
Math. Program., Ser. B (2012) 136:353–373
DOI 10.1007/s10107-012-0593-0

FULL LENGTH PAPER

SpeeDP: an algorithm to compute SDP bounds
for very large Max-Cut instances

Luigi Grippo · Laura Palagi · Mauro Piacentini ·
Veronica Piccialli · Giovanni Rinaldi

Received: 13 August 2010 / Accepted: 5 September 2012 / Published online: 11 October 2012
© Springer and Mathematical Optimization Society 2012

Abstract We consider low-rank semidefinite programming (LRSDP) relaxations of
unconstrained {−1, 1} quadratic problems (or, equivalently, of Max-Cut problems) that
can be formulated as the non-convex nonlinear programming problem of minimizing
a quadratic function subject to separable quadratic equality constraints. We prove the
equivalence of the LRSDP problem with the unconstrained minimization of a new
merit function and we define an efficient and globally convergent algorithm, called
SpeeDP, for finding critical points of the LRSDP problem. We provide evidence
of the effectiveness of SpeeDP by comparing it with other existing codes on an
extended set of instances of the Max-Cut problem. We further include SpeeDPwithin
a simply modified version of the Goemans–Williamson algorithm and we show that

L. Grippo · L. Palagi · M. Piacentini
Dipartimento di Ingegneria informatica automatica e gestionale A. Ruberti,
Sapienza Università di Roma, via Ariosto, 25, 00185 Rome, Italy
e-mail: grippo@dis.uniroma1.it

L. Palagi
e-mail: laura.palagi@uniroma1.it

M. Piacentini
e-mail: piacentini@dis.uniroma1.it

V. Piccialli (B)
Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma Tor Vergata,
via del Politecnico, 1, 00133 Rome, Italy
e-mail: piccialli@disp.uniroma2.it

G. Rinaldi
Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” del CNR,
viale Manzoni, 30, 00185 Rome, Italy
e-mail: rinaldi@iasi.cnr.it

123

354 L. Grippo et al.

the corresponding heuristicSpeeDP-MC can generate high-quality cuts for very large,
sparse graphs of size up to a million nodes in a few hours.

Keywords Semidefinite programming · Low rank factorization ·
Unconstrained binary quadratic programming · Max-Cut ·
Nonlinear programming

Mathematics Subject Classification (1991) 20E28 · 20G40 · 20C20

1 Introduction

We consider a semidefinite programming (SDP) problem in the form

min
X

{Q • X : diag(X) = e, X � 0}, (1)

where Q ∈ S n is given, X ∈ S n (S n being the space of the n × n real symmetric
matrices), the symbol ‘•’ denotes the trace-inner product, e ∈ R

n is the vector of all
ones, diag(X) stands for the n-vector corresponding to the main diagonal of X , and,
finally, the constraint X � 0 requires X to be positive semidefinite.

Semidefinite programming problems of this form arise as relaxations of uncon-
strained {−1, 1} quadratic problems (see, e.g., [8,12,23,28]):

min
x

{
xT Qx : x ∈ {−1, 1}n

}
, (2)

which are equivalent to the Max-Cut problem.
Given the weighted adjacency matrix A of a weighted graph G = (N , E), the

Max-Cut problem calls for a bipartition (S, N\S) of its nodes so that the weight of
the corresponding cut, i.e., of the edges that go across the two sets of the bipartition,
is maximized. Denote by L the Laplacian matrix associated with A and defined by
L := diag(Ae) − A. Represent each bipartition (S, N\S) by an n-vector defined by
xi = 1 for i ∈ S and xi = −1 for i /∈ S. Then the Max-Cut problem can be formulated
as

max
x

{
1

4
xT Lx : x ∈ {−1, 1}n

}
. (3)

Since xT Lx = L•xxT and xxT � 0 with diag(xxT) = e, it is known that problem (1)
with Q = − 1

4 L provides a relaxation of Max-Cut. Producing a solution to problem (1)
efficiently is then of great interest for solving the corresponding integer problem (2)
exactly or for designing good heuristics (see, e.g., [30,32]).

The aim of this paper is twofold: on one side we define an efficient algorithm for
solving large scale instances of problem (1); on the other, by exploiting this useful
tool, we make it possible to apply a Goemans–Williamson type heuristic to find good
feasible solutions to very large instances of Max-Cut.

123

SpeeDP: an algorithm to compute SDP bounds 355

It is well known that problem (1) can be solved by semidefinite interior point
methods. However, these approaches typically become less attractive for instances
n > 20000 because those methods that make use of an explicit representation of the
basis matrix X have excessive memory requirements, while those that are based on
iterative methods (and usually solve the dual of problem (1)) are, to the best of our
knowledge, still too slow in practice. These limitations have motivated searching for
methods that are less demanding in terms of memory allocation and of computational
cost. In this perspective, the constraint structure of problem (1) has been exploited in
the literature to define special purpose algorithms.

One possibility is to reformulate the dual to (1) as an eigenvalue optimization
problem that can be solved, e.g., by spectral bundle methods [19].

The other option is to use nonlinear programming reformulations that eliminate
the semidefiniteness constraint from the primal problem (1) (see, e.g., [2,5–7,11,16,
20,21]). This is the line of research this paper falls into. Indeed, using the Gramian
representation, any given matrix X � 0 with rank r can be written as X = V V T ,
where V is an n × r real matrix. Therefore, the positive semidefiniteness constraint
can be eliminated and problem (1) reduces to the low rank SDP (LRSDP) formulation

min
V ∈Rn×r

{
Q • V V T : diag(V V T) = e

}
. (4)

Problem (4) can be written as the nonlinear programming (NLP) problem

min
v∈Rnr

⎧⎨
⎩qr (v) =

n∑
i=1

n∑
j=1

qi jv
T
i v j : ‖vi‖2 = 1, i = 1, . . . , n

⎫⎬
⎭ , (5)

where vi , i = 1, . . . , n, with r ≤ n, are the columns of the matrix V T and v ∈ �nr

is the vector obtained by stacking the column vectors vi for i = 1, . . . , n. Indeed this
relaxation was first derived by Goemans and Williamson in [12] by replacing each
variable xi of problem (2) with a vector vi ∈ R

r . It is possible to state conditions
that ensure correspondence among global solutions of problem (5) and solutions of
problem (1). Moreover, although problem (5) is non-convex, it is also possible to
state necessary and sufficient optimality conditions that can be used to check global
optimality [15,16,21].

