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Abstract In this paper we present a stability analysis of a stochastic optimization
problem with stochastic second order dominance constraints. We consider a perturba-
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infinite programming due to Gugat (Math Program Ser B 88:255–275, 2000), we show
under the Slater constraint qualification that the optimal value function is Lipschitz
continuous and the optimal solution set mapping is upper semicontinuous with respect
to the perturbation of the probability measure. In particular, we consider the case when
the probability measure is approximated by an empirical probability measure and show
an exponential rate of convergence of the sequence of optimal solutions obtained from
solving the approximation problem. The analysis is extended to the stationary points.
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436 Y. Liu, H. Xu

1 Introduction

Stochastic dominance is a fundamental concept in decision theory and economics
[26]. For two random variables ξ1(ω) and ξ2(ω) defined on the probability space
(�,F , P) with finite expected values, ξ1(ω) is said to dominate ξ2(ω) in the second
order, denoted by ξ1(ω) �2 ξ2(ω), if

η∫

−∞
P{ω ∈ � : ξ1(ω) ≤ t}dt ≤

η∫

−∞
P{ω ∈ � : ξ2(ω) ≤ t}dt, ∀η ∈ R. (1)

By changing the order of integration in (1), the condition for second order dominance
can be reformulated as:

EP [(t − ξ1(ω))+] ≤ EP [(t − ξ2(ω))+], ∀t ∈ R. (2)

We use the notation (·)+ to denote the positive part, that is, (x)+ := max{x, 0}.
In this paper, we consider the following stochastic program with stochastic second

order dominance (SSD) constraints:

min
x

EP [ f (x, ξ(ω))]
s.t. G(x, ξ(ω)) �2 Y (ξ(ω)),

x ∈ X,
(3)

where X is a nonempty compact subset of R
n , ξ : � → � is a vector of random

variables defined on the probability space (�,F , P)with support set� ⊂ R
m , f,G :

R
n ×� → R are Lipschitz continuous functions and for every ξ ∈ �, G(·, ξ) : R

n →
R is concave; Y (ξ(ω)) is a random variable, and EP [·] denotes the expected value with
respect to the probability (P) distribution of ξ . For simplicity of discussion, we make
a blanket assumption that f and G are P-integrable.

Using the equivalent formulation of the second order dominance constraint (2),
problem (3) can be written as a stochastic semi-infinite programming (SSIP) problem:

min
x

EP [ f (x, ξ(ω))]
s.t. EP [(t − G(x, ξ(ω)))+] ≤ EP [(t − Y (ξ(ω)))+], ∀t ∈ R,

x ∈ X.
(4)

Stochastic optimization models with SSD constraints were introduced by Dentcheva
and Ruszczyński [8,9]. Over the past few years, there has been increasing discus-
sion of this subject covering optimization theory, numerical methods and practical
applications, see [7–12,17,19,22] and references therein.

It is well-known that the SSIP problem above does not satisfy Slater’s con-
straint qualification, a condition that is often required for a stable numerical method.
Subsequently, a relaxed form of SSIP has been proposed:
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Stability analysis of stochastic programs 437

min
x

EP [ f (x, ξ(ω))]
s.t. EP [H(x, t, ξ(ω))] ≤ 0, ∀t ∈ T,

x ∈ X,
(5)

where

H(x, t, ξ(ω)) := (t − G(x, ξ(ω)))+ − (t − Y (ξ(ω)))+

and T is a compact subset of R. In the literature [8–10], T is a closed interval or the
union of a finite number of closed intervals in R.

Our focus in this paper is on the stability analysis of problem (5). Specifically,
we are concerned with the impact of changes in the probability measure P on both
optimal values and optimal solutions. The analysis is inspired by a recent work [7]
on the stability and sensitivity analysis of optimization problems with first order sto-
chastic dominance constraints and is in line with the traditional stability analysis in
the literature of deterministic nonlinear programming and stochastic programming
[14,15,20,21,29,31,32,35,36].

From a practical viewpoint, this kind of stability analysis is motivated by the fact
that in applications either the probability distribution of P is not known or a closed
form expression for the expected value of the underlying random functions w.r.t. P
is difficult to obtain and consequently the probability measure/distribution may have
to be approximated. Stability analysis of problem (5) focuses on the impact on the
optimal value and optimal solutions of a perturbation of P [29]. A particularly interest-
ing case is when the probability measure is approximated by an empirical probability
measure. In this case, the expected value of the underlying functions are approxi-
mated through sample averaging. The contribution of this paper can be summarized
as follows.

• In Sect. 2, we carry out stability analysis for problem (5). Specifically, we consider
the case when the underlying probability measure P is approximated by a set of
probability measures under pseudometric. By exploiting an error bound in semi-
infinite programming due to Gugat [13], we show under the Slater condition that
the feasible solution set mapping is Lipschitz continuous, the optimal solution set
mapping is upper semicontinuous, and the optimal value function is Lipschitz-like
(calm). Moreover, when the objective function satisfies certain growth conditions,
we show upper semi-continuity of the optimal set-valued mapping. This comple-
ments the existing research [7] which focuses on the stability analysis of stochastic
optimization problems with first order dominance constraints.

• In Sect. 3, we consider a special case when the probability measure P is approxi-
mated by an empirical probability measure [which is also known as sample aver-
age approximation (SAA)] and present a detailed analysis on the convergence
of optimal solution and stationary point obtained from solving the sample aver-
age approximate optimization problems as sample size increases. Specifically, we
show the exponential rate of convergence of optimal solution and almost sure con-
vergence of stationary point as sample size increases. SAA is a popular method
in stochastic programming, but there seems to be few discussions on SAA for
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438 Y. Liu, H. Xu

stochastic programs with SSD constraints. The only exception is a recent work
by Hu et al. [19] which discusses the cutting plane method for sample average
approximated optimization problems with SSD constraints.

• Our convergence analysis is carried out through an exact penalization of (5) [see
(11)]. The penalty formulation may provide a potential numerical framework for
solving (5). During the revision of this paper, some progress in this regard has
been made, see [24].

Throughout this paper, we use the following notation. For vectors a, b ∈ R
n ,

aT b denotes the scalar product, ‖ · ‖ denotes the Euclidean norm of a vector, ‖ · ‖∞
denotes the maximum norm of continuous functions defined over compact set T .
d(x,D) := infx ′∈D ‖x − x ′‖ denotes the distance from a point x to a set D. For two
compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation of C from D and H(C,D) := max(D(C,D),D(D, C)) denotes
the Hausdorff distance between C and D. Moreover, C + D denotes the Minkowski
addition of the two sets, that is, {C + D : C ∈ C, D ∈ D}, B(x, γ ) denotes the
closed ball with center x and radius γ , B denotes the closed unit ball in the respective
space.

