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Abstract In the quadratic traveling salesman problem a cost is associated with any
three nodes traversed in succession. This structure arises, e.g., if the succession of two
edges represents energetic conformations, a change of direction or a possible change
of transportation means. In the symmetric case, costs do not depend on the direction
of traversal. We study the polyhedral structure of a linearized integer programming
formulation of the symmetric quadratic traveling salesman problem. Our construc-
tive approach for establishing the dimension of the underlying polyhedron is rather
involved but offers a generic path towards proving facetness of several classes of valid
inequalities. We establish relations to facets of the Boolean quadric polytope, exhibit
new classes of polynomial time separable facet defining inequalities that exclude con-
flicting configurations of edges, and provide a generic strengthening approach for
lifting valid inequalities of the usual traveling salesman problem to stronger valid
inequalities for the symmetric quadratic traveling salesman problem. Applying this
strengthening to subtour elimination constraints gives rise to facet defining inequali-
ties, but finding a maximally violated inequality among these is NP-complete. For the
simplest comb inequality with three teeth the strengthening is no longer sufficient to
obtain a facet. Preliminary computational results indicate that the new cutting planes
may help to considerably improve the quality of the root relaxation in some important
applications.
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1 Introduction

The traveling salesman problem (TSP) is one of the best studied combinatorial optimi-
zation problems with many variations and well known to be NP-complete [4,18,22].
The quadratic traveling salesman problem (QTSP) differs from the TSP in that the
costs do not depend on two successive nodes, an edge, but on three successive nodes
in the tour. As such a sequence of three nodes arises if the two corresponding edges
appear in a tour we speak of a quadratic TSP. The problem was introduced by Jäger
and Molitor [12,21] in the context of solving instances motivated by an application
in biology. Indeed, for the recognition of transcription factor binding sites in gene
regulation, Zhao et al. [29] proposed permuted Markov and permuted variable length
Markov mixture models. These can be solved by an iterative algorithm that needs the
solution of a TSP and the solution of a QTSP.

By allowing this particular quadratic cost structure, the QTSP can be used to solve
instances of the angular-metric traveling salesman problem (Angle-TSP) introduced
by Aggarwal et al. [2] which is used for the optimization of robot paths with respect
to energetic aspects. Here the task is to find a tour over n points in the Euclidean space
minimizing the sum of the changes in direction, i.e., the costs depend on the angle of
a path from a point i to a point k over a point j . It also covers the extension of this
problem where the changes in direction are weighted against the length of the tour.
As a further problem class we can handle TSP with reload costs [3,13,14,28], i.e.,
given an edge-colored graph find a tour minimizing the costs arising from (weighted)
color changes along the tour. These problems appear for example in the planning of
telecommunication networks whenever switching between two different technologies
is expensive or in freight transportation networks if the costs for loading processes are
high in comparison to transportation costs.

This paper investigates the polyhedral structure of the symmetric QTSP (SQTSP),
i.e., the QTSP where the direction of traversal of a tour is irrelevant. While formulating
the problem as an integer program is straight forward, determining the dimension of
the associated SQTSP polyhedron PSQTSPn turns out to be surprisingly difficult, see
Sect. 2. One reason might be that the dimension grows irregularly up to n = 6 and
reaches its canonical size only for n ≥ 7. Our proof of the dimension of PSQTSPn gives
an explicit construction of affinely independent tours that extend a constant initial set
of (e.g., 54) tours extracted by a computer algebra package from tours obtained by
complete enumeration of a fixed number (e.g., 5) of initial nodes. The initial enumer-
ative part seems to cover all cases with structural irregularities so that the remaining
tours can be generated following a rather natural scheme.

Due to this explicit form, the same proof technique allows to establish the property of
being facet defining for several classes of valid inequalities (Sect. 3). In particular, we
discuss facets related to the Boolean quadric polytope (Sect. 3.1) and facets excluding
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conflicting edges, i.e., edges that may not be selected at the same time (Sect. 3.2).
These include an exponential family of inequalities, that can be separated in polyno-
mial time. Section 3.3 is devoted to facets that may be interpreted as strengthenings
of TSP facets prohibiting subtours. We introduce a particular strengthening technique
that can be used to lift any valid inequality for TSP to a stronger valid inequality
for SQTSP. This approach suffices to lift TSP subtour elimination constraints to facet
defining inequalities for SQTSP. Unfortunately, more is required for comb inequalities
and we present an SQTSP facet corresponding to the simplest comb with three teeth.
While TSP subtour elimination constraints can be separated in polynomial time, this no
longer seems to hold for their SQTSP equivalents. We prove that finding a maximally
violated SQTSP subtour elimination constraint is NP-complete.

In order to get a rough idea on the potential of the new inequalities in cutting plane
approaches, we performed limited and preliminary computational experiments with
simple separation routines. The root gaps of the basic integer programming formu-
lation are compared against the formulation improved by the new cutting planes for
rather small random instances with general nonnegative cost structure, random Angle-
TSP instances in the plane, and random TSP instances with reload costs. Using the
new cutting planes in the branch-and-cut framework SCIP [1,26] helped to reduce
the number of the nodes of the branch-and-cut tree significantly in most cases. These
results are presented in Sect. 4.

Several other possibilities exist for formulating, studying, and solving SQTSP prob-
lems. One may, e.g., use the convex quadratic reformulation approaches of Billionnet
et al. [5,6], or interpret the SQTSP as a special case of the biquadratic assignment prob-
lem [7]. The latter might also be computationally feasible if symmetry is exploited
like in [10] in a semidefinite approach. Likewise, combining our basic linearization
with the canonical semidefinite relaxation for quadratic 0–1 programming [23,27]
should help to considerably improve the quality of the bounds achieved here. Such
possibilities are open for exploration in further work.

2 The model and its associated polyhedron

A 2-graph G is a pair (V, E) consisting of a node set V = {1, . . . , n} and a set of undi-
rected 2-edges E to be defined as follows. A 2-edge 〈i, j, k〉 ∈ V 〈3〉 := {〈i, j, k〉 =
〈k, j, i〉 : i, j, k ∈ V, |{i, j, k}| = 3} consists of a sequence of three distinct nodes
where the reverse sequence is regarded as identical. Alternatively, it may be viewed as
a path consisting of two distinct incident edges {i, j}, { j, k} ∈ V {2} := {{i, j} : i, j ∈
V, i �= j}, i �= k, with the property that the direction of traversal is irrelevant. If
there is no danger of confusion we simply write i j instead of {i, j} and i jk instead of
〈i, j, k〉. We consider the complete 2-graph on V with E := V 〈3〉.

A 2-cycle C of length k > 2 in a 2-graph G is a set of k 2-edges C =
{v1v2v3, v2v3v4, . . . , vk−2vk−1vk, vk−1vkv1, vkv1v2} with pairwise distinct vi . The
2-edges i jk ∈ C induce a set of edges C {2} := {i j ∈ V {2} : i jk ∈ C}.

We consider the problem of finding a 2-cycle C in a complete 2-graph G = (V, E)

with n = |V | nodes, called a tour, that minimizes the sum of given weights ce over
all 2-edges e ∈ C . Let Cn = {C : C 2-cycle in G, |C | = n} denote the set of all tours
on n nodes, then the optimization problem reads

123



208 A. Fischer, C. Helmberg

min

{
c(C) :=

∑
e∈C

ce : C ∈ Cn

}
.

For a 2-cycle C we define the incidence vector (xC , yC ) ∈ {0, 1}V {2}∪V 〈3〉
by

∀ e ∈ V {2} : xC
e =

{
1 if e ∈ C {2},
0 if e /∈ C {2},

and ∀ e ∈ V 〈3〉 : yC
e =

{
1 if e ∈ C,

0 if e /∈ C.

An integer programming formulation of all incidence vectors of 2-cycles is given by

∑
j : i j∈V {2}

xi j = 2, i ∈ V, (1)

xi j =
∑

k : i jk∈V 〈3〉
yi jk =

∑
k : ki j∈V 〈3〉

yki j , i j ∈ V {2}, (2)

∑
i j∈V {2} :

i∈S, j∈V \S

xi j ≥ 2, S ⊂ V, 2 ≤ |S| ≤ n − 2, (3)

xi j ∈ {0, 1}, yi jk ∈ [0, 1], i j ∈ V {2}, i jk ∈ V 〈3〉. (4)

The degree constraints (1) ensure that each node is visited exactly once. Equation (2)
may be seen as a kind of flow conservation for each i j ∈ V {2}, because the sum of
the in-flow into i j via 2-edges ki j ∈ V 〈3〉 has to be the same as the out-flow out of i j
via 2-edges i jk ∈ V 〈3〉. The constraints (3) are the well known subtour elimination
constraints [9]. That this is indeed a formulation follows from combining the well
known formulation for the Symmetric Traveling Salesman Polytope [9]

PSTSPn := conv{xC ∈ {0, 1}V {2} : C ∈ Cn} = conv
{

x ∈ {0, 1}V {2} : (1), (3)
}

with the coupling constraints (2). In fact, the model above is a linearization of the
quadratic integer program

min{
x∈{0,1}V {2} :(1),(3)

}
∑

i j, jk∈V {2} : i jk∈V 〈3〉
ci jk xi j x jk, (5)

because the integrality of yi jk, i jk ∈ V 〈3〉, follows from the integrality of the x-
variables. For this, we have to check that xi j x jk = yi jk for all i j, jk ∈ V {2} with
i jk ∈ V 〈3〉 and integral x . For xi j = 0 equations (2) imply yi jk = 0 for all
i jk ∈ V 〈3〉, so consider the case xi j = x jk = 1. Assume yi jk < 1, then there
exists i jl ∈ V 〈3〉, l �= k, with yi jl > 0 by (2) which implies x jl = 1 (again by (2)).
This contradicts

∑
jm∈V {2} x jm = 2.
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Remark 2.1 Note that the variables xi j are easily eliminated by (2). E.g., the degree
constraints then read ∑

i jk∈V 〈3〉
yi jk = 1 for j ∈ V . (6)

However, in our experience, the classical xi j variables improve readability and facili-
tate the presentation.

Our main object of study is the polytope arising as the convex hull of all incidence
vectors of 2-cycles, the Symmetric Quadratic Traveling Salesman Polytope

PSQTSPn := conv
{
(xC , yC ) : C ∈ Cn

}
= conv

{
(x, y) ∈ {0, 1}V {2}∪V 〈3〉 : (1), (2), (3)

}
.

In order to determine the dimension of PSQTSPn we first calculate the rank of the
corresponding constraint matrix.

Lemma 2.2 The constraint matrix corresponding to equality constraints (1) and (2)
has full row rank for all n ≥ 4.

Proof The rows belonging to the degree constraints (1) are linearly independent,
as in the STSP-case [16], because the node-edge incidence matrix of the complete
graph Kn, n ≥ 3, has full row rank. Let A(i, j,1),• be the row of constraint xi j =∑

〈i, j,k〉∈V 〈3〉 y〈i, j,k〉 and A(i, j,2),• the row of constraint xi j = ∑
〈k,i, j〉∈V 〈3〉 y〈k,i, j〉.

Our aim is to show that if
∑

i< j (α(i, j,1) A(i, j,1),• + α(i, j,2) A(i, j,2),•) = 0 we have
α(i, j,m) = 0 for all i, j ∈ V, i < j, m = 1, 2. Considering, w. l. o. g., the columns
belonging to y〈i, j,k〉, y〈i, j,l〉, y〈k, j,l〉, i < j < k < l, we get

y〈i, j,k〉 y〈i, j,l〉 y〈k, j,l〉
(i, j, 1) 1 1 0
( j, k, 2) 1 0 1
( j, l, 2) 0 1 1

Because all other entries of these three columns are zero and this small matrix has full
row rank, α(i, j,1) has to be zero. With the same argument we get α(i, j,m) = 0 for all
i < j, m = 1, 2. ��
This proves that the dimension of PSQTSPn is at most f (n) := 3·(n

3

)+(n
2

)−n2, because
there are 3

(n
3

) + (n
2

)
variables and n2 equality constraints. That it is exactly f (n) for

n ≥ 7 is shown next. The construction is surprisingly involved but as subsequent facet
proofs build upon it, it is worth to present it in detail.

Theorem 2.3 The dimension of PSQTSPn equals f (n) for all n ≥ 7.

Proof We want to show that the dimension of PSQTSPn equals f (n) = 3
(n

3

) + (n
2

)−
n2 = 1

2 n3−2n2+ 1
2 n for n ≥ 7. The idea is to construct, in dependence of a fixed small

parameter n̄, a set of affinely independent tours Cn̄
dim = Cn̄,1

dim∪̇Cn̄,2
dim∪̇Cn̄,3

dim ⊂ Cn and
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to prove that |Cn̄
dim | = f (n) + 1. We use three main steps for building the following

matrix structure where each row is the incidence vector of a tour. In step 1 we deter-
mine the rank of some specially structured tours C̄ n̄,1

dim and take the largest affinely

independent subset Cn̄,1
dim ⊂ C̄ n̄,1

dim . Next we iteratively build tours so that each tour
contains at least one 2-edge that is not contained in any tour constructed before. This
is achieved by ordering the tours appropriately and by using a restricted set of new
2-edges in each iteration of the step. Finally, in step 3, unused 2-edges that contain the
nodes n − 1 or n are employed to form the remaining tours.

1. Fix a small n̄ ∈ N, n̄ ≤ n − 2 (for this proof n̄ = 5 is sufficient, for proving the
facetness of some inequalities n̄ = 6, 9 will be used, as well) and collect in the
set C̄ n̄,1

dim all tours with fixed consecutive ordering of the nodes (n̄ + 1) to n but

with an arbitrary permutation of the first n̄ nodes, C̄ n̄,1
dim = {C ∈ Cn : {〈n̄ + 1, n̄ +

2, n̄ + 3〉, 〈n̄ + 2, n̄ + 3, n̄ + 4〉, . . . , 〈n − 2, n − 1, n〉} ⊂ C, {n − 1, n} ∈ C {2}}.
Because n̄ is small and fixed the rank rn̄ of the incidence vectors of these tours
is independent of n ≥ n̄ + 2 and easy to determine once and for all, e.g., by
some algebra package. The ranks needed in this paper are r5 = 54, r6 = 98
and r9 = 350. These values and all following ranks of matrices were determined
using Mathematica 7 [24]. Pick rn̄ tours t ∈ C̄ n̄,1

dim whose corresponding inci-

dence vectors are linearly independent and collect these tours in the set Cn̄,1
dim with

Cn̄,1
dim ⊂ C̄ n̄,1

dim : |Cn̄,1
dim | = rn̄ .

2. In the second step set Cn̄,2
dim = ⋃

n̄<k<n−1 Tk is formed by iteratively constructing
for each k ∈ {n̄ + 1, . . . , n − 2} a set of tours Tk that contains the single tours
t1
k , . . . , tnk

k with |Tk | = nk . The tours are constructed so that specific coordinates
of the corresponding incidence vectors, which are zero in all incidence vectors of
tours t ∈ Cn̄,1

dim , form a lower triangular matrix, establishing the affine indepen-
dence of the respective tours. We obtain this structure for each k by ordering the
nk tours t1

k , . . . , tnk
k in Tk as presented next. During the following five steps each

new tour t i
k, i = 1, . . . , nk, contains a 2-edge ei

k that fulfills

ei
k /∈ C for all C ∈

⎛
⎝Cn̄,1

dim ∪
( ⋃

n̄<h<k

Th

)
∪
⎛
⎝ ⋃

1≤h<i

{th
k }
⎞
⎠
⎞
⎠ . (7)
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Within block k the iteration steps (I j) below should be considered as append-
ing new rows of incidence vectors of tours in sequence of increasing j . In this
sequence the columns corresponding to underlined 2-edges of the tours t i

k ∈ Tk

form a lower triangular matrix. The order within an iteration step (I j) is arbitrary.
Consider a fixed k with n̄ < k < n − 1. In order to simplify the presentation all
tours constructed next are represented by the order of the nodes, i.e., a tour t =
{v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2} is represented by v1 v2 v3 . . . vn−1 vn .
We only specify the relevant parts of the tours in a condensed form. In partic-
ular, the (possibly empty) fixed node sequence (k + 2) (k + 3) . . . (n − 2) (n − 1)

is denoted by the symbol �k and any ordering of the nodes not listed explicitly
may be used to complete the “. . .” parts of the tour. The decisive 2-edge ei

k that
determines the triangle structure is marked by underlining the corresponding three
nodes. Each 2-edge ei

k has one of the four types

(Type-I1) 〈a, k, b〉, a, b ∈ {1, . . . , k − 1}, a < b,
(Type-I2) 〈k, a, k + 1〉, a ∈ {2, . . . , k − 1},
(Type-I3) 〈a, b, k + 1〉, a, b ∈ {1, . . . , k − 1}, a �= b.
(Type-I4) 〈n, a, k〉, 〈n, k, a〉, a ∈ {1, . . . , k − 1}.

The only exceptional 2-edge is 〈k, 1, k + 1〉, it is not used for forming the key
segment of the lower triangular matrix but will be needed for patching.
The tours of Cn̄,2

dim are built during five iteration steps:

(I1) . . . a k 1 (k + 1)�k n . . ., for a ∈ {2, . . . , k − 1}
(the 2-edge 〈k, 1, k + 1〉 is not used as an ei

k),
(I2) . . . 1 k a (k + 1)�k n . . ., for a ∈ {2, . . . , k − 1},
(I3) . . . a k b (k + 1)�k n . . ., for a, b ∈ {2, . . . , k − 1}, a < b,

(I4) . . . k a b (k + 1) �k n . . ., for a, b ∈ {1, . . . , k − 1}, a �= b,
(I5) . . . (k + 1)�k n a b . . . , for a, b ∈ {1, . . . , k}, a �= b, k ∈ {a, b}.

Claim 1 The 2-edges ei
k, i = 1, . . . , nk, underlined above fulfill condition (7).

