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Abstract We present an improved algorithm for finding exact solutions to
Max-Cut and the related binary quadratic programming problem, both classic prob-
lems of combinatorial optimization. The algorithm uses a branch-(and-cut-)and-bound
paradigm, using standard valid inequalities and nonstandard semidefinite bounds.
More specifically, we add a quadratic regularization term to the strengthened semidefi-
nite relaxation in order to use a quasi-Newton method to compute the bounds. The ratio
of the tightness of the bounds to the time required to compute them depends on two
real parameters; we show how adjusting these parameters and the set of strengthening
inequalities gives us a very efficient bounding procedure. Embedding our bounding
procedure in a generic branch-and-bound platform, we get a competitive algorithm:
extensive experiments show that our algorithm dominates the best existing method.
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1 Introduction

Maximizing a quadratic function over the vertices of an hypercube is an important
problem of discrete optimization. As far as formulation is concerned, it is the simplest
problem of nonlinear (mixed-)integer programming. However, this problem is NP-
hard [27] and it is considered a computational challenge to be solved to optimality,
even for instances of moderate size.

The Max-Cut problem is one of the most famous NP-hard problems of this type,
as is evidenced by its consideration in such seminal works as [16] and [12], and in the
survey chapter [25] of the recent handbook [2]. Given a graph G = (V, E) with edge
weights wi j for i j ∈ E and wi j = 0 for i j �∈ E , Max-Cut is the problem of finding
a bipartition of the nodes V such that the sum of the weights of the edges across the
bipartition is maximized. Let n = |V | be the cardinality of V ; we can state Max-Cut as

maximize
∑

i≤ j

wi j

(
1− xi x j

2

)

subject to x ∈ {−1, 1}n . (1)

We can rewrite the problem of Max-Cut as

(MC)
maximize xT Qx
subject to x ∈ {−1, 1}n (2)

where the matrix Q is defined as Q := 1
4 L , and L is the Laplacian matrix of the

weighted graph G; see, e.g., [3].
There have been many methods for finding exact solutions of Max-Cut using semi-

definite programming (SDP), including early efforts of [14], the QCR method [4],
and most recently the state-of-the-art Biq Mac method [29]. This paper builds on this
line of research: we present an improved branch-and-bound algorithm inspired by
the above mentioned approaches and introducing new techniques. As shown by the
extensive numerical experiments of this paper, our new algorithm dominates the best
existing methods.

The algorithm uses a branch-and-(cut-and)-bound paradigm, using the standard
valid triangle inequalities together with nonstandard semidefinite bounds. Bounds of
the same type have been used recently in several papers (for general binary quadratic
problems [20,21] and specifically for the k-cluster problem [22]). More precisely,
we apply here the bounds to the Max-Cut problem that have been introduced in [21]
for general quadratic optimization problems with quadratic and linear constraints;
however, we provide a different motivation for these bounds, looking at them from a
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Improved semidefinite bounding procedure 63

quadratic penalty point of view (see Sect. 3). This reveals the key role of two positive
parameters, α and ε, controlling the tightness of the bound.

Our main contribution is an improved bounding procedure obtained by reducing the
α and ε parameters to zero and iteratively adding triangle inequality cuts (see Sect. 4).
We show that our bounding procedure converges to the classic reinforced semidefinite
bound for the Max-Cut problem, in an efficient and robust way.

We embed our bounding procedure within a generic branch-and-bound platform
for solving Max-Cut to optimality (see Sect. 5). We compare the overall algorithm
with the best existing exact resolution method, the Biq Mac solver [29] on the 328
instances in the Biq Mac Library [31] with size n < 500. To prove unambiguously that
the new bounding procedure is of high practical value, we make a fair and complete
computational study between the two codes: we have compiled and run both our code
and the Biq Mac code (kindly provided by the authors of Biq Mac) on the same
machine, and have used the same libraries and compilation flags for both codes.

We finish this section with a remark about our choice to focus on Max-Cut for
presenting our approach. With the help of classic reformulation techniques, more
general binary quadratic optimization problems can be recast as Max-Cut. We could,
for example, add a linear term to the objective in problem (2), or use variables in {0, 1}.
For instance, the binary homogeneous quadratic optimization problem

minimize xT Qx

subject to x ∈ {0, 1}n (3)

can be reformulated as Max-Cut by considering a change of variable and by increas-
ing the size of the problem by one; see, e.g., [14, Section 2]. Therefore, to keep the
presentation as simple as possible, we only present our developments for the Max-
Cut problem (1). On the other hand, we consider both Max-Cut problems and binary
quadratic optimization problems in our numerical experiments.

2 Semidefinite relaxations and Biq Mac

In this section, we introduce notation, briefly recall the classic semidefinite relaxation
of Max-Cut (see, e.g., [19,28]), and provide a sketch of the Biq Mac method [29], the
method to which we will compare.

Semidefinite formulation and relaxation. The inner product of two matrices X and Y
is defined and denoted by 〈X, Y 〉 = trace (X T Y ). The notation X � 0 means that X
is symmetric positive semidefinite. Introducing the symmetric positive semidefinite
rank-one matrix X = xxT , we observe that we can write the Max-Cut problem as

(MC)

maximize 〈Q, X〉
subject to diag(X) = e, X � 0,

X = xxT ,

(4)

where diag(X) is the vector of the diagonal entries of the matrix X , and the vector
of all ones is represented by e—for simplicity, we allow the size of the vector e to
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be determined from the context. The classic semidefinite relaxation is obtained by
dropping the nonconvex rank-one constraint in problem (4):

(SDP)
maximize 〈Q, X〉
subject to diag(X) = e, X � 0.

(5)

Since the feasible set of problem (5) is strictly larger than that of problem (4), we can
easily see that the optimal value of problem (5) provides an upper bound on the weight
of the optimal cut:

(MC) ≤ (SDP).

There exist some theoretical results quantifying the tightness of the above inequality
(see, in particular, the seminal work [12]). However, in practice, the ratio of the tight-
ness of the bound to the time needed to compute the bound is too low to allow this
bound be used efficiently in branch-and-bound schemes to solve Max-Cut problems
to optimality (see, e.g., [14,29,30]).

Strengthening inequalities. In order to improve the performance of the bound, it
is necessary to tighten the bounds by adding valid inequalities to the SDP relax-
ation (5). The most popular class of inequalities are the triangle inequalities, defined for
1 ≤ i < j < k ≤ n by

Xi j + Xik + X jk ≥ −1,

Xi j − Xik − X jk ≥ −1,

−Xi j + Xik − X jk ≥ −1,

−Xi j − Xik + X jk ≥ −1,

(see [14, Section 4] and [29, Section 3.2]). They represent the fact that for any 3-cycle
of vertices in the graph, we can only have an even number of edges cut (i.e., either no
edges are cut, or exactly two edges are cut). There are

4

(
n

3

)
= 4

(
n(n − 1)(n − 2)

6

)

triangle inequalities in total. Adding any subset of those valid inequalities can
strengthen the SDP bound (5). In particular, let I be a subset of the triangle inequalities,
and AI : Sn → R

|I | be the corresponding linear operator describing the inequalities
in this subset. We define the (SDPI ) problem as

(SDPI )

maximize 〈Q, X〉
subject to diag(X) = e, X � 0,

AI (X)+ e ≥ 0.