2 Stability analysis

Let P(�) denote the set of all Borel probability measures. For Q ∈ P(�), let
EQ[ξ ] = ∫

�
ξ(ω)d Q(ω) denote the expected value of random variable ξ with respect

to the distribution of Q. Assuming Q is close to P under some metric to be defined
shortly, we investigate in this section the following optimization problem:

min
x

EQ[ f (x, ξ(ω))]
s.t. EQ[H(x, t, ξ(ω))] ≤ 0, ∀t ∈ T,

x ∈ X,
(6)

which is regarded as a perturbation of (5). Specifically, we study the relationship
between the perturbed problem (6) and the true problem (5) in terms of optimal values
and optimal solutions when Q is close to P . Of course, we restrict our discussion to
the probability measure Q such that the expected values of the underlying functions
in (6) are well defined for all x ∈ X .

Let us start by introducing a distance function for the set P(�), which is appropriate
for our problem. Define the set of functions:

G := {g(·) := H(x, t, ·) : x ∈ X, t ∈ T } ∪ {g(·) := f (x, ·) : x ∈ X}.
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Stability analysis of stochastic programs 439

The distance function for the elements in set P(�) is defined as:

D(P, Q) := sup
g∈G

∣∣EP [g] − EQ[g]∣∣ .

This type of distance is considered by Römisch [35, Section 2.2] for the stability analy-
sis of stochastic programming and is called a pseudometric. It is well-known that D is
nonnegative, symmetric and satisfies the triangle inequality, see [35, Section 2.1]
and the references therein. Throughout this section, we use the following nota-
tion:

F(Q) := {
x ∈ X : EQ[H(x, t, ξ)] ≤ 0, ∀t ∈ T

}
,

ϑ(Q) := inf
{
EQ[ f (x, ξ)] : x ∈ F(Q)

}
,

Sopt (Q) := {
x ∈ F(Q) : ϑ(Q) = EQ[ f (x, ξ)]},

PG (�) :=
{

Q ∈ P(�) : −∞ < inf
g(ξ)∈G

EQ[g(ξ)] and inf
g(ξ)∈G

EQ[g(ξ)] < ∞
}
.

It is easy to observe that for P, Q ∈ PG (�), D(P, Q) < ∞. Throughout this
section, the perturbed probability measure Q in problem (6) is taken from PG (�).

In what follows, we discuss the continuity of the optimal solution set mapping and
optimal value function of problem (6). We do so by applying Klatte’s [20,21] earlier
stability result of parametric nonlinear programming, which was used by Dentcheva
et al. [7] for the stability analysis of optimization problems with first order dominance
constraints. A key condition in Klatte’s stability result is the pseudo-Lipschitz property
of the feasible set mapping. Here we derive the property by exploiting an important
result on the error bound in semi-infinite programming established by Gugat in [13].
To this end, we need to introduce some definitions and technical results most of which
are translated from deterministic semi-infinite programming in [13].

Definition 2.1 Problem (5) is said to satisfy a weak Slater condition, if there exist
positive numbers α and M such that for any x ∈ X with maxt∈T (EP [H(x, t, ξ)])+ ∈
(0,M) there exists a point x∗ with EP [H(x∗, t, ξ)] < maxt∈T (EP [H(x, t, ξ)])+ for
all t ∈ T and

‖x − x∗‖ ≤ α

[
max
t∈T

(EP [H(x, t, ξ)])+ − max
t∈T

EP [H(x∗, t, ξ)]
]
.

Definition 2.2 Problem (5) is said to satisfy a strong Slater condition, if there exists
a positive number γ such that for any feasible point x satisfying EP [H(x, t, ξ)] = 0
for some t ∈ T there exists a point z(x) with EP [H(z(x), t, ξ)] < 0 for all t ∈ T and

‖x − z(x)‖ ≤ γ min
t∈T

(−EP [H(z(x), t, ξ)]) .
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Definition 2.3 Problem (5) is said to satisfy a Slater condition if there exist a positive
number δ̄ and a point x̄ ∈ X such that

max
t∈T

EP [H(x̄, t, ξ)] ≤ −δ̄.

Note that the strong Slater condition implies that the weak Slater condition holds for
any M > 0 and α = γ , where M is given in Definition 2.1. Since X is a compact set,
the Slater condition implies the strong Slater condition and then the positive number
γ in Definition 2.2 can be estimated by

γ =: sup
x∈X

‖x − x̄‖
mint∈T −EP [H(x̄, t, ξ)] . (7)

See [13, Propositions 1 and 2] for details about the relationship.

Proposition 2.4 Assume problem (5) satisfies the Slater condition. Let δ̄ be given as
in Definition 2.3. Then there exists a positive number ε (ε ≤ δ̄/2) such that for any
Q ∈ B(P, ε)

max
t∈T

EQ[H(x̄, t, ξ)] ≤ −δ̄/2,

where x̄ is given as in Definition 2.3, that is, the perturbed problem (6) satisfies the
Slater condition.

Proof By the definition of pseudometric distance D ,

sup
t∈T

∣∣EP [H(x, t, ξ)] − EQ[H(x, t, ξ)]∣∣ ≤ D(Q, P), ∀x ∈ X.

Let Q ∈ B(P, δ̄/2). Then

sup
t∈T

EQ[H(x̄, t, ξ)] ≤ sup
t∈T

EP [H(x̄, t, ξ)] + sup
t∈T

∣∣EP [H(x̄, t, ξ)] − EQ[H(x̄, t, ξ)]∣∣
≤ −δ̄ + δ̄/2

= −δ̄/2.

The proof is complete. �
By Gugat [13, Lemmas 3 and 6] and Proposition 2.4, we can obtain the following

uniform error bound, for the feasible set mapping F(Q) of problem (6).

Lemma 2.5 Assume problem (5) satisfies the Slater condition. Then there exist pos-
itive numbers ε and β such that for any Q ∈ B(P, ε), the following error bound
holds:

d(x,F(Q)) ≤ β
∥∥(EQ[H(x, t, ξ)])+

∥∥∞ , ∀x ∈ X,

where F(Q) denotes the feasible set of problem (6).
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Proof Let ε be given as in Proposition 2.4. For any fixed Q ∈ B(P, ε), we have by
Gugat [13, Lemmas 3 and 6] that

d(x,F(Q)) ≤ γ (Q) ‖(EP [H(x, t, ξ)])+‖∞,

where

γ (Q) =: sup
x∈X

‖x − x̄‖
mint∈T −EQ[H(x̄, t, ξ)] ,

and x̄ is given in Definition 2.3. By Proposition 2.4, for Q ∈ B(P, ε), EQ[H(x̄, t, ξ)]
≤ −δ̄/2, where δ̄ is given in Definition 2.3. This gives

γ (Q) ≤ 2

δ̄
max

x ′,x ′′∈X
‖x ′ − x ′′‖.

The conclusion follows by setting β := 2
δ̄

maxx ′,x ′′∈X ‖x ′ − x ′′‖ and the boundedness
of X . �

Note that this kind of error bound in well known in convex programming, see a
pioneering work by Robinson [30]. Here we follow the recent development in [13] as
our problem falls into the framework of semi-infinite programming.

