
Math. Program., Ser. A (2013) 142:269–310
DOI 10.1007/s10107-012-0575-2

FULL LENGTH PAPER

Randomized first order algorithms with applications
to �1-minimization

Anatoli Juditsky · Fatma Kılınç Karzan ·
Arkadi Nemirovski

Received: 8 February 2011 / Accepted: 26 June 2012 / Published online: 25 July 2012
© Springer and Mathematical Optimization Society 2012

Abstract In this paper we propose randomized first-order algorithms for solving
bilinear saddle points problems. Our developments are motivated by the need for sub-
linear time algorithms to solve large-scale parametric bilinear saddle point problems
where cheap online assessment of the solution quality is crucial. We present the the-
oretical efficiency estimates of our algorithms and discuss a number of applications,
primarily to the problem of �1 minimization arising in sparsity-oriented signal pro-
cessing. We demonstrate, both theoretically and by numerical examples, that when
seeking for medium-accuracy solutions of large-scale �1 minimization problems, our
randomized algorithms outperform significantly (and progressively as the sizes of the
problem grow) the state-of-the art deterministic methods.
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1 Introduction

This paper is motivated by the desire to develop efficient randomized first-order
methods for solving well-structured large-scale convex optimization problems.
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270 A. Juditsky et al.

Our approach is based on saddle point (s.p.) reformulation of well-structured con-
vex minimization problems and is applicable when the resulting s.p. problems are
bilinear; in this respect, it goes back to the breakthrough paper of Nesterov [15]. The
deterministic s.p. prototypes of the randomized algorithms we develop here were pro-
posed in [12,13], and the prototypes of our randomization scheme were proposed in
[14, Section 3.3] and [10]. In this paper, we demonstrate that in the case of a bilinear s.p.
problem, a better randomization is possible,1 specifically, one allowing to assess in a
computationally cheap fashion the quality of the resulting approximate solutions. This
assessment is instrumental when solving parametric bilinear s.p. problems covering
numerous applications.

As an application area, our primary (but not the only) target is the �1-minimization
problem

Optp =min
u

{‖u‖1 : ‖Au−b‖p ≤ δ
} [A=[A1, . . . , An]∈Rm×n,m, n > 2], (1)

where p = ∞ (“uniform fit”) or p = 2 (“�2-fit”). We are interested in the large-
scale case, where the sizes m, n of (possibly dense) matrix A are in the range of
thousands/tens of thousands. Efficient solutions to the problems of this type are of
paramount importance for sparsity-oriented Signal Processing, in particular, in com-
pressed sensing (see [2,3,5] and references therein). To give a flavor of our results,
here is what our approach yields for (1):

Proposition 1 Assume that (1) is feasible, δ is small enough, namely, 2m
1
p δ ≤ ‖b‖p.

Given ε ∈ (0, 1
2 Optp‖A‖1,p],2 let our goal be to find an ε-solution to (1), that is, a

point xε satisfying

‖xε‖1 ≤ Optp & ‖Axε − b‖p ≤ δ + ε.

Then, for every tolerance χ ∈ (0, 1/2], the outlined goal can be achieved with prob-
ability ≥ 1 − χ

(i) in the case of p = ∞ (uniform fit)—in at most

O(1)

[√
ln(m) ln(n)‖A‖1,∞Opt∞

ε
ln

(√
ln(m) ln(n)‖A‖1,∞Opt∞

χε

)]2

steps of a randomized algorithm, with computational effort per step reduced to
extracting from A two columns and two rows, given their indexes, plus “compu-
tational overhead” of O(1)(m + n) operations.

1 In the hindsight, a particular case of this new randomization can be recognized in the sublinear time
randomized algorithm for matrix games due to Grigoriadis and Khachiyan [7].
2 Here and below ‖A‖1,p = max j ‖A j ‖p is the norm of the mapping x �→ Ax induced by the norms ‖ ·‖1
and ‖ · ‖p in the argument and the image spaces, respectively.
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Randomized first order algorithms 271

(ii) in the case of p = 2 (�2 fit)—in at most

O(1)

[
ln(mn)�(A)‖A‖1,2Opt2

ε
ln

(
ln(mn)�(A)‖A‖1,2Opt2

χε

)]2

,

�(A) =
√

m‖A‖1,∞
‖A‖1,2

,

steps of a randomized algorithm with the same computational effort per step as
in (i).

Furthermore, there exists a randomized preprocessing of the data [A, b] of the
problem (1) of computational cost not exceeding O(1)mn ln(m), which ensures with
probability ≥ 1 − χ that �(A) ≤ O(1)

√
ln(mn/χ).

Note that the best known so far complexity of finding ε-solution to a large-scale prob-

lem (1) by a deterministic algorithm is at least O(1)
√

ln(m) ln(n)‖A‖1,∞Opt∞
ε

(p = ∞)

or O(1)
√

ln(n)‖A‖1,2Opt2
ε

(p = 2) steps3 with complexity of a step dominated by the
necessity to perform O(1) multiplications x �→ Ax , y �→ AT y. When A is dense,
full matrix vector product requires O(mn) operations, and hence the total operations
count is, up to log-factors, of order of mn

ν
, where ν = ε

‖A‖1,pOptp
can be naturally inter-

preted as relative accuracy. For the randomized algorithms underlying Proposition 1,
this count, again up to log-factors, is of order of m+n

ν2 (uniform fit) and m+n
ν2 + mn

(�2 fit). We see that when the relative accuracy ν is such that 1 
 ν 
 m−1 + n−1,
the randomized algorithms outperform the deterministic ones, and the positive effect
of randomization becomes more significant as the problem size grows, i.e., “
” in
the above becomes “sharper”. Numerical results presented in Sect. 5 demonstrate that
this acceleration can be of real practical interest.

The main body of this paper is organized as follows. In Sect. 2, we present a sad-
dle-point-based framework for our developments together with a sample of interest-
ing optimization problems fitting this framework. This sample includes, along with �1
minimization, the (semidefinite relaxation of the) problem of low-dimensional approx-
imation of a collection of points in Rd . Randomized algorithms for the problems fitting
to our framework are developed and analyzed in Sects. 3 and 4. Section 5 presents
encouraging preliminary results on numerical comparison of our randomized algo-
rithms and their state-of-the-art deterministic counterparts as applied to large-scale �1
minimization problems.

2 Problems and goals

We start with specifying and motivating two problems to be discussed in the paper
and our goals.

3 The bounds are attainable, provided Optp is known in advance.
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272 A. Juditsky et al.

2.1 A bilinear saddle point problem

The first problem we are interested in is a Bilinear Saddle Point (BSP) problem

SV = min
z1∈Z1

max
z2∈Z2

φ(z1, z2),

φ(z1, z2) = υ + 〈a1, z1〉 + 〈a2, z2〉 + 〈z2, Bz1〉 : Z := Z1 × Z2 → R,
(S)

where Zi are nonempty convex compact sets in Euclidean spaces Ei , i = 1, 2. Recall
that (S) gives rise to two convex optimization programs that are dual to each other:

Opt(P) = min
z1∈Z1

[
φ(z1) := max

z2∈Z2
φ(z1, z2)

]
(P)

Opt(D) = max
z2∈Z2

[
φ(z2) := min

z1∈Z1
φ(z1, z2)

]
(D)

(2)

with Opt(P) = Opt(D) = SV, and to the variational inequality (v.i.):

find z∗ ∈ Z := Z1 × Z2 such that 〈F(z), z − z∗〉 ≥ 0 for all z ∈ Z , (3)

where F : Z �→ E1 × E2 is the affine monotone operator given by

F(z1, z2) =
[

F1(z2) = ∂φ(z1, z2)

∂z1
; F2(z1) = −∂φ(z1, z2)

∂z2

]
= a + A[z1; z2],

a = [a1;−a2], A =
[

B∗
−B

] (4)

(here B∗ stands for the conjugate of B). Note that A is skew-symmetric:

〈z,Az〉 = 0 ∀z ∈ E := E1 × E2. (5)

It is well known that the solutions to (S)—the saddle points of φ on Z1 × Z2—are
exactly the pairs z = [z1; z2] comprised of optimal solutions to problems (P) and (D)
in (2). They are also exactly the solutions to the v.i. (3). We quantify the accuracy of
candidate solutions z = [z1; z2] ∈ Z to (S) by the saddle point residual

εsad(z) = φ(z1)− φ(z2) = [
φ(z1)− Opt(P)

]

︸ ︷︷ ︸
≥0

+
[
Opt(D)− φ(z2)

]

︸ ︷︷ ︸
≥0

. (6)

2.1.1 Assumptions and goal

When speaking about a BSP problem (S), our goal is to solve it within a given accu-
racy ε > 0, i.e., to find zε ∈ Z such that εsad(zε) ≤ ε. Deterministic first order
algorithms achieve this goal by working with the values of the associated operator
F at the iterates zt , t = 1, 2, . . . , generated by the method. When Z is simple and
the problem is large-scale, computing the values F(zt ) dominates the computational
effort. Our goal in this paper is to replace relatively expensive (in the large scale case)

123



Randomized first order algorithms 273

exact values F(zt ) with their computationally cheap unbiased random estimates. To
this end we assume that

[P] every point z ∈ Z is associated with a probability distribution Pz such that
– Pz is supported on Z and Eζ∼Pz {ζ } = z;
– Given z, we can sample from the distribution Pz .

Under these assumptions, and due to the affinity of F , in order to get an unbiased
estimate of F(zt ), it suffices to draw a ζt ∼ Pzt and to take F(ζt ) as a desired estimate
of F(zt ). To make this approach meaningful, the cost of generating ζt and subsequent
computation of F(ζt ) should be significantly less than the cost of a straightforward
computation of F(zt ). This requirement guided us in the selection of problems to be
considered below and in building the s.p. reformulations of these problems.

Note that the deterministic algorithms remain in our scope, since there always is
the option to define Pz as δz (the unit mass sitting at z).

2.1.2 Application example: low dimensional approximation

Consider the following problem (related to dimensionality reduction problem in sta-
tistics, see, e.g., [4]): given a collection V = {v1, . . . , vN } of unit vectors in Rn , we
want to find a linear subspace E ⊂ Rn of a given dimension d < n which minimizes
the deviation δ(V, E) of V from E , defined as the worst-case, w.r.t. vi ∈ V , Euclidean
distance from vi to E : δ(V, E) = max1≤i≤N minu∈E ‖vi − u‖2.

Let Πd be the family of all orthonormal projectors of Rn onto subspaces of dimen-
sion d. Taking into account that vi are unit vectors, we have for every P ∈ Πd :
1 − δ2(V, Im P) = mini v

T
i Pvi , so that

δ2∗ := minE {δ2(V, E) : dim E = d} = 1 − Opt∗, Opt∗ = max
P∈Πd

[min
i
vT

i Pvi ].

Now, the set Πd is nonconvex, so that the problem Opt∗ = maxP∈Πd [mini v
T
i Pvi ] is

seemingly difficult; it, however, admits the tractable relaxation:

Opt∗ ≤Opt := max
Q∈Pd

min
1≤i≤N

vT
i Qvi , Pd ={Q ∈ Sn : 0 � Q � I,Tr(Q) = d}. (7)

We refer to (7) as the problem of low dimensional approximation. We clearly have
Opt∗ ≤ Opt ≤ 1, whence δ2 := 1 − Opt ≤ δ2∗ . Our relaxation admits some quality
guarantees. Specifically, let Q be an optimal solution to (7) and let E be spanned by
the d leading eigenvectors of Q. Then

δ(V, E) ≤ δ
√

d + 1 ≤ δ∗
√

d + 1. (8)

Indeed, let e1, . . . , en be an orthonormal system of eigenvectors of Q, and λ1 ≥
λ2 ≥ · · · ≥ λn be the corresponding eigenvalues. Note that λk ∈ [0, 1] and
λd+1 ≤ Tr(Q)/(d + 1) = d/(d + 1). For every i we have Opt ≤ ∑n

k=1λk(v
T
i ek)

2 ≤
∑d

k=1(v
T
i ek)

2 + λd+1
∑n

k=d+1(v
T
i ek)

2 and
∑

k(v
T
i ek)

2 = 1 (vi are unit vectors),
whence
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274 A. Juditsky et al.

(1 − λd+1)

n∑

k=d+1

(vT
i ek)

2 ≤ 1 − Opt = δ2,

that is,
∑n

k=d+1(v
T
i ek)

2 ≤ (d + 1)δ2. Note that the left hand side in this inequality is
the squared distance from vi to E , and (8) follows.

Observe that (7) is nothing but the BSP problem:

Opt = max
Q∈Pd

min
λ∈�N

[

Tr

(

Q
N∑

i=1

λiviv
T
i

)]

, �N =
{

λ ∈ RN+ :
n∑

i=1

λi = 1

}

. (9)

In terms of (S), Z1 = �N ⊂ E1 = RN , E2 is the space Sn of symmetric n × n
matrices with Frobenius inner product, Z2 = Pd ⊂ E2. The associated operator F is

F(z1, z2) = F(λ, Q) =

⎡

⎢
⎢
⎣[vT

1 Qv1; · · · ; vT
N QvN ]

︸ ︷︷ ︸
F1(z2)

;−
∑N

i=1
λiviv

T
i

︸ ︷︷ ︸
F2(z1)

⎤

⎥
⎥
⎦ . (10)

Assuming that the vectors vi are dense, the arithmetic cost of computing the value of
F at a given point is O(n2 N ). To reduce this cost by randomization, let us specify the
distributions Pz for a given point z = (λ, Q) ∈ Z = Z1 × Z2. In order to generate
ζ ∼ P(λ,Q), we proceed as follows:

– Given λ ∈ �N , we pick ı ∈ {1, . . . , N } at random, with Prob{ı = i} = λi ,
1 ≤ i ≤ N , and set ζ ı

1 := eı , where ei , i = 1, . . . , N , are standard basic orths
in RN .