In most of the papers based on solving problem (5), the solution is achieved by
means of an unconstrained reformulation. Indeed, the first idea of an unconstrained
model for problem (1) goes back to Homer and Peinado [20], but the dimension of
the resulting problem makes the method prohibitive for large scale problems. Burer
and Monteiro in [7] introduced an augmented Lagrangian for solving the low rank
reformulation of general linearly constrained SDP problems. In the numerical results
section of [7], for the special case (4) arising from Max-Cut, they combine the Homer
and Peinado approach with the “low rank idea”. By introducing the change of variables
Xi j = vT

i v j/‖vi‖‖v j‖, where vi ∈ R
r , i = 1, . . . , n, with r � n, they get the

unconstrained program

123

356 L. Grippo et al.

min
v∈Rnr

⎧⎨
⎩φ(v) =

n∑
i=1

n∑
j=1

qi j
vT

i v j

‖vi‖‖v j‖ , vi ∈ R
r

⎫⎬
⎭ . (6)

In [16], the constraints structure in problem (5) is exploited to get an expression
of the Lagrange multipliers λi , for i = 1, . . . , n, in closed form as a function of the
variables v (see (10)). Using such an expression in the augmented Lagrangian function
for problem (5) and choosing a sufficiently large value η > 0 for the penalty parameter,
the authors obtain an exact penalty function of the form

P(v) =
n∑

i=1

n∑
j=1

qi jv
T
i v j +

n∑
i=1

λi (v)
(
‖vi‖2 − 1

)
+ 1

2η

n∑
i=1

(
‖vi‖2 − 1

)2
. (7)

A single unconstrained minimization of the twice continuously differentiable function
P is enough to find a stationary point of problem (5). Computational experiments in
[16] with the resulting algorithmic scheme, called EXPA, showed significant compu-
tational advantages with respect to the best codes available in literature.

In this paper, we start from (6) to get a new unconstrained problem, for which we
retain a complete equivalence with problem (1). The specific feature of this formu-
lation is that we add a regularization term to the function φ in (6), which ensures
compactness of the level sets of the new merit function. This allows us to use stan-
dard optimization algorithms to solve problem (5). As we discuss in Sect. 4, this new
unconstrained approach has some advantages also over (7), which are confirmed by
the numerical results reported in Sect. 6. Indeed, the new algorithmic scheme, called
SpeeDP, outperforms the best existing methods for solving problem (1). Further-
more, SpeeDP (like other similar low rank approaches) has some nice features that
can be exploited to design a Max-Cut heuristic to find good cuts for very large graphs.
Indeed, if the value of r is fixed to a value independent of n (and if, as it is reasonable
to assume for large sparse instances, the graph has O(n) edges), SpeeDP is able to
derive a valid lower bound for problem (1), requiring O(n) memory. In addition, it
outputs the Gramian matrix of a solution X to problem (1). This implies that, once
SpeeDP has produced a solution, the famous Goemans–Williamson algorithm pro-
posed in [12] can be applied to find a good cut, essentially without any additional
computational effort. Therefore, it is possible to produce also an upper bound (close
to the SDP bound) for very large instances of problem (2). These features altogether
make it possible to find cuts in sparse graphs with millions of nodes and edges, with
observed gap lower than 5 % (when the edge weights are all positive) in quite practical
computation times.

Papers describing heuristics for Max-Cut abound in the literature. However, only in
a few cases these algorithms provide a bound on the optimality error for the generated
solutions that is close enough to the optimum to be of practical use.1 Excluding the
heuristics with a certified a priori bound (like the one of Goemans and Williamson)

1 Actually, simple bounds like, e.g., the sum of all positive edge weights, can always be easily provided,
but they are evidently useless to evaluate the quality of a heuristic solution.

123

SpeeDP: an algorithm to compute SDP bounds 357

the only cases when this bound is computed are those of the exact algorithms that
compute an upper bound on the value of an optimal solution, by solving a relaxation
of problem (3). If these algorithms are interrupted at an early stage, they provide
a heuristic cut, as a side product, along with an upper bound on the optimal value.
However, the computational studies based on this type of exact algorithms consider
graphs much smaller than those used for the test bed of this paper (see, e.g., [24] for the
polyhedral relaxations and [32] for a combination of SDP and polyhedral relaxation).
Despite the fact that we proposed a slight modification of the Goemans and Williamson
algorithm, our primary intent is not to contribute to the algorithms for Max-Cut with
a new heuristic but rather to make it feasible to compute an SDP based upper bound
for very large instances.

Before concluding this section, we note that other relaxations for problem (2)
have been proposed in literature. Among these, besides the above mentioned poly-
hedral relaxations, we mention the second order cone (SOC) approximation (see, e.g.,
[22,26]). Computational experiments based on SOC relaxation consider much smaller
instances than the ones considered in this paper (see also the computational results
in [32]). However, to the best of our knowledge, a comparison between SOCP and
low rank SDP approaches, when embedded in a branch and bound procedure, has not
been performed yet and would require further research work.

The paper is structured as follows: in Sect. 2 we report on some known results about
the LRSDP problem (4). In Sect. 3 we define the new unconstrained reformulation,
while in Sect. 4 we formally define the algorithm SpeeDP. In Sect. 5 we define our
heuristic, SpeeDP-MC, for finding good feasible solutions to large sparse instances
of Max-Cut. In Sect. 6 we compare the performance of SpeeDP against other existing
approaches for the SDP problem (1) on an extended set of instances of the Max-Cut
problem. Furthermore, we use SpeeDP-MC to find good solutions to large and huge
Max-Cut instances from random graphs.

2 Key results on the low rank SDP formulation and notation

In this section we define our basic notation and we report some useful results on the
LRSDP formulation (4).

Throughout the paper, for an r × n matrix M , by vec(M) ∈ R
rn we denote the

operator that creates a column vector by stacking the column vectors of M . Given a
vector v ∈ R

m , we define Bρ(v) = {y ∈ R
m : ‖y − v‖ < ρ}, for some ρ > 0.

For a given scalar x , by (x)+ we denote the maximum between x and zero, namely
(x)+ = max(x, 0).

A global minimum point of (4) is a solution to problem (1) provided that

r ≥ rmin = min
X∈X ∗

SDP

rank(X),

where X ∗
SDP denotes the optimal solution set of problem (1). Although the value of

rmin is not known, an upper bound can easily be computed by exploiting the result
proved in [1,18,29], that gives

123

358 L. Grippo et al.

rmin ≤ r̂ =
√

8n + 1 − 1

2
. (8)

Let v ∈ R
nr be the vector obtained by stacking the column vectors vi for i =

1, . . . , n. We say that a point v∗ ∈ R
nr solves problem (1) if X∗ = V ∗V ∗T is an

optimal solution to problem (1) (where vec(V ∗T) = v∗). This implies, by definition,
that r ≥ rmin.

The Karush–Kuhn–Tucker (KKT) conditions for problem (5) are written as follows:
for some λ ∈ R

n

n∑
j=1

qi jv j + λivi = 0, i = 1, . . . , n

‖vi‖2 = 1, i = 1, . . . , n.

(9)

We define a stationary point of problem (5) to be a v̂ ∈ R
nr satisfying (9) with a

suitable multiplier λ̂ ∈ R
n . Given a local minimizer v̂ ∈ R

nr of problem (5), the
KKT conditions are necessary for optimality and there exists a unique λ̂ ∈ R

n such
that (v̂, λ̂) satisfies (9). Indeed, given a pair (v, λ) satisfying the conditions (9), the
multiplier λ can be expressed uniquely as a function of v, namely

λi (v) = −vi
T

n∑
j=1

qi jv j , i = 1, . . . , n. (10)

By substituting the expression of λ in the first condition of (9), we get

n∑
j=1

qi j

(
Ir − viv

T
i

)
v j = 0 i = 1, . . . , n. (11)

Although problem (5) is non-convex, the primal-dual optimality conditions for (1),
combined with the necessary optimality conditions for (5), lead to the global optimality
condition proved in [15,16] and stated in the next proposition.