(6)

Adding such valid constraints gives an improved bound on the value of the maximum
cut:
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(MC) ≤ (SDPI ) ≤ (SDP). (7)

Note that the dual of problem (6) is given by

minimize eT y + eT z
subject to Q − Diag(y)+ A∗I (z) � 0,

z ≥ 0,

(8)

where Diag(y) is the diagonal matrix with the vector y along its diagonal, and A∗I is
the adjoint linear operator of AI .

Let us call (SDPIall) the problem with all the triangle inequalities added, which gives
the best possible (SDPI ) bound. Unfortunately, since there is a very large number of
triangle inequalities, the (SDPIall) problem is intractable even for moderate values of n.
However, we can get this bound by using only the inequalities that are active at an
optimal solution of (SDPIall). Such a set of active inequalities is obviously unknown,
but we will see in Sect. 4 how we approximate it (see Algorithm 1 and Theorem 1).
For the moment, we just note that in practice we have to select a (small) number of
promising inequalities.

In addition to the triangle inequalities, other cutting planes could be used to tighten
the relaxation: hypermetric inequalities [14], general gap inequalities [18], or even
a sophisticated choice based on the objective function [9]. The nature of the valid
inequalities has no impact on the theoretical developments of the next section; we will
deal with a general set of inequalities I . However, in the computational experiments,
as is done in [29], we only use triangle inequalities as it greatly simplifies the selection
of inequalities and leads to satisfactory results.

Best existing method. Biq Mac [29,30] is currently the best solver for solving Max-Cut
problems to optimality. This method uses a branch-and-bound approach and solves
the strengthened SDP relaxation (SDPI ) in Eq. (6) with a nonsmooth optimization
algorithm. By dualizing the triangle inequality constraints in problem (6), the authors
of the Biq Mac solver obtain the nonsmooth convex dual function

θI (z) = eT z + max
{〈

Q + A∗I (z), X
〉 : diag(X) = e, X � 0

}
(9)

where z ∈ R
|I |
+ is the dual variable. The value θI (z) provides an upper bound on the

value of the maximum cut for each z ∈ R
|I |
+ ; the goal is to minimize θI (z) to obtain

the tightest such upper bound. The two main ingredients of the bounding procedure
of Biq Mac are as follows:

1. the function value θI (z) and a subgradient g ∈ ∂θI (z) are evaluated by solving
the semidefinite programming problem in Eq. (9) by a customized primal-dual
interior-point method;

2. the nonsmooth convex function θI is minimized by a bundle method [15].

The extensive numerical experiments of [29,30] show that Biq Mac dominates all
other approaches (see the six tested approaches in [29, Section 7]).
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3 Our semidefinite bounds

We present the family of semidefinite bounds that we will use in our branch-and-bound
method for solving Max-Cut to optimality. By construction, these bounds are less tight
than corresponding usual SDP bounds (see Sect. 3.1). On the other hand, Sect. 3.2
presents their useful properties that will lead us to the bounding procedure of the next
section (Algorithm 1) whose bounds converge to the usual SDP bounds in the limit.

First we need some more notation. For any matrix A, we denote by ‖A‖F the
Frobenius norm of A, which is defined by ‖A‖F =

√〈A, A〉. For a real number
a, we denote its nonnegative part by a+ = max{a, 0}. We extend this definition
to vectors as follows: if x ∈ R

n , then (x+)i = (xi )+, for i = 1, . . . , n. For a given
symmetric matrix A, we denote its positive semidefinite part by A+; more specifically,
if the eigendecomposition of A is given by A = U Diag(λ)U T , with the eigenvalues
λ ∈ R

n , and orthogonal matrix U ∈ R
n×n , then we have

A+ = U Diag(λ+)U T .

We denote similarly a−, x−, and A−.

3.1 The family of semidefinite bounds

We begin with the following simple fact.

Lemma 1 Let 0 ≤ ε ≤ 1 and X � 0 such that all the diagonal entries Xii lie in
[1− ε, 1+ ε]. Then (1− ε)2n ≤ ‖X‖2F ≤ (1+ ε)2n2.

Proof Let X � 0 as defined above. We have

‖X‖2F =
∑

i j

X2
i j =

∑

i

X2
i i +

∑

i �= j

X2
i j ≥

∑

i

X2
i i ≥ n(1− ε)2,

Now take (i, j) and extract the submatrix whose determinant is nonnegative

det

(
Xii Xi j

Xi j X j j

)
= Xii X j j − X2

i j ≥ 0.

Thus X2
i j ≤ Xii X j j ≤ (1 + ε)2. Also, for each i , we have X2

i i ≤ (1 + ε)2, so that

‖X‖2F =
∑

i j X2
i j ≤ (1+ ε)2n2. ��

A particular case of the above result is when X is feasible in (SD PI ): we have
diag(X) = e, so we take ε = 0 in Lemma 1 to get

n2 − ‖X‖2F ≥ 0.

Adding a multiple of this nonnegative term to the objective function, we obtain the
regularized problem
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(SDPα
I )

maximize 〈Q, X〉 + α
2

(
n2 − ‖X‖2F

)

subject to diag(X) = e, X � 0,

AI (X) ≥ −e.
(10)

Proposition 1 The following holds: for all I and for all α ≥ 0,

(MC) ≤ (SDPI ) ≤
(
SDPα

I

)
. (11)

If α = 0, the second inequality is an equality. If α > 0, the two inequalities are
equalities if and only if there exists a rank-one optimal solution of (SDPI ) or (SDPα

I ).
Moreover, we have

α′ ≤ α ⇒
(

SDPα′
I

)
≤ (

SDPα
I

)
, (12)

and

I ′ ⊆ I ⇒
(

SDPα
I ′
)
≥ (

SDPα
I

)
. (13)

Proof Inequality (13) clearly holds since the feasible set of (SDPα
I ) is included in that

of (SDPα
I ′). We now prove (12), from which we can deduce the remaining easily. For

any feasible matrix X in problem (10), we have n2 − ‖X‖2F ≥ 0. Therefore α′ ≤ α

yields

〈Q, X〉 + α′
(

n2 − ‖X‖2F
)
≤ 〈Q, X〉 + α

(
n2 − ‖X‖2F

)

which gives (SDPα′
I ) ≤ (SDPα

I ). Taking now α′ = 0 gives the second inequality
in (11); the first inequality comes from (7). For the case of equality, note first from
problem (4) that (MC) = (SDPI ) if and only if there is a rank-one optimal solution
of (SDPI ). Finally, we use a corollary of [20, Theorem 1] which states that if X � 0
and diag(X) = e, then ‖X‖F = n if and only if rank (X) = 1, completing the
proof. ��

This proposition says, first, that the bound (SDPα
I ) is strictly weaker than (SDPI )

(except in the very special situation that (SDPI ) has a rank-one optimal solution),
and, second, that making α smaller reduces the difference. We will come back to this
second point when describing our algorithm where we gradually decrease α.