– Given Q ∈ Pd , we build the eigenvalue decomposition Q = UDiag{q}U T . Note
that q ∈ �n,d := {q ∈ Rn : 0 ≤ qi ≤ 1 ∀i,

∑n
i=1qi = d}. The extreme points

of �n,d are Boolean vectors with exactly d nonzero entries. There exists a sim-
ple algorithm (see Sect. A.1) which, given as input a vector q ∈ �n,d , builds in
O(1)min{d, ln(n)}n2 a.o. n extreme points q j , 1 ≤ j ≤ n, of �n,d along with
weights μ j ≥ 0,

∑
jμ j = 1, such that q = ∑

jμ j q j . We run this algorithm

to build {q j , μ j }n
j=1, pick j ∈ {1, . . . , n} at random, with Prob{j = j} = μ j ,

j = 1, . . . , n, and set ζ j2 = UDiag{qj }U T , which is a projection matrix.
– Finally, we set ζ = [ζ ı

1; ζ j2 ] ∈ Pd ×�N .

The family of distributions P(λ,Q) clearly satisfies [P]. The “setup costs” for sampling
from P(λ,Q) reduce to those of 1) computing the eigenvalue decomposition of Q, 2)
building q1, . . . , qn , μ1, . . . , μn (this cost is O(n3 + min{d, ln(n)}n2) a.o.) and 3)
computing the “cumulative distributions” {λi = ∑i

s=1λs}N
i=1 and {μ j = ∑ j

s=1μs}n
j=1

(what amounts to O(n + N ) a.o.). After the setup cost is paid, a sample (ı, j) can be
generated at the cost of just O(ln(n+ N )) a.o. Now let us look at the cost of computing
F(ζ ıj ) given ı, j . We have

F(ζ ıj ) =
[
{vT

i UDiag{qj }U T vi }N
i=1;−vıv

T
ı

]
.
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Randomized first order algorithms 275

Since qj has just d nonzero entries, all equal to 1, let the indices of these entries
be j1, . . . , jd , we have vT

i UDiag{qj }U T vi = ∑d
�=1(U

T
j�
vi )

2, where U j is j th col-

umn of U . We see that computing F(ζ ıj ) costs O(n2 + dnN ) a.o. Thus, the total
cost (including that of the setup) of drawing a sample ζ from P(λ,Q) and computing
F(ζ ) is

O(n3 + min{d, ln(n)}n2 + n2 + dnN ) = O(n3 + dnN ) a.o.

When d � n � N , this cost is much smaller than the cost O(n2 N ) of computing
F(z) at a “general position” point z = (λ, Q) ∈ Z .

2.2 A generalized bilinear saddle point problem

2.2.1 The problem

Assume that we are given a single-parameter family of bilinear s.p. problems

SV(ρ) = min
z1∈Z1

max
z2∈Z2

[φρ(z1, z2) := φ(z1, z2)+ ρψ(z1, z2)], (11)

where ρ ≥ 0 is a parameter and φ(z1, z2), ψ(z1, z2) are bi-affine in z1 and z2. The
generalized bilinear saddle point (GBSP) problem associated with this family is, by
definition, the optimization program

ρ∗ = max{ρ ≥ 0 : SV(ρ) ≤ 0} (12)

A highly desirable property of a GBSP problem, relative to our approach, is the con-
vexity of SV(ρ) as a function of ρ ≥ 0. To ensure this property, from now on we make
the following assumption on the structure of (11):

[A.1] Z1 = Z11 × Z12 is the direct product of two convex compact sets, and the
bilinear functions φ(z1, z2), ψ(z1, z2) in (11) are of the form

φ(z1 = [z11; z12], z2) = υ + 〈a11, z11〉 + 〈b, z2〉 + 〈z2, Bz11〉,
ψ(z1 = [z11; z12], z2) = χ + 〈a12, z12〉 + 〈c, z2〉 + 〈z2,Cz12〉, (13)

that is, φ(z1, z2) and ψ(z1, z2) as functions of z1 depend each on its own “block”
of z1, and these blocks z11 and z12, independently of each other, run through the
respective convex compact sets Z11 and Z12.

From now on, we denote by Fρ(z) = �(z) + ρ�(z) the affine monotone operator
associated with φρ according to (4), where �(·) and �(·) are the affine monotone
operators associated with functions φ(·) and ψ(·), respectively.

Lemma 1 In the case of A.1 the function SV(ρ) given by (11) is convex in ρ ≥ 0.
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276 A. Juditsky et al.

Proof We have

SV(ρ) = max
z2∈Z2

min
z1∈Z1

φρ(z1, z2)

= max
z2∈Z2

min
z11∈Z11,z12∈Z12

[υ + ρχ + 〈a11, z11〉 + 〈b, z2〉 + 〈z2, Bz11〉
+ρ [〈a12, z12〉 + 〈c, z2〉 + 〈z2,Cz12〉]]

= max
z2∈Z2

⎡

⎢
⎢
⎢
⎣
υ + ρχ + 〈b, z2〉 + ρ〈c, z2〉

+ min
z11∈Z11

⎡

⎢
⎢
⎢
⎣

〈a11, z11〉 + 〈z2, Bz11〉 + ρ min
z12∈Z12

[〈a12 + C∗z2, z12〉
]

︸ ︷︷ ︸
g(z2)

⎤

⎥
⎥
⎥
⎦

⎤

⎥
⎥
⎥
⎦

= max
z2∈Z2

⎡

⎢
⎣υ + ρχ + 〈b, z2〉 + ρ〈c, z2〉 + ρg(z2)

+ minz11∈Z11 [〈a11, z11〉 + 〈z2, Bz11〉]︸ ︷︷ ︸
h(z2)

⎤

⎥
⎦

= max
z2∈Z2

[
υ + 〈b, z2〉 + h(z2)+ ρ [χ + 〈c, z2〉 + g(z2)]

]

and thus SV(ρ) is the supremum of affine functions of ρ. ��
From now on we assume, in addition to A.1, that

[A.2] Function SV(ρ) given by (11) is nonpositive somewhere on R++ and tends
to +∞ as ρ → +∞,

which implies solvability of (12) and positivity of ρ∗.

The goal. Given a GBSP problem (11)–(12) and a tolerance ε > 0, our goal will be
to find an ε-solution to the problem, that is, a pair ρε , zε1 ∈ Z1 such that

ρε ≥ ρ∗ and max
z2∈Z2

φρε (zε1, z2) ≤ ρεε (14)

We are about to point out several important application examples for GBSP problem.

2.2.2 Application example: �1 minimization with �p fit

Given an �p norm with p ∈ [1,∞] and a matrix A ∈ Rm×n , the problem of interest is

Opt = min
x

{‖x‖1 : ‖Ax − b‖p ≤ δ
}
. (15)
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Randomized first order algorithms 277

Different versions of this problem arise in sparsity-oriented Signal Processing and
Compressed Sensing. Setting x = u

ρ
, ‖u‖1 ≤ 1, we can rewrite the problem in (15)

equivalently as

1/Opt = ρ∗ = max

{
ρ : min‖u‖1≤1

‖Au − ρb‖p − ρδ ≤ 0

}
. (16)

Let ϕ(u, ρ) := ‖Au−ρb‖p −ρδ. For any given u, let vu be such that Au−ρb = ρδvu .
Whenever ‖vu‖p ≤ 1, we have ϕ(u, ρ) = ‖Au − ρb‖p − ρδ = ρδ‖vu‖p − ρδ ≤ 0.
Moreover whenever ϕ(u, ρ) ≤ 0, we see that there exists vu satisfying ‖vu‖p ≤ 1 and
Au − ρb − ρδvu = 0. Hence we can alternatively write (16) as

1/Opt = ρ∗ = max

{
ρ : �(ρ) = min‖u‖1≤1, ‖v‖p≤1

‖Au − ρb − ρδv‖∞ ≤ 0

}
. (17)

The advantage of formulation (17) as opposed to (16) (as well as to the original
problem given in (15)) lies in the computational complexity of the corresponding first-
order oracles. In particular, when computing F for the BSP’s in (17), vector variables
participating in nontrivial matrix-vector products vary in unit �1 balls, which, as we
shall see, makes an efficient randomization possible. Unfortunately we do not know
of extensions of such a randomization for the unit balls of general �p norms.

Problem given in (17) is nothing but the GBSP problem (11) with SV (ρ) =
minz1∈Z1 maxz2∈Z2 φ

ρ(z1, z2),

φρ(z1(= [z11; z12]), z2) = zT
2 J T

m (AJnz11 − ρ[b + δz12]) ,
Z1 = �2n︸︷︷︸

Z11

×{z12 ∈ Rm : ‖z12‖p ≤ 1}
︸ ︷︷ ︸

Z12

, Z2 = �2m, (18)

where we denote Jk = [Ik,−Ik], Ik being k ×k identity matrix. This problem satisfies
[A.1]; when ‖b‖p > δ (otherwise the optimal solution to (15) is x = 0), the problem
satisfies [A.2] as well. The associated saddle value function is

SV(ρ) = max
z2∈�2m

min
z11∈�2n , z12∈Z12

[
zT

2 J T
m (AJnz11 − ρ[b − δz12])

]

= max
w=Jm z2, z2∈�2m

min
u=Jn z1, z1∈�2n

min
z12∈Z12

[
wT (Au − ρ[b + δz12])

]

= max‖w‖1≤1
min‖u‖1≤1

min‖v‖p≤1

[
wT (Au − ρ[b + δv])] = �(ρ).

Suppose that we are given an ε-solution ρε, zε1 = [zε11; zε12] to the problem (14), (18)

with ε = εm− 1
p . When setting xε = ρ−1

ε Jnzε11 and vε = zε12 we get an approximate
solution to (15) such that

‖xε‖1 ≤ Opt & ‖Axε − b‖p ≤ ‖δvε‖p + ‖Axε − b − δvε‖p ≤ δ + εm1/p =δ+ε.

Finally, we associate with z = [z11; z12; z2] ∈ Z = Z1 × Z2 a distribution Pz sat-
isfying condition [P] from Sect. 2.1.1 as follows. Note that for z ∈ Z , z11 and z2
are vectors from the standard simplices and thus can be considered as probability
distributions on the corresponding index sets {1, . . . , 2n}, {1, . . . , 2m}. To generate
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278 A. Juditsky et al.

ζ = [ζ11; ζ12; ζ2] ∼ Pz , we draw at random index ı from the distribution z11 and
make [ζ11]ı = 1 the only nonzero entry in ζ11. ζ2 is built similarly, with z2 in the role
of z11, and ζ12 is nothing but z12. It is immediately seen that it takes just O(m + n)
a.o. to generate a sample ζ ∼ Pz and to compute the vector Fρ(ζ ).

It is worth to mention that in the important case p = ∞ the construction of the
GBSP which corresponds to (15) can be substantially simplified. Indeed, one can see
immediately that for p = ∞ (16) is equivalent to the GBSP problem on the direct
product of just two unit �1-balls (since ‖Az1 − b‖∞ = max‖z2‖1≤1 zT

2 (Az1 − b)). It
is more convenient to pass from �1-balls to the standard simplexes, as it was done in
the case of (18). The resulting GBSP problem is given by

φρ(z1, z2) = zT
2 J T

m AJnz1 − ρzT
2 J T

m b − ρδ,

Z1 = Z11 = �2n, Z12 = {0}, Z2 = �2m,
(19)

and satisfies [A.1] and [A.2] when δ < ‖b‖∞.

3 Solving bilinear saddle point problem

We are about to present two randomized first order methods for solving BSPs; they
will also be instrumental in solving GBSPs—the Stochastic Approximation (SA) and
the Stochastic Mirror Prox (SMP) algorithms, which are the randomized versions of
the methods proposed in [12] and [13], respectively. Both SA and SMP are directly
applicable to a BSP problem which we consider in this section; the GBSP case will
be considered in Sect. 4.

3.1 The setup

Both SA and SMP algorithms are aimed at solving a BSP problem (S). The setup for
these methods is given by

– a norm ‖ · ‖ on the Euclidean space E where the domain Z = Z1 × Z2 of (S)
lives, along with the conjugate norm ‖ζ‖∗ = max‖z‖≤1〈ζ, z〉;

– a distance-generating function (d.g.f.) ω(z) which is convex and continuous on Z ,
admits continuous on the set Zo = {z ∈ Z : ∂ω(z) �= ∅} selection ω′(z) of sub-
gradient (here ∂ω(x) is a subdifferential of ω

∣
∣

Z taken at z), and is strictly convex
with modulus 1 w.r.t. ‖ · ‖:

∀z′, z′′ ∈ Zo : 〈ω′(z′)− ω′(z′′), z′ − z′′〉 ≥ ‖z′ − z′′‖2.

We shall refer to the latter property as to compatibility of ω(·) and ‖ · ‖.

A d.g.f. ω gives rise to several important for us entities:

1. Bregman distance Vz(u) = ω(u) − ω(z) − 〈ω′(z), u − z〉, where z ∈ Zo and
u ∈ Z ;

2. Prox-mapping Proxz(ξ) = argminw∈Z {〈ξ,w〉 + Vz(w)} : E → Zo; here z ∈ Zo

is a “prox center;”
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3. “ω-center” zω = argminz∈Z ω(z) ∈ Zo of Z and the quantities

� = max
z∈Z

Vzω(z) ≤ max
z∈Z

ω(z)− min
z∈Z

ω(z), � = √
2�. (20)

In the sequel, we set

R := max
z∈Z

‖z − zω‖ ≤ �, (21)

where the concluding inequality follows from the fact that for every z ∈ Z one has
1
2‖z − zω‖2 ≤ Vzω(z) by strong convexity of ω(·).

We also denote by L the (‖ · ‖, ‖ · ‖∗)-Lipschitz constant of F :

‖F(z)− F(z′)‖∗ = ‖A(z − z′)‖∗ ≤ L‖z − z′‖, ∀z, z′; (22)

and set

M∗ = max
z,z′∈Z

‖F(z)− F(z′)‖∗ ≤ 2RL ≤ 2�L, (23)

F∗ = max
z∈Z

‖F(z)‖∗ ≤ ‖F(zω)‖∗ + 2�L. (24)

3.2 The SA and SMP algorithms

We assume that we have access to an “oracle” O which, at i th call (i = 1, 2, . . .), given
an input point zi , returns a vector ξi ∈ E such that Eξi [ξi ] = F(zi ). This vector, ξi ,
can be random with distribution depending on previous calls and, more generally, on
the history of our computational process before the call. In fact, in the case when ξi is
random, the oracle can be interpreted as providing stochastic subgradient information
of the saddle point objective at point zi . Whenever this oracle is deterministic, i.e.,
ξi = F(zi ), it is the usual first-order oracle providing subgradient information.