Proposition 2.6 Assume that problem (5) satisfies the Slater condition. Then

(i) the solution set Sopt (P) is nonempty and compact;
(ii) the graph of the feasible set mapping F(·) is closed;

(iii) there exists a positive number ε such that the feasible set mapping F(Q) is
Lipschitz continuous on B(P, ε), that is,

H (F(Q1),F(Q2)) ≤ βD(Q1, Q2), ∀Q1, Q2 ∈ B(P, ε),

where β is a defined in Lemma 2.5.

Proof Part (i) follows from the Slater condition, compactness of X and the continuity
of f .

Part (ii). Let t ∈ T be fixed. It follows by virtue of [35, Propositions 3 and 4]
that EQ[H(x, t, ξ)] : X × (G ,D) → R is lower semicontinuous. Let QN → Q,
x N ∈ F(QN ) and x N → x∗. By the Fatou’s lemma

EQ[H(x∗, t, ξ)] ≤ lim inf
N→∞ EQN [H(x N , t, ξ)] ≤ 0, ∀t ∈ T,

which implies that x∗ ∈ F(Q).
Part (iii). Let ε be given by Lemma 2.5 and Q1, Q2 ∈ B(P, ε). Observe that for

any x ∈ F(Q1), (EQ1 [H(x, t, ξ)])+ = 0, for all t ∈ T . By Lemma 2.5, there exists
a positive constant β such that for any x ∈ F(Q1)
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d(x,F(Q2)) ≤ β

∥∥∥(EQ2 [H(x, t, ξ)])+
∥∥∥∞

= β

(
max
t∈T

(
EQ2 [H(x, t, ξ)])+ − max

t∈T

(
EQ1 [H(x, t, ξ)])+

)

≤ β max
t∈T

(
(EQ2 [H(x, t, ξ)])+ − (EQ1 [H(x, t, ξ)])+

)

≤ β max
t∈T

∣∣EQ2 [H(x, t, ξ)] − EQ1 [H(x, t, ξ)]∣∣

≤ β max
(x,t)∈X×T

∣∣EQ2 [H(x, t, ξ)] − EQ1 [H(x, t, ξ)]∣∣

≤ βD(Q1, Q2),

which implies D(F(Q1),F(Q2)) ≤ βD(Q1, Q2). In the same manner, we can show
that for any x ∈ F(Q2),

d(x,F(Q1)) ≤ β

(
max
t∈T

(
EQ1 [H(x, t, ξ)])+ − max

t∈T

(
EQ2 [H(x, t, ξ)])+

)

≤ βD(Q2, Q1),

which yields D(F(Q2),F(Q1)) ≤ βD(Q1, Q2). Summarizing the discussions
above, we have

H (F(Q1),F(Q2)) = max {D (F(Q1),F(Q2)) ,D (F(Q2),F(Q1))}
≤ βD(Q1, Q2).

The proof is complete. �
Recall that a set-valued mapping  : R

m ⇒ R
n is said to be upper semi-continuous

at y in the sense of Berge if for any ε > 0, there exists a number δ > 0 such that

(y′) ⊆ (y)+ εB, ∀y′ ∈ y + δB,

where B denotes the closed unit ball in the respective space. It is said to be Lipschitz
continuous near y if there exists a constant L such that

H((y′), (y′′)) ≤ L‖y′ − y′′‖, ∀y′, y′′ ∈ y + δB.

See [34, page 368].
Proposition 2.6 (iii) says that the feasible set mapping of problem (6) is Lipschitz

continuous with respect to probability measure over set B(P, ε). Using this property,
we are ready to establish our main stability results.

Theorem 2.7 Assume that problem (5) satisfies the Slater condition. Assume also
that the Lipschitz modulus of f (x, ξ) w.r.t. x is bounded by an integrable function
κ(ξ) > 0. Then
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(i) there exists ε′ > 0 such that the optimal solution set of problem (6), denoted by
Sopt (Q), is not empty for Q ∈ B(P, ε′);

(ii) Sopt (·) is upper semi-continuous at point P in the sense of Berge;
(iii) there exist positive numbers ε∗ and L∗ such that the optimal value function of

problem (6), denoted byϑ(Q), is continuous at point P and satisfies the following
Lipschitz-like1 estimation:

|ϑ(Q)− ϑ(P)| ≤ L∗D(Q, P), ∀Q ∈ B(P, ε∗).

Proof Under the Slater condition, it follows from Proposition 2.6 that there exists a
positive number ε such that the feasible set mapping F(·) is Lipschitz continuous on
B(P, ε). The rest follows straightforwardly from [21, Theorem 1] ([29, Theorem 2.3]
or [7, Theorem 2.1] in stochastic programming). The proof is complete. �

Theorem 2.7 says that the optimal solution set mapping Sopt (·) is nonempty near
P and upper semi-continuous at P . In order to quantify the upper semi-continuity of
Sopt (·), we need some growth condition of the objective function of problem (5) in a
neighborhood of Sopt (P). Instead of imposing a specific growth condition, here we
consider a general growth function

�(ν) := min{EP [ f (x, ξ)] − s∗ : d(x, Sopt (P)) ≥ ν, x ∈ X} (8)

of problem (5), and the associated function

�̃(v) := v +�−1(2v),

where s∗ denotes the optimal value of problem (5) and ν, v ∈ R+. This kind of growth
function is well known, see for instance [29,34]. The following corollary quantifies
the upper semicontinuity of Sopt (·) near P .

Corollary 2.8 Let the assumptions of Theorem 2.7 hold. Then there exist positive
constants L and ε such that

∅ �= Sopt (Q) ⊆ Sopt (P)+ �̃ (LD(Q, P))B,

for any Q ∈ B(P, ε), where B denotes the closed unit ball.

We omit the proof as it is similar to that of [29, Theorem 2.4]. See also [34, Theorem
7.64] for earlier discussions about functions�(·) and �̃(·). Discussions on a particular
form of �̃ can be found in [4,39] when the growth is of second order. We will come
back to this in Lemma 3.8.

1 The property is also known as calmness of ϑ at P , see Section F in [34, Chapter 8] for general discussions
on calmness.
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3 Empirical probability measure

In this section, we consider a special case when the probability measure P is approx-
imated by a sequence of empirical measures PN defined as

PN := 1

N

N∑
k=1

1ξ k (ω),

where ξ1, . . . , ξ N is an independent and identically distributed sampling of ξ and

1ξ k (ω) :=
{

1, if ξ(ω) = ξ k,

0, if ξ(ω) �= ξ k .

In this case

EPN [ f (x, ξ)] = 1

N

N∑
k=1

f (x, ξ k)

and

EPN [H(x, t, ξ)] = 1

N

N∑
k=1

H(x, t, ξ k).