Let us now fix α and I , and let us dualize the affine constraints of (SDPα
I ). We

define the Lagrangian function with respect to the primal variable X � 0 and the dual
variables y ∈ R

n and z ∈ R
|I |
+ as

L(X; y, z) := 〈Q, X〉+α

2

(
n2 − ‖X‖2F

)
+ 〈y, e − diag(X)〉 + 〈z, e + AI (X)〉

= 〈
Q − Diag(y)+ A∗I (z), X

〉− α

2
‖X‖2F + eT y + eT z + α

2
n2.

The associated dual function is then defined by
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Fα
I (y, z) := max

X�0
L(X; y, z). (14)

By weak duality, we have an upper bound on (MC) for given (I, α, y, z) with α ≥ 0
and z ≥ 0. More precisely, we have

(MC) ≤ (SDPI ) ≤
(
SDPα

I

) ≤ Fα
I (y, z). (15)

These Fα
I (y, z) for given (I, α, y, z) are the bounds that we are going to use to solve

Max-Cut to optimality; we study them in the next section.

3.2 Mathematical study of the bounds Fα
I (y, z)

This first result gives us a useful explicit expression of the bound Fα
I (y, z) for α > 0.

Let us consider the positive semidefinite matrix

X I (y, z) := [
Q − Diag(y)+ A∗I (z)

]
+ . (16)

Proposition 2 Let α > 0 and let I be a set of inequalities. Then, for Fα
I and X I

defined in Eqs. (14) and (16), respectively, we have

Fα
I (y, z) = 1

2α
‖X I (y, z)‖2F + eT y + eT z + α

2
n2, for all y, z. (17)

Proof Let y and z be given, and let M := Q − Diag(y) + A∗I (z) and f (X) :=
〈M, X〉 − α

2 ‖X‖2F . Then we have by Eq. (14) that

Fα
I (y, z) = max

X�0
f (X)+ eT y + eT z + α

2
n2. (18)

Since α > 0, we have that maxX�0 f (X) is a convex optimization problem. The dual
problem of maxX�0 f (X) is given by

min
S�0

max
X

f (X)+ 〈S, X〉 .

Since maxX�0 f (X) is strictly feasible, strong duality holds (see, e.g., [7]); therefore,

max
X�0

f (X) = min
S�0

max
X

f (X)+ 〈S, X〉 .

Let S � 0 be fixed. Since ∇ f (X) = M − αX , the maximum of f (X)+ 〈S, X〉 over
all X is attained when X = 1

α
(M + S). Therefore,

max
X

f (X)+ 〈S, X〉 =
〈
M,

1

α
(M + S)

〉
− α

2

∥∥∥∥
1

α
(M + S)

∥∥∥∥
2

F
+

〈
S,

1

α
(M + S)

〉
.
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Simplifying the expression on the right-hand-side, we have

max
X

f (X)+ 〈S, X〉 = 1

2α
‖M + S‖2F .

Therefore,

max
X�0

f (X) = min
S�0

max
X

f (X)+ 〈S, X〉 = min
S�0

1

2α
‖M + S‖2F .

This last problem asks what is the nearest positive semidefinite matrix S to the matrix
−M . The answer to this question is S = (−M)+. Furthermore, it is not hard to show
that M + (−M)+ = M+, so we have that

max
X�0

f (X) = 1

2α
‖M + (−M)+‖2F =

1

2α
‖M+‖2F =

1

2α
‖X I (y, z)‖2F .

Substituting this back into Eq. (18), we have the result in Eq. (17). ��
This proposition makes it clear that the bounds that we consider here correspond (up

to a change of sign and notation) to the ones introduced in [21] for general 0-1 quadratic
optimization problems (see �(λ,μ, α) in Theorem 2 of [21]). The introduction of the
bounds we give here is different though: it is more direct, as it does not rely on the
reformulation of the initial problem with the so-called matrix spherical constraint (see
[20]).

Fixing α and I , we obtain the best bound Fα
I (y, z) when (y, z) is an optimal solution

of the problem

(
DSDPα

I

) minimize 1
2α
‖X I (y, z)‖2F + eT y + eT z + α

2 n2

subject to y free, z ≥ 0,
(19)

which is the dual problem of (SDPα
I ).

Observe that when α = 0 the dual function has the usual expression

F0
I (y, z) =

{
eT y + eT z, if Q − Diag(y)+ A∗I (z) � 0,

+∞, otherwise,

which leads us back to the dual problem (8). We see that the condition

Q − Diag(y)+ A∗I (z) � 0

is exactly X I (y, z) = 0, which opens another view on the approach we consider.
Indeed, from Eq. (17) the function Fα

I (y, z) can be viewed as a penalization of the
standard dual function F0

I (y, z). The parameter α is interpreted as a penalization
parameter controlling the loss in the tightness of the bound.

In view of solving problem (19), the next proposition is crucial.
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Proposition 3 Let α > 0. Then the dual function Fα
I is convex and differentiable,

with partial gradients given by

∇y Fα
I (y, z) = e − 1

α
diag (X I (y, z)),

∇z Fα
I (y, z) = e + 1

α
AI (X I (y, z)) .

Proof Let f : Rn → R be defined by f (x) = 1
2 ‖x+‖22. Then f is a convex and

differentiable function invariant under permutations of the entries of x . The gradient
of f is ∇ f (x) = x+. From [6, Sect. 5.2], we have that the function g : Sn → R

defined by g(X) = f (λ(X)) is convex and differentiable with gradient

∇g(X) = U Diag(∇ f (λ(X)))U T ,

where U is any n × n orthogonal matrix satisfying X = U Diag(λ(X))U T ; thus
∇g(X) = X+. Now note that

Fα
I (y, z) = 1

α
g

(
Q − Diag(y)+ A∗I (z)

)+ eT y + eT z + α

2
n2,

so we immediately have that Fα
I is convex and differentiable. Now we simply apply the

chain rule, ∇x [g(Mx)] = M∗∇g(Mx), where M : Rp → S
n is any linear operator,

to get the desired result. ��
As expected, this proposition is in the same vein as [21, Theorem 2] establishing

differentiability results for the corresponding bounds. The proof given here is original
though, using the differentiability of spectral functions as a direct argument.

The final proposition considers what could happen to the value of the dual function
Fα

I when reducing the value of α with fixed variables y and z.

Proposition 4 Let 0≤ε≤1 and 0<α′<α. Let (y, z) such that
∥∥∇y Fα

I (y, z)
∥∥∞≤ε.

Then

Fα′
I (y, z) ≤ Fα

I (y, z)+ n2

2

(α − α′)
α′

(
α(1+ ε)2 − α′

)

and

Fα′
I (y, z) ≥ Fα

I (y, z)+ n2

2

(α − α′)
α′

(α

n
(1− ε)2 − α′

)
.

Proof We have

Fα′
I (y, z)− Fα

I (y, z) = 1

2

(
1

α′
− 1

α

)
‖X I (y, z)‖2F −

n2

2
(α − α′).