This oracle gives rise to two conceptual algorithms:

(a) : z1 = zω; {zt , ξt } �→ {zt+1 = Proxzt (γtξt ), ξt+1}, t = 1, 2, . . .
(b) : z1 = zω; {zt , ξ2t−1} �→ {wt = Proxzt (γtξ2t−1), ξ2t }

�→ {zt+1 = Proxzt (γtξ2t ), ξ2t+1}, t = 1, 2, . . .
(25)

here, in the case of (a), zt are the search points, and ξt are the estimates of F(zt )

as reported by O; in the case of (b), zt , wt are search points, and ξ2t−1, ξ2t are the
estimates of F(zt ) and F(wt ), respectively, as reported by O. In both cases, γ1, γ2, . . .

are positive stepsizes defined in a non-anticipative fashion, that is, γt depends on ora-
cle’s answers obtained prior to step t (i.e., γt depends solely on ξ1, . . . , ξt−1 in the
case of (a), and solely on ξ1, . . . , ξ2t−2 in the case of (b)). Note that these algorithms
(25.a, b) can be perceived as the conceptual versions (with the possibility of working
with stochastic oracles) of the Mirror Descent algorithm of [12] and Mirror Prox algo-
rithm of [13], respectively. The main difference of (25.b) from (25.a) is the use of the
extra subgradient information. Note that deterministic versions of extra-gradient type
algorithms such as Mirror Prox have been shown to be optimal first-order methods (in
terms of the number of iterations required for a fixed given accuracy) for structured
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non-smooth optimization problems, including s.p. problems over simple domains. For
further details on the deterministic versions of these methods, we refer the reader to
[12,13]. Here the main difference of these conceptual algorithms from their determin-
istic counterparts is as follows: At each iteration, instead of using the exact subgradient
information in generation of the next search point, an unbiased random estimate of
the current point is built, from which the exact first-order information is gathered and
used for computing the next iterate. As opposed to the deterministic versions or the
earlier stochastic prototypes of these algorithms, which work with the actual search
points, here we average these random estimates to construct the solutions. We refer
to (25.a, b) as the stochastic approximation (SA) and stochastic mirror prox (SMP)
schemes, respectively. We will consider two implementations of these schemes, the
basic and the advanced ones.

3.2.1 Basic implementation

Recall that we have associated with (S) the affine operator F(z) : Z → E given
by (3), and with every point z ∈ Z—a probability distribution Pz supported on Z
satisfying Eζ∼Pz {ζ } = z. Suppose that

– the stepsizes γt > 0 are chosen in a non-anticipating fashion such that γ1 ≥ γ2 ≥
· · ·;

– in SA: ζt is drawn at random from the distribution Pzt , and ξt = F(ζt );
– in SMP: ξ2t−1 = F(ηt ) with ηt drawn at random from the distribution Pzt , and

ξ2t = F(ζt ) with ζt drawn at random from the distribution Pwt .

The approximate solution generated by the short-step SA/SMP in course of t =
1, 2, . . . steps is

zt = t−1
t∑

τ=1

ζτ . (26)

3.2.2 Advanced implementation

In Advanced implementation of SA and SMP, same as in the Basic one, the stepsizes
γt > 0 still are chosen in a non-anticipating fashion, but the restriction γ1 ≥ γ2 ≥ · · ·
is now lifted. To explain how the oracle is built, observe that if u ∈ Z , then

Eζ∼Pu {〈F(ζ ), ζ − u〉} = 0

(recall that F(z) = a+Az with skew symmetric A and that Eζ∼Pu {ζ } = u). It follows
that given u and generating one by one independent samples ηs ∼ Pu , s = 1, 2, . . .,
we will generate with probability 1 a ζ such that

〈F(ζ ), ζ − u〉 ≤ 0. (27)

At step t of SA, in order to define ξt , the oracle draws one by one samples ηs ∼ Pzt ,
s = 1, 2, . . ., until a sample ζt := ηs satisfying (27) with u = zt is generated; when it
happens, the oracle returns ξt = F(ζt ). At a step t of SMP, the oracle is invoked twice,
first to generate ξ2t−1 = F(ηt ), and then to generate ξ2t = F(ζt ). ξ2t−1 is generated
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exactly as in the basic implementation—by drawing a sample ηt ∼ Pzt and returning
ξ2t−1 = F(ηt ). To generate ξ2t , the oracle draws one by one samples ηs ∼ Pwt ,
s = 1, 2, . . ., until a sample ζt = ηs satisfying (27) with u = wt is generated; when
it happens, the oracle returns ξ2t = F(ζt ).

Finally, in the advanced implementation we replace the rule (26) for generating
approximate solutions with the rule

zt = 1
∑t

τ=1γτ

t∑

τ=1

γτ ζτ . (28)

3.2.3 Quantifying quality of approximate solutions

Observe that by construction at a step τ both ζτ and F(ζτ ) become known. Recalling
that F is affine, it follows that after t steps we have at our disposal both the approx-
imate solution zt = [zt

1; zt
2] and the vector F(zt ). As a result, with both Basic and

Advanced implementations of both SA and SMP, after t = 1, 2, . . . steps we have at
our disposal the quantities

φ(zt
1) = υ + 〈a1, zt

1〉 + max
z2∈Z2

〈z2,−F2(z
t
1)〉,

φ(zt
2) = υ + 〈a2, zt

2〉 + min
z1∈Z1

〈z1, F1(z
t
2)〉

(29)

[see (3)] and consequently we know the residual εsad(zt ) = φ(zt )− φ(zt ) of the cur-
rent approximate solution zt . As we shall see in Sect. 4, this feature of our algorithms
becomes instrumental when solving GBSP problems.4 This is in sharp contrast with
the prototypes of the SA and the SMP proposed, respectively, in [14, Section 3.3] and
[10]. The approximate solutions zt of those algorithms were computed according to
the formula (28), but with zτ [14] or wτ [10] in the role of ζτ . As a result, in the
prototype algorithms there is no universal and computationally cheap way to quantify
the quality of approximate solutions.

3.3 Efficiency estimates for Basic implementation

The accuracy bounds for Basic SA and SMP algorithms are given by the following

Proposition 2 Let the BSP problem (S) be solved by the short-step SA or SMP algo-
rithm with positive stepsizes γ1 ≥ γ2 ≥ · · · chosen in a non-anticipative fashion. Then

(i) For every t ≥ 1, for both SA and SMP one has

εsad(z
t ) ≤ t−1

[
γ−1

t �+ Rt + St

]
, Rt :=

t∑

τ=1

rτ , St :=
t∑

τ=1

sτ , (30)

4 Of course, computing the quantities in (29) is not completely costless; note, however, that the cost of one
step of the algorithm is dominated by the cost of computing the prox-mapping(s). Thus computing φ(·) and
φ(·) represents a small fraction of the overall computational effort.
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where

rt =
{ 〈F(ζt ), ζt − zt 〉 in the case of SA,

〈F(ζt ), ζt − wt 〉 in the case of SMP,

st =
{ 〈F(ζt ), zt − zt+1〉 − γ−1

t Vzt (zt+1), in the case of SA,
〈F(ζt ), wt − zt+1〉 − γ−1

t Vzt (zt+1), in the case of SMP.

We have

st ≤
{ γt

2 ‖F(ζt )‖2∗, in the case of SA,
γt
2 ‖F(ζt )− F(ηt )‖2∗ − 1

2γt
‖wt − zt‖2, in the case of SMP,

(31)

implying

st ≤
{ γt

2 F2∗ , in the case of SA,
γt
2 M2∗ , in the case of SMP.

(32)

In particular, if the stepsizes γt > 0 satisfy St ≤ �/γt , t = 1, 2, . . ., then

εsad(z
t ) ≤ 2�

tγt
+ Rt

t
. (33)

(ii) Further, E{Rt } = 0, and in the case of SMP, under additional assumption that

γt ≤ (
√

3L)−1, (34)

we have

st ≤ 3γt

2

[
‖A(ζt − wt )‖2∗ + ‖A(ηt − zt )‖2∗

]
, (35)

so that E{st } ≤ 3γtσ
2, where

σ 2 = sup
z∈Z

Eζ∼Pz

{
‖A(ζ − z)‖2∗

}
≤ M2∗ . (36)

In particular, if the stepsizes γt > 0 satisfy E{St } ≤ �/γt for t = 1, 2, . . ., then

E{εsad(z
t )} ≤ 2�

tγt
.

Proof 10. We need the following
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Lemma 2 [cf. [13], Lemma 3.1.(b)] Given z ∈ Zo, γ > 0 and ξ, η ∈ E, let us set

w = Proxz(γ ξ) = argmin
v∈Z

{〈γ ξ − ω′(z), v〉 + ω(v)
}
,

z+ = Proxz(γ η) = argmin
v∈Z

{〈γ η − ω′(z), v〉 + ω(v)
}
.

Then w, z+ ∈ Zo, and for every u ∈ Z one has

(a) γ 〈η,w − u〉 ≤ Vz(u)− Vz+(u)+ γ 〈η,w − z+〉 − Vz(z+)

(b) ≤ Vz(u)− Vz+(u)+ γ 〈η − ξ,w − z+〉 − Vz(w)− Vw(z+)

(c) ≤ Vz(u)−Vz+(u)+ γ ‖η − ξ‖∗‖w − z+‖ − 1

2

[
‖w−z‖2 + ‖w−z+‖2

]

(d) ≤ Vz(u)− Vz+(u)+ 1

2

[
γ 2‖η − ξ‖2∗ − ‖w − z‖2

]
.

(37)

Proof of Lemma 2 The inclusions w, z+ ∈ Zo are evident (a subgradient of ω(·) at
w, taken w.r.t. Z , is, e.g., ω′(z) − γ ξ , and similarly for z+). Now let u ∈ Z . z+
is an optimal solution of certain explicit convex optimization problem; taking into
account that ω′(·) is continuous on Zo, it is easily seen that the necessary optimal-
ity condition in this problem reads 〈γ η + ω′(z+) − ω′(z), u − z+〉 ≥ 0, whence
γ 〈η,w − u〉 ≤ γ 〈η,w − z+〉 + 〈ω′(z+) − ω′(z), u − z+〉, and the latter inequal-
ity, after rearranging terms in the right hand side, becomes (a). By similar reasons,
0 ≤ 〈γ ξ + ω′(w) − ω′(z), v − w〉 for all v ∈ Z ; setting v = z+, summing up the
resulting inequality with (a) and rearranging terms in the right hand side of what we
get, we arrive at (b). (c) follows from (b) due to Va(b) ≥ 1

2‖a − b‖2 (recall that ω
is strongly convex, modulus 1 w.r.t. ‖ · ‖, on Z ). Finally, (d) follows from (c) due to
μν − 1

2μ
2 ≤ 1

2ν
2. ��

20. Let us prove the bound (30). Consider first the case of SMP. Applying Lemma 2
to z = zτ , γ = γτ , ξ = F(ητ ), η = F(ζτ ), which results in w = wτ and z+ = zτ+1,
we get for all u ∈ Z :

γτ 〈F(ζτ ), wτ − u〉 ≤ Vzτ (u)− Vzτ+1(u)+ [γτ 〈F(ζτ ), wτ − zτ+1〉 − Vzτ (zτ+1)]

whence for all u ∈ Z

〈F(ζτ ), ζτ − u〉 ≤ γ−1
τ (Vzτ (u)− Vzτ+1(u))+

rτ︷ ︸︸ ︷
〈F(ζτ ), ζτ − wτ 〉 +sτ ,

sτ = 〈F(ζτ ), wτ − zτ+1〉 − γ−1
τ Vzτ (zτ+1)

≤ 1

2

[
γτ‖F(ζτ )− F(ητ )‖2∗ − γ−1

τ ‖wτ − zτ‖2
]

(∗)
(38)

with (∗) given by (37). When summing up inequalities (38) over τ and taking into
account that γ1 ≥ γ2 ≥ · · ·, Vz(u) ≥ 0 and Vz1(u) = Vzω(u) ≤ � by definition of �,
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we get

t∑

τ=1

〈F(ζτ ), ζτ − u〉 ≤ γ−1
t �+

t∑

τ=1

[sτ + rτ ]. (39)

On the other hand, taking into account that A is skew symmetric,

t∑

τ=1

〈F(ζτ ), ζτ − u〉 =
t∑

τ=1

〈a + Aζτ , ζτ − u〉

= t〈a, zt − u〉 −
t∑

τ=1

〈Aζτ , u〉

= t
[〈a, zt − u〉 − 〈Azt , u〉]

= t
[〈a, zt − u〉 + 〈Azt , zt − u〉]

= t〈F(zt ), zt − u〉.
Thus, for all u ∈ Z it holds

t〈F(zt ), zt − u〉 ≤ �γ−1
t +

t∑

τ=1

[sτ + rτ ] = γ−1
t �+ St + Rt . (40)

Setting zt = [zt
1; zt

2] and u = [u1; u2], we get from the definition of F(·) and the
bilinearity of the inner product 〈F(zt ), zt −u〉 = φ(zt

1, u2)−φ(u1, zt
2); the supremum

of the latter quantity over u ∈ Z is the s.p. residual εsad(zt ). Since the right hand side
in (40) is independent of u, we arrive at the SMP-version of (30).

30. Now consider the case of SA. Applying Lemma 2 to γ = γτ , z = zτ , ξ = 0,
η = F(ζτ ), which results in w = zτ and z+ = zτ+1, and acting exactly as in the case
of SMP, we arrive at the SA-version of (30).