It follows from the classical law of large numbers in statistics, EPN [ f (x, ξ)]
and EPN [H(x, t, ξ)] converge to EP [ f (x, ξ)] and EP [H(x, t, ξ)] respectively as N
increases. This kind of approximation is well-known in stochastic programming under
various names such as sample average approximation, Monte Carlo method, sample
path optimization, stochastic counterpart etc, see [16,33,41,43] and the references
therein.

For the simplicity of notation, we use fN (x) and HN (x, t) to denote EPN [ f (x, ξ)]
and EPN [H(x, t, ξ)]. Consequently we consider the following approximation of prob-
lem (5):

min
x

fN (x) := 1

N

N∑
k=1

f (x, ξ k)

s.t. HN (x, t) := 1

N

N∑
k=1

H(x, t, ξ k) ≤ 0, ∀t ∈ T,

x ∈ X.

(9)

We call (9) the SAA problem and (5) the true problem.
Assuming that we can obtain an optimal solution, denoted by x N , by solving the

SAA problem, we analyze the convergence of x N as the sample size increases. The
analysis will be very complicated if it is carried out on (9) directly because the con-
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straints of the SAA problem depend on the sampling. To get around the difficulty as
well as the infinite number of constraints, we consider a reformulation of both the true
and the SAA problem through exact penalization of the stochastic constraints to the
objective. In doing so, the feasible set of the penalized problems are deterministic and
we only need to analyze the convergence of the the objective functions.

For the simplicity of notation, let

h(x, t) := max {EP [H(x, t, ξ)], 0} , θ(x) := max
t∈T

h(x, t). (10)

It is easy to observe that

h(x, t) = (EP [H(x, t, ξ)])+ and θ(x) = ‖(EP [H(x, t, ξ)])+‖∞.

Consider the exact penalization:

min
x
ψ(x, ρ) := EP [ f (x, ξ)] + ρθ(x)

s.t. x ∈ X,
(11)

where ρ > 0 is a penalty parameter. This kind of penalization is well documented in
the literature, see for instance [28,42]. In what follows, we establish the equivalence
between (5) and (11) in the sense of optimal solutions. We do so by exploiting the error
bound established in Lemma 2.5 and a well-known result by Clarke [5, Proposition
2.4.3]. We need the following assumptions.

Assumption 3.1 f (x, ξ) and G(x, ξ) are locally Lipschitz continuous w.r.t. x and
their Lipschitz modulus are bounded by an integrable function κ(ξ) > 0.

Theorem 3.2 Assume that the true problem (5) satisfies the Slater condition. Under
Assumption 3.1, there exists a positive number ρ̄ such that for any ρ > ρ̄, the sets
of optimal solutions of problems (5) and (11), denoted by Sopt and Xopt respectively,
coincide.

Proof Under the Slater condition, it follows by Lemma 2.5 that there exists a constant
β > 0 such that

d(x,F(P)) ≤ β ‖(EP [H(x, t, ξ)])+‖∞ = βθ(x), ∀x ∈ X.

Let C := EP [κ(ξ)]. Under Assumption 3.1, C < ∞ and the Lipschitz modulus
of EP [ f (x, ξ)] is bounded by C . Let ρ be a positive constant such that ρ > βC .
Clarke’s exact penalty function theorem [5, Proposition 2.4.3] ensures that the two
optimal solution sets, Sopt and Xopt , coincide. This shows the existence of a positive
constant ρ̄ := βC . The proof is complete. �

We now move on to discuss the exact penalization of the SAA problem (9). Let

hN (x, t) := (HN (x, t))+ = max {HN (x, t), 0}
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and

θN (x) := max
t∈T

hN (x, t) = ‖(HN (x, t))+‖∞. (12)

Consider the SAA penalty problem

min
x
ψN (x, ρN ) := fN (x)+ ρN θN (x)

s.t. x ∈ X,
(13)

where ρN > 0 is a penalty parameter.
Under Assumption 3.1, we know from [37, Section 6, Proposition 7] that the sample

average HN (x, t) converges to EP [H(x, t, ξ)] uniformly over compact set X × T
almost surely. Since the true problem (5) satisfies the Slater condition, there exists a
sufficiently large N∗ (depending on ω) such that for N ≥ N∗

HN (x̄, t) ≤ −δ̄/2, ∀t ∈ T,

where x̄ and δ̄ are given in Definition 2.3. Subsequently, by Lemma 2.5, we obtain
that for any N ≥ N∗,

d(x,FN ) ≤ β ‖(HN (x, t))+‖∞ = βθN (x), ∀x ∈ X, (14)

where FN denotes the feasible set of problem (9).

Proposition 3.3 Assume that the true problem (5) satisfies the Slater condition. Then
there exist positive numbers ρ∗ and N∗ (depending on ω) such that for ρ > ρ∗ and
N ≥ N∗, the sets of optimal solutions of problems (9) and (13), denoted by SN

opt and

X N
opt respectively, coincide.

Proof Following the discussions above, there exist a positive constant β and a suf-
ficiently large positive integer N1 (depending on ω) such that for any N ≥ N1, (14)
holds. Let CN denote the Lipschitz modulus of function fN (x). By [5, Proposition
2.4.3], for any ρ > βCN , the two optimal solution sets, SN

opt and X N
opt , coincide. More-

over, under Assumption 3.1, CN converges to the Lipschitz modulus of E[ f (x, ξ)]
and is bounded by E[κ(ξ)]. This implies that there exists a positive integer N2 ≥ N1
such that when N ≥ N2, we have CN < C + 1, that is, CN is bounded almost surely.
The conclusion follows by taking ρ∗ = β(C + 1) and N∗ = max{N1, N2}. �

3.1 Optimal solution

Assuming for every fixed sampling, we can obtain an optimal solution, denoted by
x N , from solving the SAA problem (9), we analyze the convergence of x N as the sam-
ple size N increases. We do so by establishing uniform convergence of the objective
function of problem (13) to the objective function of problem (11). Asymptotic con-
vergence analysis of optimal values and optimal solutions are well known in stochastic
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programming. Our analysis differs from those in the literature in that it is carried out
through exact penalization.

Proposition 3.4 Let Assumption 3.1 hold. Then

(i) ψ(x, ρ) and ψN (x, ρN ), N = 1, 2, . . . , are Lipschitz continuous;
(ii) if ρN → ρ as N → ∞, then ψN (x, ρN ) converges to ψ(x, ρ) with probability 1

uniformly over X.

Proof Part (i). Under Assumption 3.1, EP [H(x, t, ξ)] and HN (x, t) are Lipschitz con-
tinuous with respect to (x, t). Since T is a compact set, by [27, Theorem 3.1], θ(x) and
θN (x) are Lipschitz continuous. Together with the Lipschitz continuity of EP [ f (x, ξ)]
and fN (x), we conclude that ψ(x, ρ) and ψN (x, ρN ) are Lipschitz continuous.