Proof of Claim 1. By construction, edge {k, k + 1} is contained in all tours t ∈
Cn̄,1

dim ∪
(⋃

n̄< j<k Tj

)
and edge {k+1, k+2} is in each tour up to and including this

iteration. Thus, the 2-edges of (Type-I1)–(Type-I3) have not been used before.
Likewise, n and k are separated by node k + 1 on one side and by k − 1 nodes
on the other side in each tour up to this iteration, so the 2-edges of (Type-I4)
are unused. An underlined 2-edge ei

k of iteration step (I j) is not in conflict with a
further eı̂

k of the same iteration step because at most one of these 2-edges can be
present in a tour. It remains to show that a 2-edge ei

k chosen in iteration step (I j)
is not contained in a tour of a previous iteration step (Il), l < j .
– Tours in step (I2): all tours created in (I1) contain a 2-edge 〈k, 1, k + 1〉 and

by (1), (2) no 2-edge 〈k, a, k + 1〉, a ∈ {2, . . . , k − 1}.
– Tours in step (I3): all tours created in (I1)–(I2) contain an edge {1, k} which

conflicts with 2-edges 〈a, k, b〉, a, b ∈ {2, . . . , n − 1}, by (1), (2).
– Tours in step (I4): all tours created in (I1)–(I3) contain a 2-edge 〈k, a, k +

1〉, a ∈ {1, . . . , k − 1}, and the edge {k + 1, k + 2}, i.e., until this step at most
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one node has been between k and k + 1. It follows by (1), (2) that all variables
of type (Type-I3) have not been used in (I1)–(I3).

– Tours in step (I5): in (I1)–(I4) the nodes n and k are separated by node k + 1
on one side and by at least n − 5 − |�k | = n − 5 − (n − k − 2) = k − 3 nodes
on the other side. For k > n̄ ≥ 5 these are at least 3 nodes.

This completes the proof of Claim 1. ��

3. Because all tours constructed so far contain the edge {n − 1, n}, we have

Cn̄,1
dim ∪ Cn̄,2

dim ⊂
{

C ∈ Cn : {n − 1, n} ∈ C {2}} . (8)

It remains to build tours in which n−1 and n do not lie next to each other. Therefore
we have three possible types for ei

L , i = 1, . . . , nL :
(Type-L1) 〈a, n − 1, b〉, a, b ∈ {1, . . . , n − 2}, a < b,
(Type-L2) 〈a, n, b〉, a, b ∈ {1, . . . , n − 2}, a < b,
(Type-L3) 〈n − 1, a, n〉, a ∈ {1, . . . , n − 2}.

All of these 2-edges except for one are used as ei
L during the construction.

Again the order of the tours is chosen so that the underlined 2-edge ei
L of each

tour t i
L , i = 1, . . . , nL , fulfills

ei
L /∈ C for all C ∈ Cn̄,1

dim ∪ Cn̄,2
dim ∪ {t1

L , . . . , t i−1
L }. (9)

The tours of step (L j) are all created before the start of steps (Ll), l > j, and the
order within each step is arbitrary.
In the following, let w1, w2, w3 ∈ {1, . . . , n−2} be three arbitrary but fixed nodes
with |{w1, w2, w3}| = 3 (this could be the nodes 1, 2, 3; the additional freedom
allows to reuse this part in later proofs).
(L1) . . . a (n − 1) b w1 n w2 . . . , for a, b ∈ {1, . . . , n − 2}\{w1, w2}, a < b

(the 2-edge 〈w1, n, w2〉 is not used as an ei
L ),

(L2)

{
. . . m (n − 1) o w1 n w3 . . . ,

. . . m (n − 1) o w2 n w3 . . . ,

with m, o ∈ {1, . . . , n − 2}\{w1, w2, w3}, m �= o,
(L3) . . . a (n − 1) w1 w2 n w3 . . . , for a ∈ {1, . . . , n − 2}\{w1, w2, w3},
(L4) . . . a (n − 1) w2 w1 n w3 . . . , for a ∈ {1, . . . , n − 2}\{w1, w2, w3},
(L5) . . . a n b m (n − 1) o . . . , for a, b ∈ {1, . . . , n − 2}, a < b, |{a, b} ∩ {w1,

w2, w3}| = 1, with m, o ∈ {1, . . . , n − 2}, {m, o} � {w1, w2, w3},
|{a, b, m, o}| = 4,

(L6)

⎧⎨
⎩

. . . n w3 w1 (n − 1) w2 . . . ,

. . . n w2 w1 (n − 1) w3 . . . ,

. . . n w1 w2 (n − 1) w3 . . . ,

(L7) . . . a n b m (n − 1) . . . , for a, b ∈ {1, . . . , n − 2}\{w1, w2, w3}, a < b,

with m ∈ {1, . . . , n − 2}, |{a, b, m}| = 3,
(L8) . . . (n − 1) a n . . . , for a ∈ {1, . . . , n − 2}.
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The symmetric quadratic traveling salesman problem 213

Claim 2 Whenever (8) holds, then for any fixed choice w1, w2, w3 ∈ {1, . . . ,

n − 2} with |{w1, w2, w3}| = 3 and any feasible realization of tour t i
L ∈ Cn̄,3

dim
according to (L1)–(L8) the corresponding underlined 2-edge ei

L fulfills condition
(9) for i = 1, . . . , nL .

Proof of Claim 2. Note that each step (L j) belongs to one of the types (Type-
L1)–(Type-L3). For all C ∈ (Cn̄,1

dim ∪ Cn̄,2
dim) there holds ei

L /∈ C because the
2-edges of (Type-L1)–(Type-L3) are in conflict with edge {n − 1, n}, which is
contained in all previous tours by (8). Next, an underlined 2-edge ei

L of step (L j)
does not conflict with an eı̂

L , i �= ı̂ , of the same step because at most one of these
2-edges can be present in a tour by (1), (2). It remains to show (9) for the tours
(L j) with increasing j .

• Tours in step (L2): all tours created in (L1) contain the 2-edge 〈w1, n, w2〉.
• Tours in step (L3), (L4): all tours created in (L1)–(L2) contain a 2-edge 〈a, n−

1, b〉, a, b ∈ {1, . . . , n − 2}\{w1, w2}.
• Tours in step (L5): all tours created in (L1)–(L4) contain a 2-edge c ∈

{〈w1, n, w2〉, 〈w1, n, w3〉, 〈w2, n, w3〉}.
• Tours in step (L6): all tours created in (L1)–(L5) contain none of the three

2-edges 〈w1, n − 1, w2〉, 〈w1, n − 1, w3〉, 〈w2, n − 1, w3〉.
• Tours in step (L7): all tours created in (L1)–(L4) contain a 2-edge c ∈

{〈w1, n, w2〉, 〈w1, n, w3〉, 〈w2, n, w3〉}; the underlined 2-edges of (L7) are for-
bidden in (L5), (L6) because there n is adjacent to one of the nodes w1, w2, w3.

• Tours in step (L8): in all tours created in (L1)–(L7) there are at least two nodes
between nodes n − 1 and n.

This completes the proof of Claim 2. ��
Claim 3 For n̄ = 5, 6, 9 we have |Cn̄

dim | = f (n) + 1.

Proof of Claim 3. We determine |Cn̄
dim | = |Cn̄,1

dim∪̇Cn̄,2
dim∪̇Cn̄,3

dim | = |Cn̄,1
dim | + |Cn̄,2

dim | +
|Cn̄,3

dim | with

• |Cn̄,1
dim | = rn̄,

• |Cn̄,2
dim | =

n−2∑
k=n̄+1

|Tk |=
n−2∑

k=n̄+1

⎛
⎜⎜⎜⎝2(k − 2)︸ ︷︷ ︸

(I1)+(I2)

+
(

k − 2

2

)
︸ ︷︷ ︸

(I3)

+(k − 1)(k − 2)︸ ︷︷ ︸
(I4)

+2(k − 1)︸ ︷︷ ︸
(I5)

⎞
⎟⎟⎟⎠

=
n−2∑

k=n̄+1

(
3

2
k2 − 3

2
k − 1

)
= 1

2
n3 − 3n2 + 9

2
n − 1 − 1

2
n̄3 + 3

2
n̄,

• |Cn̄,3
dim | =

(
n − 4

2

)
︸ ︷︷ ︸

(L1)

+ 2︸︷︷︸
(L2)

+ 2(n − 5)︸ ︷︷ ︸
(L3)+(L4)

+ 3(n − 5)︸ ︷︷ ︸
(L5)

+ 3︸︷︷︸
(L6)

+
(

n − 5

2

)
︸ ︷︷ ︸

(L7)

+ (n − 2)︸ ︷︷ ︸
(L8)

= n2 − 4n + 3
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We get |Cn̄
dim | = 1

2 n3 − 2n2 + 1
2 n + 2 + rn̄ − 1

2 n̄3 + 3
2 n̄ affinely independent tours for

n̄ ≥ 5, i.e., for n̄ ≥ 5 and n ≥ n̄+2 the described constructions are possible. Choosing
n̄ = 5, 6, 9 Claim 3 and Theorem 2.3 follow because in each case the constant term
evaluates to 1. Indeed, for r5 = 54 we get 2+r5− 1

2 ·53+ 3
2 ·5 = 2+54− 125

2 + 15
2 = 1,

r6 = 98 yields 2+98−108+9 = 1 and for r9 = 350 we obtain 2+350− 729
2 + 27

2 = 1.
��

For small values of n the dimensions of PSQTSPn are 0 for n = 3, 2 for n = 4, 10
for n = 5 and 34 for n = 6. These values were calculated by means of a linear algebra
package.

Remark 2.4 The symmetric quadratic cycle cover problem SQCCn asks for a set
of cycles of length at least three covering all nodes of an undirected 2-graph G̃ =
(Ṽ , Ẽ), |Ṽ | = n. In comparison to SQTSPn , the subtour inequalities (3) are not
needed. SQCCn is NP-complete because the NP-complete problems of determining
a minimum angle cycle cover [2] and a minimum reload cost cycle cover [13] can be
reduced to it. Its corresponding polytope is

PSQCCn := conv
{
(x, y) ∈ R

V {2}∪V 〈3〉 : (x, y) fulfills (1), (2), (4)
}

.

Lemma 2.2 and Theorem 2.3 also prove that the dimension of PSQCCn equals f (n).
By similar arguments, all inequalities that are valid for PSQCCn and facets of PSQTSPn

are facets of PSQCCn , too.

3 Valid inequalities and facets of PSQTSPn

In this section we present valid inequalities and facets of PSQTSPn . We start with
inequalities that are related to the Boolean quadric polytope (BQP) [25]. After that we
present the exponential family of conflicting edges inequalities which can be separated
in polynomial time. Because PSTSPn is a projection of PSQTSPn , valid inequalities for
PSTSPn remain valid for PSQTSPn but typically they can be strengthened. For facets
corresponding to such a strengthening of the subtour elimination constraints of the
STSPn the problem of finding a maximally violated constraint is NP-complete. It is
also possible to find facets corresponding to strengthened comb-inequalities [8,15–
17].

The proofs of the facetness of the valid inequalities presented in this section all
have the same structure. For small values of n the truth of the statements is checked
by means of a computer algebra system via computing the affine dimension of the
incidence vectors of roots of the respective inequality. For larger n the proof follows
the line of argument of the proof of Theorem 2.3. Differences arise only due to the fact
that we need one tour less in exchange for the requirement that the tours generated in
each of the three major steps need to be roots of the inequality under consideration,
which typically entails several adaptations in the initial set of tours of step one as
well as in the number and ordering of the substeps of steps two and three. In order to
illustrate this technique the proof of Theorem 3.2 is given explicitly; complete proofs
of further results can be found in the “Appendix”.
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The symmetric quadratic traveling salesman problem 215

Fig. 1 Visualization of (10): at most one of the two 2-edges
〈k, i, j〉, 〈i, j, k〉 can be contained in a tour on n ≥ 5 nodes;
if one of these is present this implies the presence of the
edge {i, j}. For n = 4, every tour satisfies (10) with equality

3.1 Inequalities related to the Boolean quadric polytope

In Sect. 2 we argued that PSQTSPn arises as a linearization of the quadratic zero-one
problem (5). Therefore it is natural to consider inequalities that are known to be valid
for the BQP. The simplest ones are the sign constraints.

Corollary 3.1 For n ≥ 4 the inequalities

yi jk ≥ 0

define facets of PSQTSPn for all i jk ∈ V 〈3〉.

Proof We verified the statement by means of a computer algebra package for n =
4, 5, 6. For n ≥ 7 the result follows directly from the proof of Theorem 2.3 choosing
n̄ = 5 and w. l. o. g., 〈i, j, k〉 = 〈n − 1, n − 2, n〉. Indeed, for this choice all tours in
the proof of Theorem 2.3 except for the last tour of (L8) satisfy y〈n−1,n−2,n〉 = 0. ��

The next important class are the triangle inequalities of BQP [25]. In our notation the
relevant inequalities read −xi j + yi jk + yki j − yik j ≤ 0 for all i j ∈ V {2}, k ∈ V \{i, j},
but this can be strengthened as follows, see Fig. 1.

Theorem 3.2 For n ≥ 5 the inequalities

yi jk + yki j ≤ xi j (10)

define facets of PSQTSPn for all i j ∈ V {2} and all k ∈ V \{i, j}.
Proof The inequality is valid, because with yi jk or yki j also xi j must be one while
the sequences 〈i, j, k〉 and 〈k, i, j〉 cannot appear in any tour of length at least four
at the same time. We set, w. l. o. g., i = n − 2, j = n, k = n − 1. A tour satisfying
(10) with equality, y〈n−2,n,n−1〉 + y〈n−1,n−2,n〉 = x{n−2,n}, either does not contain the
edge {n − 2, n} or contains with this edge one of the edges {n − 1, n − 2}, {n, n − 1}.
For n = 5, 6 we verified the statement by means of a computer algebra package and
for n ≥ 7 the construction of the f (n) affinely independent tours is similar to the
construction in the proof of Theorem 2.3. We only point out the differences.

Among all tours t ∈ Cn̄,1
dim ∪ Cn̄,2

dim only those generated for k = n − 2 in (I5)
may contain the edge {n − 2, n} because otherwise n lies between node n − 1 and a
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Fig. 2 These fractional solutions are cut off via inequalities (10) for n = 5

node c ∈ {1, . . . , n − 3}. If k = n − 2 in (I5), all tours with b = k = n − 2 do not
contain the edge {n − 2, n}, and whenever a = n − 2 the tour also contains the 2-edge
〈n − 1, n, n − 2〉.

So consider steps (L1)–(L8).

• (L1)–(L4): By choosing w1, w2, w3 ∈ {1, . . . , n − 3} node n is not adjacent to
n − 2.

• (L5): We split this into two parts. First we restrict a, b to lie in {1, . . . , n − 3} so
that n and n − 2 are separated. Second we replace the remaining tours by different
tours . . . a n (n − 2) (n−1) . . . , a ∈ {w1, w2, w3}. These tours contain the 2-edge

〈n, n − 2, n − 1〉, so the corresponding eı̂
L drops out of (L8).

• (L6): We slightly adapt this step in order to prevent the case n adjacent to n − 2,

. . . m n w3 w1 (n − 1) w2 . . . , with m ∈ {1, . . . , n − 3}\{w1, w2, w3},

. . . m n w2 w1 (n − 1) w3 . . . , with m ∈ {1, . . . , n − 3}\{w1, w2, w3},

. . . m n w1 w2 (n − 1) w3 . . . , with m ∈ {1, . . . , n − 3}\{w1, w2, w3}.

• (L7): Again we split the construction into two parts. First we restrict a, b to lie in
{1, . . . , n − 3}\{w1, w2, w3} and build the tours as described before. Second we
create new tours . . . a n (n − 2) (n − 1) . . . , a ∈ {1, . . . , n − 3}\{w1, w2, w3}.

• (L8): As pointed out in step (L5), we restrict a to {1, . . . , n − 3} and form
. . . (n − 1) a n . . .

This construction works out for n̄ = 5 and all n ≥ 7. All in all this generates exactly
one tour less than in the proof of Theorem 2.3 and so the inequality is facet defining
for PSQTSPn , n ≥ 5. ��

Figure 2 displays a fractional solution for n = 5 satisfying (1)–(3) and y ≥ 0
with x14 = y145 = y514 = 1

2 that is cut off by the facets of type (10). Note that the
x-variables correspond to a convex combination of two tours while the y-variables
form three seemingly unrelated subtours of value 1

2 each.
Inequalities (10) can also be interpreted as a special kind of subtour elimination

constraint forbidding cycles of length three. This relation is not surprising, because,
alternatively, the constraint can be derived by multiplying (and thereby lifting) xi j +
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Fig. 3 Visualization of certain cycle-inequalities on three and on five nodes

x jk + xki ≤ 2 by xi j and using the definition of the y-variables. Further inequal-
ities known to be valid for BQP are the cycle-inequalities [25]. Some of these can
be visualized in our context, see Fig. 3. For {i, j, k} ⊂ V, |{i, j, k}| = 3, we get∑

i jl∈V 〈3〉,l �=k yi jl +∑
jkl∈V 〈3〉,l �=i y jkl +∑

kil∈V 〈3〉,l �= j ykil ≤ 1 because 2-edge posi-
tions in the shape of a T are not allowed. By substituting (2) this simplifies to xi j +
xik + x jk − yi jk − yik j − y jik ≤ 1, which is again a triangle inequality (and a special
cycle-inequality).

Theorem 3.3 For n ≥ 6 the inequalities

xi j + xik + x jk − yi jk − yik j − y jik ≤ 1 (11)

define facets of PSQTSPn for all i, j, k ∈ V, |{i, j, k}| = 3.

Generalizing the idea of conflicting T-structures along a 2-cycle Ik = {i1i2i3, i2i3
i4, . . . , ik i1i2} of odd length |Ik | leads to

k−2∑
l=1

∑
il il+1m∈V 〈3〉

m �=il+2

yil il+1m +
∑

ik−1ik m∈V 〈3〉
m �=i1

yik−1ik m +
∑

ik i1m∈V 〈3〉
m �=i2

yik i1m ≤
⌊ |Ik |

2

⌋
.

Via (2) these correspond to the following cycle-inequalities.