We apply Lemma 1 to X = 1
α

X I (y, z), which satisfies maxi |Xii − 1| ≤ ε by Propo-
sition 3 and the assumption

∥∥∇y Fα
I (y, z)

∥∥∞ ≤ ε. This gives

123



Improved semidefinite bounding procedure 71

α2(1− ε)2n ≤ ‖X I (y, z)‖2F ≤ α2(1+ ε)2n2.

We deduce the first desired bound, as

Fα′
I (y, z)− Fα

I (y, z) ≤ 1

2

(
1

α′
− 1

α

)
α2(1+ ε)2n2 − n2

2
(α − α′)

= n2

2

(α − α′)
α′

(
α(1+ ε)2 − α′

)
.

Using the other inequality, we get in a similar way the other bound. ��
This result tells us that Fα′

I (y, z) may increase over Fα
I (y, z), but not much if α−α′

is small enough and α′ is not too small. This gives the intuition that we should not
decrease α too much or too quickly. In our numerical experiments, we take α′ = α

2
and never take α smaller than 10−5 (see Sect. 5.2). Later we will present Lemma 3
which will give us a more precise picture.

3.3 Computing the bounds

For a given set of inequalities I and a tightness level α > 0, the computation of the
value of the bounding function Fα

I and its gradient essentially corresponds to the com-
putation of X I (y, z), which, in turn, reduces to computing the positive eigenvalues
and corresponding eigenvectors of the symmetric matrix Q − Diag(y)+ A∗I (z) (see
Eq. 16). To compute this partial eigenvalue decomposition, we use the LAPACK [1]
routine DSYEVR—for improved performance we use the Intel Math Kernel Library
(MKL) rather than the Automatically Tuned Linear Algebra Software (ATLAS) pack-
age. When requesting a partial eigenvalue decomposition of a matrix, DSYEVR first
tridiagonalizes the matrix, then finds the positive eigenvalues using bisection, and
finally uses the inverse iteration method to find the corresponding eigenvectors; see
[13] for more information.

In view of the differentiability result (Proposition 3), we can solve problem (19) with
any classic nonlinear optimization algorithm that can handle nonnegativity constraints.
Among all possible algorithms and software, quasi-Newton methods are known to be
efficient [5,24]. In our experiments, we use the FORTRAN code L-BFGS-B [8,32]
which has been recently upgraded to version 3.0 [23]. We use the default parameters
of the code. Note, though, that we do an initial scaling of the problem by normalizing
the constraints we dualize.

In summary, the two main ingredients needed to use our bounds in practice are the
following:

1. the function value Fα
I (y, z) and gradient ∇Fα

I (y, z) are evaluated by computing
a single partial eigenvalue decomposition;

2. the smooth convex function Fα
I is minimized by a quasi-Newton method.

Thus, our method is built using reliable and efficient numerical codes: the eigensolver
DSYEVR and the quasi-Newton solver L-BFGS-B.
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4 Improved semidefinite bounding procedure

This section presents the bounding procedure using the bounds Fα
I (y, z) introduced in

the previous section, provides a theoretical analysis, and finally a numerical illustration.

4.1 Description of the bounding procedure

We have three ways to improve the tightness of the bound Fα
I (y, z): adding triangle

inequalities, reducing the parameter α, or reducing the tolerance ε in the stopping
criteria of the quasi-Newton method:

1. Adding inequalities. In view of (13), we can improve the bound by adding violated
(triangle) inequalities to I ; that is,

find i such that Ai (X)+ 1 < 0

where X = 1
α

X I (y, z). Recall that we only need to add the triangle inequalities
that are active at the optimal solution that satisfies all triangle inequalities. We do
this by adding a predefined number of the most violated inequalities each time to
improve the bound as quickly as possible. We add just a few inequalities at the
beginning when we are far from the optimal solution, then we add more inequalities
when we are closer to this optimal solution. Moreover, we borrow an idea from
the description of Biq Mac in [30] where, instead of using the current iterate Xk

to find violated triangle inequalities, a convex combination of the current iterate
with the previous iterate is used: X test = λXk−1 + (1 − λ)Xk . However, while
Biq Mac uses λ = 0.9, we take the opposite strategy and use λ = 0.2 since we
found this works well in our code.

2. Reducingα. We can reduce α > 0 and solve problem (19) again, warm-starting
with the current (y, z). In practice, we reduce α if the number of violated triangle
inequalities is small for the current value of α. In other words, our strategy consists
of changing the target when we can no longer make good progress by adding
inequalities.

3. Reducingε. We can request more accuracy from the quasi-Newton method by
reducing the tolerance ε > 0 in the stopping test:

max
{∥∥∇y Fα

I (y, z)
∥∥∞ ,

∥∥[∇z Fα
I (y, z)]−

∥∥∞
}

< ε.

Note that the expressions of the gradients of Fα
I (Proposition 3) gives

max

{∥∥∥∥ diag

(
1

α
X I (y, z)

)
− e

∥∥∥∥∞
,

∥∥∥∥

[
AI

(
1

α
X I (y, z)

)
+ e

]

−

∥∥∥∥
∞

}
< ε.

How we control the decrease of ε and α, and how we add inequalities, is important
for the overall efficiency. Our algorithm, described formally in Algorithm 1, can be
viewed as a succession of cutting plane methods (alternating adding cuts and reducing
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Algorithm 1 Improved semidefinite bounding algorithm
Input: Scalars α1 > 0, ε1 > 0, and parameters 0 < ScaleAlpha,ScaleEps < 1.

y0 ← 0 ∈ R
n {initial y variables} and z0 ← 0 ∈ R

0 {initial z variables}
I0 ← ∅ {initial set of triangle inequalities I }
for k = 1, 2, . . . do

Starting from (yk−1, zk−1), use a descent method (e.g., a quasi-Newton method) to compute (yk , ẑk )

such that

max
{∥∥ diag(Xk )− e

∥∥∞,
∥∥[

AIk−1(Xk )+ e
]
−

∥∥∞
}

< εk ,

where Xk ← 1
αk

X Ik−1(yk , ẑk ).

Update the bound: Fk ← F
αk
Ik−1

(yk , ẑk ).

Remove triangle inequalities that are not active:

I−k−1 ←
{
i ∈ Ik−1 : (ẑk )i = 0 and Ai (Xk )+ 1 > εk

}
.

Add triangle inequalities that are violated:

Let X test
k ← λXk−1+ (1−λ)Xk (taking X0 = X1) and let i1, . . . , i� be the indices i �∈ Ik−1 such that

Ai (X test
k )+1 ≤ ViolTolk , whereViolTolk ≤ 0, ordered such that Ai1 (X test

k ) ≤ · · · ≤ Ai� (X test
k ).

Let

I+k−1 ← {i1, . . . , iK } , where K = min{�,MaxIneqAddedk }.

Update set of inequalities: Ik ←
(

Ik−1 \ I−k−1

)
∪ I+k−1.