Proposition 1 A point v∗ ∈ R
nr is a global minimizer of problem (5) that solves

problem (1) if and only if it is a stationary point of problem (5) and satisfies

Q + Diag(λ(v∗)) � 0,

where λ(v∗) is computed according to (10).

Thanks to the above proposition, given a stationary point of problem (5), we can
prove its optimality by just checking that a certain matrix is positive semidefinite.

Another global condition has been proved in [21] for a slightly more general convex
SDP problem which includes problem (1) as a special case. It is proved that a local
minimizer V̂ ∈ R

n×r of the LRSDP problem provides a global solution X̂ = V̂ V̂ T

of the original SDP problem if V̂ is rank deficient, namely if rank(V̂) < r . Actually,

123

SpeeDP: an algorithm to compute SDP bounds 359

looking at the proof, it turns out that the assumption that V̂ is a local minimizer can
be relaxed. Instead, it is enough to require that V̂ satisfies the second order necessary
conditions for the LRSDP problem (see [14] for the restatement and the proof of this
condition).

3 A new unconstrained formulation of the SDP problem

We start with the unconstrained formulation (6) proposed in [7], where it was shown
to be quite effective in computations. It is easy to show that problems (4) and (6) are
equivalent (see [13]). However, function φ in (6) is not defined at those points where
‖vi‖ = 0 for at least one index i , and it has non compact level sets, so that standard
convergence results for unconstrained minimization methods are not immediately
applicable.

We modify the objective function φ given in (6) in order to obtain an unconstrained
problem that can be solved by standard methods. In particular, we add the regularization
term

n∑
i=1

(‖vi‖2 − 1)2

d(vi)
, (12)

where the term

d(vi) = δ2 −
(

1 − ‖vi‖2
)2

+, 0 < δ < 1 (13)

acts as a shifted barrier on the open set

Sδ = {v ∈ R
nr : ‖vi‖2 > 1 − δ, i = 1, . . . , n}.

For a fixed ε > 0 and for a fixed r ≥ 1, we consider the unconstrained minimization
problem

min
v∈Rnr

{
fε(v) = φ(v) + 1

ε

n∑
i=1

(‖vi‖2 − 1)2

d(vi)
, v ∈ Sδ

}
. (14)

Both φ and Sδ depend on r ; however, we omit the explicit indication of this dependency
to simplify notation.

We start by investigating the theoretical properties of fε. This function is continu-
ously differentiable on the open set Sδ with gradient components

∇vi fε(v) = ∇vi φ(v) + 4

ε

(‖vi‖2 − 1)

d(vi)

[
1 − (‖vi‖2 − 1)(1 − ‖vi‖2)+

d(vi)

]
vi ,

where

123

360 L. Grippo et al.

∇vi φ(v) = 2

‖vi‖

⎡
⎣

n∑
j=1

qi j

(
Ir − vi

‖vi‖
vi

T

‖vi‖
)

v j

‖v j‖

⎤
⎦ .

The first important property is the compactness of the level sets of function fε,
which guarantees the existence of a solution to problem (14). In the following, F
stands for the feasible set of problem (5), i.e.,

F = {v ∈ R
nr : ‖vi‖2 = 1, i = 1, . . . , n}.

Proposition 2 For every given ε > 0 and for every given v0 ∈ F , the level
set Lε(v

0) = {v ∈ Sδ : fε(v) ≤ fε(v0)} is compact and

Lε(v
0) ⊆

{
v ∈ R

nr : ‖vi‖2 ≤ (2Cεδ2)
1
2 + 1, i = 1, . . . , n

}
, (15)

with C = ∑n
i=1

∑n
j=1 |qi j | > 0.

Proof First, for every v ∈ R
nr , with vi = 0 for i = 1, . . . , n, we have that

φ(v) =
n∑

i=1

n∑
j=1

qi j
vT

i v j

‖vi‖‖v j‖ ≥ −
n∑

i=1

n∑
j=1

|qi j | |vT
i v j |

‖vi‖‖v j‖ ≥ −C .

Hence, we get

fε(v) ≥ −C + 1

ε

(‖vi‖2 − 1)2

δ2 , for all i = 1, . . . , n. (16)

For every given v ∈ Lε(v
0), as v0 ∈ F , we can write fε(v) ≤ fε(v0) = φ(v0) ≤ C ,

so that, using (16), we get ‖vi‖2 ≤ (2Cεδ2)
1
2 +1, i = 1, . . . , n. This implies that (15)

holds and hence that Lε(v
0) is bounded.

On the other hand, any limit point v̂ of a sequence of points {vk} in Lε(v
0) cannot

belong to the boundary of Sδ . Indeed, if ‖v̂i‖2 = 1 − δ for some i , then (13) implies
d(v̂i) = 0, and hence limk→∞ fε(vk) = ∞; but this contradicts vk ∈ Lε(v

0) for k
sufficiently large. Therefore, the level set Lε(v

0) is also closed and the claim follows.
��

The following theorem states the correspondence between stationary points,
local/global minimizers of (14), and stationary points, local/global minimizers of (5),
respectively.

This result exploits an interesting property of the objective function φ of prob-
lem (6). For every v ∈ Sδ , its gradient with respect to vi is orthogonal to the vector
vi , namely the following holds, for i = 1, . . . , n:

vT
i ∇vi φ(v) = 2

⎡
⎣

n∑
j=1

qi j

(
vT

i

‖vi‖ − vT
i vi

‖vi‖2

vi
T

‖vi‖

)
v j

‖v j‖

⎤
⎦ = 0. (17)

123

SpeeDP: an algorithm to compute SDP bounds 361

Theorem 1 For every ε > 0 and r ≥ 1, v̂ is a stationary point, a local/global
minimizer of (14) in Sδ if and only if it is a stationary point, a local/global minimizer
of (5), respectively.

Proof First, we recall that, for every v ∈ Sδ , vi = 0 for all i = 1, . . . , n. Furthermore,
by definition of ∇vi fε(v) and by (17), we get, for every vi with i = 1, . . . , n,

vT
i ∇vi fε(v) = 4

ε

(‖vi‖2 − 1)vT
i vi

d(vi)

(
1 − (‖vi‖2 − 1)(1 − ‖vi‖2)+

d(vi)

)
.

Therefore, if ‖vi‖2 ≥ 1, we get

vT
i ∇vi fε(v) = 4

ε

(‖vi‖2 − 1)‖vi‖2

δ2 , (18)

otherwise

vT
i ∇vi fε(v) = 4

ε

(‖vi‖2 − 1)‖vi‖2

d(vi)

(
1 + (‖vi‖2 − 1)2

d(vi)

)
. (19)

Furthermore, if v ∈ F ,

fε(v) = qr (v) (20)

∇vi fε(v) = 2
n∑

j=1

qi j (Ir − vivi
T)v j , i = 1, . . . , n. (21)

Now we prove the correspondences stated in our claims.