Observation 3.4 For n ≥ 3 the inequalities

∑
i j∈C{2}

xi j −
∑

i jk∈C

yi jk ≤
⌊ |C|

2

⌋
(12)

are valid for PSQTSPn for all 2-cycles C ⊂ V 〈3〉, |C | ≥ 3.

Proof For any two consecutive x-variables that have value one, the corresponding
y-variable also has value one. ��
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For 2-cycles C with |C | = 5 one can prove the following.

Theorem 3.5 The inequalities (12) define facets of PSQTSPn for all 2-cycles C ⊂ V 〈3〉
with |C | = 5 if n ≥ 5.

Remark 3.6 For |C | ≥ 6 inequality (12) can be strengthened and is thus not facet
defining. Indeed, for a 2-cycle C = {i1i2i3, i2i3i4, . . . , i|C|i1i2}, |C | ≥ 6, add-
ing the variable y〈i1,i4,i|C |〉 to the left hand side of the inequality preserves valid-
ity for PSQTSPn , because the presence of 〈i1, i4, i|C|〉 in a tour excludes the use of
edges {i1, i|C|}, {i3, i4}, {i4, i5} so that the remaining edges of C {2} can be grouped
into two paths, one corresponding to x{i1,i2} + x{i2,i3} − y〈i1,i2,i3〉 ≤ 1 and one to∑|C|−1

k=5 x{ik ,ik+1} − ∑|C|−1
k=6 y〈ik−1,ik ,ik+1〉 ≤

⌈ |C|−5
2

⌉
. Hence, whenever 〈i1, i4, i|C|〉

is in the tour, the strengthened left hand side sums to at most 1 + 1 +
⌈ |C|−5

2

⌉
=⌈ |C|−1

2

⌉
=
⌊ |C|

2

⌋
. At this point it is instructive to view the SQTSP as a constrained

sparse Boolean quadric problem. For the Boolean quadric polytope on sparse graphs
[25] one is given a graph G̃ = (Ṽ , Ẽ) where Ṽ corresponds to the variables and the
product of variables i, j ∈ Ṽ is taken into account if {i, j} ∈ Ẽ . The correspond-
ing polytope is denoted by Q PG̃ = conv {(x, y) ∈ {0, 1}Ṽ +Ẽ : xi + x j − y{i, j} ≤
1, y{i, j} ≤ xi , y{i, j} ≤ x j for {i, j} ∈ Ẽ}. The cycle-inequalities of odd length define

facets of Q PG̃ if the cycle is chordless in G̃ [25]. One can check that for (12) with
|C | ≥ 7, |C | odd, the induced cycles are indeed chordless, yet inequalities (12) do not
define facets of SQTSP.

The inequality remains valid if all edges and 2-edges of the induced subgraph are
employed.

Theorem 3.7 The inequalities

∑
i j∈S{2}

xi j −
∑

i jk∈S〈3〉
yi jk ≤

⌊ |S|
2

⌋
(13)

define facets of PSQTSPn for all S ⊂ V with odd |S| = h ≥ 3 and n ≥ 3
2 (h + 1).

Figure 4 illustrates the combinatorial structure of the left hand side for an example
with n = 15 and |S| = 9. Indeed, the roots of (13) consist of the incidence vectors of

those tours, whose induced subgraph on S consists of
⌊ |S|

2

⌋
distinct paths and possibly

an isolated node.

3.2 Conflicting edges inequalities

The conflicting edges inequalities presented next forbid subtours and T-structures, see
Fig. 5. In the simplest case a subtour is implied if there is more than one path of length
less or equal to two between two nodes i, j ∈ V, i �= j, i.e., an edge {i, j} ∈ V {2} or
a 2-edge 〈i, k, j〉 ∈ V 〈3〉.
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Fig. 4 Visualization of the left hand side of (13) for an example with n = 15 and S = {si : i =
1, . . . , 9}, |S| = 9

(a) (b) (c)

Fig. 5 One can choose at most one out of this edge (straight line) and the 2-edges (curved lines)

Theorem 3.8 For n ≥ 6 the inequalities

xi j +
∑

ik j∈V 〈3〉
yik j ≤ 1 (14)

define facets of PSQTSPn for all i j ∈ V {2}.

Figure 5a displays the edge and the 2-edges counted in (14). The idea used for
Theorem 3.8 can be extended, see Fig. 5b.

Theorem 3.9 For n ≥ 6 the inequalities

xi j +
∑

ik j∈V 〈3〉,k∈S

yik j +
∑

kil∈V 〈3〉,k,l∈T

ykil ≤ 1 (15)

define facets of PSQTSPn for all i j ∈ V {2} and for all S ∪ T = V \{i, j}, S ∩ T =
∅, |S| ≥ 1, |T | ≥ 3.

As shown in Fig. 5c, in the case |T | = 2 further strengthenings are possible.

Theorem 3.10 For n ≥ 6 the inequalities

xi j +
∑

ik j∈V 〈3〉,k∈S

yik j + yt1i t2 + yt1 j t2 ≤ 1 (16)
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Fig. 6 The graph G̃ for n = 6
and i = 5, j = 6 with marked
solution S = {1}, T = {2, 3, 4}

define facets of PSQTSPn for all i j ∈ V {2} and for all S ∪ T = V \{i, j}, S ∩ T = ∅,
T = {t1, t2}.

While (14) and (16) only comprise a polynomial number of inequalities, there are
exponentially many inequalities of type (15) and it is not clear in advance if one can
separate them in polynomial time. The answer to this is given next.

Theorem 3.11 The separation problem for the conflicting edges inequalities (15) can
be solved in polynomial time.

Proof We are given a fractional solution (x̄, ȳ) of a relaxation of SQTSPn . Fix i, j ∈
V, i �= j . Then we want to find S, T ⊂ V as in inequality (15) maximizing the sum

∑
ik j∈V 〈3〉 : k∈S

ȳik j +
∑

kil∈V 〈3〉 : k,l∈T

ȳkil .

For this purpose we construct two node sets Ṽ1 = V \{i, j} and Ṽ2 = {{k, l} : k, l ∈
V \{i, j}, k �= l} and from this we build an undirected bipartite graph G̃ = (Ṽ , Ẽ)

with node set Ṽ = Ṽ1 ∪ Ṽ2 and edge set Ẽ = {{m, {k, l}} : m ∈ {k, l} ∈ Ṽ
}

(see
Fig. 6 for an illustration). The selection of node v ∈ Ṽ1 corresponds to the assignment
of v to S and choosing a node {k, l} ∈ Ṽ2 to the assignment of k and l to T . Setting the
weight of each node v ∈ Ṽ1 to ȳiv j and of {k, l} ∈ Ṽ2 to ȳkil the separation problem
reduces to the problem of finding a maximum weight independent set in a bipartite
graph. This problem is known to be solvable in polynomial time, see, e.g., [11]. ��

3.3 The extended subtour elimination constraints

In the description of the formulations for PSQTSPn , inequalities (3) are the subtour
elimination constraints. These require that any tour has to leave any subset S ⊂ V ,
2 ≤ |S| ≤ n − 2, and may be rewritten, via (2), in terms of y-variables,

∑
i jk∈V 〈3〉 :

i∈S, j,k∈V \S

yi jk + 2 ·
∑

i jk∈V 〈3〉 :
i,k∈S, j∈V \S

yi jk ≥ 2. (17)

In some cases (17) can be improved. E.g., the 2-edges immediately reentering set S
after visiting one exterior node, i.e., yi jk, i, k ∈ S, j ∈ V \S, may be considered as
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(a) (b)

Fig. 7 Visualization of a tour illustrating the necessity of |S| < n
2 for which the corresponding sum

appearing in inequality (18) is zero, and of a tour whose incidence vector defines a root of (18). a Case
n = 6, |S| = 3: For this tour, the sum appearing in inequality (18) is zero. b The incidence vector of the
shown tour fulfills

∑
i jk∈V 〈3〉 : i∈S, j,k∈V \S yi jk = 2. The marked nodes belong to the only block of nodes

in V \S with more than one node

not exiting S after all and may be excluded from the left hand side if |S| < n
2 . The

condition |S| < n
2 is needed because in the case of |S| ≥ n

2 some tours over n nodes
may visit all exterior nodes only by such reentering 2-edges (see Fig. 7a). This leads
to Theorem 3.12.

Theorem 3.12 For n ≥ 6 the inequalities

∑
i jk∈V 〈3〉 :

i∈S, j,k∈V \S

yi jk ≥ 2 (18)

define facets of PSQTSPn for all S ⊂ V, 2 ≤ |S| < n
2 .

It is well known that (3) can be separated in polynomial time by solving a
min-cut-problem between each pair of nodes [19]. The situation changes for the
extended subtour elimination constraints (18) (the corresponding proofs are given
in the “Appendix”).

Given a weighted undirected 2-graph G̃ = (Ṽ , Ẽ, w̃) with node set Ṽ , set of
2-edges Ẽ and weights w̃e ≥ 0, e ∈ Ẽ (w̃e polynomially bounded in |Ṽ |), the task
is to determine a partition of Ṽ into the sets S, T with 2 ≤ |S| < n

2 , S ∩ T = ∅,
S ∪ T = Ṽ so that the cut value is minimized. For the cut value the weights of 2-edges
i jk ∈ Ṽ 〈3〉 are counted if (i ∈ S ∧ { j, k} ⊆ T ) or (k ∈ S ∧ {i, j} ⊆ T ). Note, 2-edges
i jk ∈ Ṽ 〈3〉 with {i, k} ⊆ S, j ∈ T are not counted. We first consider a more general
problem, the (st1t2-cut)-problem, where such a minimum cut is sought for S ⊂ Ṽ
without the cardinality constraints but under the condition that three special nodes
{s, t1, t2} ⊂ Ṽ are fixed in advance with s ∈ S and t1, t2 ∈ T .

Lemma 3.13 The problem (st1t2-cut) on a weighted undirected 2-graph as described
above is NP-complete.

Lemma 3.13 is needed to prove Theorem 3.14 where the weight of a 2-edge is the
value of the corresponding coordinate of a point contained in a relaxation of SQTSPn
fulfilling (1), (2), xi j ∈ [0, 1] for all i j ∈ V {2} and yi jk ∈ [0, 1] for all i jk ∈ V 〈3〉.
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Theorem 3.14 The problem of finding a maximally violated extended subtour elimina-
tion constraint (18) for points (x̄, ȳ) satisfying equality constraints (1), (2), xi j ∈ [0, 1]
for all i j ∈ V {2} and yi jk ∈ [0, 1] for all i jk ∈ V 〈3〉 is NP-complete.

Until now we have only considered subtour elimination constraint (17) for the case
|S| < n

2 . If |S| ≥ n
2 , inequality (18) fails to be valid for those tours that visit all external

vertices via reentering 2-edges. Thus, to make (18) valid for all tours it suffices to add
all reentering 2-edges over one fixed external node with weight 2. Alternatively, this
may be viewed as a strengthening of (17), because all reentering 2-edges except for
those running over one special vertex are dropped.

Theorem 3.15 For n ≥ 6 the inequalities

∑
i jk∈V 〈3〉 :

i∈S, j,k∈V \S

yi jk + 2 ·
∑

i t̄k∈V 〈3〉 :
i,k∈S

yi t̄k ≥ 2 (19)

define facets of PSQTSPn for all S ⊂ V, n
2 ≤ |S| ≤ n − 3, t̄ ∈ V \S.

Motivated by the conflict considerations leading to Theorem 3.8, the facets of
Theorem 3.12 and Theorem 3.15 were originally derived from the subtour elimination
constraints of PSTSPn by a strengthening approach that can be applied to any valid
inequality of PSTSPn with nonnegative coefficients. It is based on the following simple
concept which we state here for the current setting (there is an obvious generalization
for arbitrary coefficients and arbitrary combinatorial problems).

Definition 3.16 For a given E ′ ⊆ V {2}, a family F = {(F2
e , F3

e )}e∈E ′ of pairs of sets
F2

e ⊆ V {2}, F3
e ⊆ V 〈3〉 for e ∈ E ′ is E ′-dominated if for any tour C ∈ Cn there is

a tour C̄ ∈ Cn with
∑

f ∈F2
e

xC
f + ∑

f ∈F3
e

yC
f ≤ xC̄

e for all e ∈ E ′. It is improving, if

e ∈ F2
e for e ∈ E ′ and there is an e ∈ E ′ with F2

e �= {e} or F3
e �= ∅.

Given a valid inequality of PSTSPn with nonnegative coefficients any improving sup-
port-dominated family gives rise to a strengthened valid inequality for PSQTSPn .

Observation 3.17 Suppose
∑

e∈E ′ aexe ≤ b is a valid inequality for PSTSPn with
ae ≥ 0, e ∈ E ′, and let F = {(F2

e , F3
e )}e∈E ′ be E ′-dominated. Then the inequality

∑
e∈E ′

ae

⎛
⎝∑

f ∈F2
e

x f +
∑
f ∈F3

e

y f

⎞
⎠ ≤ b

is valid for PSQTSPn .

Proof For any C ∈ Cn , there is, by Definition 3.16, a C̄ ∈ Cn so that

∑
e∈E ′

ae

⎛
⎝∑

f ∈F2
e

xC
f +

∑
f ∈F3

e

yC
f

⎞
⎠ ≤

∑
e∈E ′

aexC̄
e ≤ b.

��
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The facets of Theorem 3.12 make use of the following family.

Observation 3.18 Given E ′ ⊂ V {2}, suppose |V (E ′)| < n
2 . Then

F =
{
(F2

i j := {i j}, F3
i j := {ik j ∈ V 〈3〉 : ik /∈ E ′, k j /∈ E ′})

}
i j∈E ′

is E ′-dominated. It is improving whenever E ′ �= ∅.

Proof If F is E ′-dominated with E ′ �= ∅, it is improving because any node k ∈
V \V (E ′) gives rise to a 2-edge ik j ∈ F3

i j for each i j ∈ E ′. It remains to show that F
is E ′-dominated.

For E ′ = ∅ there is nothing to show, so we may assume E ′ �= ∅ and thus n ≥ 5.
Given a tour C ∈ Cn , we have to show the existence of a tour C̄ ∈ Cn satisfying the
requirements of Definition 3.16.

For this let FC
2 = E ′ ∩ C {2} and FC

3 = {i j ∈ E ′ : F3
i j ∩ C �= ∅}. By the require-

ments on F and n ≥ 5 we have FC
2 ∩ FC

3 = ∅ (only for n = 3 a tour may contain
the subsequences i j as well as ik j). Furthermore, for each i j ∈ FC

3 there is a unique
node ki j with 〈i, ki j , j〉 ∈ C . We know

ki j /∈ V (FC
2 ) for i j ∈ FC

3 , (20)

because {i, ki j } ∈ FC
2 ⊆ E ′ or { j, ki j } ∈ FC

2 ⊆ E ′ contradicts 〈i, ki j , j〉 ∈ F3
i j .

Next, consider the graph GC
F = (V, FC

2 ∪ FC
3 ) and note that all its components

are isolated nodes or paths. Indeed, consider a fixed node i appearing in C within
the subsequence . . . a b i c d . . ., then only the two edges bi, ic and the two 2-edges
abi, icd can give rise to edges i j ∈ FC

2 ∪ FC
3 . However, by (20) at most one of ai and

bi and at most one of ic and id can be contained in FC
2 ∪ FC

3 , so the degree of i in GC
F

is at most two. Furthermore, i cannot lie on a cycle, because this would induce a sub-
cycle of the tour C of length at most 2|V (FC

2 ∪ FC
3 )| < n as V (FC

2 ∪ FC
3 ) ⊂ V (E ′).

Thus, by adding edges appropriately we may complete FC
2 ∪ FC

3 to a tour C̄ with
FC

2 ∪ FC
3 ⊂ C̄ {2}.

This tour C̄ satisfies the requirements of Definition 3.16. Indeed, suppose there is
an i j ∈ E ′ with ξi j := ∑

f ∈F2
i j

xC
f +∑

f ∈F3
i j

yC
f > 0, then ξi j = 1 because by n ≥ 5

either i j ∈ C {2} or ik j ∈ C for a unique k. In both cases i j ∈ FC
2 ∪ FC

3 ⊂ C̄ {2},
therefore ξi j = xC̄

i j . ��

The facets of Theorem 3.15 arise from the next family.

Observation 3.19 Given E ′ ⊂ V {2}, suppose |V (E ′)| ≥ n
2 with some t̄ ∈ V \V (E ′).

Then

F =
{
(F2

i j := {i j}, F3
i j := {ik j ∈ V 〈3〉 : k �= t̄, ik /∈ E ′, k j /∈ E ′})

}
i j∈E ′
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is E ′-dominated. It is improving if and only if the graph Ḡ = (V \{t̄}, (V \{t̄}){2}\E ′)
has a component that is not a clique. In particular, it is improving if |V (E ′)| ≤ n − 2.

Proof We first show that F is E ′-dominated. The statement holds for E ′ = {e} for
some e ∈ V {2} because for any C ∈ Cn we have

∑
f ∈F2

e
xC

f +∑
f ∈F3

e
yC

f ≤ 1 by the

choice of F2
e and F3

e and so any tour C̄ with e ∈ C̄ {2} suffices for Definition 3.16.
|E ′| ≥ 2 requires n ≥ 4 and for n = 4 we have F = {(e,∅)}e∈E , so each C ∈ C4
serves as its own C̄ in Definition 3.16.

For n ≥ 5 the proof is almost identical to the proof of Observation 3.18 and we
use the same notation. Given a tour C ∈ Cn we may construct the graph GC

F =
(V, FC

2 ∪ FC
3 ) and prove that all its nodes have degree at most two in exactly the

same way. This time, however, GC
F cannot contain a cycle, because it would induce a

subcycle of C that does not visit t̄ as t̄ /∈ V (F3
i j ) for i j ∈ E ′. From this point on the

proof of F being E ′-dominated can be completed as for Observation 3.18.
By definition, F is improving if and only if there is an edge i j ∈ E ′ and a node

k ∈ V \{t̄} with ik /∈ E ′ and jk /∈ E ′. Such an edge i j does not exist if and only if any
two nodes i, j ∈ V (Ḡ) that are connected by a path of length two in Ḡ are adjacent
in Ḡ. The latter property holds if and only if every component of Ḡ is a clique. ��

We illustrate this technique for the comb-inequalities [8,15–17], which are a large
class of valid inequalities of PSTSPn known to be facet defining in many cases. They
are defined as follows.

k∑
h=0

∑
l1,l2∈Wh

xl1l2 ≤ |W0| +
k∑

h=1

(|Wh | − 1) − ⌈ k
2

⌉
(21)

with Wh ⊆ V , h = 0, 1, . . . , k, satisfying

|W0 ∩ Wh | ≥ 1, h = 1, . . . , k,

|Wh\W0| ≥ 1, h = 1, . . . , k,

|Wh ∩ Wm | = 0, 1 ≤ h < m ≤ k,

k odd.