40. Let us prove (ii). The conditional to the “past” (the answers of the oracle prior to
the call for ξ2τ ) distribution of ζτ is Pwτ , which combines with the affinity of F and
the facts that the linear part of F is skew symmetric and the expectation of Pz is z, to
imply that

E{〈F(ζτ ), ζτ − wτ 〉} = 〈a,E{ζτ } − wτ 〉 + E{〈Aζτ , ζτ − wτ 〉} = −E{〈Aζτ , wτ 〉}
= E{〈A(wτ − ζτ ), wτ 〉} = 0,

whence E{Rt } = 0 for all t . By completely similar reasoning, E{Rt } = 0 in the case
of SA. To complete the proof (ii), we need to prove (35). We have

st ≤ γt

2
‖F(ζt )− F(ηt )‖2∗ − 1

2γt
‖wt − zt‖2 [see (31)]

≤ γt

2
[‖F(wt )− F(zt )‖∗ + ‖F(ζt )− F(wt )‖∗ + ‖F(ηt )− F(zt )‖∗]2
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− 1

2γt
‖wt − zt‖2

≤
[

3γt

2
L2 − 1

2γt

]

︸ ︷︷ ︸
≤0 by (34)

‖wt − zt‖2 + 3γt

2

[
‖F(ζt )− F(wt )‖2∗ + ‖F(ηt )− F(zt )‖2∗

]
.

It remains to note that ‖F(ζt ) − F(wt )‖2∗ + ‖F(ηt ) − F(zt )‖2∗ ≤ 2M2∗ since
ζt , wt , ηt , zt ∈ Z and that the expectations of ‖F(ζt )−F(wt )‖2∗ and ‖F(ηt )−F(zt )‖2∗,
conditional over the respective pasts, do not exceed σ 2. ��

The bound of Proposition 2 allows to easily conceive stepsize policies. Let us start
with offline policies, where γt are chosen in advance deterministic reals. If the number
of steps N is fixed in advance, one can use constant stepsizes γ1 = · · · = γN = γ . In
particular, when choosing

γ =

⎧
⎪⎨

⎪⎩

1
F∗

√
2�
N , in the case of SA (a)

min

{
1
σ

√
�

3N ,
1√
3L

}
, in the case of SMP (b)

(41)

[by (32), (24) this choice implies that E{St } ≤ �/γt , 1 ≤ t ≤ N ], Proposition 2
implies the efficiency bound

E{εsad(z
N )} ≤

⎧
⎪⎨

⎪⎩

F∗
√

2�
N , in the case of SA (a)

max

{
2σ

√
3�
N , 2

√
3�L
N

}
, in the case of SMP (b)

(42)

When the number of steps is not fixed in advance, one can use the decreasing stepsizes

∀t ≥ 1, γt =

⎧
⎪⎨

⎪⎩

1
F∗

√
�
t , in the case of SA,

min

{
1
σ

√
�
6t ,

1√
3L

}
, in the case of SMP,

(43)

which result in the accuracy bound

∀t ≥ 1, E{εsad(z
t )} ≤

⎧
⎪⎨

⎪⎩

2F∗
√

�
t , in the case of SA (a)

max

{
2σ

√
6�
t ,

2
√

3�L
t

}
, in the case of SMP (b)

(44)

completely similar to (42).

3.3.1 Online stepsize policies

From theoretical viewpoint, the main advantage of the offline stepsize policies (41)
and (43) is that in the framework of our approach they result in the best possible (and

123



286 A. Juditsky et al.

in fact—the best known under circumstances) efficiency estimates (42), (44). While
they may appear attractive also from the practical viewpoint because of their apparent
simplicity, their use may present several disadvantages: the quantity σ involved in the
stepsize computation may not be available at hand and should be evaluated. Besides
this, these policies are offline and worst-case oriented; we would prefer more flexible
online adjustable stepsizes.

A natural way to adjust the stepsizes online would be to choose at each step t ≥ 1
the largest γt ≤ γt−1 ensuring the balance �/γt ≥ St , and thus the bound (33). This
idea cannot be implemented “as is”, since the stepsize policy should be non-anticipa-
tive, while st is not yet available when γt is computed. This difficulty can be easily
circumvented by using instead of st its a priori upper bound, which is either γt

2 F∗
for the SA algorithm or γt

2 M2∗ for the SMP, see (31). Specifically, consider the online
policy of choosing γt , t ≥ 1 as follows:

�γ−2
t =

{
2
∑t−1

τ=1γ
−1
τ [sτ ]+ + F2∗ in the case of SA,

2
∑t−1

τ=1γ
−1
τ [sτ ]+ + 8�L2 in the case of SMP,

(45)

where we set
∑0

τ=1γ
−1
τ [sτ ]+ = 0. With this policy, one clearly has γ1 ≥ γ2 ≥ · · ·.

Proposition 3 Let positive stepsizes γt , t = 1, 2, . . . of the Basic SA/SMP implemen-
tation be chosen according to (45). Then the approximate solution zt satisfies

εsad(z
t ) ≤ (1 + √

2)�

tγt
+ Rt

t
. (46)

As a consequence, we have

εsad(z
t ) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1+√
2)

√
�

t

(
F2∗ + ∑t−1

τ=1‖F(ζτ )‖2∗
)1/2 + Rt

t , in the case of SA (a)

(1+√
2)

√
�

t

(
8�L2 + ∑t−1

τ=1ςτ

)1/2 + Rt
t

≤ 7�L
t + Rt

t + (1+√
2)

√
�

t

√∑t−1
τ=1ςτ , in the case of SMP (b)

(47)

where

ςt = 3
[
‖F(ζt )− F(wt )‖2∗ + ‖F(ηt )− F(zt )‖2∗

]
. (48)

Recalling that E{Rt } = 0 and E{ςt } ≤ 6σ 2 [see (36)], we arrive at

Corollary 1 Under the premise of Proposition 3, for the SMP algorithm one has

E{εsad(z
t )} ≤ 7�L

t
+ 6

√
�σ√
t

. (49)
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Proof of Proposition 3 Observe that (45) implies that γ1 ≥ γ2 ≥ · · ·.
10. Let us verify first that with the choice (45) of γτ , τ = 1, 2, . . . we have for all
t = 1, 2, . . .,

√
2�γ−1

t ≥ St . (50)

Indeed, for t = 2, 3, . . . we have (with 2S0 = F2∗ in the case of SA and 2S0 = 8�L2,
≥ M2∗ by (23), in the case of SMP)

γ 2
t−1

γ 2
t

=
∑t−1

τ=12[sτ ]+/γτ + 2S0
∑t−2

τ=12[sτ ]+/γτ + 2S0
≤ 1 + 2[st−1]+/γt−1

2S0
≤ 2 (51)

[recall that 2st/γτ ≤ 2S0 by (32)]. On the other hand

γ−2
t − γ−2

t−1 = 2[st−1]+
�γt−1

, (52)

and

γ−1
t − γ−1

t−1 ≥ γt

2
(γ−2

t − γ−2
t−1) = γt [st−1]+

γt−1�
≥ [st−1]+√

2�
⇒

√
2�[γ−1

t − γ−1
t−1] ≥ [st−1]+ (53)

where the second inequality follows from γt−1 ≤ √
2γt as implied by (51). By sum-

ming up the resulting inequalities in (53), we get

√
2�γ−1

t ≥
t−1∑

τ=1

sτ + √
2�γ−1

1 . (54)

In the case of SMP, we have γ1 = (2
√

2L)−1, whence
√

2�γ−1
1 = 4�L ≥ γ1 M2∗ ≥

γt M2∗ [see (23)], whence
√

2�γ−1
1 ≥ st in view of (31), and (54) implies (50). In the

case of SA, we have γ1 = √
�/F∗, whence

√
2�γ−1

1 = √
2
√
�F∗ ≥ γ1 F2∗ ≥ γt F2∗ ,

whence
√

2�γ−1
1 ≥ st by (31), and (50) again is given by (54).

20. Invoking (30), (50) implies (46). Now, by (31) in the case of SA we have
2[sτ ]+/γτ ≤ ‖F(ζτ )‖2∗. In the case of SMP we have

2[sτ ]+
γτ

≤ ‖F(ζτ )− F(ητ )‖2∗ − γ−2
τ ‖wτ − zτ‖2 [see (31)]

≤ [‖F(ζτ )− F(wτ )‖∗ + ‖F(wτ )− F(zτ )‖∗ + ‖F(zτ )− F(ητ )‖∗]2 − γ−2
1 ‖wτ − zτ‖2

≤ 3
[‖F(ζτ )− F(wτ )‖2∗ + ‖F(zτ )− F(ητ )‖2∗

] +
[
3‖F(wτ )− F(zτ )‖2∗ − γ−2

1 ‖wτ − zτ‖2
]

≤ 3
[‖F(ζτ )− F(wτ )‖2∗ + ‖F(zτ )− F(ητ )‖2∗

]

︸ ︷︷ ︸
:=ςτ

[by (22) due to γ−1
1 = 2

√
2L]
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Invoking (45), we get

γ−1
t ≤ �−1/2 ·

⎧
⎪⎨

⎪⎩

(
F2∗ + ∑t−1

τ=1‖F(ζτ )‖2∗
)1/2

, in the case of SA
(

8�L2 + ∑t−1
τ=1ςτ

)1/2
, in the case of SMP

(55)

which combines with (46) to imply (47). ��
Note that the bounds (47.a) and (49) within an absolute constant factor coincide

with the respective bounds in (44), that is, our online stepsizes policy (which, in con-
trast to (43), does not require knowledge of σ ) is not worse than the “theoretically
optimal” stepsize policies underlying (44).

3.3.2 Discussion

By definitions of F∗ and σ we have σ ≤ 2F∗ [see (24), (36)]. As a result, the SA
efficiency estimate (44.a) for large t (and even for all t , provided that F∗ is of order
of

√
�L) can be better than the SMP efficiency estimate (44.b) by at most an abso-

lute constant factor, and becomes much worse than the SMP estimate when t is large
and σ � √

�L. Besides this, when the noise level σ of the oracle is small enough

(specifically, σ 2 = O
(
�L2

N

)
), the efficiency estimate of SMP satisfies E{εsad(zt )} ≤

O(1)�L
N , which, modulo expectation of the residual instead of the residual itself,

coincides with the best known so far efficiency estimate of the deterministic first order
algorithms for solving BSP problems. In addition to this, we do have a possibility to
make σ small. The trivial way to do so is to use Pz = δz , which results in σ = 0 and
makes SMP a version of the deterministic mirror prox algorithm (DMP) proposed in
[13]. Another, more attractive, option to control σ is as follows. Given the family of
distributions Pz supported on Z and such that Eζ∼Pz {ζ } = z, and a positive integer k,

we can convert Pz into the family of distributions P(k)
z , also supported on Z and satis-

fying Eζ∼Pz {ζ } = z, as follows. In order to generate a random vector ζ ∼ P(k)
z and to

compute F(ζ ), we draw a k-element sample ζ 1, . . . , ζ k from the distribution Pz , com-
pute F(ζ 1), . . . , F(ζ k) and then set ζ = 1

k

∑k
i=1ζ

i , so that F(ζ ) = 1
k

∑k
i=1 F(ζ i ). If,

as in the examples of Sect. 2, drawing ζ i ∼ Pz and computing F(ζ i ) is much cheaper
than computing F(z), the outlined procedure with a “reasonably large” value of k is
still significantly cheaper than the direct computation of F(z). At the same time, for
“good enough” norms ‖·‖∗, passing from Pz to P(k)

z can significantly reduce the noise
level σ . Specifically, given a norm ‖ · ‖∗ on a finite-dimensional Euclidean space E ,
one can associate with it its regularity parameter � ≥ 1 (see Sect. A.2) to ensure the
following: whenever k > 0 is an integer and ξ1, . . . , ξ k are independent vectors from
E with E{ξ i } = 0 and E{‖ξ i‖2∗} ≤ α2

i and α = maxi αi , then for ξ = 1
k

∑k
i=1ξ

i the
following holds

E{‖ξ‖2∗} ≤ min

[
1

k
,
�

k2

] k∑

i=1

α2
i ≤ min

[
1,
�

k

]
α2.
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Suppose now that when running SMP we sample ζt , ηt from the distributions P(k)
z for

some k > 0. It follows that if ‖·‖∗ is �-regular with certain �, then, passing from Pz to

P+
z = P(k)

z , we can reduce the “original” value of σ to the value σ+ = min[1,
√

�
k ]σ .

We shall see in a while that in the applications we have mentioned so far, � is “small”—
at most logarithmic in dim Z . The bottom line is that there is a tradeoff between the
computational cost of a call to a stochastic oracle and the noise level σ . Consequently,
in the case of SMP, it is possible to tradeoff the computational effort per iteration and
the iteration count to obtain an approximate solution of the desired expected quality,
and we can use this tradeoff in order to save on the overall amount of computations.
This option (which is the major advantage of SMP as compared to SA) is especially
attractive when among the two components of our computational effort per iteration—
one related to computing ηt , ζt , F(ηt ) F(ζt ), and the other aimed at computing the
prox mappings—the second component is essentially more significant than the first
one. In such a situation, we basically can only gain by passing from Pz to P(k)

z with k
chosen to balance the outlined two components of the computational effort.

3.3.3 Large deviations

In the above efficiency estimates, say, in (49), we upper-bounded the expected inac-
curacy of approximate solutions zt . In fact, one can get exponential upper bounds
on probabilities of large deviations for the inaccuracy of the approximate solution.
Though we do not need such bounds to access the inaccuracy of solutions, they are
still useful to provide theoretical guarantees for the complexity of our algorithms (cf.
Theorem 1 in the next section).

For the sake of definiteness, when presenting large deviation results, we restrict
ourselves to the SMP algorithm and the stepsize strategy (45). We can easily bound
from above the probability of εsad(zt ) to be larger than the bound (49) on its expectation
using the Markov inequality. Moreover, let us fix the number t of iterations, run the
algorithm m times and select the best, in terms of εsad(·), of the resulting approximate
solutions. The probability that for this solution εsad(·) is worse than, say, twice the
right hand side of (49) is at most 2−m and thus can be made negligibly small for quite
moderate values of m.

We also have the following bound on the deviations of the algorithm without restarts:

Proposition 4 Assume we are solving problem (S) by Basic implementation of SMP
where ζt , ηt are sampled from the distributions P(k)

z , k ≥ 1 being a parameter of the
construction. Assume also that the norm ‖·‖∗ is �-regular, and the online stepsize pol-
icy (45) is used. Then there are absolute constants K0, K1 such that the approximate
solution zt satisfies for all t ≥ 1 and λ, ! ≥ 0

Prob

{
εsad(z

t ) ≥ K0

[
�2L

t
+ �∗(k,!)�2L√

kt
+�F∗

√
λ

kt

]}
≤ e−!t + e−λ, (56)
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where �∗(k,!) = √
min[k, (� +!)]. In particular, one has for all ε > 0:

Prob{εsad(zN ) ≥ ε} ≤ e−!N + e−λ for N ≥ Nε, where

Nε = K1Ceil

(
max

[
�2Lε−1,

�2∗(k,!)�4L2

kε2 ,
F2∗�2λ

kε2

])
.