Initialize multipliers for added inequalities to zero:

for each i ∈ Ik , (zk )i ←
{

(ẑk )i , if i ∈ Ik−1,

0, if i �∈ Ik−1.

if the number of inequalities added, K , is less than MinIneqViol then
αk+1 ← ScaleAlpha · αk , εk+1 ← ScaleEps · εk

else
αk+1 ← αk , εk+1 ← εk

end if
end for

α and ε). We give details in Sect. 5.1 on the parameters we chose to efficiently interlace
the decrease of α and ε with the management of the set of enforced inequalities.

4.2 Convergence of the bounding procedure

We now analyze Algorithm 1, starting with the case when the set of triangle inequalities
I is fixed.

Lemma 2 Let I be a (fixed) set of valid triangle inequalities. Consider five sequences
indexed by k: αk > 0, εk > 0, yk ∈ R

n, zk ∈ R
|I |
+ , Xk � 0 such that

max
{∥∥∇y Fαk

I (yk, zk)
∥∥∞ ,

∥∥[∇z Fαk
I (yk, zk)]−

∥∥∞
}

< εk, (20)
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and Xk := X I (yk, zk)/αk . If both (αk)k and (εk)k tend to 0, and if the sequence
(Xk, yk, zk)k converges, then its limit is a primal-dual solution of (SDPI ), and

lim
k→+∞ Fαk

I (yk, zk) = (SDPI ). (21)

Proof First note that the feasible set of problem (6) is closed and bounded (by n),
so there exists a primal optimal solution. Moreover, problem (6) satisfies Slater’s
constraint qualification: the identity matrix satisfies the affine constraints (equalities
and inequalities) and strictly satisfies the positive semidefinite constraint. Therefore
(see, e.g., [7]), there is no duality gap between between primal-dual problems (6)
and (8), and there exists a dual optimal solution. Thus the following conditions are
necessary and sufficient for optimality of (X, S, y, z):

Q − Diag(y)+ A∗I (z) = S (22)

〈X, S〉 = 0, X � 0, S � 0 (23)

diag(X) = e, AI (X)+ e ≥ 0 (24)

zT (AI (X)+ e) = 0, z ≥ 0 (25)

Assume that (Xk, yk, zk)k converges to (X̄ , ȳ, z̄). Let us show that the triple satisfies
the above optimality conditions. By construction of Xk ,

Q − Diag(yk)+ A∗I (zk) = αk Xk + Sk, for all k,

where Sk :=
[
Q − Diag(yk)+ A∗I (zk)

]
−. The sequence (Sk)k converges to

S̄ := [
Q − Diag(ȳ)+ A∗I (z̄)

]
− ,

by continuity of the operator [·]−. Passing to the limit shows that (X̄ , S̄, ȳ, z̄) satisfies
(22) since αk vanishes. By construction we also have 〈Sk, Xk〉 = 0, Xk � 0, and
Sk � 0. Since the cones of positive semidefinite and negative semidefinite matrices
are closed, passing to the limit, we get that X̄ and S̄ satisfy (23).

By Proposition 3, condition (20) can be written as

max
{‖ diag(Xk)− e‖∞ , ‖[AI (Xk)+ e]−‖∞

}
< εk .

Passing to the limit we have that X̄ satisfies (24). By assumption, we have that zk ≥ 0
for all k, so we also have that z̄ ≥ 0. Finally, we write

∣∣∣zT
k (AI (Xk)+ e)

∣∣∣ ≤ ‖zk‖1 ‖AI (Xk)+ e‖∞ < ‖zk‖1 εk .

Since εk vanishes, at the limit, we have that z̄ and X̄ satisfy (25). Altogether, this shows
that (X̄ , ȳ, z̄) is indeed a primal-dual solution.
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Finally (17) yields

Fαk
I (yk, zk) = eT yk + eT zk + αk

(
‖Xk‖2 + n2

)/
2.

Therefore we have limk→+∞ Fαk
I (yk, zk) = eT ȳ + eT z̄. Since there is no duality gap

for the primal-dual problems (6) and (8), we conclude that (21) holds. ��
The parameters α and ε control the level of tightness of the bound in that smaller

values give tighter upper bounds. Furthermore, we can reach the usual SDP bound,
(SDPI ), in the limit as α and ε both approach zero. In practice, we interlace the
decrease of these control parameters with the process of adding violated inequalities;
the overall convergence follows from the next lemma.

Lemma 3 Let the sequence (αk, εk, Xk, yk, ẑk, zk, Ik, Fk)k be generated by Algo-
rithm 1. Then the following holds:

(i) For all k = 1, 2, . . ., we have:

Xk = 1

αk
X Ik (yk, zk) and Fk = Fαk

Ik
(yk, zk).

(ii) There exists γ > 0 such that:

Fk+� ≤ Fk + γαk, for all k, �.

(iii) If αk → 0, then (Fk)k is a convergent sequence.

Proof The first item follows from the observation that, based on the definition of Ik

and zk in Algorithm 1, we have A∗Ik
(zk) = A∗Ik−1

(ẑk) and eT zk = eT ẑk ; this follows
from the fact that inequalities are removed only if they have a zero multiplier (ẑk)i ,
and multipliers for added inequalities are initialized with (zk)i = 0.

For the second item, first let r := ScaleAlpha−1 > 1. Since we have the bound
‖∇y Fαk

Ik−1
(yk, ẑk)‖∞ < εk , Proposition 4 gives:

Fαk+1
Ik−1

(
yk, ẑk

) ≤ Fαk
Ik−1

(
yk, ẑk

)+ n2

2

(αk − αk+1)

αk+1

(
αk(1+ εk)

2 − αk+1

)
. (26)

From the previous item, we have

Fk+1 = Fαk+1
Ik

(
yk+1, ẑk+1

) ≤ Fαk+1
Ik

(yk, zk) = Fαk+1
Ik−1

(
yk, ẑk

)
,

where the inequality follows from the fact that (yk+1, ẑk+1) is generated using a descent
method starting from (yk, zk). Therefore, if αk+1 = ScaleAlpha · αk = r−1αk , by
inequality (26) we have

Fk+1 ≤ Fk + n2

2
(r − 1)

(
(1+ εk)

2 − r−1
)

αk .
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Since 0 < ScaleEps < 1, we have εk ≤ ε1, for all k. Letting

δ := n2(r − 1)
(
(1+ ε1)

2 − r−1
)/

2 > 0,

we have that

{
Fk+1 ≤ Fk + δαk, if αk+1 = ScaleAlpha · αk,

Fk+1 ≤ Fk, if αk+1 = αk,
(27)

for all k. Let � and k be given, and let k1, . . . , kp be the p indices k ≤ ki < k +
� such that αki+1 = ScaleAlpha · αki . Then, from repeated application of the
inequalities (27), we obtain

Fk+� ≤ Fk + δ
(
αk1 + αk2 + · · · + αkp

)

= Fk + δ
(
αk + r−1αk + · · · + r−(p−1)αk

)

= Fk + δ

(
1+ 1

r
+ · · · + 1

r p−1

)
αk

≤ Fk + δ

(
r

r − 1

)
αk .