The inequality remains valid if the first condition is changed to |W0 ∩ Wh | = 1,

h = 1, . . . , k, and the third condition may be dropped in this case. For the support

E ′ = {i j ∈ V {2} : ∃h ∈ {0, 1, . . . , k} with i, j ∈ Wh}

and |⋃k
h=0 Wh | < n

2 Observation 3.18 gives rise to the strengthened valid inequality

k∑
h=0

∑
i j∈W {2}

h

xi j +
k∑

h=0

∑
i j∈W {2}

h ,m∈V \Wh :
im,mj /∈E ′

yimj ≤ |W0| +
k∑

h=1

(|Wh | − 1) − ⌈ k
2

⌉
(22)
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Fig. 8 Visualization of the edges and the types of the 2-edges whose values are counted in Theorem 3.20

and for |⋃k
h=0 Wh | ≥ n

2 , t̄ ∈ V \(⋃k
h=0 Wh) Observation 3.19 results in

k∑
h=0

∑
i j∈W {2}

h

xi j +
k∑

h=0

∑
i j∈W {2}

h ,m∈V \{Wh∪{t̄}} :
im,mj /∈E ′

yimj ≤ |W0| +
k∑

h=1

(|Wh | − 1) − ⌈ k
2

⌉

in all cases described above for the comb-inequalities. For k = 1, |W0| = 1 they are
equivalent to the extended subtour elimination constraints (18) and (19). The same
relation is known to hold between comb-inequalities and subtour elimination con-
straints.

Even for rather small comb-inequalities, however, this strengthening may not be
sufficient to preserve the property of being facet defining. Theorem 3.20 illustrates a
case where further strengthenings are required as visualized in Fig. 8.

Theorem 3.20 For n ≥ 13 the inequalities

3∑
h=0

∑
i j∈W {2}

h

xi j +
3∑

h=0

∑
i j∈W {2}

h ,m∈V \Wh :
im,mj /∈E ′

yimj + (yūvw̄ + yūwv̄ + yv̄uw̄)

+ (yūv̄w̄ + yūw̄v̄ + yv̄ūw̄) + (yuv̄w̄ + yuw̄v̄ + yvūw̄ + yvw̄ū + ywūv̄ + ywv̄ū) ≤ 4

(23)

define facets of PSQTSPn for all W = {u, v, w, ū, v̄, w̄} ⊂ V , W0 = {u, v, w},
W1 = {u, ū}, W2 = {v, v̄}, W3 = {w, w̄}, |{u, v, w, ū, v̄, w̄}| = 6 with E ′ =
{uv, uw, vw, uū, vv̄, ww̄}. For 7 ≤ n ≤ 12 the inequality remains valid if we replace
m ∈ V \Wh by m ∈ V \{Wh ∪ t} with t ∈ V \W in the fourth summation symbol.

The proof of validity as well as the construction of the tours is rather involved in this
case, details are given in the “Appendix”.
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4 Some experimental results

In order to provide some evidence that the new inequalities may actually be worth
consideration in practical cutting plane approaches, we present preliminary results
on limited computational experiments for random nonnegative costs, for random
Angle-TSP in the plane and for randomly generated reload cost instances. The aim
of these experiments is to supply a rough estimate on the improvement on the bound
and on the number of nodes in a branch-and-cut tree with respect to the basic lin-
ear relaxation (referred to by (I) in the tables) that can be obtained by separating
the new inequalities (II). Our “proof-of-concept” implementation builds on SCIP
2.1.1 [1,26] with CPLEX 12.2 [20], because SCIP already provides the Gomory-
Hu-tree for separating subtour elimination constraints (3) of the linear TSP and we
use this as the basis of a greedy strengthening heuristic for separating (18) and (19).
Inequalities (10), (11), (16), are separated by complete enumeration. For exact sepa-
ration of inequalities (15) we simply solve the linear programming formulation using
CPLEX by taking advantage of the total unimodularity of the corresponding con-
straint matrix and the warm-start-properties of the simplex-algorithm when testing
a fixed i for varying j . While SCIP allowed to compute the optimal solutions for
all instances between seconds and 70 min, we stress that in this implementation no
effort was invested into making the separation heuristics efficient. Therefore we con-
centrate on the quality of the bound and on the number of branch-and-cut nodes
and refrain from giving the computation times. The experiments were performed
on an Intel Core i7 CPU 920 with 2.67 GHz and 12 GB RAM in single processor
mode.

We tested random instances for 5 ≤ n ≤ 25. For general nonnegative cost instances,
integral costs ce, e ∈ V 〈3〉, were chosen uniformly at random between 0 and 10000.
Random Angle-TSP instances in the plane were generated by choosing points uni-
formly at random out of {0, . . . , 1000}2. Here the costs ci jk, i jk ∈ V 〈3〉, are computed
by

ci jk =
⌊

18000

π
arccos

((
v j − vi

‖v j − vi‖
)T ( vk − v j

‖vk − v j‖
))⌋

(24)

with vi ∈ R
2 denoting the coordinate vector of point i . In order to give a visual

impression of such instances, the optimal solution of one such random instance with
30 points is displayed in Fig. 9 together with an optimal solution for squared costs c2

i jk
instead of ci jk , which penalizes sharp turns even more.

For these two classes of random instances, Fig. 10 gives, for each n, the average of
the root gap (c∗ − crelax )/crelax over 10 instances and Table 1 displays the average
number of nodes used in branch-and-cut.

For the reload cost instances we generated random graphs G̃ = (Ṽ , Ẽ) by includ-
ing each edge e ∈ Ẽ independently with some fixed probability p ∈ [0, 1] and by
randomly coloring these edges with colors D = {1, . . . , d}. Two types of costs are
used for the instances. In the instances RI1 each color change causes costs of one, and
in RI2 the color change between two colors i, j ∈ D, i �= j, causes costs di j with
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Fig. 9 An optimal solution for a random Angular-Metric TSP instance on 30 nodes for costs equal to the
change in direction (24) and the same costs squared

Fig. 10 Average root gaps of random and random angular instances

Table 1 Average number of nodes used in branch-and-cut of random and random angular instances

n 5 6 7 8 9 10 11 12 13 14 15

Random (I) 1.0 1.0 1.0 4.2 5.5 8.5 11.6 28.3 32.6 32.8 49.1

Random (II) 1.0 1.0 1.0 1.1 2.3 6.5 5.8 13.6 13.5 27.2 29.1

Angular (I) 1.0 1.0 1.0 1.0 1.0 1.7 2.1 2.7 2.3 2.9 2.2

Angular (II) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

n 16 17 18 19 20 21 22 23 24 25

Random (I) 134.9 126.5 76.1 149.5 652.9 790.3 944.7 1,773.9 1,174.2 3,698.6

Random (II) 48.0 42.0 87.6 139.4 325.0 361.7 392.3 884.0 781.6 2,008.4

Angular (I) 2.3 4.3 3.8 15.1 36.8 69.5 29.7 69.1 39.1 137.0

Angular (II) 1.0 1.0 1.6 3.4 12.3 10.5 13.0 16.2 37.9 43.1
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Table 2 Average optimal and relaxation values and average number of branch-and-cut nodes for random
reload cost instances with edge-probability p, d colors and n nodes

p d n RI1 RI2

Opt. (I) (II) B(I) B(II) Opt. (I) (II) B(I) B(II)

1
2 5 10 6.000 6.000 6.000 1.0 1.0 26.300 26.300 26.300 1.0 1.0

15 4.400 3.891 4.110 11.8 3.8 16.200 14.792 15.440 12.7 7.6

20 4.100 2.444 2.834 109.5 47.0 11.400 6.078 6.654 351.8 144.4

10 10 6.000 6.000 6.000 1.0 1.0 25.889 25.593 25.889 2.2 1.0

15 7.500 7.168 7.440 14.9 3.4 24.200 22.926 23.868 6.6 3.3

20 6.900 5.825 6.223 39.9 18.3 22.900 19.536 20.331 44.5 10.1

20 10 8.000 8.000 8.000 1.0 1.0 34.000 34.000 34.000 1.0 1.0

15 8.900 8.832 8.900 4.0 2.2 30.200 27.794 29.372 20.9 6.1

20 9.700 9.216 9.455 15.8 9.2 28.700 24.047 25.187 37.4 23.9

1 5 10 2.000 1.723 1.922 12.7 3.7 5.800 3.049 4.098 35.2 9.6

15 1.800 0.000 0.000 1521.5 477.2 2.400 0.000 0.000 1079.7 590.4

20 0.800 0.000 0.000 230775.0 95593.8 0.200 0.000 0.000 42895.3 18850.0

10 10 3.400 3.153 3.400 5.9 2.2 10.900 8.555 9.368 14.9 6.1

15 3.100 1.375 1.667 64.0 36.2 6.100 2.053 2.935 154.4 84.7

20 2.700 0.039 0.155 1070.6 481.4 4.500 0.000 0.133 3374.3 1842.0

20 10 5.000 5.000 5.000 2.7 1.8 12.900 11.618 12.083 7.5 5.4

15 5.900 4.732 5.043 31.9 14.0 12.300 7.816 8.783 189.9 57.1

20 5.000 2.868 3.168 216.1 69.0 10.500 5.162 5.734 691.5 397.4

di j chosen uniformly at random in {1, . . . , 10}. Because each color change causes
costs of at least one, the 2-graph either contains a monochromatic Hamiltonian cycle
(these have cost 0, so optimality gaps are meaningless) or the optimal value is at
least two. Table 2 shows, for each choice of parameters, the average of optimal value
and relaxation value over ten random instances (infeasible instances are skipped)
as well as the average number of the nodes of the branch-and-cut tree, denoted by
B(I), B(II), for the two separation modes described above. In total we generated 360
instances, 349 of them were feasible. Via exploiting the special integrality property
of these instances, approach (I) allowed to prove optimality of the solutions of 165
instances within the root node in comparison to 195 instances in case of approach
(II).
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Appendix

Proof of Theorem 3.3 Validity holds, because not all three x-variables can be one
and if two are one, so is exactly one of the y-variables. We set, w. l. o. g., i = 1,

123



The symmetric quadratic traveling salesman problem 229

j = n−1, k = n. Equality holds, x{1,n−1}+x{1,n}+x{n−1,n}−y〈1,n−1,n〉−y〈1,n,n−1〉−
y〈n−1,1,n〉 = 1, if and only if exactly one or two of the three edges {1, n−1}, {1, n}, {n−
1, n} are contained in the tour. For n = 6 we verified the statement by means of a
computer algebra package and for n ≥ 7 the construction of the f (n) affinely inde-
pendent tours is similar to the construction in the proof of Theorem 2.3. Therefore we
use the same notation and only mention the differences.

All tours t ∈ Cn̄,1
dim ∪Cn̄,2

dim contain the edge {n −1, n}. So it remains to look at steps
(L1)–(L8). For this we set w1 = 1 and w2, w3 ∈ {2, . . . , n − 2}, w2 �= w3.

• (L1): Using the same construction, the nodes w1 = 1 and n are adjacent.
• (L2): We only build the tour . . . m (n − 1) o w1 n w3 . . . with m, o ∈ {1, . . . ,

n −2}\{w1, w2, w3}, m �= o, i.e., the 2-edge 〈w2, n, w3〉 is not used as an eı̂
L here.

• (L3): The edge {w1, n − 1} is contained in the tour.
• (L4), (L6): In the standard construction one of the edges {w1, n − 1}, {w1, n} is

contained in the tours.
• (L5): We distinguish two cases. Either w1 /∈ {a, b} then we set m = w1, which

implies an edge {w1, n − 1}, or w1 ∈ {a, b}, which implies an edge {w1, n}.
• (L7): We build tours . . . a n b w1 (n−1) . . ., for a, b ∈ {1, . . . , n−2}\{w1, w2, w3},

a < b, which contain an edge {w1, n − 1}.
• (L8): If a = w1 the tour contains both edges {w1, n −1}, {w1, n}. In all other cases

we can position node w1 next to node n.

This construction works for n̄ = 5 and all n ≥ 7 and creates exactly one tour less than
in the proof of Theorem 2.3. Thus, the inequality defines a facet of PSQTSPn , n ≥ 6.

��
Proof of Theorem 3.5 For 5 ≤ n ≤ 9 we verified the statement be means of a linear
algebra package. For n ≥ 10 the proof is similar to the proof of Theorem 2.3. We use
the same notation and consider, w. l. o. g., the 2-cycle C = {123, 234, 345, 154, 215}.
For n ≥ 10 a tour satisfies

∑
e∈C{2} xe −∑

e∈C ye = 2 if and only if the intersection
of its edges with C {2} results in at least two unconnected paths of at least one edge.
Requiring this structure for the tours of the initial n̄-permutation block with n̄ = 5
yields r5 − 1 affinely independent tours for C̃ n̄,1

dim . In the construction of sets C̃ n̄,2
dim and

C̃ n̄,3
dim (C̃ n̄

dim = C̃ n̄,1
dim ∪ C̃ n̄,2

dim ∪ C̃ n̄,3
dim) the existence of tours with this structure can be

ensured by the following slight adaptations of steps (I1)–(I5) for n̄ < k < n − 1 and
(L1)–(L8) with w1, w2, w3 ∈ {6, . . . , n − 2}.
• Tours in (I1): There are three cases (once again, 〈k, 1, k + 1〉 is not used as an ei

k).
1. For 6 ≤ a ≤ k − 1 we use the tours (note that 3 is followed by 5 and not 4)

. . . a k 1 (k + 1)�k n 2 3 5 4 . . .

2. For nodes a ∈ {2, 5} adjacent to node 1 in C , we construct tours

. . . 3 2 k 1 (k + 1)�k n 4 5 . . . resp. . . . 4 5 k 1 (k + 1)�k n 3 2 . . .

3. For nodes a ∈ {3, 4} not adjacent to node 1 in C , we construct tours

. . . 2 3 k 1 (k + 1)�k n 4 5 . . . resp. . . . 5 4 k 1 (k + 1)�k n 3 2 . . .
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• Tours in (I2): For a ∈ {2, . . . , 5} we use the same technique as for (I1) above with
the roles of node 1 and node a interchanged. For a ∈ {6, . . . , k − 1} appropriate
tours are

. . . 2 1 k a (k + 1) �k n 4 3 5 . . .

• Tours in (I3): Whenever {a, b}∩{1, . . . , 5} �= ∅ we can adapt the approach of (I1)–
(I2) above by exchanging the roles of the nodes. In all other cases the following
tours contain exactly two nonincident edges of C {2},

. . . a k b (k + 1)�k n 1 2 4 5 3 . . .

• Tours in (I4): The situations that appear for {a, b} �⊂ {1, . . . , 5} have been dis-
cussed before. If {a, b} ∈ C {2} we place the nodes {1, . . . , 5}\{a, b} next to node n
in arbitrary order. The remaining cases satisfy a, b ∈ {1, . . . , 5} with {a, b} /∈ C {2}.
The desired structure is obtained for, w. l. o. g., a = 1, b = 3 by tours

. . . k 2 1 3 (k + 1) �k n 4 5 . . .

• Tours in (I5), (L1)–(L4), (L6), (L8): We can adapt the techniques above.
• Tours in (L5): We can use the techniques above setting m ∈ {w1, w2, w3}\{b}.
• Tours in (L7): If {a, b} ∈ C {2}, w. l. o. g., for a = 1, b = 2 the tour

. . . 5 4 1 n 2 3 (n − 1) . . .

contains exactly two edges 45, 23 ∈ C {2}. If {a, b} /∈ C {2}, w. l. o. g., for a =
1, b = 3 the tour

. . . 5 4 1 n 3 2 (n − 1) . . .

contains exactly the edges 45, 23 ∈ C {2}, too.

This construction results in exactly one affinely independent tour less than in the proof
of Theorem 2.3, and with the considerations therein, Theorem 3.5 follows. ��
Proof of Theorem 3.7 First we prove the validity. Whenever two x-variables indexed
by incident edges within S{2} have value one, the corresponding y-variable is also one.

Intersecting a tour with S{2} decomposes the tour into at most
⌊ |S|

2

⌋
paths of at least

one edge and only such path segments contribute one unit to the left hand side.
Theorem 3.3 proves the facetness in the case h = 3, so let h ≥ 5 be odd with

n ≥ 3
2 (h + 1). The proof is similar to the proof of Theorem 2.3. We use the same

notation and consider, w. l. o. g., S = {2} ∪ {i, i + 1 : i = 1 + 3k, k = 1, . . . , h−1
2 }.

A tour gives rise to a root of (13) if and only if the intersection of its edges with S{2}
results in h−1

2 unconnected paths of at least two nodes. In this case either one node of
S is isolated or exactly one of the h−1

2 paths contains three nodes; paths containing
more than three nodes of S cannot arise from roots. To guarantee this structure for the
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tours, each edge {i, i +1}, i = 1+3k, k = 2, . . . , h−1
2 , lies between two nodes not in

S. Starting with the set Cn̄,1
dim we use n̄ = 5 for the permutation block. Fulfilling (13)

with equality requires that exactly one or two of the three edges {2, 4}, {2, 5}, {4, 5}
have to be present in tours of the block. Due to this structure the rank of the initial
block is reduced by one in comparison to Theorem 2.3.

In the inductive part with n̄ < k < n − 1 we have to distinguish four cases.