Case 1. (Correspondence of stationary points).
Necessity. By (18) and (19), with v̂ ∈ Sδ a stationary point of fε, we have v̂ ∈ F .

Hence, as a result of (21) and (11), v̂ is a stationary point also for problem (5).
Sufficiency. Let v̂ be a stationary point for problem (5). Then, v̂ ∈ F and (11)

holds, so that from (21) we get ∇vi fε(v̂) = 0 for i = 1, . . . , n.

Case 2. (Correspondence of global minimizers).
Necessity. By Proposition 2, the function fε admits a global minimizer v̂, which

is obviously a stationary point of fε and hence we have that v̂ ∈ F , so that fε(v̂) =
qr (v̂). We proceed by contradiction. Assume that a global minimizer v̂ of fε is not
a global minimizer of problem (5). Then there exists a point v∗, global minimizer of
problem (5), such that fε(v̂) = qr (v̂) > qr (v

∗) = fε(v∗), but this contradicts the
assumption that v̂ is a global minimizer of fε.

Sufficiency. The claim is true by similar arguments.

Case 3. (Correspondence of local minimizers).
Necessity. Since v̂ is a local minimizer of fε, it is a stationary point of fε, so that

v̂ ∈ F . Thus, fε(v̂) = qr (v̂). Furthermore, there exists a ρ > 0 such that qr (v̂) =

123

362 L. Grippo et al.

fε(v̂) ≤ fε(v), for all v ∈ Sδ ∩ Bρ(v̂). Therefore, by using (20), for all v ∈ F ∩ Bρ(v̂),
we have qr (v̂) ≤ fε(v) = qr (v) and hence v̂ is a local minimizer for problem (5).

Sufficiency. Since v̂ is a local minimizer of (5), there exists a ρ > 0 such that, for all
v ∈ F ∩ Bρ(v̂), qr (v̂) = fε(v̂) ≤ qr (v) = fε(v). We want to show that there exists
γ such that, for all v ∈ Sδ ∩ Bγ (v̂), we get fε(v̂) ≤ fε(v). It is sufficient to show that
there is a γ > 0 such that, for all v ∈ Sδ ∩ Bγ (v̂), we have that p(v) ∈ F ∩ Bρ(v̂),
where p(v) has components pi (v) = vi/‖vi‖ for i = 1, . . . , n.Indeed, in this case
we have qr (v̂) = fε(v̂) ≤ qr (p(v)) = fε(p(v)) ≤ fε(v). Given vi = 0 ∈ R

r ,
its projection over the unit norm set is simply vi/‖vi‖, so that for v̂ ∈ F we have∥∥ vi − v̂i

∥∥ ≥ ‖ vi − vi/ ‖ vi‖‖. Hence, for a chosen γ < ρ/2, we can write

‖p(v) − v̂‖2 =
n∑

i=1

∥∥∥∥v̂i − vi

‖vi‖
∥∥∥∥

2

=
n∑

i=1

∥∥∥∥v̂i − vi

‖vi‖ + vi − vi

∥∥∥∥
2

≤
n∑

i=1

(
‖v̂i − vi‖2 +

∥∥∥∥vi − vi

‖vi‖
∥∥∥∥

2

+ 2‖v̂i − vi‖
∥∥∥∥vi − vi

‖vi‖
∥∥∥∥
)

≤
n∑

i=1

4‖v̂i − vi‖2 = 4‖v̂ − v‖2 < 4γ 2 < ρ2.

Therefore, we have fε(v̂) ≤ fε(v) for all v ∈ Sδ ∩ Bγ (v̂), so that v̂ is a local minimizer
also for (14). ��

4 SpeeDP: an efficient algorithm for solving the SDP problem

In this section, we define an algorithm for solving problem (1) that exploits the results
stated in the previous sections.

In Sect. 2 we have seen that for r ≥ rmin a global solution of problem (5) provides
a solution to problem (1). Moreover, Theorem 1 states a complete correspondence
between problems (5) and (14). Since fε is continuously differentiable over the set
Sδ and, by Proposition 2, it has compact level sets, we can find a stationary point
of problem (14) by applying any globally convergent unconstrained minimization
method (see, e.g., [4]).

The value of rmin is not known a priori and, in principle, the only computable value
of r that guarantees the correspondence between solutions of (1) and global solutions
of (5), is given by the number r̂ defined in (8). However, computational tests show
that this value is usually larger than the actual value needed to obtain a solution to
problem (1). Following the idea presented in [16] and [7], we use an incremental
rank scheme starting with r � r̂ , and we employ the global optimality condition of
Proposition 1 to prove optimality of the current solution.

Concerning the method for finding a stationary point of problem (14), we select a
gradient type method defined by an iteration of the form

vk+1
i = vk

i − αk∇vi fε(v
k) i = 1, . . . , n, (22)

123

SpeeDP: an algorithm to compute SDP bounds 363

where αk ∈ (0, αM], for some αM > 0, is obtained by a suitable line-search procedure
satisfying

fε(v
k+1) ≤ fε(v

0), (23)

with v0 ∈ F .
The choice of a gradient type method for the minimization of fε guarantees (see

Proposition 3 below) that, for ε sufficiently large, the whole sequence of iterations
stays in the set {v ∈ R

nr : ‖vi‖2 ≥ 1, i = 1, . . . , n}. Hence, for ε sufficiently large,
the barrier term (13) reduces to a constant, thus avoiding the annoying effect of getting
close to the boundary of Sδ , which might negatively affect the behavior of the algorithm.

Proposition 3 Let {vk} be the sequence generated with the iterative scheme (22) for
a given v0 ∈ F , where each αk satisfies (23) and αk ≤ αM . Then, there exists ε̄ > 0
such that, for every ε ≥ ε̄, we have, for all k,

‖vk
i ‖ ≥ 1, i = 1, . . . , n.

Proof By (23), for a fixed value ε > 0 the sequence {vk} stays in the compact level
set Lε(v

0). The proof is by induction. Assume that there exists ε̄ > 0 such that, for
any ε ≥ ε̄, it is true that ‖vk

i ‖2 ≥ 1. We show that the same is true also for k replaced
k + 1. We can write

‖vk+1
i ‖2 = ‖vk

i ‖2 + (αk)2‖∇vi fε(v
k)‖2 − 2αk(vk

i)T ∇vi fε(v
k)

≥ ‖vk
i ‖2 − 8αM

εδ2 (‖vk
i ‖2 − 1)‖vk

i ‖2,

where we use (18). If ‖vk
i ‖ = 1, then ‖vk+1

i ‖2 ≥ 1. Otherwise, if ‖vk
i ‖ > 1, we need

to verify that a value of ε̄ exists such that, for all ε ≥ ε̄,

(‖vk
i ‖2 − 1) − 8αM

εδ2 (‖vk
i ‖2 − 1)‖vk

i ‖2 ≥ 0,

namely

1 − 8αM

εδ2 ‖vk
i ‖2 ≥ 0. (24)

By Proposition 2, we have that ‖vk
i ‖2 ≤ (2Cεδ2)

1
2 + 1 for all k, which combined

with (24) implies that ε has to satisfy

ε − 8
αM

δ2

(
(2Cδ2ε)

1
2 + 1

)
≥ 0,

which is possible for a sufficiently large value of ε. ��
At this point we are ready to define the algorithm SpeeDP.