(57)

For proof, see Sect. A.3.

3.4 Efficiency estimates for advanced implementation

The efficiency of Advanced implementations of SA and SMP stem from the following
result (we use the notation from Sect. 3.1):

Proposition 5 Let the BSP problem (S) be solved by the advanced-step SA or SMP
algorithms. Then for every t ≥ 1, for both SA and SMP one has

εsad(z
t ) ≤ �−1

t [�+ Rt + St ] = �−1
t

[

�+
t∑

τ=1

rτ +
t∑

τ=1

sτ

]

, (58)

where

�t =
t∑

τ=1

γτ ,

rt =
{
γt 〈F(ζt ), ζt − zt 〉 in the case of SA
γt 〈F(ζt ), ζt − wt 〉 in the case of SMP

st =
{[

γt 〈F(ζt ), zt − zt+1〉 − Vzt (zt+1)
]
, in the case of SA

[
γt 〈F(ζt ), wt − zt+1〉 − Vzt (zt+1)

]
, in the case of SMP

with rt ≤ 0 and

st ≤
⎧
⎨

⎩

γ 2
t
2 ‖F(ζt )‖2∗ ≤ γ 2

t
2 F2∗ , in the case of SA

γ 2
τ

2 ‖F(ζt )− F(ηt )‖2∗ − 1
2‖wt − zt‖2 ≤ γ 2

t
2 M2∗ , in the case of SMP.

(59)

Proof of Proposition 5 is completely similar to the one of Proposition 2 and is omitted.
In order to extract from (58) explicit efficiency estimates, we need to specify a step-

size policy. In this respect, the advanced implementations offer more freedom than
the basic ones. With the advanced implementation, at each iteration t , we ensure that
rt ≤ 0 and thus Rt ≤ 0. This fact removes a technical complication from the analysis
of the basic algorithm, namely we no longer need to ensure neither the martingale
property of the random sums Rt , nor the monotonicity of the stepsizes. Therefore the
step sizes in the advanced implementation can be far less restrictive than in the basic
implementation. One option here is to use constant stepsize policy
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γt =
√

2�

N
·
{ 1

F∗ , in the case of SA

1
M∗ , in the case of SMP

, 1 ≤ t ≤ N .

As it is easily seen, with this policy, (58) results in efficiency estimate [cf. (44)]

∀t ≥ 1, E
{
εsad(z

t )
} ≤ O(1)

⎧
⎪⎨

⎪⎩

F∗
√

�
t , in the case of SA (a)

RL
√

�
t , in the case of SMP (b)

(60)

Our preliminary experiments, however, suggest to equip the advanced implementa-
tions of SA and SMP with the online stepsize policy as follows. Let us set

δt = �2

t
, S∗

t =
t∑

τ=1

δτ [≤ �2(1 + ln t)] (61)

and let us choose γτ according to the “greedy” rule (the larger, the better) under the
restriction that for all t = 1, 2, . . . it holds

Rt + St ≤ S∗
t , (∗t )

see (58). Specifically, assume that we have already carried out t − 1 steps of the
algorithm ensuring the relations (∗τ ), τ ≤ t − 1, and are about to define γt in order
to carry out step t and to ensure (∗t ). When deciding on the value of γt , we already
know the values of Rt−1 ≤ 0 and St−1. Moreover we know in advance that whatever
be our choice of γt > 0, we would have

Rt − Rt−1 = rt ≤ 0, St − St−1 = st ≤ θγ 2
t ,

θ =
⎧
⎨

⎩

F2∗
2 , in the case of SA

M2∗
2 ≤ 2L2R2, in the case of SMP

[see (59)]. Thus, we can be sure that St + Rt ≤ [St−1 + Rt−1] + θγ 2
t , meaning that

when choosing

γt = √[S∗
t − St−1 − Rt−1]/θ (62)

we guarantee the validity of (∗t ) and the inequality γt ≥ √
δt/θ . This observation

combined with (58) and (∗N ) implies that

∀N ≥ 1 : εsad(z
N ) ≤ �2/2 + RN + SN

∑N
τ=1

√
δτ /θ

≤ O(1)�2(1 + ln N )
∑t

τ=1
√
δτ /θ

≤ O(1)(1 + ln N ) ·
{
�F∗N−1/2, in the case of SA,

�RLN−1/2, in the case of SMP.
(63)
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Observe that (63) is, within the logarithmic in N factor O(1)(1 + ln N ), the same as
the bound (60). In fact, we could somehow reduce this logarithmic gap by modifying
S∗

t , but we do not think this is necessary; we may hope (and the experiments to be
reported in Sect. 5 fully support this hope) that “in reality” the rule (62) is much better
than it is stated by the above worst-case analysis. The rationale behind this hope is
that while we indeed are conservative when thinking how large could St − St−1 be, we
account, to some extent, for the “past conservatism:” when St−1 + Rt−1 is essentially
less than S∗

t−1, γt as given by (62) is essentially larger than its lower bound used in
the complexity analysis.

Finally, we remark that the major theoretical disadvantage of the efficiency estimate
(63) as compared to (44) is much more serious than an extra log-factor. While with
the basic implementation, in course of N steps the stochastic oracle is called O(1)N
times, the number of oracle calls in course of N steps of the advanced implementa-
tion is random and can be much larger than O(1)N ; it is unclear why it should be
O(1)N even on average. Though for the time being we cannot support the empirical
evidence by a solid theoretical complexity analysis, in our experiments the advanced
implementation by far outperformed its basic counterpart.

3.5 The favorable geometry case

We are about to present the “favorable geometry” case where we can point out the
setup for SA/SMP which results in (nearly) dimension-independent efficiency esti-
mates. Specifically, assume that

[G.1] The domain Z of (S) is a subset of the direct product Z+ = B1 × · · · × Bp+q

of r = p + q “standard blocks” as follows:

– for 1 ≤ i ≤ p, Bi is the unit Euclidean ball in Fi = Rni ;
– for 1 ≤ j ≤ q, Bp+ j is a subset of the space Fp+ j of n p+ j × n p+ j (n p+ j > 1)

symmetric block-diagonal matrices of a given block-diagonal structure and is the
spectahedron of Fp+ j , that is, the set of all positive semidefinite matrices from
Fp+ j with unit trace.
In particular, Bp+ j can be the standard simplex {x ∈ Rk+ : ∑

�x� = 1} (since the
space of diagonal k × k matrices can be naturally identified with Rk).

We equip Fi = Rni , i ≤ p, with the standard Euclidean structure and the associated
Euclidean norm ‖ · ‖(i), and Fp+ j —with the Frobenius Euclidean structure and the
trace-norm (the sum of singular values of a matrix) ‖·‖(p+ j). In particular, the embed-
ding space E = F1 × · · · × Fr of Z+ becomes equipped with the direct product of
the indicated Euclidean structures. Note that the norm ‖ · ‖(i,∗) conjugate to ‖ · ‖(i) is
either the norm ‖ · ‖(i) itself (this is so when i ≤ p), or is the standard matrix norm
(maximal singular value of a matrix) (this is so when i > p). We denote a vector form
on E as x = [x1; . . . ; xr ], where x� is the F�-component of x .

[G.2] The decomposition Z = Z1 × Z2 ⊂ E1 × E2 is compatible with the decomposi-
tion Z = B1 ×· · ·× Br , that is, E1 is the direct product of some of F�, 1 ≤ � ≤ p +q,
and E2 is the direct product of the remaining F�. Besides this, we assume that Z
intersects the relative interior of Z+.
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We refer to this case as to the one of favorable geometry and associate with this
case the setup for SA and SMP as follows (cf. [13, Section 5]):

– The skew-symmetric linear mapping A [see (3)] can be written down as

A[x1; . . . ; xr ] =
⎡

⎣
r∑

j=1

A1 j x j ; · · · ;
r∑

j=1

Ar j x j

⎤

⎦ ,

where Ai j is a linear mapping from Fj to Fi and [Ai j ]∗ = −A ji . We denote by
Li j an a priori upper bound on L∗

i j := maxx j

{‖Ai j x j‖(i,∗) : ‖x j‖( j) ≤ 1
}

such

that Li j = L ji .5 We assume that the symmetric matrix [Li j ] has no zero rows (this
always can be enforced by replacing some of zero Li j ’s with small positive reals).

– Further, we set for 1 ≤ i ≤ p and 1 ≤ j ≤ q:

ωi (xi ) = 1

2
xT

i xi : Bi → R, �i = 1

2
,

ωp+ j (x p+ j ) = 2

n p+ j∑

�=1

λ�(x p+ j ) ln(λ�(x p+ j )) : Bp+ j → R, �p+ j = 2 ln(n j ),

where λ�(u) are the eigenvalues of a symmetric matrix u taken with their multi-
plicities. It is known that ω�(·) is a d.g.f. for B� compatible with the norm ‖ · ‖�,
1 ≤ � ≤ r .

– Finally, we define the norm ‖ · ‖ on E and the d.g.f. ω(·) for Z according to

μ� = 1

��

∑r
j=1L�j

√
��� j

∑r
i, j=1Li j

√
�i� j

, ‖[x1; . . . ; xr ]‖ =
√√
√
√

r∑

�=1

μ�‖x�‖2
(�),

ω(x) =
r∑

�=1

μ�ω�(x�), (64)

which results in

� ≤ 1, R ≤ � ≤ √
2, L =

r∑

i, j=1

Li j
√
�i� j , (65)

see [13, Section 5].

Remark 1 From the results of [9] (see also Sect. A.2) it follows that the norm ‖ξ‖∗ =√∑r
�=1μ

−1
� ‖ξ�‖2

(i,∗) is �-regular (see discussion in Sect. 3.3) with nearly dimension-

independent �, namely, � = 7 max1≤ j≤q ln(n p+ j + 1)+ 1.

5 The latter restriction is natural, since L∗
i j = L∗

j i due to [Ai j ]∗ = −A ji .
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Note that our motivating application of �1 minimization presented in Sect. 2.2.2 is of
favorable geometry. The same is true for the low dimension approximation problem
of Sect. 2.1.2; being a BSP rather than GBSP, this problem is well suited to illustrate
the results we have obtained so far.

3.6 Illustration: low dimensional approximation via randomization

Passing in (9) from variable Q to variable R = d−1/2 Q, the problem reads

min
z1:=λ∈Z1:=�N

max
z2:=R∈Z2

[

d1/2Tr

(

R
N∑

i=1

λiviv
T
i

)]

,

Z2 = {R ∈ Sn : 0 � R � d−1/2 I,Tr(R) = d1/2}.
(66)

We equip the embedding space E1 = RN of Z1 with ‖ · ‖1, and Z1 = �N —with
the entropy d.g.f. Further, we equip the embedding space E2 = Sn of Z2 with the
Frobenius norm, and Z2 (which clearly is a subset of the unit ball of this norm)—with
the Euclidean d.g.f. 1

2 Tr(z2
2). Taking into account that ‖vi‖2 = 1 for all i , it is immedi-

ately seen that we are in the Favorable Geometry case with �1 = 2 ln(N ), �2 = 1/2,
L12 = L21 = √

d and L11 = L22 = 0.
Now assume that we want to solve (66) within a given accuracy ε > 0. Consider t-

step Basic implementation of SMP utilizing the distributions P(k)
z , k = Ceil(t ln(N ))

(see Sect. 3.3.2) induced by the distributions Pz presented in Sect. 2.1.2, the stepsizes
being given by (45). Taking into account Remark 1 and (65), we are in the situation of
Corollary 1 with � = O(1), L = 2

√
d ln(N ), σ ≤ O(1)

√
ln(N )/kL ≤ O(1)L/√t ,

so that (49) implies that E{εsad(zt )} ≤ O(1)
√

d ln(N )/t. In particular, setting

t = t (ε) = Ceil
(

O(1)
√

d ln(N )/ε
)

(67)

with properly chosen O(1), we ensure that E{εsad(zt )} ≤ ε/2. Thus in course of
running our algorithm, a solution of the required accuracy ε will be built with prob-
ability ≥ 1/2. Running our t (ε)-step randomized procedure several times, until the
first approximate solution with εsad(zτ ) ≤ ε is built (recall that εsad(zτ ) is observable
on-line), we conclude that the probability not to find the desired approximate solution
in mt (ε) steps, m = 1, 2, . . ., is as small as 2−m .

Now let us look what, if any, is the gain of randomization. It is easily seen that in
the case in question computing a value of the prox-mapping within machine precision
costs O(n3 + N ) a.o. As a result, the best known so far complexity of solving (66)
within accuracy ε by any deterministic algorithm is, up to log-factors, Cdet = [n3 +
n2 N ]√dε−1 a.o. According to Sect. 2.1.2, when sampling from Pz , after a “setup
cost” of O(n3 + dn2 + N ) a.o. is paid, generating a sample ζ ∼ Pz and computing
F(ζ ) cost O(dnN ) a.o. Thus, an iteration of the randomized method costs O(n3 +
dn2 + dnN [t (ε) ln(N )︸ ︷︷ ︸

k

]) a.o., and the overall cost of an ε-solution with this method,
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again up to log-factors, is Crand = √
dε−1

[
n3 + √

dε−1dnN
]

a.o. Assuming N ≥ n,

we get Crand/Cdet ≤ O(1)[nN−1 + ε−1d3/2n−1]. For fixed ε, this ratio tends to 0 as
d, n, N grow in such a way that n/d3/2 → +∞ and N/n → +∞.