1. k ∈ V \S with (k + 1) ∈ V \S: We can use steps (I1)–(I5) without any modi-
fications of the decisive parts. We will show in Claim 2 below that the desired
structure of the tours can be achieved easily.

2. k ∈ V \S with (k + 1) ∈ S: For nodes of this type we use steps (I1)–(I5), but
(I4) needs to be restricted to a, b ∈ {1, . . . , k − 1}, a �= b, {a, b} �⊂ S, because
otherwise we would have a path formed by four nodes of S. In order to build tours
for the missing 2-edges 〈a, b, k + 1〉, a, b ∈ {1, . . . , k − 1} ∩ S, a �= b, the node
k + 1 needs to be separated from k + 2, so all these will be built in an extra step
(C.14) within the next iteration. Furthermore, in order to guarantee the existence
of appropriate tours for (I4), the distance of node k and k +1 needs to be increased
by one via inserting a suitable node, see also Claim 3 below.

3. k ∈ {i = 5 + 3l, l = 1, 2, . . . , h−1
2 − 1}: For nodes of this type we use steps

(I1)–(I5) without any modifications of the decisive parts. By Claim 4 below the
desired structure can be achieved easily.

4. k ∈ {i = 4+3l, l = 1, 2, . . . , h−1
2 −1}: For these nodes we split the tour construc-

tion into many steps so as to simplify the exposition of appropriately constructed
tours afterwards. The correspondence of this list of steps to (Type-I1)–(Type-I4)
is explained in Claim 1, the existence of appropriate tours in Claim 5 below. Note,
we have 5, k, (k + 1) ∈ S.
(C.1) . . . a k 5 (k + 1)�k n . . . , for a ∈ {1, . . . , k − 1}\S

(the 2-edge 〈k, 5, k + 1〉 is not used as an ei
k),

(C.2) . . . m 5 k a (k + 1)�k n . . . , for a ∈ {1, . . . , k − 1}\S with m ∈ {1, . . . ,

k − 1}\S, m �= a,
(C.3) . . . m k 5 a b (k + 1) �k n . . . , for a, b ∈ {1, . . . , k − 1}\S, a �= b, with

m ∈ {1, . . . , k − 1}\S, |{a, b, m}| = 3,
(C.4) . . . m 5 k a b (k + 1) �k n . . . , for a ∈ {1, . . . , k − 1}\S, b ∈ ({1, . . . ,

k − 1} ∩ S)\{5} with m ∈ {1, . . . , k − 1}\S, m �= a,
(C.5) . . . m 5 k o p a b (k + 1) �k n . . . , for a ∈({1, . . . , k −1}∩ S), b∈{1, . . . ,

k − 1}\S with m, o ∈ {1, . . . , k − 1}\S, p ∈ ({1, . . . , k − 1} ∩ S),
|{a, b, m, o, p, 5}| = 6,

(C.6) . . . m 5 k o a b (k + 1) �k n . . . , for a, b ∈ ({1, . . . , k−1}∩S)\{5}, a �= b,
with m, o ∈ {1, . . . , k − 1}\S, m �= o,

(C.7) . . . m k 5 a (k + 1)�k n . . . , for a ∈ {1, . . . , k − 1}\S with m ∈ {1, . . . ,

k − 1}\S, m �= a,
(C.8) . . . m 5 k a o p (k + 1)�k n . . . , for a ∈ ({1, . . . , k − 1} ∩ S) with m, o ∈

{1, . . . , k − 1}\S, p ∈ {1, . . . , k − 1} ∩ S, |{a, m, o, p, 5}| = 5,
(C.9) . . . m a k b o (k + 1)�k n . . . , for a ∈ ({1, . . . , k − 1} ∩ S)\{5},

b ∈ {1, . . . , k − 1}\S with m ∈ {1, . . . , k − 1}\S, o ∈ {1, . . . , k − 1} ∩ S,

a �= o, b �= m, o �= 5,
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(C.10) . . . a k b m (k + 1)�k n . . . , for a, b ∈ {1, . . . , k − 1}\S, a < b, with
m ∈ {1, . . . , k − 1} ∩ S, |{a, b, m}| = 3, m �= 5,

(C.11) . . . m o k a 5 (k + 1)�k n . . . , for a ∈ {1, . . . , k −1}\S with m ∈ {1, . . . ,

k − 1}\S, o ∈ {1, . . . , k − 1} ∩ S, m �= a, o �= 5,
(C.12) . . . m o k p a 5 (k + 1) �k n . . . , for a ∈ {1, . . . , k − 1} ∩ S, a �= 5, with

m, p ∈ {1, . . . , k − 1}\S, o ∈ {1, . . . , k − 1} ∩ S, |{a, m, o, p, 5}| = 5,
(C.13) . . . m o k p 5 a (k + 1) �k n . . . , for a ∈ {1, . . . , k − 1} ∩ S with m, p ∈

{1, . . . , k − 1}\S, o ∈ {1 . . . , k − 1} ∩ S, |{a, m, o, p, 5}| = 5,
(C.14) . . . m k a b o p (k + 1)�k n . . . , for a, b ∈ {1, . . . , k − 2}∩ S with m, o ∈

{1, . . . , k − 1}\S, m �= o, p ∈ {1, . . . , k − 1} ∩ S, |{a, b, p}| = 3,
(C.15) . . . m a k b o 5 (k +1)�k n . . . , for a, b ∈ {1, . . . , k −1}∩ S, a < b, with

m, o ∈ {1, . . . , k − 1}\S, |{a, b, m, o, 5}| = 5,
(C.16) . . . m k a (k + 1)�k n . . . , for a ∈ ({1, . . . , k − 1} ∩ S)\{5} with m ∈

{1, . . . , k − 1}\S.

After these steps we perform (I5). Note, (C.14) is only completing (I4) of the
preceding iteration k − 1, therefore it is also not counted in Claim 1.

Claim 1 In steps (C.1)–(C.13), (C.15)–(C.16), (I5) we build exactly 3
2 k2 − 3

2 k − 1
tours for k ∈ {i = 4 + 3l, l = 1, 2, . . . , h−1

2 − 1}.
Proof of Claim 1. We compare the underlined 2-edges with the 2-edges of (Type-I1)-
(Type-I4) in the proof of Theorem 2.3

• (Type-I1): We get all 2-edges 〈a, k, b〉, a, b ∈ {1, . . . , k − 1}, a �= b, in steps
(C.1), (C.8)–(C.10), (C.15).

• (Type-I2): The role of node 1 and node 5 changed. Apart from that we get all
2-edges 〈k, a, k + 1〉, a ∈ {1, . . . , k − 1}\{5} (in contrast to 〈k, a, k + 1〉, a ∈
{1, . . . , k − 1}\{1}) in steps (C.2) and (C.16).

• (Type-I3): We get all 2-edges 〈a, b, k + 1〉, a, b ∈ {1, . . . , k − 1}, a �= b, in steps
(C.3)–(C.7), (C.11)–(C.13).

• (Type-I4): Because we use step (I5) we get all the 2-edges of that type.

This proves Claim 1. ��
It remains to prove that in all four cases above the desired structure can be achieved,

i.e., exactly h−1
2 unconnected paths of at least two nodes in S are present in each tour.

To disconnect the nodes of a subset S′ ⊂ S in the desired way we need at least
�|S′|/2� − 1 nodes v ∈ V \S; starting with two nodes of S′ we place, next to them,
one node of V \S, then again two nodes of S′, one of V \S and so on until in the end
there may be three nodes of S′ next to each other.

Claim 2 The desired structure described above can be achieved in (I1)–(I5) for nodes
k ∈ V \S with (k + 1) ∈ V \S, n̄ < k < n − 1.

Proof of Claim 2. By definition of S it follows S = S∩{1, . . . , k−1} and |{1, . . . , k−
1}\S| ≥ k

3 . It suffices to consider the case k ∈ V \S, (k + 1) ∈ V \S, (k − 1) ∈ S
because if there are more nodes in V \S we can simply place them next to each other.
Thus, let k = 3 + 3 h−1

2 .
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• Tours in (I1): If a ∈ V \S there remain h−1
2 − 1 nodes in {1, . . . , k}\(S ∪{1, a, k})

that are not fixed to a position. With these nodes we can force h−1
2 unconnected

paths of nodes in S (exactly one of these contains three nodes). In the case a ∈ S
we can either force a 2-edge 〈m, o, a〉 with m ∈ {1, . . . , k − 1}\S, o ∈ S, o �= a,

or force a 2-edge 〈m, a, k〉 with m ∈ {1, . . . , k − 1}\S, followed by alternating an
edge e ∈ S{2} and a node in {1, . . . , k − 1}\S.

• Tours in (I2), (I3), (I5): We are in a similar situation as in (I1), at most one node s ∈ S
has to lie between two nodes in V \S and we have enough nodes in {1, . . . , k−1}\S
to force the desired structure.

• Tours in (I4): If a, b ∈ S one of the desired edges is formed and next to node k
we use the alternating order of edges in S{2} and nodes in {1, . . . , k − 1}\S. In the
case {a, b} �⊂ S the situation equals (I1) with a ∈ {2, . . . , k −1}\S apart from that
an isolated node in S is forced if {a, b} ∩ S �= ∅. ��

Claim 3 The desired structure described above can be achieved for nodes k ∈ V \S
with (k + 1) ∈ S, n̄ < k < n − 1.

Proof of Claim 3. As in Claim 2, there are at least k
3 nodes available in {1, . . . , k−1}\S

to separate S ∩{1, . . . , k − 1} into k
3 − 1 unconnected paths of at least two nodes each

(and possibly one isolated node). So, except for (I4) with a, b ∈ {1, . . . , k − 1} ∩ S of
this case, the same arguments as in Claim 2 prove this claim as well as the following
two claims. Step (I4) cannot be performed for a, b ∈ {1, . . . , k − 1} ∩ S for this k
because a, b, k + 1, k + 2 would be four consecutive nodes in S, so the construction
is delayed to step (C.14) for k + 1. ��
Claim 4 The desired structure described above can be achieved for nodes k ∈
{i = 5 + 3l : l = 1, 2, . . . , h−1

2 − 1}, n̄ < k < n − 1.

Proof of Claim 4. The set {1, . . . , k − 1} contains exactly k+1
3 nodes that belong to

V \S and (k + 1) ∈ V \S. Therefore we have as many separating nodes as in the proof
of Claim 2. In view of (k + 1), n ∈ V \S only slight structural adaptations are needed
to compensate k ∈ S, we skip the details here. ��
Claim 5 The desired structure described above can be achieved for nodes k ∈
{i = 4 + 3l : l = 1, 2, . . . , h−1

2 − 1}, n̄ < k < n − 1.

Proof of Claim 5. The set {1, . . . , k − 1} contains exactly k+2
3 nodes that belong to

V \S and may thus serve to separate the nodes of S ∩ {1, . . . , k + 1} into k−1
3 uncon-

nected paths of at least two nodes each (and possibly one isolated node if there is no
path of length three). Note that k + 2 ∈ V \S and that for each tour of (C.1)–(C.16)
the specified part starts with a node v ∈ {1, . . . , k − 1}\S (in (C.1) and (C.10) this
is a, otherwise it is m) and ends with n ∈ V \S. Hence, the unspecified region can
be filled up correctly whenever the number of nodes in {1, . . . , k − 1}\S within the
specified segment from and including this node v to node k + 2 exceeds the count of
S-paths of at least 2 nodes within this segment by at most 2. Table 3 lists the forced
isolated nodes in S, the edges in S{2} and 2-edges in S〈3〉 within these critical segments
of steps (C.1)–(C.16). The requirements hold in all cases and are tight only for (C.3).
Step (I5) can be treated in the same way as in Claims 2–4. This proves Claim 5. ��

123



234 A. Fischer, C. Helmberg

Table 3 Specified edges and 2-edges of S and nodes of V \S in steps (C.1)–(C.16)

Step Isolated nodes of S Edges of S{2} 2-edges of S〈3〉 Nodes of V \S

(C.1) 〈k, 5, k + 1〉 a

(C.2) k + 1 {k, 5} m, a

(C.3) k + 1 {k, 5} m, a, b

(C.4) {k, 5}, {b, k + 1} m, a

(C.5) k + 1 {k, 5}, {p, a} m, o, b

(C.6) {k, 5} 〈a, b, k + 1〉 m, o

(C.7) k + 1 {k, 5} m, a

(C.8) {p, k + 1} 〈5, k, a〉 m, o

(C.9) {a, k}, {o, k + 1} m, b

(C.10) k {m, k + 1} a, b

(C.11) {o, k}, {5, k + 1} m, a

(C.12) {o, k} 〈a, 5, k + 1〉 m, p

(C.13) {o, k} 〈5, a, k + 1〉 m, p

(C.14) {p, k + 1} 〈k, a, b〉 m, o

(C.15) {5, k + 1} 〈a, k, b〉 m, o

(C.16) 〈k, a, k + 1〉 m

It remains to adapt the concluding steps (L1)–(L8). How to do this depends on
whether (n − 1) /∈ S or (n − 1) ∈ S. In both cases n /∈ S, because by assumption
n ≥ 3

2 (h + 1) = 2 + 3 h−1
2 + 1.

Claim 6 If (n − 1) /∈ S the desired structure can be achieved within (L1)–(L8) for
w1 = 2, w2 = 4, w3 = 5 by restricting some of the open choices.

Proof of Claim 6. In this case n > 3
2 (h + 1), in particular |V \S| ≥ 1

2 (h + 3) + 1. To
separate the h−1

2 paths of at least two nodes of S we need at least h−1
2 nodes in V \S.

Therefore the structure can be achieved if at most three nodes in V \S are not used as
separating nodes, i.e., these may lie next to a further node in V \S, and one isolated
node belonging to S may lie between them. These rules can be satisfied in (L1)–(L8).

• For (L1): If b ∈ S the nodes n − 1 and n separate the path b w1 of S, if b /∈ S then
n − 1, b and n are three nodes embracing an isolated node w1 ∈ S.

• For (L2) choose o ∈ S\{w1, w2, w3}, then n − 1 and n separate the path o w1
(resp. o w2) of S.

• Because {w1, w2, w3} ⊂ S, (L3),(L4),(L6),(L8) are not critical for any choice.
• For (L5) choose o ∈ S\{w1, w2, w3, a, b} (one of a or b is in {w1, w2, w3}, so this

is feasible), then at most three nodes of a, n, b and m are not in S and they may
separate one isolated node of S.

• For (L7) choose m = w1. If b ∈ S the path b w1 of S is separated, otherwise a, n
and b are at most three nodes in V \S separating the isolated node w1 of S. ��

Claim 7 If (n − 1) ∈ S the desired structure can be achieved by appropriate adapta-
tions of steps (L1)–(L8) with w1 = 1, w2 = 2, w3 = 3.
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Proof of Claim 7. We know that |V \S| = 1
2 (h + 3). To separate the h−1

2 paths of at
least two nodes of S we need at least h−1

2 nodes in V \S. Therefore the structure can
be achieved if at most two nodes in V \S are not used as separating node, i.e., these
may lie next to a further node in V \S and one isolated node belonging to S may lie
between them. To achieve this, several adaptations are required in (L1)–(L8).

• Tours in (L1): There are four cases.
– a, b ∈ V \S: We use tours . . . a (n − 1) b m o w1 n w2 . . . with m, o ∈

({1, . . . , n − 2} ∩ S)\{w2}, m �= o. These have the isolated node n − 1 ∈ S
between a, b ∈ V \S and two adjacent nodes w1, n ∈ V \S, so these tours can
be extended to the required structure.

– a ∈ V \S, b ∈ S: We use tours . . . a (n − 1) b w1 n w2 . . . with two adjacent
nodes w1, n ∈ V \S.

– a ∈ S, b ∈ V \S: We use tours . . . a (n − 1) b w1 n w2 . . ., these can be com-
pleted to have the three adjacent nodes b, w1, n ∈ V \S but no isolated nodes.

– a, b ∈ S: We use tours . . . a (n − 1) b w1 n w2 . . . with two adjacent nodes
w1, n ∈ V \S and a (n − 1) b the only path of three nodes of S.

• Tours in (L2): Choose m ∈ V \(S ∪ {w1, w3, n}) and o ∈ S\{n − 1, w2}, then the
first row has three adjacent nodes w1, n, w3 ∈ V \S and can be completed without
isolated nodes of S, while the second row has two adjacent nodes n, w3 ∈ V \S
and (n − 1) o w2 as the only path of three nodes of S.

• Tours in (L3): We use the tours . . . a (n − 1) w1 m w2 n w3 . . . , a ∈ {1, . . . , n −
2}\({w1, w2, w3}), m ∈ S\{w2, a, n − 1} with adjacent nodes n, w3 ∈ V \S and,
if a /∈ S, the isolated node n − 1 between nodes a, w1 ∈ V \S.

• Tours in (L4): There are three adjacent nodes w1, n, w3 ∈ V \S and, if a ∈ S, the
three nodes a (n − 1) w2 form the only path of three nodes of S.

• Tours in (L5): Choose m ∈ S\{n − 1, a, b}, o ∈ V \(S ∪ {n, a, b}, then for b ∈ S
the path b m (n − 1) is the only path of three nodes of S. For b /∈ S there are at
most three adjacent nodes a, n, b ∈ V \S and no isolated nodes of S are needed.

• Tours in (L6): The tours . . . n w3 w1 (n − 1) w2 . . . and . . . n w1 w2 (n − 1) w3 . . .

may be used as before. Modifying the remaining tour to . . . n w2 4 w1 (n − 1) w3 . . .

yields one isolated node n − 1 ∈ S between w1, w3 ∈ V \S.
• Tours in (L7): Set m = w2, then this may induce at most three adjacent nodes

a, n, b ∈ V \S or b m (n − 1) as the only path of three nodes of S.
• Tours in (L8) require at most two adjacent nodes a, n ∈ V \S.

All in all we build exactly one tour less than in Theorem 2.3. This proves Theorem 3.7.
��

Proof of Theorem 3.8 For n = 6, 7 we verified the statement by means of a linear
algebra package and for n ≥ 8 the proof is similar to the proof of Theorem 2.3 but this
time we need to adapt the n̄-permutation-block used for C̄ n̄,1

dim as well as the iterative

steps of Cn̄,2
dim . For the tours of Cn̄,3

dim we only have to show that the desired structure
can be achieved.