123

364 L. Grippo et al.

ALGORITHM SpeeDP
Initialization. Set integers 2 ≤ r1 < r2 < · · · < r p with r p ∈ [̂r , n], where r̂ is

given by (8). Choose ε > 0, δ ∈ (0, 1), and tolε > 0.
For j = 1, . . . , p do:

S.0 Set r = r j .
S.1 Starting from v0 ∈ F , find a stationary point v ∈ R

nr of problem (14)
by a gradient type method satisfying (22) and (23).

S.2 Compute the multiplier λ with (10).
S.3 Determine the minimum eigenvalue μmin(λ) of Q + Diag(λ).
S.4 If μmin(λ) ≥ −tolε, then exit.

Return v, r = r j , λ, and μmin(λ).

SpeeDP returns v and μmin(λ). If μmin(λ) ≥ −tolε, then the matrix Q + Diag(λ)

is positive semidefinite within a tolerance tolε so that a solution (or a good approx-

imation) to problem (1) is obtained as X∗ = V V
T

, where V ∈ R
n×r is such that

vec(V
T
) = v. Recall that the value

zL B = −eT λ + nμmin(λ),

provides a lower bound to the solution of problem (1) (see, e.g, [16,31]). Incidentally,
note that the bound is valid for every λ; moreover for every v ∈ R

nr , if λ is computed

by means of (10), it is easy to check that −eT λ = Q • V V
T

.
Finally, we want to stress the advantages of the SpeeDP algorithm based on the

merit function fε over the scheme EXPA based on the penalty function (7) introduced
in [16].

• The theoretical properties of the exact penalty function (7) depend on the penalty
parameter η that is required to be smaller than a certain threshold value. However,
choosing a small value of η may negatively affect both the efficiency and the
accuracy of the algorithm EXPA. On the contrary, the equivalence properties of
the merit function introduced in this paper hold for any value of the parameter
ε > 0.

• Each computation of the penalty function (7) requires the evaluation of the multi-
plier function λ(v) as in (10) which is not needed in the function fε . This implies
that the computation of fε requires less matrix-vector products than the evaluation
of the function (7), with a significant reduction of computational time.

All these advantages are supported by the numerical results reported in Sect. 6.

5 SpeeDP-MC: a heuristic for large scale Max-Cut instances

In this section we combine the algorithm SpeeDP for computing the SDP
bound with a heuristic for the Max-Cut problem (3). Note that, differently from
the previous sections, here we address a maximization problem. Therefore, the
meanings of the terms “lower” and “upper” bound have now to be referred to
problem (3).

123

SpeeDP: an algorithm to compute SDP bounds 365

Our heuristic is essentially the one due to Goemans and Williamson and described
in [12], integrated with SpeeDP and a few simple additional details.

Let X be the optimal solution to (1) and let vi ∈ R
r , i = 1, . . . , n, be vectors

whose Gramian matrix coincides with X . Recall that the Goemans–Williamson (GW)
algorithm outputs the node bipartition (S, N\S) with S = {i : hT vi ≥ 0}, where
h ∈ R

r is generated from a uniform random distribution on the unit sphere {x ∈ R
r :

‖x‖ = 1}.
We choose the GW heuristic for two main reasons. First, because it has a good

theoretical approximation ratio. Indeed, the expected weight of (S, N\S) is shown
in [12] to be at most 12.1 % below the optimal value of (1) for instances with a
nonnegative weighted adjacency matrix (a more general case is treated in [27,28]).
Second, because the only ingredient necessary to run the algorithm is the set of vec-
tors vi ∈ R

r , i = 1, . . . , n, which are precisely the SpeeDP output. Hence SpeeDP
makes it possible to apply the GW approximation algorithm to very large graphs since,
on the one hand, it is able to solve problem (1) in a reasonable amount of time also
for very large graphs and, on the other hand, it provides the vectors vi , i = 1, . . . , n,
“for free”.

To the contrary, once the SDP bound has been computed with interior point meth-
ods, additional computational effort is necessary to produce the vectors vi , with
i = 1, . . . , n.

In our procedure the cut provided by the Goemans–Williamson algorithm is then
improved by means of a 1-opt local search, where all possible moves of a single vertex
to the opposite set of the partition are checked and moves are made until no further
improvement is possible.

In [10], where a similar heuristic is described but problem (1) is solved by an
interior point algorithm, a particularly successful step is proposed to further improve
on the solution. The whole procedure is repeated a few times where the solution matrix
X of problem (1) is replaced by the convex combination X ′ = αX + (1 − α)x̂ x̂ T ,
0 < α < 1, where x̂ is the representative vector of the current best cut. The idea behind
this step is to bias the Goemans–Williams rounding with the current best cut or, put it
differently, to force the rounding procedure to generate a cut in a neighborhood of the
current best solution.

This step does not require to solve problem (1) again, but needs the Cholesky
factorization of the matrix X ′.

We use a similar technique in our procedure. However, to avoid the Cholesky
factorization, which is not suitable for very large instances, we solve a new problem (1)
after perturbing the objective function. Matrix Q is replaced by the perturbed matrix
Q′ given by Q′ = Q + β x̂ x̂ T with β > 0.

Such a perturbation has again the effect of moving the solution of prob-
lem (1) and hence of the Goemans–Williamson rounding, towards a neighbor-
hood of the current best integral solution. With the new objective function Q′ we
solve problem (1) with SpeeDP and repeat the rounding and the 1-opt improve-
ment as well. The whole procedure is repeated a few times with different values
of β.

Summarizing, the scheme of our heuristic algorithm is as follows:

123

366 L. Grippo et al.

ALGORITHM SpeeDP-MC
Data A graph G = (N , E), its Laplacian matrix L , α > 0, kmax.
Initialization Set Q = − 1

4 L , x̂ = e and β = α
∑

i, j |qi j |/|E |.
For k = kmax , . . . , 0 do:

S.0 Set β = kβ and Q′ = Q + β(x̂ x̂ T).
S.1 Apply SpeeDP to problem (1) with Q = Q′ and let vi , i = 1, . . . , n be the

returned solution and zL B the corresponding computed lower bound.
S.2 Apply the Goemans–Williamson hyperplane rounding technique to the

vectors vi , i = 1, . . . , n. This gives a bipartition representative vector x̄ .
S.3 Apply the 1-opt improvement to x̄ . This gives a new bipartition

representative vector x̃ . If Q′ • x̃ x̃ T < Q′ • x̂ x̂ T , set x̂ = x̃ .

Return Best cut x̂ , lower bound −Q′ • x̂ x̂ T , upper bound −zL B .