Part (ii). By Assumption 3.1 and the compactness of X , it is not difficult to show
that f (x, ξ) and H(x, t, ξ) are dominated by an integrable function. The uniform
convergence of fN (x) to EP [ f (x, ξ)] and HN (x, t) to EP [H(x, t, ξ)] follows from
classical uniform law of large numbers for random functions, see e.g. [37, Section 6,
Proposition 7]. Since ρN → ρ, it suffices to show the uniform convergence of θN (x)
to θ(x). By definition,

max
x∈X

|θN (x)− θ(x)| = max
x∈X

∣∣∣∣max
t∈T

(max{HN (x, t), 0})− max
t∈T

(max{EP [H(x, t, ξ)], 0})
∣∣∣∣

≤ max
(x,t)∈X×T

|max{HN (x, t), 0} − max{EP [H(x, t, ξ)], 0}|
≤ max

(x,t)∈X×T
|HN (x, t)− EP [H(x, t, ξ)]| . (15)

This along with the uniform convergence of HN (x, t) to EP [H(x, t, ξ)] over X × T gives
rise to the assertion. The proof is complete. �
Assumption 3.5 Let f (x, ξ) and H(x, t, ξ) be defined as in (5). The following hold.

(a) for every x ∈ X , the moment generating function

Mx (τ ) := EP

[
eτ( f (x,ξ)−EP [ f (x,ξ)])]

of random variable f (x, ξ)− EP [ f (x, ξ)] is finite valued for all τ in a neighbor-
hood of zero;

(b) for every (x, t) ∈ X × T , the moment generating function

M(x,t)(τ ) := EP

[
eτ(H(x,t,ξ)−EP [H(x,t,ξ)])]

of random variable H(x, t, ξ) − EP [H(x, t, ξ)] is finite valued for all τ in a
neighborhood of zero;

(c) let κ(ξ) be given as in Assumption 3.1. The moment generating function Mκ(τ )

of κ(ξ) is finite valued for all τ in a neighborhood of 0.
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Assumption 3.5 (a) means that the random variables f (x, ξ) − EP [ f (x, ξ)] and
H(x, t, ξ) − EP [H(x, t, ξ)] do not have a heavy tail distribution. In particular, it
holds if the random variable ξ has a bounded support set. Note that under Assumption
3.1, the Lipschitz modulus of H(x, t, ξ) is bounded by 1 + κ(ξ). Assumption 3.5 (c)
implies that the moment generating function of 1 + κ(ξ) is finite valued for τ close to
0 because E[e−(1+κ(ξ)τ ] = e−τ

E[e−κ(ξ)τ ] = e−τ Mκ(τ ).

Proposition 3.6 Let Assumptions 3.1, 3.5 hold and ρN → ρ. Then ψN (x, ρN ) con-
verges to ψ(x, ρ) with probability approaching 1 at an exponential rate, that is, for
any α > 0, there exist positive constants C(α), K (α) and independent of N , such that

Prob

{
sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}
≤ C(α)e−N K (α)

for N sufficiently large.

Proof By definition

Prob

{
sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}

= Prob

{
sup
x∈X

| fN (x)+ ρN θN (x)− (EP [ f (x, ξ)] + ρθ(x))| ≥ α

}

≤ Prob

{
sup
x∈X

| fN (x)− EP [ f (x, ξ)]| ≥ α/2

}
+Prob

{
sup
x∈X

|ρN θN (x)− ρθ(x)| ≥ α/2

}
.

Under Assumption 3.5, it follows from [41, Theorem 5.1] that the first term on
the right hand side of the inequality above converges to zero at an exponential rate.
In the same manner, we can obtain uniform exponential convergence of HN (x, t) to
EP [H(x, t, ξ)] and hence θN (x) to θ(x) taking into account that ρN → ρ. The proof
is complete. �
Remark 3.7 Similar to the discussions in [41], we may estimate the sample size. To
see this, let us strengthen the conditions in Assumption 3.5 (a) and (b) to the following:

• There exists a constant � > 0 such that for every x ∈ X ,

EP

[
eτ( f (x,ξ)−EP [ f (x,ξ)])] ≤ e�

2τ 2/2, ∀τ ∈ R (16)

and for every (x, t) ∈ X × T ,

EP

[
eτ(H(x,t,ξ)−EP [H(x,t,ξ)])] ≤ e�

2τ 2/2, ∀τ ∈ R. (17)

Note that equality in (16) and (17) holds if random variables f (x, ξ)−EP [ f (x, ξ)]
and H(x, t, ξ)− EP [H(x, t, ξ)] follow a normal distribution with variance �2, see a
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discussion in [41, page 410]. Let α1 be a small positive number and β1 ∈ (0, 1). It
follows from (5.14) and (5.15) in [41] that for

N ≥ N1(α1, β1) := O(1)�2

α2
1

[
n log

(
O(1)D1EP [κ1(ξ)]

α1

)
+ log

(
1

β1

)]
, (18)

where O(1) is a generic constant, we have that

Prob

{
sup
x∈X

| fN (x)− EP [ f (x, ξ)]| ≥ α1

}
≤ β1, (19)

where κ1(ξ) is the global Lipschitz modulus of f (·, ξ) over X , D1 := supx ′,x ′′∈X
‖x ′ − x ′′‖. Likewise, for given positive numbers α2 and β2 ∈ (0, 1), when

N ≥ N2(α2, β2) := O(1)�2

α2
2

[
n log

(
O(1)D2EP [κ2(ξ)]

α2

)
+ log

(
1

β2

)]
, (20)

we have

Prob

{
max

(x,t)∈X×T
|HN (x, t)− EP [H(x, t, ξ)]| ≥ α2

}
≤ β2, (21)

where κ2(ξ) is the global Lipschitz modulus of H(·, ·, ξ) over X × T ,

D2 := sup
w′,w∈X×T

‖w′ − w‖ ≤ D1 + sup
t ′,t ′′∈T

‖t ′ − t ′′‖.

Let α > 0 be a positive number and β ∈ (0, 1). Observe that

Prob

{
max
x∈X

|ψN (x, ρN )−ψ(x, ρ)|≥α
}

≤ Prob

{
sup
x∈X

| fN (x)−EP [ f (x, ξ)]|≥α/2
}

+Prob

{
sup
x∈X

|ρN θN (x)−ρθ(x)| ≥ α/2

}
. (22)

Let N3 be sufficiently large such that ρN ≤ 2ρ and

(ρN − ρ) sup
x∈X

|θ(x)| ≤ α

4
.
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Then it is easy to verify that for N ≥ N3

Prob

{
sup
x∈X

|ρN θN (x)− ρθ(x)| ≥ α/2

}

≤ Prob

{
sup
x∈X

|θN (x)− θ(x)| ≥ α

8ρ

}

≤ Prob

{
max

(x,t)∈X×T
|HN (x, t)− EP [H(x, t, ξ)]| ≥ α

8ρ

}
. (23)

The last inequality is due to (15). Let

N (α, β) := max

{
N1

(α
2
, β1

)
, N2

(
α

8ρ
, β2

)
, N3

}
, (24)

where β1, β2 ∈ (0, 1) and β1 +β2 = β. Combining (19), (21), (22) and (23), we have
for N ≥ N (α, β)

Prob

{
max
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}

≤ Prob

{
sup
x∈X

| fN (x)− EP [ f (x, ξ)]| ≥ α/2

}

+ Prob

{
max

(x,t)∈X×T
|HN (x, t)− EP [H(x, t, ξ)]| ≥ α

8ρ

}

≤ β1 + β2

= β.