4 Solving the generalized bilinear saddle point problem

Here we explain how a GBSP problem (11)–(12) can be reduced to a “small series” of
BSP problems; the strategy to follow originates from [11]. From now on we assume,
in addition to A.1-2, that we have an a priori upper bound ρ̄ on the optimal value
ρ∗ of (12). For example, it is immediately seen that when finding an ε-solution to �1
minimization problem with �p fit (Sect. 2.2.2) in the only nontrivial case ‖b‖p > δ

relation (15) implies that

ρ̄ := ‖A‖1,p[‖b‖p − δ]−1 ≥ ρ∗ := 1/Opt, ‖A‖1,p = max j‖A j‖p, (68)

where A1, . . . , An are the columns of A.
For the sake of definiteness, we assume that we are in the Favorable Geometry case,

and that the decomposition Z = Z11 × Z12 × Z2 ⊂ E , see (13), is compatible with
the decomposition E = F1 × · · · × Fr , that is, the embedding spaces of Z11, Z12 and
Z2 are products of some of F�’s. To save space, we restrict ourselves with the SMP
algorithm; modifications in the case of SA are straightforward.

The algorithm solves the problem of interest (12) by applying to SV(·) a Newton-
type root finding routine, with (approximate) first order information on SV at a point
ρ given by SMP as applied to the BSP problem specifying SV(ρ). Specifically, the
algorithm works stage by stage. At a stage s, we have at our disposal an upper bound
ρs on ρ∗ and a piecewise linear function �s−1(ρ) which underestimates SV(·):

SV(ρ) ≥ �s−1(ρ) ∀ρ ≥ 0.

here ρ1 = ρ̄, �0 ≡ −∞. At a stage, we apply SMP to the BSP problem

SV(ρs) = min
z1∈Z1

max
z2∈Z2

φρs (z1, z2) (Ss)

namely, act as follows.

A. We start stage s with building the setup for SMP as explained in Sect. 3.5. The
affine operator associated with (Ss) is

Fρs (z1 = [z11; z12], z2) = �(z1, z2)+ ρs�(z1, z2)

=
[ [

a11 + B∗z2; ρs(a12 + C∗z2)
]

−b − Bz11 − ρs(c + Cz12)

]
,

see (11), (13). In matrix A = As of the linear part of Fρs , some blocks Ai j are inde-
pendent of ρs , while the remaining blocks are proportional to ρs . Consequently, the
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Lipschitz constant of Fρs as given by (65) is

L = L(ρs) = M + ρsN , M, N ≥ 0. (69)

Observe that by Remark 1, the regularity parameter of the norm ‖ · ‖∗ = ‖ · ‖(s)∗
conjugate to the norm ‖ · ‖ = ‖ · ‖(s) participating in the SMP setup for sth stage does
not exceed

� = 7 ln(N + 1)+ 1, (70)

where N is the largest size of the spectahedron blocks, if any (otherwise N = 0),
participating in Z .

B. We apply to (Ss) either the basic, or the advanced implementation of the SMP.
When running the basic SMP, we use the distributions P(k)

z , see Sect. 3.3 (here k ≥ 1
is a parameter of the construction) and the online stepsize policy (45), where we set
L = Ls := M + ρsN and � = 1 [see (65)]. In addition, we restart the basic SMP
every

Ns(ρsε) := Ceil

(

max

[
102Ls

ρsε
,

(
272Ls

ρsε

)2
�

k

])

(71)

steps, see below; here � is given by (70). When (Ss) is solved by the advanced SMP,
we use the online stepsize policy (61)–(62), with � = √

2 in (61).

B.1. Let zts = [zts
1 , zts

2 ] be the approximate solution to (Ss) generated after t steps of
stage s; recall that along with this solution, we have at our disposal the quantities

φ
ts = max

z2∈Z2
φρs (zts

1 , z2) = υ + 〈a11, zts
11〉 + ρs[χ + 〈a12, zts

12〉]
+ min

z2∈Z2
〈z2, b + ρsc + Bzts

11 + ρCzts
12〉,

φts = min
z1∈Z1

φρs (z1, zts
2 ) =

pts︷ ︸︸ ︷
υ + 〈b, zts

2 〉 + min
z11∈Z11

〈a11 + B∗zts
2 , z11〉

+ρs

qts︷ ︸︸ ︷[
χ + 〈c, zts

2 〉 + min
z12∈Z12

〈a12 + C∗zts
2 , z12〉

]
(72)

[cf. (29) and see (11), (13)]. We set

uts =min
τ≤t

φ
τ s
, �ts =max

τ≤t
φτ s, �ts(ρ)=max

[
�s−1(ρ), max

1≤τ≤t
[pτ s + qτ sρ]

]
.

Note that uts is a nonincreasing in t upper bound on SV(ρs), �ts is a nondecreasing in
t lower bound on SV(ρs), and �ts(ρ) underestimates SV(ρ) for all ρ ≥ 0. In addition,

123



Randomized first order algorithms 297

�ts(ρs) ≥ �ts . Note also that after t steps we have at our disposal vectors wts
1 ∈ Z1,

wts
2 ∈ Z2 such that

max
z2∈Z2

φρs (wts
1 , z2) = uts ≤ φ

ts
, min

z1∈Z1
φρs (z1, w

ts
2 ) = �ts ≥ φts,

meaning thatwts = [wts
1 ;wts

2 ] is a feasible solution to (Ss) and εsad(w
ts) = uts−�ts ≤

φ
ts − φts = εsad(zts).

B.2. We proceed with solving (Ss) until one of the following three situations occurs:

(A) We get uts ≤ ερs . In this case we terminate with the claim that ρs, w
ts
1 is the

desired ε-solution to (11)–(12).
(B) We get �ts ≥ 3

4 uts . When it happens, we set

ρs+1 = max {ρ : �ts(ρ) ≤ 0} , �s(·) ≡ �ts(·) (73)

and pass to the stage s + 1.

(C) The iteration count t becomes a multiple of Ns(ε). When it happens and if the
basic implementation of SMP is used, we restart SMP and proceed to step t +1 of
stage s (that is, the next iterate of stage s will be zω, the subsequent approximate
solutions will be weighted sums of the points w generated after the restart, etc.)
If the advanced implementation of SMP is used, we do not restart the algorithm
and proceed as at all other steps.

Theorem 1 When solving a Generalized Bilinear Saddle Point problem (11)–(12)
within the accuracy ε > 0 by the outlined algorithm:

(i) The algorithm terminates in finite time with probability 1, and the resulting solu-
tion is an ε-solution, as defined in Sect. 2.2, to the GBSP problem in question;

(ii) The number of stages does not exceed the quantity O(1) ln
( ‖φ‖∞+ρ̄‖ψ‖∞

ερ∗ + 2
)

,

where ‖φ‖∞ = maxz∈Z |φ(z)|, ‖ψ‖∞ = maxz∈Z |ψ(z)|, ρ∗ is the optimal value
in the problem (11)–(12), and ρ̄ is an a priori upper bound on ρ∗, see the begin-
ning of Sect. 4.

(iii) The (random) number Ns of steps at every stage s of the basic implementation
satisfies the relation

Prob{Ns ≥ m Ns(ρsε)} ≤ 2−m, m = 1, 2, . . . (74)

with Ns(ρsε) given by (71). Besides this,

Ns(ρsε) ≤ O(1)
L + ρ∗N

ρ∗ε

[
1 + �

L + ρ∗N
ρ∗εk

]
(75)

with � given by (70).
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The number of steps at every stage of the advanced implementation of the algo-
rithm does not exceed

Nadv(ε) = O(1)

[M + ρ∗N + 2ερ∗
ερ∗

ln

(M + ρ∗N + 2ερ∗
ερ∗

)]2

. (76)

Proof 10. From the description of the method it follows that

∀t, s ≥ 1, ∀ρ ≥ 0 : uts ≥ SV(ρs) ≥ �ts, �ts(ρ) ≤ SV(ρ), �ts ≤ �ts(ρs). (77)

Let us prove by induction in s that ρ∗ ≤ ρs ≤ ρ1. The base s = 1 is evident. Now
let ρ∗ ≤ ρs ≤ ρ1, and let stage s + 1 take place. When passing from stage s to stage
s + 1, we are in the case (B) and thus have uts > ερs , �ts ≥ 3

4 uts > 3
4ερs , whence, in

view of (77),

�s(ρs) = �ts(ρs) ≥ �ts ≥ 3

4
max[ερs,SV(ρs)] thus �s(ρs) > 0. (78)

This combines with �ts(ρ∗) ≤ SV(ρ∗) ≤ 0 and convexity of �ts(·) to imply that
ρ∗ ≤ ρs+1 < ρs . Induction is complete.

Since ρs ≥ ρ∗, uts is an upper bound on SV(ρs) and uts ≥ φ
ρs
(wts

1 ), we conclude
that if the algorithm terminates at stage s, then the result ρs, w

ts
1 is an ε-solution to

the GBSP in question.

20. Let us prove (ii). The reasoning to follow goes back to [11]; we reproduce it here
to make the paper self-contained. Let s be such that the stage s + 1 takes place, and
let us be the last bound uts built at stage s. Observe that

3

4
ερs <

3

4
us ≤ �s(ρs) ≤ SV(ρs) ≤ us . (79)

Since the convex function �s(ρ) is nonpositive at ρ = ρs+1 and is ≥ 3
4 us > 0 at

ρ = ρs > ρs+1, we have gs := �′
s(ρs) > 0 and

ρs − ρs+1 ≥ �s(ρs)/gs ≥ 3

4
us/gs . (80)

Now assume that s > 1 is an intermediate step, i.e., it is such that the stage s + 1
also takes place. Applying (80) and (79) to s − 1 in the role of s, we get ρs−1 − ρs ≥
3
4 us−1/gs−1 and 3

4 us ≤ �s(ρs), whence, by convexity of �s(·) and in view of (77), we
have

us−1 ≥ SV(ρs−1) ≥ �s(ρs−1) ≥ �s(ρs)+ gs(ρs−1 − ρs) ≥ 3

4
us + gs

3

4

us−1

gs−1
.
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Consequently, 4
3 us−1 ≥ us + gs us−1

gs−1
, or equivalently us

us−1
+ gs

gs−1
≤ 4

3 , whence
us gs

us−1gs−1
≤ (1/4)(4/3)2 = 4/9. It follows that

√
us gs ≤ (2/3)s−1√u1g1. (81)

We have �s(ρ∗) ≤ SV(ρ∗) = 0, �s(ρs) ≥ 3
4 us [see (79)] and �s(ρs) − �s(ρ∗) ≤

gs(ρs − ρ∗) (by convexity of �s(·)), whence gs ≥ 3
4 us(ρs − ρ∗)−1 ≥ 3

4ρ1
us , and (81)

implies that

us ≤ (2/3)s−1√u1g1
√

4ρ1/3. (82)

Now, g1 = �′
1(ρ1) and �1(ρ) ≤ SV(ρ) ≤ ‖φ‖∞ + ρ‖ψ‖∞, and g1 ≤ ‖ψ‖∞, and

clearly u1 ≤ ‖φ‖∞+ρ1‖ψ‖∞. At the same time, us > ερs ≥ ερ∗, so that (82) implies
that ερ∗ ≤ (2/3)s−1[‖φ‖∞ + ρ1‖ψ‖∞]. The resulting upper bound on s implies (ii).

30. Let us prove (iii). Assume, first, that Basic SMP with stepsizes (45) is used. From
the description of the algorithm it follows that at every stage s, before termination of
the stage, the residual of current approximate solutionswts is> 1

4ερs (since uts > ερs

and �ts < 3
4 uts). It follows that in order to prove (74), it suffices to verify that when

applying to (Ss) N = Ns(ρsε)-step Basic SMP, we have εsad(zN ) ≤ ερs/4 with
probability ≥ 1/2; to this end, it is enough to verify that the expectation of εsad(zN )

is ≤ ερs/8. By Corollary 1, this expectation is ≤ α := 7�Ls/N + 6
√
�σ/

√
N ,

where σ 2 = supz∈Z E
ζ∼P(k)

z

{‖A(ζ − z)‖2∗
} ≤ �

k (2Ls�)
2 [see (36) and discussion

in Sect. 3.3.2], that is, σ ≤ 2�Ls
√
�/k. This inequality combines with the relations

� = 1, � = √
2� and the definition (71) of N = Ns(ρsε) to imply the desired

bound α ≤ ερs/8. We have proved (74); (75) is readily given by (71) and the relation
ρs ≥ ρ∗.

For the advanced implementation of SMP, similar reasoning based on the bound
(63) with L = M + ρsN justifies (76).

40. Combining (ii), (iii) and the concluding claim in item 10 above, we arrive at (i).
��

The case of �1 minimization. In the case of �1 minimization problems with uniform
and �2 fits, Theorem 1 as applied to the basic implementation of SMP with k = 1,
initialized according to (68), after completely straightforward computations implies
the complexity bounds stated in Proposition 1. The preprocessing mentioned in item
(ii) of Proposition 1 is as follows: we choose an m × m orthogonal matrix U with
moduli of entries not exceeding O(1)/

√
m and such that multiplication of a vector by

U takes O(m ln m) operations (e.g., U can be the matrix of the Cosine Transform).
We then draw at random a ±1 vector ξ from the uniform distribution on the vertices
of the unit m-dimensional box and pass from the data [A, b] to the data

[A′ = UDiag{ξ}A, b′ = UDiag{ξ}b],
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thus obtaining an equivalent reformulation of the problem of interest. Note that
this preprocessing costs O(1)mn ln(m) operations. We clearly have ‖A′‖1,2 =
‖A‖1,2. Applying Hoeffding’s inequality (see [8]), it is immediately seen that for
every tolerance χ ∈ (0, 1/2) with probability ≥ 1 − χ one has ‖A′‖1,∞ <

O(1)
√

ln(mn/χ)m−1/2‖A‖1,2, that is, �(A′) ≤ O(1)
√

ln(mn/χ), as stated in Prop-
osition 1.

5 Numerical results

Below we report on a series of numerical experiments aimed at comparing the perfor-
mances of the Stochastic Mirror Prox algorithm SMP (in its advanced implementation)
and its prototype—deterministic mirror prox algorithm (DMP) proposed in [13].6 The
algorithms were tested on the GBSP problems of �1 minimization with uniform and
�2 fits, see Sect. 2.2.2.