We set, w. l. o. g., i = 1, j = 2. In a tour satisfying x12 +∑
1k2∈V 〈3〉 y1k2 = 1 either

nodes 1 and 2 are adjacent or there is exactly one node between them. Thus, C̄ n̄,1
dim is
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formed for the choice of n̄ by all tours of the form

{
. . . 1 2 . . . (n̄ + 1)�n̄ n . . . or
. . . 1 h 2 . . . (n̄ + 1)�n̄ n . . . with h ∈ {3, . . . , n̄}. (25)

In comparison to taking all tours . . . (n̄ + 1)�n̄ n . . . as in the proof of Theorem 2.3
this reduces the rank by two in the case n̄ = 5 and by one for n̄ = 6. Thus, for n̄ = 6
the same approach still works if no more eı̂

k are lost in the remainder of the proof.

Therefore, we choose n̄ = 6, collect r6 − 1 linearly independent tours of C̄ n̄,1
dim in the

set C̃ n̄,1
dim and proceed in constructing C̃ n̄

dim = C̃ n̄,1
dim∪̇C̃ n̄,2

dim∪̇C̃ n̄,3
dim .

The set C̃ n̄,2
dim = ⋃

n̄<k<n−1 T̃k, T̃k = {t̃1
k , . . . , t̃ nk

n }, is built iteratively, similarly

to Cn̄,2
dim . Again the aim is to construct tours during steps n̄ < k < n − 1 whose

incidence vectors are roots of (14) and form a lower triangular matrix on variables
ẽı̂

k, ı̂ = 1, . . . , nk .
The adapted iterative steps for n̄ < k < n − 1 are:

(i1) . . . a k 3 (k + 1)�k n 1 2 . . . , for a ∈ {4, . . . , k − 1}
(2-edge 〈k, 3, k + 1〉 is not used as ẽı̂

k),

(i2) . . . 3 k a (k + 1) �k n 1 2 . . . , for a ∈ {4, . . . , k − 1},

(i3) . . . a k b (k + 1)�k n 1 2 . . . , for a, b ∈ {4, . . . , k − 1}, a < b,

(i4) . . . k a b (k + 1) �k n 1 2 . . . , for a, b ∈ {3, . . . , k − 1}, a �= b,

(i5)

{
. . . (k + 1)�k n 2 1 k a . . . ,

. . . (k + 1)�k n 1 2 k a . . . ,
for a ∈ {3, . . . , k − 1},

(i6)

⎧⎪⎪⎨
⎪⎪⎩

. . . k 1 2 a (k + 1) �k n . . . ,

. . . k 2 1 a (k + 1) �k n . . . ,

. . . k 1 a 2 (k + 1) �k n . . . ,

. . . k 2 a 1 (k + 1) �k n . . . ,

for a ∈ {3, . . . , k − 1},

(i7)

{
. . . k 1 2 (k + 1) �k n . . . ,

. . . k 2 1 (k + 1) �k n . . . ,

(i8) . . . 1 k 2 3 (k + 1)�k n . . . ,

(i9)

{
. . . 2 k 1 (k + 1) �k n . . . ,

. . . 1 k 2 (k + 1) �k n . . . ,

(i10) . . . 1 2 (k + 1)�k n a b . . . , for a, b ∈ {3, . . . , k}, a �= b, {a, b} ∩ {k} �= ∅,

(i11)

⎧⎪⎪⎨
⎪⎪⎩

. . . (k + 1)�k n k 1 2 . . . ,

. . . (k + 1)�k n k 2 1 . . . ,

. . . (k + 1)�k n 1 k 2 . . . ,

. . . (k + 1)�k n 2 k 1 . . . .

In each tour either node 1 is next to node 2 or there is exactly one node between them.
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Claim 1 |Cn̄,2
dim | = |C̃ n̄,2

dim |.
Proof of Claim 1.

|T̃k | = (k − 4)︸ ︷︷ ︸
(i1)

+ (k − 4)︸ ︷︷ ︸
(i2)

+
(

k − 4

2

)
︸ ︷︷ ︸

(i3)

+ (k − 3)(k − 4)︸ ︷︷ ︸
(i4)

+ 2(k − 3)︸ ︷︷ ︸
(i5)

+ 4(k − 3)︸ ︷︷ ︸
(i6)

+ 2︸︷︷︸
(i7)

+ 1︸︷︷︸
(i8)

+ 2︸︷︷︸
(i9)

+ 2(k − 3)︸ ︷︷ ︸
(i10)

+ 4︸︷︷︸
(i11)

= 3
2 k2 − 3

2 k − 1 = |Tk |,

hence |Cn̄,2
dim | = |C̃ n̄,2

dim | and the claim is proved. ��
Claim 2 Each ẽı̂

k fulfills

ẽı̂
k /∈ C for all C ∈

⎛
⎝C̃ n̄,1

dim ∪
( ⋃

n̄<h<k

T̃h

)
∪
⎛
⎝ ⋃

1≤h<ı̂

{t̃ h
k }
⎞
⎠
⎞
⎠ .

Proof of Claim 2. Consider a fixed k with n̄ < k < n − 1. In all previous tours

t ∈ C̃ n̄,1
dim ∪

(⋃
n̄<h<k T̃h

)
node k is adjacent to node k + 1 while node n is a neighbor

of node n − 1 and the next two nodes on the other side of n are out of {1, . . . , k − 1},
so the underlined 2-edges have not appeared before. By construction, 2-edges ẽı̂

k and
ẽı̃

k , ı̂ �= ı̃ , being built in the same step (iĵ ) cannot be contained in the same tour. It
remains to show that a 2-edge ẽı̂

k chosen in iteration step (iĵ ) is not contained in a tour
of a previous iteration step (il), l < ĵ .

• Tours in step (i2): all tours created in (i1) contain the 2-edge 〈k, 3, k + 1〉.
• Tours in step (i3): all tours created in (i1)–(i2) contain the edge {3, k}.
• Tours in step (i4): in all tours created in (i1)–(i3) there is exactly one node between

node k and node k + 1.
• Tours in step (i5): in all tours created in (i1)–(i3) the edges {1, k}, {2, k} are for-

bidden. With n̄ = 6 and therefore n ≥ 8 it follows that node 2 is not adjacent to
node k in (i4).

• Tours in step (i6): in all tours created in (i1)–(i3) there is exactly one node between
node k and node k + 1 and in (i4),(i5) the 2-edges ẽı̂

k used here are forbidden.
• Tours in steps (i7), (i8), (i9): the respective single 2-edges do not appear in the

tours (iĵ ) with smaller ĵ .
• Tours in steps (i10), (i11): in all tours created in (i1)–(i9) the nodes n and k are

separated by node k + 1 on the one side and by at least two nodes on the other.

This completes the proof of Claim 2. ��
Note that (8) holds for C̃ n̄,1

dim∪̇C̃ n̄,2
dim , so by invoking Claim 2 of the proof of

Theorem 2.3 we can make use of (L1)–(L8) if these admit tours as realizations that
are roots of (14).
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Claim 3 For each step (L1)–(L8) there is a tour having node 1 adjacent to node 2 or
exactly one node between these two.

Proof of Claim 3. Choose w1, w2, w3 ∈ {3, . . . , n − 2}.
• (L1), (L7): Either {a, b} = {1, 2}, i.e., there is exactly node n − 1 between the two

nodes, or they can be placed next to each other.
• (L2)–(L6): put node 1 next to node 2.
• (L8): If a /∈ {1, 2} put nodes 1,2 next to each other, otherwise force a 2-edge

〈1, n, 2〉.
In comparison to the proof of Theorem 2.3 we create exactly one tour less in the first
step and the same number in steps two and three. This proves Theorem 3.8. ��
Proof of Theorem 3.9 We set, w. l. o. g., i = n, j = n − 1 and use the notation T =
{t1, . . . , t|T |}, S = {s1, . . . , s|S|} with |T | ≥ 3, |S| ≥ 1. Roots of (15) satisfy

x{n−1,n} +
∑

〈n−1,k,n〉∈V 〈3〉,k∈S

y〈n−1,k,n〉 +
∑

〈k,n,l〉∈V 〈3〉,k,l∈T

y〈k,n,l〉 = 1.

Thus, either the edge {n − 1, n} is contained in the tour, or there is exactly one node
between nodes n −1 and n and this node belongs to set S, or n lies between two nodes
which belong to set T . For n = 6, |S| = 1, |T | = 3 we verified the assumption using
a linear algebra package. For n ≥ 7 the proof is similar to the proof of Theorem 2.3,
we use the same notation and only explain the necessary adaptations.

All tours which belong to Cn̄,1
dim ∪ Cn̄,2

dim contain the edge {n − 1, n} and therefore it
remains to adapt the third step. Setting {w1, w2, w3} = {t1, t2, t3} steps (L1)–(L4) can
be performed without any problems because node n lies between two nodes belonging
to set T . The next steps (ST1)–(ST6) replace (L5)–(L8) and for |S| ≥ 1, |T | ≥ 3
these constructions are possible.

(ST1) . . . (n − 1) s1 n a . . . , for a ∈ (S ∪ T )\{s1}
(the 2-edge 〈n − 1, s1, n〉 is not used as an eı̂

L ),

(ST2) . . . (n − 1) a n s1 . . . , for a ∈ S\{s1},

(ST3)

{
. . . (n − 1) a n b . . . , for a, b ∈ S\{s1}, a < b,

. . . (n − 1) a n b . . . , for a ∈ S\{s1}, b ∈ T,

(ST4) . . . (n − 1) s1 a n b . . . , for a, b ∈ T, {a, b} � {w1, w2, w3}, a < b,

(ST5) . . . s1 (n − 1) a n m . . . , for a ∈ T with m ∈ T, m �= a,

(ST6)

⎧⎨
⎩

. . . w1 (n − 1) w2 n w3 . . . ,

. . . w1 (n − 1) w3 n w2 . . . ,

. . . w2 (n − 1) w3 n w1 . . . .

Because all tours in Cn̄,1
dim ∪ Cn̄,2

dim contain the edge {n − 1, n} the underlined 2-edges
of (ST1)–(ST6) have not been used in these steps. Furthermore the eı̂

L of tours built
during one of these steps are in conflict. It remains to show Claim 1.
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Claim 1 The 2-edges eı̂
L of step (STĵ ) are not contained in tours in (L1)–(L4) and

(STl), l < ĵ .

Proof of Claim 1. • Tours in step (ST1): in all tours of (L1)–(L4) node n lies
between two of the nodes w1, w2, w3 ∈ T .

• Tours in step (ST2): in all tours of (L1)–(L4) two nodes lie between n and n − 1
and the tours in (ST1) contain the 2-edge 〈n − 1, s1, n〉.

• Tours in step (ST3): in all tours of (L1)–(L4) node n lies between two of the nodes
w1, w2, w3 ∈ T and the tours in (ST1)–(ST2) contain the 2-edge {s1, n}.

• Tours in step (ST4): in all tours of (L1)–(L4) node n lies between two of the nodes
w1, w2, w3 ∈ T and in the tours in (ST1)–(ST3) node n is adjacent to some node
s ∈ S.

• Tours in step (ST5): in all tours of (L1)–(L4), (ST4) two nodes lie between n and
n − 1, and in the tours of (ST1)–(ST3) a node s ∈ S lies between nodes n − 1, n.

• Tours in step (ST6): in all tours of (L1)–(L4) the 2-edges 〈w1, n−1, w2〉, 〈w1, n−
1, w3〉, 〈w2, n − 1, w3〉 are forbidden explicitly. In all tours of (ST1)–(ST5) node
n − 1 is adjacent to at least one node s ∈ S.

This proves Claim 1. ��
Claim 2 We build exactly one tour less than in the proof of Theorem 2.3.

Proof of Claim 2. It suffices to compare |Cn̄,3
dim | = n2 − 4n + 3 with the number of

tours created in steps (L1)–(L4), (ST1)–(ST6). The number of tours equals

(
n − 4

2

)
︸ ︷︷ ︸

(L1)

+ (1 + 1)︸ ︷︷ ︸
(L2)

+ (n − 5)︸ ︷︷ ︸
(L3)

+ (n − 5)︸ ︷︷ ︸
(L4)

+ (|S| − 1 + |T |)︸ ︷︷ ︸
(ST1)

+ (|S| − 1)︸ ︷︷ ︸
(ST2)

+
[(|S| − 1

2

)
+ (|S| − 1)|T |

]
︸ ︷︷ ︸

(ST3)

+
[(|T |

2

)
− 3

]
︸ ︷︷ ︸

(ST4)

+ |T |︸︷︷︸
(ST5)

+ 3︸︷︷︸
(ST6)

= 1
2 n2 − 5

2 n + 2 + 1
2 (|S| + |T |︸ ︷︷ ︸

n−2

)2 + 1
2 (|S| + |T |︸ ︷︷ ︸

n−2

) − 1 = n2 − 4n + 2

= |Cn̄,3
dim | − 1.

This completes the proof. ��
Proof of Theorem 3.10 Validity holds because all edges contained in the inequality are
in pairwise conflict. We set, w. l. o. g., i = 1, j = 2, T = {n−1, n}, S = {3, . . . , n−2}.
Roots of (16) satisfy

x12 +
∑

1k2∈V 〈3〉,k∈S

y1k2 + y(n−1)1n + y(n−1)2n = 1. (26)

Such a tour either contains the edge {1, 2}, or there is exactly one node s ∈ S between
nodes 1,2, or one of the nodes 1,2 lies between the nodes (n − 1) and n. For n = 6, 7
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we verified the assumption by means of a linear algebra package and for n ≥ 8 the
proof is similar to the proofs of Theorem 2.3 and Theorem 3.8, so we use the same
notation. We start with setting up an appropriate n̄-permutation block with n̄ = 6. As
in (25), in all tours of this block either node 1 is adjacent to node 2 or exactly one
node s̄ ∈ {3, 4, 5, 6} ⊆ S lies between them and in each case these first six elements
are followed by (n̄ + 1)�n̄ n. Like in the proof of Theorem 3.8, the resulting number
of linearly independent tours is one less than |Cn̄,1

dim | of the proof of Theorem 2.3. Fur-
thermore, the iterative part (i1)–(i11) of the proof of Theorem 3.8 is also applicable
here, because T = {n − 1, n} and so by claims 1 and 2 of the proof of Theorem 3.8
the number of tours equals |Cn̄,2

dim |. It remains to adapt the third step constructing the

set C̃ n̄,3
dim .

(S2.1) . . . a (n − 1) b 3 n 4 1 2 . . . , for a, b ∈ {5, . . . , n − 2}, a < b

(we do not use the 2-edge 〈3, n, 4〉 as an eı̂
L ),

(S2.2)

{
. . . 5 (n − 1) 6 3 n 2 1 . . . ,

. . . 5 (n − 1) 6 4 n 2 1 . . . ,

(S2.3)

{
. . . a (n − 1) 3 4 n 2 1 . . . ,

. . . a (n − 1) 4 3 n 2 1 . . . ,
for a ∈ {5, . . . , n − 2},

(S2.4)

{
. . . 6 (n − 1) 4 3 n 5 1 2 . . . ,

. . . 6 (n − 1) 3 4 n 5 1 2 . . . ,

(S2.5)

{
. . . 2 1 (n − 1) a m n o . . . ,

. . . 1 2 (n − 1) a m n o . . . ,

{
for a ∈ {3, . . . , n − 2}
with m, o ∈ {3, 4, 5}\{a}, m �= o,

(S2.6) . . . a n b 1 2 (n − 1) . . . ,

{
for a, b ∈ {3, . . . , n − 2}, a < b,

{a, b} /∈ {{3, 4}, {3, 5}, {4, 5}},
(S2.7) . . . 5 n 6 3 (n − 1) 4 1 2 . . . ,

(S2.8)

{
. . . 2 1 n a m (n − 1) . . . , for a ∈ {3, . . . , n − 2},
. . . 1 2 n a m (n − 1) . . . , for a ∈ {5, . . . , n − 2},

with m ∈ {3, 4}\{a}, 3 ∈ {a, m},

(S2.9) . . . (n − 1) a n 1 2 . . . , for a ∈ {3, . . . , n − 2},

(S2.10)

{
. . . 3 (n − 1) 1 n 4 . . . ,

. . . 3 (n − 1) 2 n 4 . . . ,

(S2.11)

{
. . . n 1 (n − 1) 2 . . . ,

. . . (n − 1) 1 n 2 . . . .

For n̄ = 6, n ≥ 8, these yield tours whose incidence vectors satisfy (26). Indeed, the
tours in (S2.1)–(S2.9) contain edge {1, 2} and in (S2.10)–(S2.11) all tours contain
the 2-edge 〈n − 1, 1, n〉 or 〈n − 1, 2, n〉.
Claim 1 Each underlined 2-edge eı̂

L has not appeared in previous tours.

Proof of Claim 1. Because n and n − 1 are adjacent in all previous tours, we only
have to show that a 2-edge eı̂

L used in step (S2.ĵ ) is not used in tours of steps (S2.l),
l < ĵ .
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• Tours in step (S2.2): the tours in (S2.1) contain the 2-edge 〈3, n, 4〉.
• Tours in step (S2.3): in the tours of (S2.1), (S2.2) the edges {3, n−1} and {4, n−1}

are forbidden.
• Tours in step (S2.4): in (S2.1)–(S2.3) node n is adjacent to two of the nodes 2,3,4.
• Tours in step (S2.5): in all tours in (S2.1)–(S2.4) the edges {1, n − 1}, {2, n − 1}

are forbidden.
• Tours in step (S2.6): in the tours in (S2.1)–(S2.5) only the 2-edges 〈2, n, 3〉,

〈2, n, 4〉,〈3, n, 4〉, 〈3, n, 5〉, 〈4, n, 5〉 are used.
• Tours in step (S2.7): in the tours in (S2.1)–(S2.6) at least one of the nodes 3,4 is

not adjacent to node n − 1.
• Tours in step (S2.8): in the tours in (S2.1)–(S2.7) node 1 is not adjacent to node

n, in (S2.1), (S2.4)–(S2.7) node 2 is not adjacent to node n and in (S2.2)–(S2.3)
the tours contain the 2-edges 〈2, n, 3〉, 〈2, n, 4〉.