The discussion above shows that for given α and β, we can obtain sample size
N (α, β) such that when N ≥ N (α, β)

Prob

{
max
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}
≤ β.

In what follows, we translate the uniform exponential convergence established in
Proposition 3.6 into that of optimal solutions. We need the following intermediate
stability result.

Lemma 3.8 Let φ : R
m → R be a continuous function and X ⊆ R

m be a closed set,
letϕ : R

m → R be a continuous perturbation ofφ. Consider the following constrained
minimization problem

min φ(x)
s.t. x ∈ X,

(25)
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and its perturbation

min ϕ(x)
s.t. x ∈ X.

(26)

Let X∗
φ and X∗

ϕ denote the set of optimal solutions to (25) and (26) respectively. Then

(i) for any ε > 0, there exists a δ > 0 (depending on ε) such that

D(X∗
ϕ, X∗

φ) ≤ ε, (27)

when

sup
x∈X

|ϕ(x)− φ(x)| ≤ δ;

(ii) if, in addition, there exists a positive constant ς such that

φ(x) ≥ min
x∈X

φ(x)+ ςd(x, X∗
φ)

2, ∀x ∈ X, (28)

then

D(X∗
ψ, X∗

φ) ≤
√

3

ς
sup
x∈X

|ϕ(x)− φ(x)|. (29)

Proof The results are a minor extension of [6, Lemma 3.2] which deals with the case
when X∗

φ is a singleton and are also similar to [34, Theorem 7.64]. Here we provide
a proof for completeness.

Part (i). Let ε be a fixed small positive number and φ∗ the optimal value of (25).
Define

R(ε) := inf
{x∈X,d(x,X∗

φ)≥ε}
φ(x)− φ∗. (30)

Then R(ε) > 0. Let δ := R(ε)/3 and ϕ be such that supx∈X |ϕ(x)−φ(x)| ≤ δ. Then
for any x ∈ X with d(x, X∗

φ) ≥ ε and for any fixed x∗ ∈ X∗
φ ,

ϕ(x)− ϕ(x∗) ≥ φ(x)− φ(x∗)− 2δ ≥ R(ε)/3 > 0,

which implies that x is not an optimal solution to (26). This is equivalent to d(x, X∗
φ) <

ε for all x ∈ X∗
ϕ , that is, D(X∗

ϕ, X∗
φ) ≤ ε.

Part (ii). Under condition (28), it is easy to derive that R(ε) = ςε2. Let

ε :=
√

3

ς
sup
x∈X

|ϕ(x)− φ(x)|.

From Part (i), we immediately arrive at (29). The proof is complete. �
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Remark 3.9 We have a few comments on Lemma 3.8.

(i) Condition (28) is known as a second order growth condition. Using this condition,
Shapiro [38] developed a variational principal which gives a bound for d(x, X∗

φ)

in terms of the maximum Lipschitz constant of ϕ−φ over X , see [38, Lemma 4.1]
and [39, Proposition 2.1]. Both the second order growth condition and the varia-
tional principal have been widely used for stability and asymptotic analysis in sto-
chastic programming, see [4,38,39]. Our claim in Lemma 3.8 (ii) strengthens the

variational principal in that our bound for d(x, X∗
φ) is

√
3
ς

supx∈X |ϕ(x)− φ(x)|
which tends to zero when the maximum Lipschitz constant of ϕ(x)− φ(x) over
X goes to zero and ϕ(x0)− φ(x0) = 0 at some point x0 ∈ X .

(ii) Lemma 3.8 (ii) may be extended to a general case when R(ε) is monotonically
increasing on R+. In such a case, we may set

ε := R−1
(

3 sup
x∈X

|ϕ(x)− φ(x)|
)

and obtain from Lemma 3.8 (i) that

D(X∗
ϕ, X∗

φ) ≤ R−1
(

3 sup
x∈X

|ϕ(x)− φ(x)|
)
.

Theorem 3.10 Assume that problem (5) satisfies the Slater condition. Let {ρN } be a
sequence of positive numbers such that ρN → ρ, where ρ is given in Theorem 3.2.
Then

(i) with probability 1

lim
N→∞ D

(
X N

opt , Xopt

)
= 0, (31)

where Xopt and X N
opt denote the sets of optimal solutions of problem (11) and

(13) respectively. Moreover, if Assumption 3.5 holds, then the convergence rate
is exponential, that is, for any α > 0, there exist positive constants C1(α), K1(α)

and independent of N , such that

Prob
{
D

(
X N

opt , Xopt

)
≥ α

}
≤ C1(α)e

−N K1(α)

for N sufficiently large.
(ii) If the objective function of the true penalty problem (11) satisfies the second

order growth condition:

ψ(x, ρ) ≥ min
x∈X

ψ(x, ρ)+ ςd(x, Xopt )
2, ∀x ∈ X, (32)

where ς is a positive constant, then C1(α) = C( 1
3ςα

2) and K1(α) = K ( 1
3ςα

2)

where C(α) and K (α) are given in Proposition 3.6.
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(iii) Let N (α, β) be defined as in (24). For N ≥ N ( 1
3ςα

2, β), we have

Prob
{
D

(
X N

opt , Xopt

)
≥ α

}
≤ β,

where β ∈ (0, 1).

Proof The almost sure convergence follows straightforwardly from Proposition 3.4
that ψN (x, ρN ) converges to ψ(x, ρ) uniformly over X and Lemma 3.8. Next, we
show the exponential convergence. By Lemma 3.8, for any α > 0, there exists ε(α)
such that if

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≤ ε(α),

then D(X N
opt , Xopt ) ≤ α. Subsequently,

Prob
{
D

(
X N

opt , Xopt

)
≥ α

}
≤ Prob

{
sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ ε(α)

}
.

By Proposition 3.6 and the formula above there exist positive constants C1(α) and
K1(α), independent of N such that

Prob
{
D

(
X N

opt , Xopt

)
≥ α

}
≤ C1(α)e

−N K1(α),

for N sufficiently large.
Part (ii). Under the second growth condition, it is easy to derive that R(ε) = ςε2,

where R(ε) is given in Lemma 3.8. By (29) in Lemma 3.8 (ii),

Prob
{
D

(
X N

opt , Xopt

)
≥ α

}
≤ Prob

{√
3

ς
sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}

= Prob

{
sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ 1

3
ςα2

}
.