Note that the amount of perturbation decreases after each iteration until it gets
to zero. We stress that repeating step 1 several times is not as expensive as it may
appear, because we make use of a warm start technique: beginning from the second
iteration, we start SpeeDP from the solution found at the previous step, so that each
computation of the minimum is sensibly cheaper than the first one.

Besides the ability of treating graphs of very large sizes, another advantage of
SpeeDP-MC is that it also provides a solution with a guaranteed optimality error
bound, since it outputs an upper and lower bound on the value of the optimal cut.

6 Numerical results

In this section, we describe our computational experience both with algorithmSpeeDP
for solving problem (1), and with the heuristicSpeeDP-MC for finding good Max-Cut
solutions for large graphs.
SpeeDP is implemented in Fortran 90 and all the experiments have been run on a

PC with 2 GB of RAM.
The parameters δ and ε in (14) have been set to 0.25 and 103 · δ−1, respectively.

The tolerance tolε has been set to 10−3.
For the unconstrained optimization procedure we use a Fortran 90 implementation

of the non-monotone version of the Barzilai–Borwein method proposed in [17] which
satisfies (22) and (23).

As for the choice of the starting value r1 of the rank, we use the same rule based
on n as in [16] using values 8 ≤ r1 ≤ 30 for n from 100 up to more than 20000.
The updating rule for the rank r j is simple r j+1 = min

{�r j · 1.5�, r̂
}

where r̂ is
given in (8).

Positive semidefiniteness of Q + Diag(λ) is checked by means of the subroutines
dsaupd and dseupd of the ARPACK library.

As a first step, we consider SpeeDP for solving problem (1). We compare the
performance ofSpeeDPwith the best codes in literature in the main classes of methods
for solving problem (1): interior point methods, Spectral Bundle methods, and low
rank NLP methods.

123

SpeeDP: an algorithm to compute SDP bounds 367

As an interior point method we select the dual-scaling algorithm defined in [3] and
implemented in the software DSDP (version 5.8) downloaded from the web page.2

The code DSDP is considered particularly efficient for solving problems with low-
rank structure and sparsity in the data (as it is the case for Max-Cut instances). In
addition, DSDP has relatively low memory requirements for an interior point method,
and is indeed able to solve instances up to around 10000 nodes. As a Spectral Bundle
method, we use SB, which can be found in [19] and is downloadable from the web
page.3

To make a comparison with other NLP based methods, we choose the code
SDPLR-MC, proposed by Burer and Monteiro in [7], downloadable from the web
page,4 and the code EXPA proposed in [16].

Both EXPA and SDPLR-MC have a structure similar to SpeeDP. Indeed, the main
scheme differs in the way of finding a stationary point for problem (5). We remark
that SDPLR-MC does not check the global optimality condition Q + Diag(λ) � 0,
while both EXPA and SpeeDP do.

Our benchmark set consists of standard instances of the Max-Cut problem with
number of nodes ranging from 100 to 20000 and different degrees of sparsity. The
first set of problems belongs to the SDPLIB collection of semidefinite programming
test problems (hosted by B. Borchers) that can be downloaded from the web page.5 The
second set of problems belongs to the group Gset of randomly generated problems
by means of the machine-independent graph generator rudy [33]. These problems can
also be downloaded from Burer’s web page (see footnote 4).
SpeeDP, EXPA, SDPLR-MC, and SB solve all the test problems, whereas DSDP

runs out of memory on the two largest problems (G77 andG81of theGset collection).
Hence we eliminate these two test problems in the comparisons with DSDP.

We compare the different codes on the basis of the level of accuracy and of the
computational time. Besides reporting detailed results in tables, we use a graphical
view of the results by using the performance profile, proposed in [9]. Given a set of
solvers S and a set of problems P , we compare the performance of a solver s ∈ S on
problem p ∈ P against the best performance obtained by any solver in S on the same
problem. To this end we define the performance ratio

rp,s = tp,s

min{tp,s′ : s′ ∈ S} ,

where tp,s is the performance criterion used, and we consider a cumulative distribution
function ρs(τ) = 1

|P| |{p ∈ P : rp,s ≤ τ }|. Then we draw ρs(τ) with respect to the
parameter τ that is represented on the x-axis with a logarithmic scale. The ‘higher’
the resulting curve the better is the corresponding method with respect to the criterion
chosen; efficiency is measured by how fast the curve reaches the value of 1 (since all

2 http://www-unix.mcs.anl.gov/DSDP/.
3 http://www-user.tu-chemnitz.de/~helmberg/.
4 http://dollar.biz.uiowa.edu/~sburer/software/SDPLR.
5 http://euler.nmt.edu/~brian/sdplib.

123

http://www-unix.mcs.anl.gov/DSDP/
http://www-user.tu-chemnitz.de/~helmberg/
http://dollar.biz.uiowa.edu/~sburer/software/SDPLR
http://euler.nmt.edu/~brian/sdplib

