

R
A

s
e
c

(b
b
)

M
ea

n
(1

00
)

9
6.

49
19

10
85

.9
4

5,
18

9
10

19
5.

28
21

,1
02

14
87
.4

4
5,

19
3

M
ax

/f
ai

ls
0/

0
0/

8
0/

8
0/

0

N
es

C
he

bR
os

4-
10

0
16

0.
84

19
1

29
.6

3
5,

24
7

1
11

2.
88

44
,5

48
1

29
.7

3
5,

25
1

M
ea

n
(1

0)
16

0.
84

19
1

29
.6

3
5,

24
7

1
11

2.
88

44
,5

48
1

29
.7

3
5,

25
1

M
ax

/f
ai

ls
0/

0
0/

10
0/

10
0/

0

T
ilt

ed
M

ax
4-

10
0

3
7.

84
10

5
7

1.
59

1,
37

2
7

2.
04

2,
77

6
7

1.
62

1,
37

4

M
ea

n
(1

0)
3

7.
84

10
5

7
1.

59
1,

37
2

7
2.

04
2,

77
6

7
1.

62
1,

37
4

M
ax

/f
ai

ls
2/

2
0/

0
0/

0
0/

0

U
ry

7-
10

0
1

70
.8

5
94

7
61

.9
5

5,
85

4
7

26
9.

76
45

,1
55

16
95
.0

0
5,

89
7

8-
10

0
0

25
.1

9
91

16
61

.5
2

5,
68

5
16

27
7.

93
44

,9
86

16
88
.4

9
5,

77
4

M
ea

n
(2

0)
0

48
.0

2
92

12
61

.7
3

5,
77

0
12

27
3.

85
45

,0
70

16
91
.7

4
5,

83
6

M
ax

/f
ai

ls
20

/2
0

14
/2

0
0/

20
13

/1
3

M
ea

n
(3

10
)

7
16

3.
67

47
7

48
0.

19
4,

29
5

8
2,

37
9.

65
21

,1
95

9
63

9.
26

4,
30

7

M
ax

/f
ai

ls
29

/2
9

21
/5

3
0/

47
15

/1
5

123

232 C. Sagastizábal

References

1. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization. Theoretical and
Practical Aspects. Universitext, 2nd edn, pp xiv+423. Springer, Berlin (2006)

2. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Oper-
ations Research, Springer, New York (2000)

3. Burke, J., Lewis, A., Overton, M.: Two numerical methods for optimizing matrix stability. Linear
Algebra Appl. 351–352, 117–145 (2002)

4. Burke, J.V., Ferris, M.C.: A Gauss-Newton method for convex composite optimization. Math. Program.
71, 179–194 (1995). doi:10.1007/BF01585997

5. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program.
62(2), 261–275 (1993)

6. Daniilidis, A., Sagastizábal, C., Solodov, M.: Identifying structure of nonsmooth convex functions by
the bundle technique. SIAM J. Optim. 20(2), 820–840 (2009). doi:10.1137/080729864. http://link.aip.
org/link/?SJE/20/820/1

7. Emiel, G., Sagastizábal, C.: Incremental-like bundle methods with application to energy planning.
Comput. Optim. Appl. 46, 305–332 (2010). doi:10.1007/s10589-009-9288-8

8. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)
9. Haarala, M., Miettinen, K., Makela, M.M.: New limited memory bundle method for large-scale non-

smooth optimization. Optim. Methods Softw. (6), 673–692 (2004). http://www.informaworld.com/10.
1080/10556780410001689225

10. Hare, W.: Nonsmoth Optimization with Smooth Substructure. Ph.D. thesis, Department of Mathemat-
ics, Simon Fraser University (2003)

11. Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM
J. Optim. 20(5), 2442–2473 (2010). doi:10.1137/090754595

12. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. No. 305–306 in
Grund. der math. Wiss, vol. 2. Springer, Berlin (1993)

13. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions,
Springer, Berlin (2001)

14. Karmitsa, N., Bagirov, A., Makela, M.M.: Comparing different nonsmooth minimization methods and
software. Optim. Methods Softw. (2010). http://www.informaworld.com/10.1080/10556788.2010.
526116

15. Kiwiel, K.: A method for solving certain quadratic programming problems arising in nonsmooth
optimization. IMA J. Numer. Anal. 6, 137–152 (1986)

16. Lemaréchal, C., Oustry, F., Sagastizábal, C.: The U -Lagrangian of a convex function. Trans. Am.
Math. Soc. 352(2), 711–729 (2000)

17. Lemaréchal, C., Sagastizábal, C.: Practical aspects of the Moreau-Yosida regularization: theoretical
preliminaries. SIAM J. Optim. 7(2), 367–385 (1997). http://link.aip.org/link/?SJE/7/367/1

18. Lewis, A.: Active sets, nonsmoothness and sensitivity. SIAM J. Optim. 13(3), 702–725 (2002)
19. Lewis, A., Wright, S.: A Proximal Method for Composite Minimization (2008). Available at

http://www.optimization-online.org/DB_HTML/2008/12/2162.html
20. Lewis, A.S., Overton, M.L.: Nonsmooth optimization via quasi-Newton methods. Math. Program.