The rest follows from Part (i).
Part (iii) follows from (24) and Part (ii). The proof is complete. �
Let us make some comments on the second order growth condition (32). Since

G(·, ξ) is assumed to be concave, it is easy to verify that θ(x) is a convex function. If
f (·, ξ) is convex for almost every ξ , then ψ(·, ρ) is convex. The second order growth
condition is fulfilled if the latter happens to be strongly convex.

3.2 Stationary point

We now move on to investigate the case when we only obtain a stationary point rather
than an optimal solution from solving the penalized sample average approximation

123



454 Y. Liu, H. Xu

problem (13). This is motivated by our wish to address the case when f (x, ξ) is
not convex w.r.t. x . Convergence analysis of SAA stationary sequence has been well
documented, see [43] and the references therein. Our analysis here differs from those in
the literature in two ways: (a) We analyze the convergence of SAA stationary point to its
true counterpart rather than so-called weak stationary point of the true problem [43], the
analysis is based on an approximation of the Clarke subdifferential of expected value
of a random function rather that of the expected value of the Clarke subdifferential of
a random function. Note that this kind of subdifferential approximation can be traced
back to the earlier work by Birge and Qi [3] and Artstein and Wets [2]. (b) We provide
an effective approach to tackle the specific challenges and complications arising from
the second order dominance constraints.

We start by defining the stationary points of (11) and (13). Let h(x, t) =
(EP [H(x, t, ξ)])+ be defined as in (10). For any fixed x ∈ X , let T ∗(x) denote
the set of t̄ ∈ T such that h(x, t̄) = maxt∈T h(x, t). Since G(·, ξ) is concave, then
EP [H(x, t, ξ)] is convex in x and hence it is Clarke regular (see [5, Proposition 2.3.6]).
By [5, Proposition 2.3.12]

∂x h(x, t) =
⎧⎨
⎩

0, EP [H(x, t, ξ)] < 0,
conv{0, ∂xEP [H(x, t, ξ)]}, EP [H(x, t, ξ)] = 0,
∂xEP [H(x, t, ξ)], EP [H(x, t, ξ)] > 0.

(33)

Here and later on “conv” denotes the convex hull of a set. Since h(·, t) is convex for
each t , T is a compact set and for every x , h(x, ·) is continuous on T , by Levin–Valadier
theorem (see [37, Section 2, Theorem 51]),

∂θ(x) = conv

⎧⎨
⎩
⋃

t∈T ∗(x)
∂x h(x, t)

⎫⎬
⎭ . (34)

Let

TX (x) = lim inf
t→0, X�x ′→x

1

t
(X − x ′)

denote the tangent cone of X at point x , and NX (x) the Clarke normal cone to X at x ,
that is, for x ∈ X ,

NX (x) =
{
ζ ∈ R

n : ζ T d ≤ 0, ∀d ∈ TX (x)
}
,

and NX (x) = ∅ if x �∈ X . A point x ∈ X is said to be a stationary point of the
penalized minimization problem (11) if

0 ∈ ∂EP [ f (x, ξ)] + ρ∂θ(x)+ NX (x).
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Likewise, for any fixed x ∈ X , let T N (x) denote the set of t̄ ∈ T such that
hN (x, t̄) = maxt∈T hN (x, t). Then

∂x hN (x, t) =
⎧⎨
⎩

0, HN (x, t) < 0,
conv{0, ∂x HN (x, t)}, HN (x, t) = 0,
∂x HN (x, t), HN (x, t) > 0

(35)

and

∂θN (x) = conv

⎧⎨
⎩

⋃
t∈T N (x)

∂x hN (x, t)

⎫⎬
⎭ . (36)

A point x ∈ X is said to be a stationary point of the penalized SAA problem (13)
if

0 ∈ ∂ fN (x)+ ρN ∂θN (x)+ NX (x).

Assumption 3.11 f (x, ξ) and G(x, ξ) are locally Lipschitz continuous w.r.t. x and
ξ , and their Lipschitz modulus w.r.t. x are bounded by an integrable function κ(ξ) for
every x ∈ R

n .

It is easy to observe that Assumption 3.11 is stronger than Assumption 3.1. Over the
past few years, there have been extensive discussions (see [43] ) on the convergence
of SAA stationary points to the so-called weak stationary points of the true problem,
which are defined through the expected value of the subdifferential of the underlying
functions of the true problem in the first order optimality condition. A stationary point
is a weak stationary point but not vice versa. Analysis of convergence of the SAA
stationary point to a weak stationary point of the true problem can be proved under
Assumption 3.1, but convergence to a stationary point of the true problem requires
Assumption 3.11.

Consider a sequence of functions { fN (x)} defined on R
n . Recall that fN is said to

epiconverge to a function f if and only if the epigraph of fN converges to the epigraph
of f . A necessary and sufficient condition for fN to epiconverge to f is that for every
x ∈ R

n ,

{
lim inf N fN (x N ) ≥ f (x) for every sequence x N → x;
lim supN fN (x N ) ≤ f (x) for some sequence x N → x .

See [34] for details. For set-valued mappings N ,  : R
m ⇒ R

n , N is said to
converge graphically to  if the graph of N converges to that of .

Proposition 3.12 Let θ(x) and θN (x) be defined as in (10) and (12) respectively. Let
{x N } ⊂ X be a sequence which converges to x∗ almost surely. Under Assumption 3.11

lim
N→∞ D(∂θN (x

N ), ∂θ(x∗)) = 0 (37)

almost surely.
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Proof Since for any ξ ∈ �, G(·, ξ) is concave function, then H(x, t, ξ) is a con-
vex function with respect to x over X and so are hN (x, t), h(x, t), θ(x) and θN (x).
Under Assumption 3.11, it follows by [37, Section 6, Proposition 7] that HN (x, t, ξ)
converges to EP [H(x, t, ξ)] uniformly over any compact subset of R

n × R almost
surely. Subsequently, it is easy to verify that θN (x) converges to θ(x) uniformly over
any compact subset of R

n , which implies, via [34, Proposition 7.15], θN epiconverges
to θ almost surely. By Attouch’s theorem ([34, Theorem 12.35]), the latter conver-
gence implies ∂θN converges to ∂θ graphically over X and hence (37). The proof is
complete. �
Theorem 3.13 Let {x N } be a sequence of KKT points of problem (13) and x∗ be an
accumulation point. Suppose: (a) Assumption 3.11 holds; (b) for every ξ ∈ �, f (·, ξ)
is Clarke regular on X; (c) the probability space is nonatomic. If ρN → ρ, then with
probability 1 x∗ is a stationary point of the true penalty problem (11).

Proof By taking a subsequence if necessary we may assume for simplicity that x N

converges to x∗. Observe first that for any compact sets A, B,C, D ⊆ R
m ,

D(A + C, B + D) ≤ D(A + C, B + C)+ D(B + C, B + D)

≤ D(A, B)+ D(C, D), (38)

where the first inequality follows from the triangle inequality and the second inequality
follows from the definition of D. Using the inequality (38), we have

D

(
∂ fN (x

N )+ ρN ∂θ(x
N ), ∂EP [ f (x∗, ξ)] + ρN ∂θ(x

∗)
)

≤ D

(
∂ fN (x

N ), ∂EP [ f (x∗, ξ)]
)

+D

(
ρN ∂θN (x

N ), ρ∂θ(x∗)
)
.