• Tours in steps (S2.9), (S2.10): in the tours in (S2.1)–(S2.8) there are at least two
nodes between nodes n − 1, n.

• Tours in step (S2.11): the tours in step (S2.1)–(S2.9) contain edge {1, 2} and in
(S2.10) the two edges of (S2.11) do not appear. ��

It remains to calculate |C̃ n̄,3
dim |.

|C̃ n̄,3
dim | =

[(
n − 2

2

)
− 1

]
︸ ︷︷ ︸

(S2.1)+(S2.3)+(S2.5)+(S2.7)

+
[(

n − 2

2

)
− 2

]
︸ ︷︷ ︸

(S2.2)+(S2.4)+(S2.6)+(S2.8)

+ (n − 2)︸ ︷︷ ︸
(S2.9)+(S2.10)

+ 2︸︷︷︸
(S2.11)

= n2 − 4n + 3 = |Cn̄,3
dim |

With the introductory considerations Theorem 3.10 follows. ��
Proof of Theorem 3.12 Any tour must visit at least two nodes outside S consecutively
because |S| < n

2 . The two 2-edges entering a corresponding exterior segment of the
tour show the validity of the inequality. For S = {i, j} the inequality is facet defining
by Theorem 3.8, because

∑
ikl∈V 〈3〉, j /∈{k,l}

yikl +
∑

jkl∈V 〈3〉,i /∈{k,l}
y jkl ≥ 2

(2)⇐⇒
∑

ik∈V {2},k �= j

xik

︸ ︷︷ ︸
=2−xi j (by (1))

−
∑

ik j∈V 〈3〉
yik j +

∑
jk∈V {2},k �=i

x jk

︸ ︷︷ ︸
=2−xi j (by (1))

−
∑

ik j∈V 〈3〉
yik j ≥ 2

⇐⇒ xi j +
∑

ik j∈V 〈3〉
yik j ≤ 1.

Thus we may assume |S| ≥ 3 and n ≥ 7. For n = 7 we verified the statement
with a computer algebra system, so let n ≥ 8 and consider, w. l. o. g., T := {t1 =
1, t2 = 2, . . . , t|T | = |T |}, |T | > n

2 and S := V \T = {s1 = |T | + 1, . . . , s|S|−1 =
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n − 1, s|S| = n}. Again, we use the proof-framework of Theorem 2.3 with its nota-
tion and explain the differences only. An incidence vector of a tour satisfies (18) with
equality,

∑
i jk∈V 〈3〉 : i∈S, j,k∈V \S yi jk = 2, if deleting S from the tour decomposes the

tour into isolated nodes and exactly one path consisting of at least two nodes (like in
Fig. 7b), i.e., the tours have the structure

︷ ︸︸ ︷
ti1, ti2 , . . . , tim︸ ︷︷ ︸
block of T -nodes

of size m ≥ 2

s j1, s j2 , . . . , s jo︸ ︷︷ ︸
block of S-nodes

of size o ≥ 1

︷ ︸︸ ︷
tim+1 sk1 , sk2 , . . . , skp︸ ︷︷ ︸

block of S-nodes

of size p ≥ 1

. . .
︷ ︸︸ ︷
ti|T | sl1, sl2 , . . . , slq .︸ ︷︷ ︸

block of S-nodes

of size q ≥ 1

Set Cn̄,1
dim is constructed for n̄ = 5 in the same way as in the proof of Theorem 2.3.

Because nodes 1 to 5 belong to set T (n ≥ 8, |S| ≥ 3, |S| < n
2 ), the desired T -block-

structure is obtained automatically. In the inductive part the same is true for steps
(I1)–(I5) as long as k ∈ T .

It remains to adapt the steps for nodes k ∈ S. We distinguish the two cases k = s1
and k > s1. For k = s1 the three steps (I1)–(I3) can still be used and are then followed
by steps (SEC1.1)–(SEC1.3) below. In this, (SEC1.1) and (SEC1.3) replace (I4),
whereas (SEC1.2) deals with the 2-edges of (I5). They read

(SEC1.1) . . . a b s2 �k n 1 s1 . . . , for a, b ∈ T \{1}, a �= b
(the 2-edge 〈n, 1, s1〉 in not used as an ei

k),
(SEC1.2) . . . m o s2 �k n a b . . . , for a, b ∈ (T ∪ {s1}), s1 ∈ {a, b}, (a, b) �=

(1, s1), with m, o ∈ T \{1}, |{a, b, m, o}| = 4,
(SEC1.3) . . . a b s2 �k n s1 . . . , for a, b ∈ T, 1 ∈ {a, b}, a �= b.

Note that in comparison to (I5) the element 〈n, 1, s1〉 is lost in (SEC1.1), (SEC1.2).
For k = si , 2 ≤ i, k ≤ n − 2 the procedure is almost identical to (I1)–(I5) up to

the splitting of (I4) into the two steps (SECi.4) and (SECi.5) and the modifications
ensuring the desired structure. To this end, the position of all nodes s ∈ S that are not
mentioned explicitly is represented by S̄ with arbitrary internal order.

(SECi.1) . . . a si 1 si+1 �k n S̄ . . . , for a ∈ {2, . . . , si−1}
(the 2-edge 〈si , 1, si+1〉 is not used as an eı̂

k),
(SECi.2) . . . 1 si a si+1 �k n S̄ . . . , for a ∈ {2, . . . , si−1},
(SECi.3) . . . a si b si+1 �k n S̄ . . . , for a, b ∈ {2, . . . , si−1}, a < b,
(SECi.4) . . . a b si+1 �k n m S̄ si . . . , for a, b ∈ T, a �= b, with m ∈ T , |{a, b, m}|

= 3 (|S̄| ≥ 1 because s1 ∈ S̄),
(SECi.5) . . . S̄ a b si+1 �k n . . . , for a, b ∈ {1, . . . , si−1}, a �= b, {a, b} ∩ S �= ∅,

(SECi.6) . . . S̄ si+1 �k n a b . . . , for a, b ∈ {1, . . . , si }, a �= b, si ∈ {a, b}.
The tours form roots of (18). The proof that the underlined 2-edges have not been used
before is analogous to the proof of Claim 1 of the proof of Theorem 2.3 and skipped
here. The number of tours of the entire second group is |Cn̄,2

dim | − 1.

For the tours in Cn̄,3
dim we specify the position of S̄, apart from that the procedure is

identical to (L1)–(L8). Fix w1, w2, w3 ∈ T, |{w1, w2, w3}| = 3.
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(LSEC1) . . . a (n − 1) b S̄ w1 n w2 . . . , for a, b ∈ {1, . . . , n − 2}\{w1, w2}, a < b,
(the 2-edge 〈w1, n, w2〉 is not used as an ei

L ),

(LSEC2)

{
. . . m (n − 1) o S̄ w1 n w3 . . . ,

. . . m (n − 1) o S̄ w2 n w3 . . . ,
with m, o ∈ T \{w1, w2, w3}, m �= o,

(LSEC3) . . . w1 (n − 1) a S̄ w2 n w3 . . . , for a ∈ {1, . . . , n − 2}\{w1, w2, w3},
(LSEC4) . . . w2 (n − 1) a S̄ w1 n w3 . . . , for a ∈ {1, . . . , n − 2}\{w1, w2, w3},
(LSEC5) . . . a n b S̄ m (n − 1) o . . . , for a, b ∈ {1, . . . , n − 2}, a < b, |{a, b} ∩

{w1, w2, w3}| = 1, with m, o ∈ T , {m, o} � {w1, w2, w3}, |{a, b, m, o}|
= 4,

(LSEC6)

⎧⎨
⎩

. . . n w3 S̄ w1 (n − 1) w2 . . . ,

. . . n w2 S̄ w1 (n − 1) w3 . . . ,

. . . n w1 S̄ w2 (n − 1) w3 . . . ,

(LSEC7) . . . a n b S̄ m (n − 1) . . . , for a, b ∈ {1, . . . , n − 2}\{w1, w2, w3}, a < b,

with m ∈ {1, . . . , n − 2}, |{a, b, m}| = 3,
(LSEC8) . . . (n − 1) a n S̄ . . . , for a ∈ {1, . . . , n − 2}.

Again, the tours form roots of (18) and, as in Claim 2 of the proof of Theorem 2.3,
the underlined 2-edges have not been used before, so we obtain the same number of
tours |Cn̄,3

dim | in this third step.
In total the construction results in |Cn̄

dim | − 1 affinely independent tours, which
proves Theorem 3.12. ��

Proof of Lemma 3.13 We prove the statement by reduction from MAX-2-SAT. Given
a 2-SAT-formula with m variables and |C | clauses, the task is to find a truth assign-
ment for the variables maximizing the number of fulfilled clauses. Consider a 2-graph
G̃ = (Ṽ , Ẽ) with node set Ṽ = {s, t1, t2} ∪ {xi ,¬xi : i = 1, . . . , m}. The idea is
to include 2-edges in G̃ so that an optimal solution of (st1t2-cut) corresponds to an
optimal MAX-2-SAT solution where literals belonging to S are set to true and liter-
als belonging to T are set to false. To this end we encode a clause (a ∨ b), a, b ∈
{xi ,¬xi : i = 1, . . . , m} with a 2-edge 〈s,¬a,¬b〉 as the clause is false if and only if
both literals are set to false. These 2-edges are assigned costs of value one. In order to
ensure that, for each i ∈ {1, . . . , m}, exactly one literal of xi and ¬xi , is contained in
T we add the 2-edges 〈s, xi ,¬xi 〉, 〈s,¬xi , xi 〉 with costs |C | + 1. Similarly for set S
we introduce 2-edges 〈xi , t1, t2〉, 〈¬xi , t1, t2〉 with costs |C | + 1. All transformations
are possible in polynomial time, so it remains to show correctness.

Let S be a solution of (st1t2-cut). For each i ∈ {1, . . . , m} at least one of the 2-edges
〈s, xi ,¬xi 〉, 〈s,¬xi , xi 〉, 〈xi , t1, t2〉 and 〈¬xi , t1, t2〉 is contained in the cut and causes
costs of |C |+1. Because |{xi ,¬xi }∩S| = 1 if and only if exactly one of those 2-edges
is contained in the cut, any solution corresponding to a proper assignment of the vari-
ables (i.e., ∀ i ∈ {1, . . . , m} : |{xi ,¬xi }∩ S| = 1) has costs at most (|C |+1) ·m +|C |
whereas the cut value of any other solution is at least (|C | + 1) · (m + 1). There-
fore any optimal solution S∗ corresponds to a proper assignment with as few 2-edges
〈s,¬a,¬b〉 as possible contained in the cut. Its objective value (|C | + 1) · m + k
corresponds to a solution of MAX-2-SAT with all literals in S∗\{s} set to true and k
unsatisfied clauses.
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For the converse direction we observe that for any 2-SAT assignment we can con-
struct a solution of (st1t2-cut) with costs exactly (|C |+1)·m+k where k is the number
of unsatisfied clauses by setting S := {s} ∪ {xi : xi = true} ∪ {¬xi : xi = f alse}.
This completes the proof. ��
Proof of Theorem 3.14 We prove this statement by reduction from (st1t2-cut). Let
G = (V , E) be an undirected 2-graph with node set V , |V | = n, and E the set of
weighted undirected 2-edges with weights we ≥ 0 polynomially bounded in n for all
e ∈ E . The set V contains three marked nodes s, t1, t2 ∈ V . We construct a 2-graph
G ′ = (V ′, E ′) with node set

V ′ = V ∪ T ′ ∪ {s1, s2} ∪ (V × {1, 2, 3})

where T ′ is a set of artificial nodes to be introduced later and E ⊂ E ′. The inclusion
of additional 2-edges in E ′ will ensure that in any optimal solution (T ′ ∪ {t1, t2}) ⊂ T
and {s, s1, s2} ⊂ S. The challenge is to guarantee that all cost coefficients fulfill the
degree constraints (1) and the flow constraints (2). As in (6) these can be transformed
to ∑

i jk∈V ′〈3〉
wi jk = 1, for all j ∈ V ′, (27)

and ∑
ki j∈V ′〈3〉

wki j =
∑

i jk∈V ′〈3〉
wi jk, for all i j ∈ V ′{2}, (28)

using only variables, here weights, corresponding to V ′〈3〉. We denote by

d(v) :=
∑

uvw∈V ′〈3〉
wuvw

the node degree of v ∈ V ′.
The node set T ′ and the 2-edge set E ′ are constructed by putting

T ′ := {0T , 1T , . . . , (18n − 1)T }

and by successively adding 2-edges (and weights) to E ′. In this construction, some
2-edges may be added more than once. In this case their weights are summed up.

(S1) In order to enforce T ′ ⊂ T , add 2-edges

ET ′ :=
⋃

k=0,6,...,18n−6

{
〈a, b, c〉 : a, b, c ∈ {(k mod 18n)T , . . . ,

(k + 11 mod 18n)T }, |{a, b, c}| = 3

}
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with weights we = 4
∑

f ∈E w f + 1 =: D for all e ∈ ET ′ . Note, each k adds
a complete 2-graph on the corresponding two successive blocks of 6 nodes,
thereby forming a tightly linked giant cycle on these blocks of T ′. This being
done, all nodes in T ′ have a node degree 100D.

(S2) Let 〈i, j, k〉 ∈ E, i < k, w〈i, j,k〉 > 0. In order to ensure (28) for these
original edges we complete them to a 2-cycle C0 by inserting the 2-edges
〈 j, k, s1〉, 〈k, s1, s2〉, 〈s1, s2, 0T 〉, 〈s2, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . . , 〈(18n −3)T ,

(18n −2)T , (18n −1)T 〉, 〈(18n −2)T , (18n −1)T , i〉, 〈(18n −1)T , i, j〉, each
with weight w〈i, j,k〉. In order to ensure the correct dependence of the objective
value on the assignment of i, j, k to S or T two additional 2-cycles are needed:
1. Add C1 = {〈i, j, s1〉, 〈 j, s1, s2〉, 〈s1, s2, i〉, 〈s2, i, j〉}, each with weight

w〈i, j,k〉
2

2. and C2 = {〈 j, k, 0T 〉, 〈k, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . . , 〈(18n − 3)T , (18n −
2)T , (18n − 1)T 〉, 〈(18n − 2)T , (18n − 1)T , j〉, 〈(18n − 1)T , j, k〉}, each
with weight

w〈i, j,k〉
2 .

Claim (S2).1 In any assignment of the nodes of V ′ to S and T with T ′ ⊂ T, s1,

s2 ∈ S the weights of the artificial 2-edges of (S2) in the cut sum up to 3w〈i, j,k〉.
Proof of Claim (S2).1. Note that 〈s2, 0T , 1T 〉 ∈ C0 contributes w〈i, j,k〉 to each
cut, so it remains to consider the other 2-edges.
• i, j, k ∈ S : The 2-edges 〈i, (18n − 1)T , (18n − 2)T 〉 ∈ C0 and 〈 j, (18n −

1)T , (18n−2)T 〉, 〈k, 0T , 1T 〉 ∈ C2 have weight w〈i, j,k〉+ w〈i, j,k〉
2 + w〈i, j,k〉

2 =
2w〈i, j,k〉.

• i, j ∈ S, k ∈ T : 〈i, (18n − 1)T , (18n − 2)T 〉 ∈ C0 and 〈 j, (18n −
1)T , (18n − 2)T 〉, 〈 j, k, 0T 〉 ∈ C2 have weight w〈i, j,k〉 + w〈i, j,k〉

2 + w〈i, j,k〉
2= 2w〈i, j,k〉.

• i, k ∈ S, j ∈ T : 〈i, (18n − 1)T , (18n − 2)T 〉 ∈ C0, 〈k, j, (18n −
1)T 〉, 〈k, 0T , 1T 〉 ∈ C2 have weight w〈i, j,k〉 + w〈i, j,k〉

2 + w〈i, j,k〉
2 = 2w〈i, j,k〉.

• i ∈ S, j, k ∈ T : 〈i, (18n − 1)T , (18n − 2)T 〉, 〈s1, k, j〉 ∈ C0 have weight
w〈i, j,k〉 + w〈i, j,k〉 = 2w〈i, j,k〉.

• j, k ∈ S, i ∈ T : 〈 j, i, (18n − 1)T 〉 ∈ C0 and 〈 j, (18n − 1)T , (18n −
2)T 〉, 〈k, 0T , 1T 〉 ∈ C2 have weight w〈i, j,k〉 + w〈i, j,k〉

2 + w〈i, j,k〉
2 = 2w〈i, j,k〉.

• k ∈ S, i, j ∈ T : 〈s2, i, j〉, 〈s1, j, i〉 ∈ C1 and 〈k, j, (18n − 1)T 〉, 〈k, 0T ,

1T 〉 ∈ C2 have weight
w〈i, j,k〉

2 + w〈i, j,k〉
2 + w〈i, j,k〉

2 + w〈i, j,k〉
2 = 2w〈i, j,k〉.

• j ∈ S, i, k ∈ T : 〈 j, i, (18n − 1)T 〉 ∈ C0 and 〈 j, (18n − 1)T , (18n
− 2)T 〉, 〈 j, k, 0T 〉 ∈ C2 have weight w〈i, j,k〉 + w〈i, j,k〉

2 + w〈i, j,k〉
2 = 2w〈i, j,k〉.

• i, j, k ∈ T : 〈s1, k, j〉 ∈ C0 and 〈i, j, s1〉, 〈s2, i, j〉 ∈ C1 have weight
w〈i, j,k〉 + w〈i, j,k〉

2 + w〈i, j,k〉
2 = 2w〈i, j,k〉. ��

(S3) t1, t2 ∈ T, s, s1, s2 ∈ S is enforced for optimal solutions by adding the 2-edges
of the following 2-cycles, each 2-edge with weight D,
• 〈t1, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . . , 〈(18n − 2)T , (18n − 1)T , t1〉, 〈(18n − 1)T ,

t1, 0T 〉,
• 〈t2, 0T , 1T 〉, 〈0T , 1T , 2T 〉, . . ., 〈(18n − 2)T , (18n − 1)T , t2〉, 〈(18n − 1)T ,

t2, 0T 〉,
• 2-triangles for {s, t1, s1}, i.e., 〈s, t1, s1〉, 〈t1, s1, s〉, 〈s1, s, t1〉, and {s, t2, s2},
• a 2-triangle for each {s1, s2, v} with v ∈ V ′\{s1, s2}.