(2011). Accepted for publication
21. Li, C., Wang, X.: On convergence of the gauss-newton method for convex composite optimization.

Math. Program. 91, 349–356 (2002). doi:10.1007/s101070100249
22. Luksan, L., Vlcek, J.: Test Problems for Nonsmooth Unconstrained and Linearly Constrained Opti-

mization. Technical Report 798, Institute of Computer Science, Academy of Sciences of the, Czech
Republic (2000)

23. Mifflin, R.: Semi-smooth and semi-convex functions in constrained optimization. SIAM J. Control
Optim. 15, 959–972 (1977)

24. Mifflin, R., Sagastizábal, C.: On V U -theory for functions with primal-dual gradient struc-
ture. SIAM J. Optim. 11(2), 547–571 (2000). http://siamdl.aip.org/getabs/servlet/GetabsServlet?
prog=normal\&id=SJOPE8000011000002000547000001\&idtype=cvips\&gifs=Yes

25. Mifflin, R., Sagastizábal, C.: Primal-dual gradient structured functions: second-order results; links to
epi-derivatives and partly smooth functions. SIAM J. Optim. 13(4), 1174–1194 (2003)

26. Mifflin, R., Sagastizábal, C.: V U -smoothness and proximal point results for some nonconvex func-
tions. Optim. Methods Softw. 19(5), 463–478 (2004)

123

http://dx.doi.org/10.1007/BF01585997
http://dx.doi.org/10.1137/080729864
http://link.aip.org/link/?SJE/20/820/1
http://link.aip.org/link/?SJE/20/820/1
http://dx.doi.org/10.1007/s10589-009-9288-8
http://www.informaworld.com/10.1080/10556780410001689225
http://www.informaworld.com/10.1080/10556780410001689225
http://dx.doi.org/10.1137/090754595
http://www.informaworld.com/10.1080/10556788.2010.526116
http://www.informaworld.com/10.1080/10556788.2010.526116
http://link.aip.org/link/?SJE/7/367/1
http://www.optimization-online.org/DB_HTML/2008/12/2162.html
http://dx.doi.org/10.1007/s101070100249
http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJOPE8000011000002000547000001&idtype=cvips&gifs=Yes
http://siamdl.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SJOPE8000011000002000547000001&idtype=cvips&gifs=Yes

Composite proximal bundle method 233

27. Mifflin, R., Sagastizábal, C.: A V U -algorithm for convex minimization. Math. Program. Ser. A 104(2–
3), 583–608 (2005). doi:10.1007/s10107-005-0630-3

28. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. A Wiley-
Interscience Publication (1983)

29. Nesterov, Y.: Gradient methods for minimizing composite objective functions. Math. Program. (2011).
Accepted for publication

30. Noll, D., Prot, O., Rondepierre, A.: A proximity control algorithm to minimize nonsmooth and non-
convex functions. Pac. J. Optim. 4(3), 569–602 (2008)

31. Oustry, F.: A second-order bundle method to minimize the maximum eigenvalue function. Math.
Program. 89(1, Ser. A), 1–33 (2000)

32. Shapiro, A.: On a class of nonsmooth composite functions. Math. Oper. Res. 28(4), 677–692 (2003)
33. Skajaa, A.: Limited Memory BFGS for Nonsmooth Optimization. Master’s thesis, Courant Institute

of Mathematical Science (2010). http://cs.nyu.edu/overton/mstheses/skajaa/msthesis.pdf
34. Womersley, R.: Local properties of algorithms for minimizing nonsmooth composite functions. Math.

Program. 32, 69–89 (1985)

123

http://dx.doi.org/10.1007/s10107-005-0630-3
http://cs.nyu.edu/overton/mstheses/skajaa/msthesis.pdf

	Composite proximal bundle method
	Abstract
	1 Introduction and motivation
	2 Composite functions in the family
	3 Outer function and conceptual model
	4 Composite bundle method
	5 Convergence results
	6 Numerical experience
	6.1 Solvers in the benchmark
	6.2 Parameters for the different solvers
	6.2.1 Parameters for CBun and HyCB
	6.2.2 Parameters for BFGS and Hanso

	6.3 Benchmark rules
	6.4 Battery of convex test problems
	6.5 Convex and nonconvex problems
	6.6 Performance profiles
	6.7 Determining -dimension

	7 Concluding remarks
	Appendix
	References