In Proposition 3.12, we have shown that

lim
N→∞ D

(
ρN ∂θN (x

N ), ρ∂θ(x∗)
)

= 0.

In what follows, we show

lim
N→∞ D

(
∂ fN (x

N ), ∂EP [ f (x∗, ξ)]
)

= 0. (39)

Under the Clarke regularity

∂EP [ f (x∗, ξ)] = EP [∂x f (x∗, ξ)],

where EP [∂x f (x∗, ξ)] denotes Aumann’s [1] integral of the Clarke subdifferential.
Under Assumption 3.11, it is well known that EP [∂x f (x∗, ξ)] is well defined, see for
instance [1] and [44, Proposition 2.2]. Moreover, the Clarke regularity implies
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∂ fN (x
N ) = 1

N

N∑
k=1

∂x f (x N , ξ k).

Therefore it suffices to show that

lim
N→∞ D

(
1

N

N∑
k=1

∂x f (x N , ξ k),EP [∂x f (x∗, ξ)]
)

= 0 (40)

almost surely. Under Assumption 3.11, we have by virtue of [40, Theorem 2],

lim
N→∞ sup

x∈X
D

(
1

N

N∑
k=1

∂x f (x, ξ k),EP [∂δx f (x, ξ)]
)

= 0

almost surely, where δ is a positive number which can be arbitrarily small and

∂δx f (x, ξ) =
⋃

x ′∈B(x,δ)

∂x f (x ′, ξ).

This implies

lim
N→∞ D

(
1

N

N∑
k=1

∂x f (x N , ξ k),EP [∂δx f (x∗, ξ)]
)

= 0

almost surely and hence

0 ∈ EP [∂δx f (x∗, ξ)] + ρ∂θ(x∗)+ NX (x
∗).

By [18, Theorems 2.5] (or [25, Theorem 1.43 (iii)]),

lim
δ↓0

EP [∂δx f (x∗, ξ)] ⊂ EP

[
lim
δ↓0

∂δx f (x∗, ξ)
]

= EP [∂x f (x∗, ξ)].

The last equality is due to the fact that limδ↓0 ∂
δ
x f (x∗, ξ) = ∂x f (x∗, ξ). Using (38)

and the discussions above, we can easily obtain (40) and hence

0 ∈ EP [∂x f (x∗, ξ)] + ρ∂θ(x∗)+ NX (x
∗) = ∂EP [ f (x∗, ξ)] + ρ∂θ(x∗)+ NX (x

∗).

This shows that x∗ is a stationary point of the true penalty problem (11). The proof is
complete. �

Note that the Clarke regularity condition used in the theorem may be replaced by
other conditions. For instance, if the Lipschitz modulus in Assumption 3.11 is bounded
by positive constant and for a small positive constant τ0, 1

τ
( f (x + τu, ξ)− f (x, ξ))
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is uniformly continuous w.r.t. ξ for all x ∈ X , u ∈ R
n with ‖u‖ ≤ 1 and τ ∈ (0, τ0],

then we may apply [23, Lemma 5.2] to show

lim
N→∞ sup

x∈X
D(∂ fN (x), ∂EP [ f (x, ξ)]) → 0

and hence (39). We omit the details.
Note also that it might be interesting to ask whether a stationary point of problem

(11) is a stationary point of problem (5). To answer this question, we need to consider
the first order optimality conditions for the latter problem. Let us assume that problem
(5) satisfies the Slater condition, X is a compact set and the Lipschitz modulus of
f (x, ξ) w.r.t. x is bounded by an integrable function κ(ξ) > 0. We consider the
following optimality conditions:

⎧⎪⎪⎨
⎪⎪⎩

0 ∈ ∂EP [ f (x, ξ)] + λ∂θ(x),
λ > 0,
EP [H(x, t, ξ)] ≤ 0, ∀t ∈ T,
x ∈ X.

(41)

We say a point x∗ is a stationary point of (5) if there exists λ∗ > 0 such that (x∗, λ∗)
satisfies (41). To justify this definition, we show that every local optimal solution to
problem (5) satisfies (41) (along with some positive number λ). In the case when
EP [ f (x, ξ)] is a convex function, a point satisfying optimality conditions (41) is a
global optimal solution to problem (5). In what follows, we verify this. Let x̂ be a local
minimizer of (5). Let

γ (P) =: sup
x∈X

‖x − x̄‖
mint∈T −EP [H(x̄, t, ξ)] ,

where x̄ is given in Definition 2.3. Then for ρ > γ (P)EP [κ(ξ)], x∗ is a local optimal
solution of (11). This shows (x∗, ρ) satisfies optimality condition (41). Conversely
if x∗ is a stationary point, that is, there exists positive number λ∗ such that (x∗, λ∗)
satisfies optimality conditions (41). If EP [ f (x, ξ)] is a convex function, then it is easy
to see that x∗ is a global optimal solution of (11) with ρ = λ∗. Since x∗ is a feasible
point of (5), it is not difficult to verify that x∗ is a global optimal solution of problem
(5).

Note that Dentcheva and Ruszczyński [12] introduced some first order optimality
conditions for a class of semi-infinite programming problems arising from optimiza-
tion problems with stochastic second order constraints. Let M (T ) denote the set of
regular countably additive measures on T and M+(T ) its subset of positive measures.
Consider the following Lagrange function of (5):

L (x, μ) = EP [ f (x, ξ)] +
∫

T

EP [H(x, t, ξ)]μ(dt),
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where μ ∈ M+(T ). Under the so-called differential constraint qualifications,
Dentcheva and Ruszczyński showed that if a point x∗ is a local optimal solution
of problem (5), then there exists μ∗ ∈ M+(T ) such that

⎧⎪⎪⎨
⎪⎪⎩

0 ∈ ∂xL (x, μ) = ∂EP [ f (x∗, ξ)] + ∫T ∂xEP [H(x∗, t, ξ)]μ∗(dt)+ NX (x∗),
EP [H(x∗, t, ξ)] ≤ 0, ∀t ∈ T,∫

T EP [H(x∗, t, ξ)]μ∗(dt) = 0,
x ∈ X,

(42)

see [12, Theorem 4] for details and [12, Definition 2] for the definition of the differential
constraint qualification. Note that optimality conditions (42) can also be alternatively
characterized by some convex functions defined over R. This can be done by rep-
resenting the integral w.r.t. measure μ by some convex functions through the Riesz
representation theorem, see [8,9] for details. It is an open question as to whether there
is some relationship between (41) and (42) or the equivalent conditions of (42) in
[8,9], and this will be the focus of our future work.
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8. Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM J. Optim.

14, 548–566 (2003)
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