Letting γ := δr
r−1 > 0, we obtain the desired result.

For the third item, suppose αk → 0. Then, by the previous item, we can conclude

lim sup
k→+∞

Fk ≤ lim inf
k→+∞ Fk,

so the sequence (Fk)k converges. ��
Theorem 1 Let the sequence (αk, εk, Xk, yk, ẑk, zk, Ik, Fk)k be generated by Algo-
rithm 1. If (αk)k and (εk)k both converge to zero, and (X̄ , ȳ, z̄, Ī ) is an accumulation
point of the sequence (Xk, yk, zk, Ik)k , then (X̄ , ȳ, z̄) is a primal-dual solution of
(SDP Ī ), and the sequence Fk converges to the classic semidefinite bound:

lim
k→+∞ Fαk

Ik
(yk, zk) = (SDP Ī ). (28)

Proof Consider a subsequence of (Xk , yk, zk, Ik)k that converges to (X̄ , ȳ, z̄, Ī ). Since
the Ik are finite sets, the convergence of a subsequence to Ī means that there are
infinitely many indexes ki of this subsequence such that Iki = Ī . Observe now that the
sequence (Xki , yki , zki )i satisfies the assumptions of Lemma 2 with I = Ī . Therefore,

lim
i→+∞ Fki = lim

i→+∞ F
αki
Iki

(yki , zki ) = lim
i→+∞ F

αki

Ī
(yki , zki ) = (SDP Ī ).
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Since αk → 0, from Lemma 3 we also have that the entire sequence (Fk)k converges,
so we conclude that limk→+∞ Fk = (SDP Ī ). ��

This result gives an important observation about our bounding procedure Algo-
rithm 1. Although, by Proposition 1, the bounds Fα

I (y, z), for α > 0, are weaker than
the usual SDP bound (SDPI ), we have, by Theorem 1, that we can get as close as we
like using Algorithm 1.

Theorem 1 thus shows that, in the limit, the tightness of the bounds is only governed
by the selection of promising inequalities Ik . In the next corollary, we look closely at a
special case to show that Algorithm 1 can approximate an “optimal” set of inequalities.

Corollary 1 Let the assumptions of Theorem 1 hold. If the sequence (Xk, yk, zk, Ik)k

converges to (X̄ , ȳ, z̄, Ī ) and if ViolTolk → 0, then (SDP Ī ) is equal to the semidef-
inite bound (SDPIall) with all the inequalities, and (X̄ , ȳ, z̃) is a primal-dual solution
of (SDPIall), where z̃ ∈ R

4(n
3) is obtained from z̄ by expanding with zeros the entries

that are not indexed by Ī .

Proof We use the assumption of the convergence of the whole sequence. For k large
enough, the set Ik is equal to Ī . Thus no more inequalities are added at iteration k,
which means

Ai
(
X test

k

)+ 1 ≥ ViolTolk, for all i �∈ Ī .

Since (X test
k )k also converges to X̄ , we pass to the limit to get Ai (X̄) + 1 ≥ 0 for all

i �∈ Ī . We also know by Theorem 1 that X̄ is optimal, hence feasible, for (SDP Ī ).
Therefore we have that

Ai (X̄)+ 1 ≥ 0, for any inequality i, (29)

and that X̄ is in fact feasible for (SDPIall). We observe now (X̄ , ȳ, z̃) satisfies the
optimality conditions of (SDPIall) [i.e., conditions (22–25) from the proof of Lemma 2].
Indeed (29) implies that (24) is satisfied for X = X̄ and I = Iall, and so are (22) and
(25) by construction of z̃. Thus we have (SDPI ) = (SDPIall) and the rest of the proof
follows from Theorem 1. ��

4.3 Numerical illustration of the bounding procedure

This section presents a numerical comparison of our bounding procedure Algo-
rithm 1 with the one of Biq Mac [29]. The code for each solver was compiled on
the same machine using the same numerical libraries. We take one problem of the
Biq Mac Library [31]—specifically Beasley bqp250.6, the problem highlighted in
[29, Figure 1]—and we plot the convergence curve for the two bounding procedures
in Fig. 1. For this particular problem, note that we have (SDPIall) ≈ 41178 (see [29])
and (MC) = 41014. In our test, our bounding procedure computes a bound of 41210
after 206 s while the Biq Mac bounding procedure is only able to attain a bound of
41251 after 604 s of computing time.
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Fig. 1 Comparison of the bounding procedure of Biq Mac [29] and our bounding procedure Algorithm 1
on the Beasley bqp250.6 problem—the behaviour shown here is typical

The plot of Fig. 1 is typical of the behaviour of the two solvers: our bounding
procedure has a slower start since we take a large value of α at the beginning, then the
convergence curves intersect, after which we see that our bounding procedure is able
to compute good bounds in less time than that of Biq Mac. Therefore, the computing
time needed for our solver to get to a zone of “useful bounds” is smaller than the one
used by Biq Mac—this is crucial for the relative efficiency of our branch-and-bound
method and is the reason for the good numerical results of the next section.

Figure 1 also shows large decreases in the value of the dual function on the curve
for our bounding procedure: this corresponds to the iterations when α is decreased.
We also note that our bounding procedure is able to attain a tighter bound than the one
of Biq Mac. This may be due to a combination of: a different selection of inequalities,
and the slow convergence of the bundle method near the end of the solving process.

5 Solving Max-Cut to optimality

In this section, we describe our implementation of a branch-and-bound method for
solving Max-Cut to optimality. The scheme of our algorithm is simple and follows the
usual branch-and(-cut-and)-bound paradigm—the novelty of our approach is essen-
tially our bounding procedure that we described in Algorithm 1. Finally, we provide
a complete numerical comparison to the leading Biq Mac solver [29].
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5.1 Branch-and-bound implementation

While Biq Mac uses a dedicated code, we embed our bounding procedure in a generic
code: we use the BOB Branch & Bound platform [10], which provides an easy and
flexible way to implement a branch-and-bound algorithm. The BOB platform only
requires the user to implement the following: (1) a bounding procedure, (2) a method
for generating a feasible solution, and (3) a method for generating subproblems. Here
we give some details about these points.

We have already described our bounding procedure in Sect. 4, but we would like to
mention here how we decide when to stop our bounding procedure within the branch-
and-bound method. Suppose the value of the best-known solution for the current
subproblem is given by β. If we are able to compute a bound that is below β, we can
stop our bounding procedure and prune this subproblem from the branch-and-bound
tree. Indeed, in our method, stopping the run of the quasi-Newton solver at any time
gives the valid bound Fαk

Ik
(yk, zk). Similarly, Biq Mac can stop their feasible interior-

point method at any time and get a valid bound; this is because Biq Mac uses the
following form of their dual function

θI (z) = eT z + min
{

eT y : Diag(y) � Q + A∗I (z)
}

implying that (MC) ≤ θI (z) ≤ eT z + eT y, for any feasible vector y.
We can also stop the bounding procedure when we detect that we will not be able

to reach the value of β in a reasonable time. Biq Mac estimates the time to reach β

using a linear approximation to the time-bound curve [30]. In our method, we fit a
hyperbolic function to the time-bound curve, given its hyperbolic nature that can be
observed in Fig. 1. If this hyperbola has a horizontal asymptote that is far above the
value of β, we terminate the bounding procedure and add the current subproblem,
together with its computed bound and fractional solution, to the list of subproblems
on which we will branch. We also terminate the bounding procedure if the difference
between consecutive bounds, Fk−1−Fk , is less than one, we are still at least two away
from the lower bound β, and αk is very small (on the order of 10−4).