368 L. Grippo et al.

Table 1 Optimal values

problem SpeeDP EXPA SDPLR_MC SB DSDP

primal primal primal dual primal dual

mcp100 −226.15735 −226.15734 −226.15129 −226.15923 −226.15733 −226.15735

mcp124-1 −141.99048 −141.99041 −141.99003 −141.99370 −141.99044 −141.99048

mcp124-2 −269.88017 −269.88016 −269.88016 −269.88222 −269.88012 −269.88017

mcp124-3 −467.75011 −467.75010 −467.75009 −467.75370 −467.75004 −467.75012

mcp124-4 −864.41186 −864.41183 −864.41181 −864.41997 −864.41166 −864.41187

mcp250-1 −317.26434 −317.26421 −317.26431 −317.27079 −317.26429 −317.26435

mcp250-2 −531.93008 −531.93001 −531.92973 −531.93491 −531.92998 −531.93009

mcp250-3 −981.17257 −981.17248 −981.17239 −981.17796 −981.17239 −981.17257

mcp250-4 −1681.9601 −1681.9597 −1681.9570 −1681.9750 −1681.9600 −1681.9601

mcp500-1 −598.14849 −598.14798 −598.14800 −598.15877 −598.14840 −598.14852

mcp500-2 −1070.0566 −1070.0562 −1045.0727 −1070.0759 −1070.0566 −1070.0568

mcp500-3 −1847.9700 −1847.9694 −1847.9666 −1847.9836 −1847.9695 −1847.9700

mcp500-4 −3566.7376 −3566.7357 −3566.7334 −3566.7479 −3566.7377 −3566.7381

G01_mc −12083.198 −12083.197 −12083.042 −12083.265 −12083.196 −12083.198

G11_mc −629.16298 −629.14611 −629.15995 − 629.17007 −629.16472 −629.16478

G14_mc −3191.5667 −3191.5654 −3191.5633 −3191.5847 −3191.5661 −3191.5668

G22_mc −14135.946 −14135.943 −14135.867 −14136.044 −14135.945 −14135.946

G32_mc −1567.6303 −1567.5895 −1567.6323 −1567.6519 −1567.6394 −1567.6397

G35_mc −8014.7388 −8014.7379 −8014.7307 −8014.8070 −8014.7376 −8014.7397

G36_mc −8005.9552 −8005.9512 −8005.9483 −8006.0213 −8005.9632 −8005.9638

G43_mc −7032.2217 −7032.2196 −7032.2078 −7032.2749 −7032.2208 −7032.2219

G48_mc −5999.9993 −5999.9968 −5999.9662 −6000.0000 −5999.9985 −6000.0000

G51_mc −4006.2553 −4006.2533 −4006.2537 −4006.2745 −4006.2546 −4006.2555

G52_mc −4009.6384 −4009.6380 −4009.6202 −4009.6574 −4009.6383 −4009.6388

G55_mc −11039.460 −11039.450 −11039.341 −11040.159 −11039.449 −11039.461

G57_mc −3885.4783 −3885.3318 −3885.4501 −3885.5189 −3885.4868 −3885.4892

G58_mc −20135.875 −20135.854 −20136.032 −20136.287 −20136.181 −20136.190

G60_mc −15222.239 −15222.220 −15222.138 −15223.193 −15222.257 −15222.268

G62_mc −5430.8903 −5430.6629 −5430.8413 −5430.9512 −5430.9084 −5430.9104

G63_mc −28243.308 −28243.218 −28243.876 −28244.577 −28244.406 −28244.418

G64_mc −10465.836 −10465.804 −10465.868 −10465.970 −10465.898 −10465.904

G65_mc −6205.4852 −6205.2216 −6205.4434 −6205.5822 −6205.5322 −6205.5382

G66_mc −7077.1819 −7077.0132 −7077.1139 −7077.2640 −7077.2090 −7077.2137

G67_mc −7744.3288 −7744.2624 −7744.3011 −7744.4942 −7744.4245 −7744.4365

G70_mc −9861.5209 −9861.4825 −9861.3992 −9861.7340 −9861.5143 −9861.5246

G72_mc −7808.3993 −7808.1436 −7808.4139 −7808.5914 −7808.5343 −7808.5393

123

SpeeDP: an algorithm to compute SDP bounds 369

0110 1 10 2

0

1

SpeeDP
EXPA

SDPLR-MC
DSDP

0.5

Fig. 1 Performance profile with performance criterion equal to primal–dual gap

0101 1 10 2

0

1

SpeeDP

EXPA
SDPLR-MC

SB
DSDP

0.5

Fig. 2 CPU time performance profiles

the methods solve all the problems, all the methods eventually reach the performance
value 1 if a sufficiently large τ is allowed).

As for the accuracy, following [25], we report the primal and/or the dual objective
function values obtained by the five methods in Table 1. DSDP gives both primal and
dual values in output, SpeeDP, EXPA, and SDPLR-MC return the primal objective
value only, while SB produces a value of the dual objective function that is a bound
on the optimal value of problem (1). Furthermore, we plot the performance profile
in Fig. 1, choosing the relative duality gap as a performance criterion. In particular,
we consider the relative difference between the primal value f ∗

p,s of any solver s on
problem p and dual value f ∗

p,DSDP given by DSDP, namely we set

tp,s = f ∗
p,s − f ∗

p,DSDP

1 + | f ∗
p,s | + | f ∗

p,DSDP|
.

By analyzing them, it emerges that, as for the accuracy, SpeeDP can be con-
sidered comparable with DSDP, whereas EXPA, SDPLR-MC, and SB are usually
worse.

As for the computational efficiency, we do not report the CPU times of our com-
putational experiments explicitly; instead in Fig. 2 we give an overall view of the
results by showing the performance profile of the five methods where the performance
criterion tp,s is the CPU time in seconds needed by solver s to solve problem p.

123

370 L. Grippo et al.

Table 2 Optimal values and computation time for G77 and G81

prob accuracy time

primal
SpeeDP

primal
EXPA

primal
SDPLR_MC

dualSB SpeeDP EXPA SDPLR_MC SB

G77 −11045.6 −11045.1 −11045.4 −11045.8 57.8 54.2 71.7 4260.6

G81 −15656.1 −15655.6 −15655.8 −15656.3 64.7 86.5 108.3 33538.2

Fig. 3 Average SpeeDP-MC CPU time for random graphs

The results related to the two problemsG77 andG81 are reported separately in Table 2.
It emerges from these profiles and from the table that SpeeDP outperforms all the
other methods.

Finally, we report on the numerical results obtained by the heuristic algorithm
SpeeDP-MC described in Sect. 5 applied to some large random graphs. SpeeDP-MC
is implemented in C and uses the Fortran 90 version of SpeeDP as a routine. As for
the parameters, in the experiments we set kmax = 2 and α = 10−2. We generated
500 random vectors h in the Goemans–Williamson heuristic and we selected the one
that provides the best cut. We used the graph generator rudy [33] to produce instances
with several sizes and densities and different weights. We first considered graphs with
node sizes n equal to 500 + i · 250, for i = 0, . . . , 8 and with edge densities equal
to 10 % + i · 10 %, for i = 0, . . . , 9. For each pair (n,density) we generated three
different graphs with positive weights ranging between 1 and 100. Details on the
results can be found in [14]. We draw in Fig. 3 the average CPU time and in Fig. 4 the
gap obtained, as a function of the graph density.

As it emerges from the figures, the heuristic is able to produce a good cut in a small
amount of time. As expected, the performance of the heuristic is better on sparse graphs
in term of time, but the gap decreases when the graph density increases. The average
gap on all instances is 1.5 % and the average CPU time is 340.6 s, while the average
gap obtained by a plain Goemans–Williamson algorithm (no 1-opt improvement and
kmax = 0) is 2.04 % with an average CPU time of 95.7 s.

123

SpeeDP: an algorithm to compute SDP bounds 371

Fig. 4 Average SpeeDP-MC gap for random graphs

Table 3 Random sparse graphs with 100001 nodes and 7050827 edges

weights upper bound best cut SpeeDP- MC plain GW

CPU time gap% CPU time gap%

1 4110550.6 3962681 16961 3.60 1182 5.24

[1, 100] 212084176.3 203457740 18202 4.07 1208 5.97

[−1000, 1000] 21006828446.4 20146336217 17055 4.10 1183 5.99

Furthermore, we consider huge graphs, in order to explore how far we can go with
the number of nodes. For this set of instances, we run SpeeDP-MC on a machine with
6 GB of RAM and we set kmax = 5 and α = 10−2.

We generate three random graphs with 100001 nodes, 7050827 edges and different
edge weights. For this set of graphs, given the huge size, we choose not to increment r
in SpeeDP and we set r = 60. The results are shown in Table 3, where we report the
weight ranges, the upper bound value, the weight of the best cut obtained by SpeeDP-
MC, and finally the total CPU time and the % gap for both SpeeDP-MC and the plain
GW heuristic.

We also generated some 6-regular graphs (3D toroidal grid graphs) with 1030301
nodes, 3090903 edges, and different edge weights. Also in this case r was not allowed
to change and was set to a value of 90. The results are reported in Table 4. To the best of
our knowledge, no other methods can achieve this accuracy for graphs of comparable
size.