Test problems we use originate from compressive sensing. Specifically, given the
sizes m, n of a test problem, we picked at random an m ×n matrix B with i.i.d. entries
taking values ±1 with probabilities 0.5, and a sparse (with Ceil(

√
m) nonzero entries

randomly generated from standard Normal distribution) “true signal” x∗ normalized
to have ‖x∗‖1 = 1, thus giving rise to the test problem

Optp = min
x

{‖x‖1 : ‖Ax − y‖p ≤ δ
}
, A = m−1/p B, y = Ax∗ + ξ (Pp)

where p = ∞ (uniform fit) or p = 2 (�2 fit). The “observation noise” ξ was chosen at
random (each entry is from an i.i.d. standard Normal distribution) and then normalized
to have ‖ξ‖p = δ, thus making sure that the true solution x∗ is feasible to (Pp). Our
goal is to solve (Pp) within accuracy ε, i.e., to find xε satisfying ‖xε‖1 ≤ Optp and
‖Axε − y‖p ≤ δ + ε. In all our experiments, δ = 0.005 and ε = 0.0025 were used.

Implementation of the algorithms The GBSP reformulations of problems (Pp)were
solved by SMP (in advanced implementation) and DMP according to the scheme pre-
sented in Sect. 4. In the case p = ∞ of uniform fit, both SMP and DMP used the
GBSP problem reformulation given by (19). In the case p = 2 of �2 fit, SMP used the
GBSP reformulation (18), while DMP was applied to the GBSP problem stemming
directly from (16) with p = 2, namely, given by

φρ(z1, z2) = zT
2 (AJnz1 − ρb)− ρδ, Z1 = Z11 = �2n, Z2 = {‖z2‖2 ≤ 1}. (83)

The rationale here is that the GBSP given by (83) “by itself” is easier than the GBSP
given by (18): an ε-solution to the latter problem induces straightforwardly an ε-solu-
tion to the former one, but not vice versa. As a compensation, the problem (18), in

6 DMP is nothing but SMP with precise information (i.e., Pz is the unit mass sitting at z) and on-line
stepsize policy described in [13, Section 6].
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contrast to (83), is better suited for randomization.7 The latter fact, which is crucial for
SMP, is irrelevant for DMP, this is why we apply this algorithm to the GBSP given by
(83). In order to make a fair comparison, when running SMP for �2-fit, we terminate
the run based on the �2-residual of the solution.

In our implementations, we have tested different policies for choosing the starting
point at each stage and different choices of the distance generating function (d.g.f.)
for the simplexes. Specifically, along with the entropy d.g.f. discussed in Sect. 3.5,
we tested the power d.g.f. ω(x) = e

κ(1+κ)
∑n

i=1x1+κ
i : {x ∈ Rn+ : ∑

i xi ≤ 1} → R,

with κ = 1
ln(n) ; the theoretical complexity bounds associated with this choice of d.g.f.

coincide, within absolute constant factors, with those for the entropy. The best policies
we ended up with are as follows:

– for SMP: entropy d.g.f., restarts from the ω-center of Z (“C00E” implementation);
– for DMP, in the case of uniform fit: power d.g.f., restarts from the convex combi-

nation of the best (with the smallest εsad) point found so far and the ω-center of Z ,
the weights being 0.25 and 0.75, respectively (“B25P” implementation);

– for DMP, in the case of �2-fit: power d.g.f., restarts from the convex combination
of the last search point of the previous stage and the ω-center of Z , the weights
being 0.75 and 0.25, respectively (“L75P” implementation).

When implementing SMP, we utilized the option, discussed in Sect. 3.3, of building
an estimate F(ζ ) of F(z) by generating k samples ζ � ∼ Pz , � = 1, . . . , k, and setting
ζ = 1

k

∑k
�=1ζ

�. The “multiplicity” k was set to 40 for small instances and 100 for
large (those with at least 108 nonzeros in A) instances.

The MATLAB 7.10.0 implementation of the algorithms was executed on an eight-
core machine with two quad-core Intel Xeon E5345 CPU@2.33 GHz, 8 MB L2 cache
per quad-core chip and 12 GB FB-DIMM total RAM (the computations were running
single-core and single-threaded).

The results, I In order to avoid too time-consuming experimentation, we primarily
dealt with “moderate size” test problems. These problems were split into four groups
according to the total number of nonzeros in A (2 · 106, 8 · 106, 32 · 106, 128 · 106).
Every group was further split into two subgroups according to the ratio n : m (8 and
2). For every one of the resulting pairs (m, n), we generated 5 instances of problem
(P2) and 5 instances of problem (P∞) and solved them by DMP and SMP. Thus,
the methods were compared on totally 80 problem instances split into 16 series of
5 experiments each, with common for all experiments of a series sizes m, n and the
value of p. The results are presented in Tables 1 (uniform fit) and 2 (�2 fit). For every
series of 5 experiments, we present the corresponding minimal, maximal and average
values of several performance characteristics, specifically

• CPU—the CPU time (measured in seconds (s)) of the entire computation

7 Indeed, in the second problem all nontrivial matrix-vector multiplications required to compute Fρ(z) are
multiplications of vectors from the �1-balls by A and AT ; since a vector from �1-ball is the expectation
of an extremely sparse (just one nonzero entry) random vector taking values in the same ball, the required
matrix-vector multiplications admit cheap randomized versions. In the first problem, some of the required
matrix-vector multiplications involve vectors from the ‖ · ‖2-ball, and such a vector typically cannot be
represented as the expectation of a sparse random vector taking values in the ball.
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Table 1 Numerical results for �1-minimization with ‖ · ‖∞-fit

Sizes DMP SMP Ia IIb

Calls CPU (s) Calls FCalls CPU (s)

500 × 4,000

Mean (C00E) 2,661.6 106.6 10,511.0 236.5 57.2 11.89 1.98

Min(C00E) 1,683.0 50.0 8,159.0 183.6 34.0 6.91 1.16

Max (C00E) 4,395.0 179.4 11,783.0 265.1 83.4 23.94 4.14

Mean (B25P) 1,453.4 104.1 6.15 1.89

1,000 × 2,000

Mean (C00E) 1,830.8 64.0 10,568.8 158.5 42.9 11.69 1.54

Min (C00E) 1,344.0 41.0 8,434.0 126.5 28.8 7.82 1.02

Max (C00E) 2,507.0 91.5 11,576.0 173.6 70.4 15.83 2.02

Mean (B25P) 1,530.6 97.9 9.64 2.48

1,000 × 8,000

Mean (C00E) 2,338.0 227.9 12,406.6 139.6 113.2 16.68 1.99

Min (C00E) 1,453.0 119.4 11,579.0 130.3 88.2 11.15 1.27

Max (C00E) 2,739.0 370.2 13,895.0 156.3 168.9 18.99 2.39

Mean (B25P) 1,545.6 248.9 11.08 2.30

2,000 × 8,000

Mean (C00E) 2,691.6 227.6 12,922.8 96.9 74.5 27.93 3.10

Min (C00E) 1,132.0 97.7 10,934.0 82.0 56.6 12.24 1.37

Max (C00E) 3,355.0 313.1 15,632.0 117.2 88.8 35.46 4.25

Mean (B25P) 1,426.4 207.8 14.74 2.84

2,000 × 16,000

Mean (C00E) 2,384.6 494.2 13,174.8 74.1 184.9 32.30 2.68

Min (C00E) 2,288.0 486.3 11,735.0 66.0 174.4 29.78 2.53

Max (C00E) 2,491.0 505.5 14,729.0 82.9 195.3 34.66 2.84

Mean (B25P) 1,575.2 533.7 21.41 2.89

4,000 × 8,000

Mean (C00E) 2,923.6 798.7 19,750.2 74.1 228.4 39.42 3.30

Min (C00E) 2,032.0 407.6 17,262.0 64.7 159.0 28.86 2.34

(C00E) 3,895.0 1, 539.7 22,945.0 86.0 343.1 48.61 4.49

Mean (B25P) 1,554.6 576.2 21.12 2.63

4,000 × 32,000

Mean (C00E) 2,482.8 2, 054.3 11,973.2 84.2 515.8 29.47 3.98

Min (C00E) 1,826.0 1, 448.9 11,331.0 79.7 499.9 22.39 2.90

Max (C00E) 3,479.0 2, 904.2 12,715.0 89.4 525.0 42.65 5.70

Mean (B25P) 1,604.8 1, 736.3 19.19 3.36

8,000 × 16,000

Mean (C00E) 2,680.4 2, 227.7 12,474.6 58.5 375.0 45.78 5.92

Min (C00E) 2,297.0 1, 890.1 11,493.0 53.9 341.9 41.12 5.44

Max (C00E) 3,177.0 2, 609.0 13,759.0 64.5 408.8 49.26 6.48

Mean (B25P) 1,615.8 1, 752.7 27.57 4.63

a Calls,DMP
FCalls, SMP , b CPU,DMP

CPU, SMP
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Table 2 Numerical results for �1-minimization with ‖ · ‖2-fit

Sizes DMP SMP Ia IIb

Calls CPU (s) Calls FCalls CPU (s)

500 × 4,000

Mean (C00E) 579.8 21.0 4,771.6 106.7 24.6 5.91 0.93

Min (C00E) 410.0 14.5 3,412.0 76.3 16.9 3.18 0.49

Max (C00E) 722.0 40.3 6,868.0 153.5 36.0 8.40 1.94

Mean (L75P) 287.8 16.1 2.95 0.70

1,000 × 2,000

Mean (C00E) 553.0 19.0 3,910.8 54.8 13.6 10.73 1.47

Min (C00E) 463.0 9.1 3,315.0 46.4 11.5 5.68 0.52

Max (C00E) 664.0 30.1 5,890.0 82.5 17.4 13.56 2.34

Mean (L75P) 282.4 14.1 5.44 1.07

1,000 × 8,000

Mean (C00E) 617.0 56.6 5,148.8 57.5 50.7 11.25 1.17

Min (C00E) 486.0 34.7 3,745.0 41.9 36.1 7.68 0.74

Max (C00E) 794.0 87.1 6,050.0 67.6 64.8 18.35 1.93

Mean (L75P) 318.8 40.9 5.84 0.86

2,000 × 8,000

Mean (C00E) 634.8 39.8 5,853.6 41.0 47.2 15.94 0.86

Min (C00E) 487.0 30.0 3,926.0 27.5 33.1 11.17 0.59

Max (C00E) 796.0 51.0 6,869.0 48.1 54.0 20.49 1.12

Mean (L75P) 318.8 25.9 8.05 0.58

2,000 × 16,000

Mean (C00E) 531.8 150.7 5,055.6 28.3 90.0 19.88 1.80

Min (C00E) 438.0 108.3 3,947.0 22.1 60.2 11.64 0.87

Max (C00E) 608.0 180.3 6,736.0 37.6 125.1 24.80 2.49

Mean (L75P) 346.0 110.6 12.74 1.28

4,000 × 8,000

Mean (C00E) 675.2 138.5 6,504.6 22.8 101.7 29.71 1.36

Min (C00E) 531.0 99.1 5,868.0 20.5 83.3 22.71 0.99

Max (C00E) 810.0 193.6 7,143.0 25.0 113.9 34.52 1.70

Mean (L75P) 346.4 86.3 15.21 0.85

4,000 × 32,000

Mean (C00E) 672.2 486.0 5,613.4 39.2 287.2 17.66 1.74

Min (C00E) 506.0 382.5 3,418.0 23.9 197.2 12.08 1.26

Max (C00E) 817.0 579.1 6,611.0 46.2 336.4 22.57 2.15

Mean (L75P) 355.4 311.6 9.39 1.12

8,000 × 16,000

Mean (C00E) 592.4 591.4 5,815.0 25.4 177.6 24.15 3.51

Min (C00E) 509.0 472.4 3,765.0 16.5 117.3 16.56 2.36

Max (C00E) 696.0 798.1 7,038.0 30.8 214.1 30.90 5.06

Mean (L75P) 329.8 360.2 13.38 2.10

a Calls,DMP
FCalls, SMP , b CPU,DMP

CPU, SMP
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• Calls—the total number of computations of the values of F
• FCalls—the equivalent number of calls to the deterministic oracle for the ran-

domized algorithm. This quantity is defined as follows. For DMP, computing a
value of F at a point reduces to a pair of matrix-vector multiplications, one involv-
ing A and the other one involving AT ; the cost of this computation is 2mn oper-
ations. For SMP invoked with multiplicity k (see above), the computation of (an
unbiased estimate of) F(z) requires multiplying one vector with ≤ k nonzero
entries by A, and another vector with ≤ k nonzero entries by AT , the total cost of
these two computations being k(m +n) operations. Thus, the “deterministic equiv-
alent” of the randomized computation of F used by SMP is k(m+n)

2mn . The quantity
FCalls represents the equivalent number of calls to the deterministic oracle that
we could afford for the same total computational cost involved with the queries to
the stochastic oracle needed to solve the problem by SMP.

The data in Tables 1 and 2 suggest the following interpretations:

1. As the sizes of instances grow, the randomized algorithm eventually outperforms
its deterministic counterpart in terms of the CPU time, and the corresponding
“savings” grow with the size m × n of the instance, and for instances of a given
size—grow as the ratio n/m decreases. Both phenomena are quite natural: the
larger is mn and the smaller is n/m ≥ 1 for a given mn, the smaller is the deter-
ministic equivalent k m+n

2mn of a randomized computation of F .
2. Even for our “not too large” test problems, the savings stemming from randomiza-

tion can be quite significant: for the 8,000 × 16,000 instances, SMP is, at average,
nearly 4.6 times faster than the best version of DMP for problems with uniform fit
and 2.1 times faster than DMP for problems with �2 fit.
When interpreting the CPU time data one should keep in mind that oracle calls
of DMP make use of very efficient MATLAB implementation of matrix-vector
multiplication, while SMP relies upon much less efficient (with respect to, e.g., C
language) implementation of long DO loops.

3. The advantages, if any, of SMP as compared to DMP are more significant in the
case of uniform fit than in the case of �2 fit. This phenomenon is quite natural: as
we have already explained, in the case of �2 fit the methods are applied to different
GBSP reformulations of (P2), and the reformulation DMP works with is easier
than the one processed by SMP.