In all subproblems in the branch-and-bound tree, except the root problem, we wait
until the termination of the bounding procedure to compute a feasible solution (upper-
bound) using the Goemans-Williamson (GW) random hyperplane algorithm [12] then
local swapping, as is done in Biq Mac. However, we do not use the technique used
in Biq Mac of repeatedly running the GW algorithm (while progress is still made)
on a matrix obtained by shifting the current matrix X in the direction x̃ x̃ T , where
x̃ ∈ {−1, 1}n is the best cut found so far. In the root problem, to get an upper-bound β,
we run the GW procedure up to two times during the bounding procedure—this value
of β is then used to inform us when we should terminate the bounding procedure in
the root problem.

For generating subproblems, Biq Mac considers two branching strategies: “easy
first” (R2), and “difficult first” (R3); for details, see [29]. We use two different but
similar “easy first” and “difficult first” branching strategies in the {0, 1}-model: we
branch on the variable in the first row/column of X with fractional value that is furthest

123



80 N. Krislock et al.

from, or closest to, 1
2 , respectively. For the sake of simplicity, we also refer to our “easy

first” and “difficult first” branching strategies as (R2) and (R3), respectively. In our
numerical results, we compare our method using (R2) branching and our method using
(R3) branching to Biq Mac using (R2) branching and Biq Mac using (R3) branching—
in total, we compare four methods.

Finally, we note that we have used a best-first exploration strategy in that we always
take the subproblem from the current list of subproblems that has the greatest computed
bound.

5.2 Description of the numerical tests

Comparison. There exist several efficient methods for solving Max-Cut and binary
quadratic programming problems, such as [4] and [26]. However, the numerical tests
of [29] show that the results of the other methods are dominated by Biq Mac, so we
only compare our solution method to Biq Mac.

Test problems. We use the test problems in the Biq Mac Library [31], which consists
of both Max-Cut problems and binary quadratic optimization problems. Some are
randomly generated instances, others come from a statistical physics application. We
refer to [29, Section 6] for a description of the data set. Since solving the instances in
the Biq Mac Library with n = 500 is beyond the reach of current solvers (including
Biq Mac and our method) we restrict our tests to the 328 instances in the Biq Mac
Library with n < 500.

Machine. In our tests we used a Dell T-7500 (using a single core) with 4 GB of memory
running the Linux operating system. We implemented our algorithm in C / FORTRAN
and have used the Intel Math Kernel Library (MKL) for the eigenvalue computations.
We have compiled and run both our code and the Biq Mac code (kindly provided by
the authors) on the same machine, and have used the same libraries (i.e., MKL) and
compilation flags for both codes.

Parameters. We used Biq Mac with its default parameters, except for using both the
non-default (R2) and the default (R3) branching strategies; additionally, we changed
the time limit to 100 h. We used the following values for Algorithm 1 in our tests:

1. Reducingα. We use ScaleAlpha = 0.5 and start with α1 = 10; however, if no
inequalities are added after the first iteration in the root problem (i.e., |I1| = 0 or
|I2| = 0), we start with a smaller α1. We continue to reduce αk until the minimum
value of αk = 10−5.

2. Reducingε. With (R3) branching, we use ε1 = 0.08 and ScaleEps = 0.93,
with a minimum value of εk = 0.05. When using (R2) branching, we found
that it is better to be less aggressive in decreasing ε, so we take ε1 = 0.2 and
ScaleEps = 0.95, with a minimum value of εk = 0.1.

3. Inequalities. We typically setViolTolk = −5×10−2. We setMaxIneqAddedk
= 20k (resp. 30k) and MinIneqViol = 30 (resp. 60) for n < 150 (resp. for
n ≥ 150). This means that we usually add less inequalities than Biq Mac.
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Fig. 2 Performance profile curves (30) for the four solvers on the 328 problems

Performance profiles. We plot the results using performance profiles [11], that we
briefly describe here. Let P be the set of problems used to benchmark the solvers. For
each problem p ∈ P , we define tmin

p as the minimum time required to solve p over
all the solvers. Then, for each solver, we consider the performance profile function θ ,
which is defined as

θ(τ ) = 1

|P|
∣∣∣
{

p ∈ P : tp ≤ τ tmin
p

}∣∣∣ , for τ ≥ 1, (30)

where tp is the time required for the solver to solve problem p. The function θ is
therefore a cumulative distribution function, and θ(τ ) represents the probability of the
solver to solve a problem from P within a multiple τ of the minimum time required
by all solvers considered.

5.3 Computational results

We report aggregated results from the 328 test-problems and almost 1,600 h of com-
puting time: Fig. 2 gives the performance profile, Table 1 counts the number of times
a solver attains the minimum solution time, and Table 2 summarizes the computing
times. For the full tables of numerical results, see the detailed results available online
at the link lipn.univ-paris13.fr/BiqCrunch/repository/papers/KMR2012-results.pdf.

Compared to Biq Mac, our algorithm performs well for a large part of the problems:
241 out of the 328 problems are solved strictly faster by using our solver, which is
around 75 % of the test-problems. When considering only the “hard problems” (those
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Table 1 The number of times a
solver attains the minimum
solution time for each set of
problems from the Biq Mac
Library [31] having n < 500

The best results are indicated in
bold

Problem sets Biq Mac Our method

(R2) (R3) (R2) (R3)