7 Concluding remarks and future work

In this paper we defineSpeeDP, a fast globally convergent algorithm for solving prob-
lem (1), which belongs to the family of low rank nonlinear programming approaches.

123

372 L. Grippo et al.

Table 4 6-regular graphs with 1030301 nodes and 3090903 edges

weights upper bound best cut SpeeDP- MC plain GW

CPU time gap% CPU time gap%

1 3090151.2 3060300 2710 0.97 1401 0.98

[1, 10] 15454781.5 15337609 5391 0.76 1445 0.88

[1, 1000] 1545558266.8 1534308113 8943 0.73 1636 0.85

[−100, 100] 57317884.9 49012182 13683 14.49 1648 26.31

SpeeDP outperforms existing methods for solving the special structured semidefi-
nite programming problem (1) and provides both a primal and an approximate dual
bound. We also define a heuristic algorithm for Max-Cut, which is a straightforward
enhancement of the Goemans–Williamson method, and is able to handle graphs with
up to millions of nodes and edges. The heuristic produces both a feasible cut and a
valid bound, hence it can certify the maximal deviation of the weight of this cut from
the optimum. As a future step, we plan to include SpeeDP in a branch-and-bound
scheme similarly to what has been done for an interior point method in the BiqMac
code of [32]. This way, we aim at increasing the size of the Max-Cut instances that
can be solved exactly by semidefinite programming.

Acknowledgments We would like to thank the three anonymous referees for their valuable remarks and
suggestions that helped us to improve the writing of this paper.

References

1. Barvinok, A.: Problems of distance geometry and convex properties of quadratic maps. Discret. Com-
put. Geom. 13, 189–202 (1995)

2. Benson, H.Y., Vanderbei, R.J.: On formulating semidefinite programming problems as smooth convex
nonlinear optimization problems. Technical Report ORFE 1999–01, Princeton University, NJ (1999)

3. Benson, S.J., Ye, Y., Zhang, X.: Solving large-scale sparse semidefinite programs for combinatorial
optimization. SIAM J. Optim. 10(2), 443–461 (2000)

4. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)
5. Burer, S., Monteiro, R.D., Zhang, Y.: Solving a class of semidefinite programs via nonlinear program-

ming. Math. Program. 93, 97–122 (2002)
6. Burer, S., Monteiro, R.D.C.: A projected gradient algorithm for solving the maxcut sdp relaxation.

Optim. Methods Softw. 15(3–4), 175–200 (2001)
7. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs

via low-rank factorization. Math. Program. 95, 329–357 (2003)
8. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maximum cut problem. Math. Program. 62(3),

557–574 (1993)
9. Dolan, E., Morè, J.: Benchmarking optimization software with performance profile. Math. Program.

91, 201–213 (2002)
10. Fischer, I., Gruber, G., Rendl, F., Sotirov, R.: Computational experience with a bundle approach

for semidefinite cutting plane relaxations of Max-Cut and equipartition. Math. Program. 105(2–3),
451–469 (2006)

11. Fletcher, R.: Semi-definite matrix constraints in optimization. SIAM J. Cont. Optim. 23, 493–513
(1985)

12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

123

SpeeDP: an algorithm to compute SDP bounds 373

13. Grippo, L., Palagi, L., Piacentini, M., Piccialli, V.: An unconstrained approach for solving low rank SDP
relaxations of {−1, 1} quadratic problems. Technical Report 1.13, Dip. di Informatica e Sistemistica
A. Ruberti, Sapienza Università di Roma (2009)

14. Grippo, L., Palagi, L., Piacentini, M., Piccialli, V., Rinaldi, G.: SpeeDP: a new algorithm to compute
the SDP relaxations of Max-Cut for very large graphs. Technical Report DII-UTOVRM Technical
Report 13.10, University of Rome Tor Vergata (2010)

15. Grippo, L., Palagi, L., Piccialli, V.: Necessary and sufficient global optimality conditions for NLP
reformulations of linear SDP problems. J. Glob. Optim. 44(3), 339–348 (2009)

16. Grippo, L., Palagi, L., Piccialli, V.: An unconstrained minimization method for solving low-rank SDP
relaxations of the maxcut problem. Math. Program. 126, 119–146 (2011)

17. Grippo, L., Sciandrone, M.: Nonmonotone globalization techniques for the Barzilai–Borwein gradient
method. Comput. Optim. Appl. 23, 143–169 (2002)

18. Grone, R., Pierce, S., Watkins, W.: Extremal correlation matrices. Linear Algebra Appl. 134, 63–70
(1990)

19. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10,
673–696 (2000)

20. Homer, S., Peinado, M.: Design and performance of parallel and distributed approximation algorithm
for the Maxcut. J. Parallel Distrib. Comput. 46, 48–61 (1997)

21. Journée, M., Bach, F., Absil, P., Sepulchre, R.: Low-rank optimization for semidefinite convex prob-
lems. SIAM J. Optim. 20(5), 2327–2351 (2010)

22. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization
problems. Optim. Methods Softw. 15, 201–224 (2000)

23. Laurent, M., Poljak, S., Rendl, F.: Connections between semidefinite relaxations of the Max-Cut and
stable set problems. Math. Program. 77, 225–246 (1997)

24. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing exact ground states of hard Ising spin glass
problems by branch-and-cut. In: Hartmann, A., Rieger, H. (eds.) New Optimization Algorithms in
Physics, pp. 47–69. Wiley, London (2004)

25. Mittelmann, H.: An independent benchmarking of SDP and SOCP solvers. Math. Program. 95,
407–430 (2003)

26. Muramatsu, M., Suzuki, T.: A new second-order cone programming relaxation for max-cut problems.
J. Oper. Res. Jpn 46, 2003 (2001)

27. Nesterov, Y.: Quality of semidefinite relaxation for nonconvex quadratic optimization. CORE Discus-
sion Papers 1997019, Université Catholique de Louvain, Center for Operations Research and Econo-
metrics (CORE) (1997)

28. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw.
9(1–3), 141–160 (1998)

29. Pataki, G.: On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal
eigenvalues. Math. Oper. Res. 23, 339–358 (1998)

30. Poljak, S., Rendl, F.: Solving the Max-Cut problem using eigenvalues. Discret. Appl. Math. 62(1–3),
249–278 (1995)

31. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for 0-1 quadratic program-
ming. J. Glob. Optim. 7, 51–73 (1995)

32. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting semidefinite and
polyhedral relaxations. Math. Program. 121(2), 307–335 (2010)

33. Rinaldi, G.: Rudy: A graph generator. http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html
(1998)

123

http://www-user.tu-chemnitz.de/~helmberg/sdp_software.html

	SpeeDP: an algorithm to compute SDP bounds for very large Max-Cut instances
	Abstract
	1 Introduction
	2 Key results on the low rank SDP formulation and notation
	3 A new unconstrained formulation of the SDP problem
	4 SpeeDP: an efficient algorithm for solving the SDP problem
	5 SpeeDP-MC: a heuristic for large scale Max-Cut instances
	6 Numerical results
	7 Concluding remarks and future work
	Acknowledgments
	References