The results, II In order to get impression of what happens when the matrix A in (Pp)

is too large to be stored in RAM, we carried out two experiments where the goal was
to solve the �1 minimization problem with uniform and with �2 fits and fully dense
(m = 32, 000)×(n = 64, 000)matrix A given by a simple analytical expression. This
expression allows to compute a column/a row of A with a given index in O(m), resp.,
O(n) operations. Matrix A = Ap was normalized to have ‖A‖1,p = 1. While the sizes
of A make it impossible to store the matrix in the RAM of the computer we used for
the experiments, we still can multiply vectors by A and AT by computing all necessary
columns and rows, and thus can run DMP and SMP. In our related experiments, we
generated at random a sparse (64 nonzeros) “true” signal x∗ ∈ R64,000 with ‖x∗‖1 = 1,
computed y = Ax + ξ , ξ , ‖ξ‖p = δ = 0.005, being observation noise, and ran DMP
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Table 3 Experiments with dense 32,000 × 64,000 matrix A

Method p Steps Calls FCalls CPU (s) ‖Ax̂ − b‖p ‖x̂ − x∗‖r

r = 1 (%) r = 2 (%) r = ∞ (%)

DMP(C00E) ∞ 30 71 71 7,564 0.16018 1.406 (141) 0.143 (89) 0.041 (79)

DMP(B25P) ∞ 31 67 67 7,363 0.15975 1.361 (136) 0.136 (85) 0.035 (69)

SMP (C00E) ∞ 7,501 22,141 25.9 5,352 0.00744 0.048 (5) 0.005 (3) 0.002 (4)

DMP (C00E) 2 29 67 67 7,471 0.03653 1.455 (146) 0.135 (84) 0.035 (68)

DMP (L75P) 2 30 67 67 7,536 0.02480 0.976 (98) 0.093 (58) 0.022 (42)

SMP (C00E) 2 2,602 7,749 8.5 2,350 0.00715 0.264 (26) 0.021 (13) 0.004 (7)

Percents: ‖x̂ − x∗‖/‖x∗‖

and SMP in order to find an ε-solution xε, ε = 0.0025, to the resulting problem (Pp);
in particular, we should have ‖xε‖1 ≤ ‖x∗‖1 = 1 and ‖Axε − b‖ ≤ δ + ε = 0.0075.
In every experiment, each of the methods was allowed to run at most 7,200 s.8 The
results are as follows.

– In the allowed 7,200 s, the deterministic algorithms on every one of the two test
problems (p = 2 and p = ∞) was able to carry out just about 30 steps with the
total of about 67 computations of F(·); this is by far not enough to get meaningful
results, see Table 3. In contrast to this, the numbers of steps and randomized com-
putations of F carried out by the randomized algorithm in the same 7,200 s was
in the range of tens of thousands, which was enough to fully achieve the required
accuracy for both p = ∞ and p = 2.

– While the quality of approximation of x∗ by the solution yielded by DMP is basi-
cally nonexisting, the SMP produced fairy reasonable approximations of x∗, see
Table 3.

In our opinion, the preliminary numerical results we have reported suggest that “accel-
eration via randomization” possesses a significant practical potential when solving
extremely large-scale convex programs of appropriate structure.

Acknowledgments The authors wish to express their gratitude to the Associate Editor and anonymous
referees for their constructive criticism which led to substantial improvements of the paper.

A Appendix

A.1 Representing a vector from �n,d as a convex combination of extreme points

We use the notations of Sect. 2.1.2. The case of d = n is trivial, thus, let d < n. Let

q ∈ �n,d =
{

q ∈ Rn+ : 0 ≤ qi ≤ 1 ∀i,
n∑

i=1

qi = d

}

.

8 The running time is compared with the limit of 7,200 s only at the end of an iteration, thus, with termination
due to CPU limit, the actual running time was larger than this limit.
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To represent q as a convex combination of n extreme points of�n,d we act as follows:

– Initialization: We set p0 = [1; q], μ0 = 1. Note that p0 ∈ � = {p =
[1; p1; . . . ; pn] ∈ �n+1,d+1}.

– Step t = 1, 2, . . .: Given pt−1 = [1; pt−1
1 ; . . . ; pt−1

n ] ∈ �, we find the d + 1
largest among the entries pt−1

i , i = 1, . . . , n, let their indexes be i1, . . . , id+1,
where pt−1

i1
≥ pt−1

i2
≥ · · · ≥ pt−1

id+1
.

(a) It may happen that pt−1
i�

= 1 for 1 ≤ � ≤ d; since pt−1 ∈ �, r t :=
pt−1 is a Boolean vector with exactly d + 1 entries equal to 1, and qt =
[pt−1

1 ; . . . ; pt−1
n ] is an extreme point of �n,d . We set νt = 1, pt = 0 and

terminate.
(b) When not all pt−1

i�
, 1 ≤ � ≤ d, are equal to 1, we set νt = min[1 −

pt−1
id+1

, pt−1
id

], define r t as Boolean (n + 1)-dimensional vector with d + 1
entries equal to 1, the indexes of the entries being 0, i1, . . . , id , set pt =
[pt−1 − νt r t ]/(1 − νt ), qt = [r t

1; . . . ; r t
n] (note that qt is an extreme point of

�n,d ) and pass to step t + 1.

Observe that the algorithm is well defined. Indeed, 0 ≤ νt ≤ 1 by construction, and
νt = 1 if and only if pt−1

id+1
= 0 and pt−1

id
= 1, that is, when we terminate at step t

according to (a). Thus, pt is well defined at every non-termination step t . Moreover,
from (b) it is immediately seen that at such a step we have pt

0 = 1, 0 ≤ pt
i ≤ 1 for all

i and
∑n

i=0 pT
i = d + 1, that is, pt ∈ � for all t for which pt is well defined. Besides

this, it is immediately seen that 0/1 entries in pt−1 remain intact when passing from
pt−1 to pt , and that the total number of these entries increases at every step of the
algorithm by at least 1. The latter observation implies that the algorithm terminates in
at most n steps. Finally, by construction pt−1 = (1 − νt )pt + νt r t , whence, denoting
by t̄ the termination step, p0 is a convex combination of r1, . . . , r t̄ with coefficients
μt readily given by ν1, . . . , νt̄ . Discarding in r1, . . . , r t̄ the entries with index 0, we
get extreme points q1, . . . , qt̄ of �n,d such that q = ∑t̄

i=1μt qt . Finally, the compu-
tational effort per step clearly does not exceed O(1)dn. In fact, when d > ln(n), at
each step we can first sort the components of pt−1 in nonincreasing order resulting in
a complexity of O(1)n ln(n) per iteration instead of O(1)dn complexity. That is, the
total computational effort is at most O(1)min{d, ln(n)}n2.

A.2 �-regular spaces

Due to space limitations, we present here a kind of “executive summary” which is fully
sufficient for our purposes. For underlying definitions and proofs, see [9]; in a slightly
different form, this material can be found also in [6,16]. Consider a finite-dimensional
linear space E equipped with a norm ‖ · ‖. The pair (E, ‖ · ‖) can be assigned with a
well-defined regularity parameter � ≥ 1 in such a way that whenever ξ1, ξ2, . . . are
random vectors in E which form a martingale-difference, one has

E
{
‖ξ1 + · · · + ξ N ‖2

}
≤ �

N∑

i=1

E{‖ξ i‖2}, N = 1, 2, . . .
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In addition, if σi are positive deterministic reals such that E|i−1{exp{‖ξ i‖2/σ 2
i }} ≤

exp{1} almost surely for all i , where E|i−1 stands for conditional, ξ1, . . . , ξ i−1 being
fixed, expectation, then

∀(N ≥ 1, γ ≥ 0) :

Prob

{

‖ξ1 + · · · + ξ N ‖ > [√2� + √
2γ ]

√
∑N

i=1
σ 2

i

}

≤ exp{−γ 2/3}.

In addition,

1. (E, ‖ · ‖) is (dim E)-regular;
2. If (E, ‖ · ‖) is �-regular, so is (E, ‖ · ‖Q), where Q is a linear authomorphism of

E and ‖x‖Q = ‖Qx‖;
3. (RN , ‖ · ‖2) is regular with � = 1;
4. Let E be the space of m × n block-diagonal matrices x , m ≤ n, of a given block-

diagonal structure, and let the norm on E be defined as |x |p = ‖σ(x)‖p, where
p ≥ 2 and σ(x) ∈ Rm is the vector of singular values of x . Then (E, | · |p) is reg-
ular with � = O(1)min[p, ln(m + 1)]. In particular, when n ≥ 3, (Rn, ‖ · ‖∞) is
(2 ln(n))-regular (treat vectors as diagonals of diagonal matrices), while the space
Rn×n of n×n matrices equipped with the spectral norm (maximum singular value)
is 6 ln(n)-regular;

5. If (E1, ‖ · ‖1), . . . , (EK , ‖ · ‖K ) are �-regular, the pair (E = E1 × · · · ×
EK , ‖[x1; . . . ; x K ]‖ =

√∑K
k=1 ‖xk‖2) is 2(� + 1)-regular.

A.3 Proof of Proposition 4

10. Let us denote

ϕt = 8�L2 +
t−1∑

τ=1

ςτ , ςt = 3
[
‖F(ζt )− F(wt )‖2∗ + ‖F(ηt )− F(zt )‖2∗

]
(84)

(cf. (48)). Let us show that under the premise of Proposition 4

∀! ≥ 0 : Prob

{
ϕt ≥ O(1)

[
�L2 + M2∗ t

k
�2∗(k,!)

]}
≤ exp{−!t}, (85)

where O(1) is an absolute constant factor. We use the following result (see, e.g., The-
orem 2.1 (iii) of [9]): let ξ i , . . . , ξ k be k independent vectors from E with ‖ξ i‖∗ ≤ σ

and E{ξ i } = 0, where the norm ‖ · ‖∗ is �-regular, � ≥ 1. Then for any u ≥ 0

Prob

{∥
∥
∥
∥
∥

k∑

i=1

ξ i

∥
∥
∥
∥
∥

∗
≥

[√
2� + u

√
2
]
σ
√

k

}

≤ exp{−u2/2}. (86)

When rewriting the above bound for ξ i = F(ζ i )− F(w) and ξ i = F(ηi )− F(z) and
taking into account that ‖ξ i‖∗ ≤ M∗ we obtain
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∀u ≥ 0 : Prob

⎧
⎨

⎩

∥
∥
∥
∥
∥

k∑

i=1

ξ i

∥
∥
∥
∥
∥

2

∗
≥ M2∗k(

√
2� + √

2u)2

⎫
⎬

⎭
≤ exp{−u2/2}. (87)

So, if we denote Probt conditional probability over ζ1, η1, . . . , ζt−1, ηt−1 being fixed,
we get

∀u ≥ 0 : Probt

{
ςt ≥ 24M2∗

k
(� + u)

}
≤ 2 exp{−u/2}. (88)

When setting νt = ςt k
24M2∗

, we have for the conditional expectation Et over

ζ1, η1, . . . , ζt−1, ηt−1 being fixed and 0 ≤ α < 1

Et

{
exp

{α
2
νt

}}
≤ e

α�
2 + α

2

∞∫

�

e
αu
2 Probt {νt ≥ u}du

≤ e
α�
2 + α

∞∫

�

exp

{
− (1 − α)u

2

}
du = 1 + α

1 − α
exp

{α�
2

}

When choosing α∗ = exp{1}−1
exp{1}+1 we get Et

{
exp{α∗νt

2 }} ≤ exp{α∗�
2 + 1}, so that

E

{

exp

{
t∑

τ=1

α∗ντ
2

}}

= E

{

Et

{

exp

{
t−1∑

τ=1

α∗ντ
2

}

exp
{α∗νt

2

}
}}

= E

{

exp

{
t−1∑

τ=1

α∗ντ
2

}

Et

{
exp

{α∗νt

2

}}
}

≤ exp
{

t
(α∗�

2
+ 1

)}

Hence, when applying the Tchebychev inequality we find

∀! ≥ 0 : Prob

{
t∑

τ=1

ντ ≥ t

(
� + 2

α∗
(1 +!)

)}

≤ exp{−!t}. (89)

When recalling that ςt ≤ 6M2∗ , we conclude that

∀! ≥ 0 :

Prob

{
t−1∑

τ=1

ςτ ≥ min

[
6M2∗ t,

24M2∗ t

k

(
� + 2

α∗
(1 +!)

)]}

≤ exp{−!t}. (90)

Since � ≥ 1, � + 2
α∗ (1 +!) ≤ O(1)�2∗(k,!), and we arrive at (85).
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20. We have

∀λ ≥ 0 : Prob

{
Rt

t
≥ O(1)F∗

√
�λ

kt

}

≤ e−λ. (91)

Indeed, since A is skew-symmetric, i.e. 〈Az, z〉 = 0,

rt = 〈F(ζt ), ζt − wt 〉 = 〈a + Aζt , ζt − wt 〉 = 〈a + Awt , ζt − wt 〉
= 〈F(wt ), ζt − wt 〉.

Let ζ i
τ be the i th sample drawn when evaluating ζτ . We conclude that

Rt

t
= 1

t

t∑

τ=1

rt = 1

t

t∑

τ=1

〈F(wτ ), ζτ − wτ 〉 = 1

t

t∑

τ=1

〈

F(wτ ),
1

k

k∑

i=1

ζ i
τ − wτ

〉

= 1

tk

t∑

τ=1

k∑

i=1

〈F(wτ ), ζ
i
τ − wτ 〉 = 1

tk

t∑

τ=1

k∑

i=1

ξ i
τ ,

where ξ i
τ := 〈F(wτ ), ζ

i
τ −wτ 〉 is a scalar martingale-difference with |ξ i

τ | ≤ 2RF∗ ≤
2�F∗ (cf. (21)). Then by the Azuma-Hoeffding inequality [1],

∀λ ≥ 0 : Prob

{
Rt

t
≥ 2�F∗

√
2λ

kt

}

≤ e−λ, (92)

which implies (91). We are done—when substituting the bounds (85) and (91) into
(47) we get

Prob

{

εsad(z
t ) ≥ O(1)

[
�L

t
+ M∗�∗(k,!)

√
�

kt
+�F∗

√
λ

kt

]}

≤ e−!t + e−λ,

which is (56) [recall that � = √
2� and M∗ ≤ 2�L, see (23)]. ��
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