bqp50 6/10 6/10 0/10 4/10

bqp100 5/10 5/10 1/10 4/10

bqp250 0/10 0/10 1/10 9/10

gkaa 5/8 5/8 2/8 2/8

gkab 0/10 0/10 4/10 6/10

gkac 5/7 5/7 2/7 0/7

gkad 1/10 1/10 4/10 5/10

gkae 0/5 0/5 3/5 2/5

be100.d100 0/10 2/10 3/10 5/10

be120.d30 2/10 2/10 2/10 6/10

be120.d80 2/10 0/10 1/10 7/10

be150.d30 1/10 0/10 3/10 6/10

be150.d80 6/10 0/10 3/10 1/10

be200.d30 0/10 0/10 9/10 1/10

be200.d80 1/10 0/10 8/10 1/10

be250.d10 0/10 0/10 2/10 8/10

g05.n60 3/10 5/10 1/10 3/10

g05.n80 3/10 0/10 2/10 5/10

g05.n100 5/10 0/10 0/10 5/10

pm1s80.d090 7/10 7/10 1/10 2/10

pm1s100.d010 2/10 1/10 1/10 7/10

pm1d80.d090 2/10 0/10 4/10 4/10

pm1d100.d090 1/10 0/10 1/10 8/10

w100.d010 2/10 3/10 5/10 1/10

w100.d050 3/10 0/10 3/10 4/10

w100.d090 4/10 0/10 2/10 4/10

pw100.d010 1/10 1/10 2/10 7/10

pw100.d050 4/10 0/10 1/10 5/10

pw100.d090 0/10 0/10 3/10 7/10

ising100 0/6 0/6 3/6 3/6

ising150 0/6 0/6 1/6 5/6

ising200 0/6 0/6 2/6 4/6

ising250 0/6 0/6 4/6 2/6

ising300 0/6 0/6 2/6 4/6

t2g10 3/3 3/3 0/3 0/3

t2g15 0/3 0/3 3/3 0/3

t2g20 0/3 0/3 1/3 2/3

t3g5 3/3 3/3 0/3 0/3

t3g6 0/3 1/3 2/3 0/3

t3g7 2/3 2/3 0/3 1/3

Total for each method 79/328 52/328 92/328 150/328

Grand total 87/328 (27 %) 242/328 (74 %)
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Table 2 Minimum / mean / maximum CPU time (s) for Biq Mac and our method to solve problems in the
Biq Mac Library [31]

Problem sets Biq Mac Our method

Min Mean Max Min Mean Max

bqp50 0.11 0.70 5.03 0.17 0.22 0.26

bqp100 0.92 3.77 22.29 1.40 2.58 11.12

bqp250 526.18 7,052.28 54,277.92 47.13 1,736.11 14,714.12

gkaa 0.06 0.55 1.37 0.06 0.65 2.11

gkab 1.11 1,650.88 10,719.44 0.10 787.00 5,104.21

gkac 0.16 0.62 1.02 0.13 0.85 1.95

gkad 1.53 32.98 79.33 1.63 18.06 55.72

gkae 126.98 6,116.31 25,721.41 21.77 3,897.82 16,654.15

be100.d100 16.70 42.88 108.69 3.79 33.51 114.88

be120.d30 4.52 32.64 113.27 5.01 17.68 76.30

be120.d80 39.12 146.09 211.55 32.60 142.54 268.07

be150.d30 39.21 367.92 844.33 7.74 285.44 767.08

be150.d80 441.62 506.15 561.98 363.55 500.04 608.20

be200.d30 1,079.71 8,223.51 43,850.81 102.61 4,852.01 32,612.82

be200.d80 1,210.52 10,692.92 35,247.12 596.22 6,759.69 25,518.98

be250.d10 328.64 2,437.95 3,754.20 27.98 409.71 905.98

g05.n60 0.26 5.74 13.27 0.67 7.42 24.84

g05.n80 6.39 63.09 274.50 2.80 63.10 296.10

g05.n100 93.45 803.88 4,197.29 96.05 721.25 3,382.27

pm1s80.d090 0.58 4.76 23.96 0.96 3.92 13.40

pm1s100.d010 1.15 49.87 130.28 1.85 34.70 88.48

pm1d80.d090 24.56 71.90 212.47 13.74 56.31 138.19

pm1d100.d090 106.24 945.40 2868.06 56.94 620.76 1,800.63

w100.d010 1.37 23.15 131.45 1.71 23.47 152.09

w100.d050 109.99 563.27 1152.49 81.02 475.32 1,061.46

w100.d090 38.67 836.25 2,945.89 26.50 997.06 4675.78

pw100.d010 1.64 65.34 228.70 2.06 34.88 113.86

pw100.d050 122.67 715.95 1,798.61 81.34 732.48 2,506.69

pw100.d090 209.02 606.82 1,297.98 201.61 509.48 1,061.18

ising100 7.74 12.76 19.86 2.62 3.04 3.87

ising150 42.55 60.31 85.74 7.74 10.70 12.89

ising200 150.39 233.99 403.19 19.72 27.26 37.59

ising250 165.79 981.56 2,161.49 47.88 138.27 406.84

ising300 991.28 4,268.83 11,858.56 97.43 455.77 1,628.66

t2g10 1.63 2.22 3.04 3.50 4.14 5.30

t2g15 56.55 66.36 73.34 38.87 42.45 46.03

t2g20 1,014.38 4,676.45 11,132.18 351.37 1,159.24 2,748.55

t3g5 3.22 4.42 5.49 7.18 7.39 7.71

t3g6 52.34 159.36 367.12 41.85 218.22 566.66

t3g7 81.37 5,931.61 17,601.56 123.46 3,838.06 11,234.02

The best result are indicated in bold
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that Biq Mac does not solve at the root node), this percentage increases to 85 % (226
out of 269).

Table 2 shows that, on some problems (e.g., g05 or w100) our method is roughly
equivalent to Biq Mac, and on some others it is two times quicker (e.g., gk) or even
6 times quicker (e.g., be250.d10). In particular, we obtain substantial improvements,
in both time and number of nodes, for large-sized problems, as can be seen in the
detailed results available online at the web address mentioned above. Additionally, we
note that both our methods are able to solve all test problems within the 100 h time
limit (Biq Mac (R3) fails to solve 6 instances within this time limit).

The performance profile in Fig. 2 shows that both of our methods dominate both
of the Biq Mac methods in terms of speed, and also robustness, since the curves for
our methods are constantly above the ones for Biq Mac.

6 Conclusions

In this paper, we presented an improved semidefinite bounding procedure to efficiently
solve Max-Cut and binary quadratic programming problems to optimality. We pre-
cisely analyzed its theoretical convergence properties, and we conducted a complete
numerical comparison with the leading Biq Mac method. Our algorithm is shown to
be often faster and more robust than Biq Mac; in particular, our solver was able to
solve around 75 % of the problems of the Biq Mac Library (with n < 500) in less time
than Biq Mac.

A key point is that the two main ingredients of our method are eigenvalue decom-
position to evaluate the function and its gradient, and a quasi-Newton method to mini-
mize this smooth function; on the other hand, the two main ingredients of the Biq Mac
method are an interior-point method to evaluate a function and its subgradient, and a
bundle method to minimize this nonsmooth function.

There is still room for improvement in our current implementation. In particular, we
would like to investigate how we can make the eigenvalue decomposition more efficient
by somehow using prior information. We could also try decoupling the optimization
of the y and z dual variables, as is done in Biq Mac, to possibly make the bound
computation more efficient.

By focusing on Max-Cut and binary quadratic programming problems, we have
shown unambiguously the interest of our semidefinite-based method to solve these
classes of problems to optimality. Because our approach is built on the general bounds
of [21], it can also be applied to any binary quadratic problems with additional linear
or quadratic, equality or inequality, constraints. In our future work, such as [17], we
will consider this generalization, which is nontrivial due the work required to make a
generic code and to the complication of having semidefinite relaxations that may not be
strictly feasible. Due to its inherent flexibility, we believe that our method has a strong
potential to handle other classes of problems, even those for which semidefinite-based
methods are not yet competitive.

Acknowledgments We are grateful to Angelika Wiegele for the discussions we have had and for providing
us with a copy of the Biq Mac solver for our numerical comparison.
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