123



246 A. Fischer, C. Helmberg

(S4) It remains to fulfill condition (27), i.e., all node degrees need to have the same
value K , so that dividing all weights by K yields (27) in the end. For this
purpose, the artificial nodes V × {1, 2, 3} were introduced. These will allow
to compensate differences in degree via further 2-cycles. Currently, the node
degrees read

Node Current node degree
s < D︸︷︷︸

E and (S2)

+ 3D︸︷︷︸
(S3)

t1, t2 < D︸︷︷︸
E and (S2)

+ 3D︸︷︷︸
(S3)

v ∈ V \{s, t1, t2} < D︸︷︷︸
E and (S2)

+ D︸︷︷︸
(S3)

v ∈ (V × {1, 2, 3}) = D︸︷︷︸
(S3)

s1, s2 = 3
2 ·

∑
f ∈E

w f

︸ ︷︷ ︸
(S2)

+ D + 22 · n · D︸ ︷︷ ︸
(S3)

v ∈ T ′ = 100D︸ ︷︷ ︸
(S1)

+ 3
2 ·

∑
f ∈E

w f

︸ ︷︷ ︸
(S2)

+ 2D + D︸ ︷︷ ︸
(S3)

For n ≥ 5 the node degrees of s1, s2 which we denote by K = 3
2 ·∑ f ∈E w f +

D +22 ·n · D are the highest ones. We increase the degree of v ∈ V by 2-cycles
of length four with 〈v, (v, 1), (v, 2)〉, 〈(v, 1), (v, 2), (v, 3)〉, 〈(v, 2), (v, 3), v〉,
〈(v, 3), v, (v, 1)〉. Then the degree of nodes in (V × {1, 2, 3}) can be filled up
by 2-triangles for {(v, 1), (v, 2), (v, 3)}, v ∈ V . In the end, a 2-cycle over all
elements in T ′ with weight K −(100D + 3

2 ·∑
f ∈V

〈3〉 w f +2D + D) completes

the construction of G ′.

It remains to show correctness. Recall, a 2-edge 〈i, j, k〉 ∈ V ′〈3〉 contributes its
weight, if ((i ∈ S ∧ j, k ∈ T ) ∨ (k ∈ S ∧ i, j ∈ T )).

First observe that for any feasible solution S ⊂ V ′ with 3 ≤ |S| < |V ′|/2, (T ′ ∪
{t1, t2}) ⊆ T, {s, s1, s2} ⊆ S, (V × {1, 2, 3}) ⊆ S and V \{s, t1, t2} partitioned arbi-
trarily, the objective value is less than or equal to 4 · ∑ f ∈E w f . Indeed, a constant
offset of 3 · ∑

f ∈V
〈3〉 w f is caused by (S2) as proven in Claim (S2).1, all other arti-

ficial 2-edges do not contribute to the cut. For each node v ∈ V the three nodes
{v} × {1, 2, 3} may jointly belong either to S or, if v ∈ T , to T . In both cases no costs
arise. For solutions observing this structure the cut value is minimal for an optimal
(st1t2-cut) solution on V . Let zs,t1,t2 be the optimal value of (st1t2-cut) and denote by
z = zs,t1,t2 + 3 · ∑ f ∈E w f < D the value of a corresponding solution constructed
within G ′. We need to show that all solutions having not the described structure have
higher objective value.
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• T ′ ⊆ T : Consider a solution having a nonempty subset Ts ⊂ T ′ with Ts ⊂ S. Then
there is a k ∈ {0, 6, . . . , 18n −6} so that some of the nodes of Tk := {k, . . . , k +5}
lie in S, i.e., Tk ∩S �= ∅. If |Tk ∩S| ≤ 4 then costs of at least D > 4·∑ f ∈E w f arise
and this cannot be optimal. So consider the case |Tk ∩ S| > 4. As Tk is completely
2-edge connected to T(k+6 mod 18n) we may assume |T(k+6 mod 18n) ∩ S| > 4 by
the same argument. In the end we get |Tk ∩ S| > 4 for all k ∈ {0, 6, . . . , 18n − 6}
which contradicts |S| <

|V ′|
2 . So we have T ′ ⊂ T for any feasible solution with

objective value less than D.
• s1, s2 ∈ S : Assume s1, s2 ∈ T then costs of at least D arise because s1, s2 are

connected via triangles to all other nodes by (S3) and there has to be at least one
node v ∈ V ′ with v ∈ S. So, w. l. o. g., the case s1 ∈ S, s2 ∈ T remains. But this
entails costs of at least D (and much higher) as s1, s2 are connected via triangles
to all nodes v ∈ T ′. This proves s1, s2 ∈ S.

• t1, t2 ∈ T : Assume, w. l. o. g., t1 ∈ S. Because 0T , 1T ∈ T , the 2-edge 〈t1, 0T , 1T 〉
produces costs of D by (S3) and this cannot be optimal.

• s ∈ S : Assume s ∈ T . Because s1 ∈ S, t1 ∈ T , the 2-edge 〈s1, s, t1〉 produces
costs of D by (S3) and this cannot be optimal.

Thus, any solution with objective value at most z has the desired structure and z is
therefore the optimal value. Conversely, given an optimal solution with value z∗ for
G ′ the optimal value of (st1t2-cut) is z∗

s,t1,t2 = z∗ − 3 ·∑ f ∈E w f . ��
Proof of Theorem 3.15 Validity holds, because for tours that visit two nodes of V \S
consecutively the first sum yields at least 2 while all other tours use one of the 2-edges
in the second sum when visiting t̄ . Theorem 3.2 proves the statement for |S| = n − 3,
because for V \S = {i, j, t̄ = k}
∑
m∈S

[
ymi j + ymji + ymik + ymki + ymjk + ymk j

]
+ 2

∑
mko∈V 〈3〉 : m,o∈S

ymko

︸ ︷︷ ︸
2(1−∑m∈S [ymki +ymk j ]−yik j ) by (6)

≥ 2

⇐⇒
∑
m∈S

[ymi j + ymji ]
︸ ︷︷ ︸
2xi j −y jik−yi jk by (1)

+
∑
m∈S

[ymik − ymki ]
︸ ︷︷ ︸

xik−y jik−xik+yik j

+
∑
m∈S

[ymjk − ymk j ]
︸ ︷︷ ︸

−yi jk+yik j

−2yik j ≥ 0

⇐⇒ 2xi j − 2y jik − 2yi jk ≥ 0 ⇐⇒ xi j ≥ yki j + yi jk .

We first consider the case n
2 ≤ |S| ≤ n − 5 and defer the case |S| = n − 4 to the

end of the proof. Set, w. l. o. g., S = {s1 = n − |S| + 1, . . . , s|S|−1 = n − 1, s|S| =
n}, V \S = T = {1 = t1, 2 = t2, . . . , t|T |−1, t|T | = t̄}. Deleting S in a tour corre-
sponding to a root of inequality (19) decomposes the tour into isolated nodes in T
and at most one path in T that must contain t̄ . We use the same proof structure and
notation as in the proofs of theorems 2.3 and 3.12. In particular, |T | ≥ 5 so we may
use the same n̄-permutation block with n̄ = 5. As long as k ∈ T in the iterative steps,
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(I1)–(I5) may be used without modification. The steps have to be adapted for k ∈ S,
starting with a specific ordering for k = s1 which is then followed by the usual iterative
scheme for k = si , 2 ≤ i < |S| − 1. The case k = s1 proceeds along (I1)–(I3) and
(SEC1.1)–(SEC1.3) but the positioning of node t̄ requires additional care.

(SUB1.1) . . . a s1 1 s2 �k n . . . , for a ∈ T \{1},
(the 2-edge 〈s1, 1, s2〉 is not used as an ei

k),
(SUB1.2) . . . 1 s1 a s2 �k n . . . , for a ∈ T \{1, t̄}

(the missing 〈s1, t̄, s2〉 is compensated later in (SUBt̄1)),
(SUB1.3) . . . a s1 b s2 �k n . . . , for a, b ∈ T \{1}, a > b (this ensures t̄ in the T -

path),
(SUB1.4) . . . a b s2 �k n 1 s1 . . . , for a, b ∈ T \{1}, a �= b

(the 2-edge 〈n, 1, s1〉 is not used as an ei
k and is the one 2-edge that is

lost),
(SUB1.5) . . . m o s2 �k n a s1 . . . , for a ∈ T \{1, t̄} with m, o ∈ T \{1}, |{a, m, o}|

= 3
(the missing 〈n, t̄, s1〉 is compensated later in (SUBt̄1)),

(SUB1.6) . . . m o s2 �k n s1 a . . . , for a ∈ T with m, o ∈ T \{1}, |{a, m, o}| = 3,
(SUB1.7) . . . a b s2 �k n s1 . . . , for a, b ∈ T, 1 ∈ {a, b}, a �= b.

For k = si , 2 ≤ i < |S| − 1 the structure follows (SECi.1)–(SECi.6) of the proof of
Theorem 3.12 with the same S̄ defined there:

(SUBi.1) . . . a si 1 si+1 �k n S̄ . . . , for a ∈ {2, . . . , si−1},
(the 2-edge 〈si , 1, si+1〉 is not used as an eı̂

k),
(SUBi.2) . . . 1 si a si+1 �k n S̄ . . . , for a ∈ {2, . . . , si−1}\{t̄}

(the missing 〈si , t̄, si+1〉 is compensated later in (SUBt̄1)),

(SUBi.3)

{
. . . a si b si+1 �k n S̄ . . . , for a, b ∈ {2, . . . , si−1}\{t̄}, a < b,

. . . t̄ si a si+1 �k n S̄ . . . , for a ∈ {2, . . . , si−1}\{t̄},
(SUBi.4) . . . a b si+1 �k n m S̄ si . . . , for a, b ∈ T, a �= b, with m ∈ T \{t̄}, |{a,

b, m}| = 3,

(SUBi.5) . . . S̄a b si+1 �k n . . . , for a, b ∈ {1, . . . , si−1}\{t̄}, a �= b, {a, b}∩S �= ∅
(the missing 〈s j , t̄, si+1〉, 1 ≤ j < i , are compensated later in (SUBt̄1)
and 〈t̄, s j , si+1〉, 1 ≤ j < i , are compensated in (SUBi.7)),

(SUBi.6) . . . m S̄ si+1 �k n a b . . . , for a, b ∈ {1, . . . , si }, a �= t̄, a �= b, si ∈ {a, b},
with m ∈ T \{t̄}, |{a, b, m}| = 3
(the missing 〈n, t̄, si 〉, 1 ≤ j < i , are compensated later in (SUBt̄1)),

(SUBi.7) . . . t̄ a si+1 �k n S̄ . . . , for a ∈ {s1, . . . , si−1}.
For the nodes n − 1, n we have specific steps that are organized close to (L1)–(L8)
((L5) and (L7) are subsumed in (SUBL5) and so (L8) corresponds to (SUBL7)). Fix
w1, w2, w3 ∈ S\{n − 1, n}, |{w1, w2, w3}| = 3.

(SUBL1)

⎧⎨
⎩

. . . a (n − 1) b S̄ w1 n w2 . . . , for a, b ∈ T, a > b,

. . . a (n − 1) b S̄ w1 n w2 . . . , for a, b ∈ S\{w1, w2, n − 1, n}, a > b,

. . . a (n − 1) b S̄ w1 n w2 . . . , for a ∈ T, b ∈ S\{w1, w2, n − 1, n}
(the 2-edge 〈w1, n, w2〉 is not used as an ei

L ),
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(SUBL2)

{
. . . t1 (n − 1) t2 S̄ w1 n w3 . . . ,

. . . t1 (n − 1) t2 S̄ w2 n w3 . . . ,

(SUBL3) . . . a (n − 1) w1 w2 n w3 S̄ . . . , for a ∈ {1, . . . , n − 2}\{w1, w2, w3},
(SUBL4) . . . a (n − 1) w2 w1 n w3 S̄ . . . , for a ∈ {1, . . . , n − 2}\{w1, w2, w3},

(SUBL5)

⎧⎪⎪⎨
⎪⎪⎩

. . . a n b S̄ (n − 1) . . . , for a, b ∈ T, a > b,

. . . a n b S̄ (n − 1) . . . , for a ∈ T, b ∈ S\{n − 1, n},

. . . a n b S̄ (n − 1) . . . , for a, b ∈ S\{n − 1, n},
{a, b} �⊂ {w1, w2, w3}, a > b,

(SUBL6)

⎧⎨
⎩

. . . n w3 w1 (n − 1) w2 S̄ . . . ,

. . . n w2 w1 (n − 1) w3 S̄ . . . ,

. . . n w1 w2 (n − 1) w3 S̄ . . . ,

(SUBL7) . . . (n − 1) a n S̄ . . . , for a ∈ {1, . . . , n − 2}\{t̄}
(the missing 〈n − 1, t̄, n〉 is compensated later in (SUBt̄1)).

The only 2-edges missing in these lists in comparison to the proof of Theorem 3.12
are the 2-edges 〈si , t̄, s j 〉 for 1 ≤ i < j ≤ |S|, i.e., those that require tours with no
two consecutive T -nodes in order to form roots of (19). As none of these 2-edges
have appeared in the tours above, the construction of this case is completed by the
following last step.

(SUBt̄1) si t̄ s j ωi j for 1 ≤ i < j ≤ |S| where ωi j denotes an appropriately

completed alternating sequence of the remaining nodes in T \{t̄} and in
S\{si , s j }.

The construction above generates |Cn̄
dim |− 1 affinely independent tours, that are roots

of (19), and proves the statement for the case n
2 ≤ |S| ≤ n − 5.

For the remaining case |S| = n − 4 we verified the case n = 8 by means of a com-
puter algebra system and consider n ≥ 9 in the following. For |T | = 4 the approach
with an initial permutation block having n̄ = 5 can still be applied, but the block has to
be set up with care so as to ensure that all generated tours are indeed roots of (19). In
particular, using the same notation as before, the permutations having s1 in the middle
as well as the permutations (t̄, s1, ti , t j , tk) and (ti , t j , tk, s1, t̄) with i, j, k ∈ {1, 2, 3},
|{i, j, k}| = 3 may not be used. This reduces the rank by 3 to 51. In exchange, the
iterative process may start with (SUBi.1)–(SUBi.7) immediately, because the switch
to the first element of S is already covered by the initial permutation block. As before
the construction is completed by (SUBL1)–(SUBL7) and (SUBt̄1) without further
modifications. In counting the number of tours, we may use the formulas of Claim 3
of the proof of Theorem 2.3 if we reassign the 2-edges of (SUBt̄1) to the correspond-
ing steps where they were omitted. The latter is possible for all except the 2-edges
〈s1, t̄, s2〉 and 〈s1, t̄, n〉 omitted in the missing initial iterative step for s1, so we assign
them to rn̄ . All in all we obtain for n̄ = 5

1
2 n3 − 2n2 + 1

2 n + 2 + (2 + 51) − 1
2 53 + 3

2 5 = 1
2 n3 − 2n2 + 1

2 n = f (n)

affinely independent tours, which completes the proof. ��
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Proof of Theorem 3.20 We first show validity. Put E+
1 := {ūvw̄, ūwv̄, v̄uw̄}, E+

2 :=
{ūv̄w̄, ūw̄v̄, v̄ūw̄}, E+

3 := {uv̄w̄, uw̄v̄, vūw̄, vw̄ū, wūv̄, wv̄ū}, E+ := E+
1 ∪ E+

2 ∪
E+

3 . For tours not using the 2-edges of E+, validity follows from observations 3.17
and 3.18 (Observation 3.19). In discussing the other possibilities we will only con-
sider relevant configurations, i.e., in the given tour segments the number of elements
appearing in (23) cannot be increased by simple exchange operations.

If a tour C ∈ Cn contains a 2-edge of E+
1 , w. l. o. g. ūvw̄, this excludes all 2-edges of

E+
2 . A tour with ūvw̄ ∈ C can include at most one 2-edge of E+

3 . Consider, w. l. o. g.,
the case ūv̄w ∈ C , then the relevant configurations are . . . u [kuw] w v̄ ū v w̄ . . . and
. . . w v̄ ū v w̄ u . . . where the notation [.] marks potential replacements for the direct
edge between predecessor and successor. Both contain at most four elements of (23)
(including v̄ūv and vw̄u), so we may assume E+ ∩ C = {ūvw̄}. In a relevant tour
of this type v̄ has to be next to, w. l. o. g., ū in order to keep the element v̄ūv (in all
other configurations v̄ does not contribute or by E+ ∩ C = {ūvw̄} tours containing
the 2-edge uv̄w can have at most 3 elements in (23)), so the only relevant cases are
. . . v̄ ū v w̄ [kw̄w] w [kwu] u . . ., . . . u v̄ ū v w̄ [kw̄w] w . . ., and . . . w [kwu] u v̄ ū v w̄ . . .,
each of them having at most 4 elements in (23). In the following we may assume
C ∩ E+

1 = ∅.
Next suppose C ∩ E+

2 �= ∅, then, w. l. o. g., {ūv̄w̄} = C ∩ E+
2 . In this case

only the elements wūv̄, v̄w̄u of E+
3 may be in C , as well. If both are active, then,

w. l. o. g., . . . w ū v̄ w̄ u [kuv] v . . . is the only relevant configuration giving a count
of at most 4. Suppose next, w. l. o. g., only v̄w̄u ∈ C , then the relevant config-
urations are, w. l. o. g., . . . ū v̄ w̄ u [kuw] w [kwv] v . . ., and . . . v ū v̄ w̄ u [kuw] w . . .,
both yielding at most 4 elements of (23). So consider C ∩ E+ = {ūv̄w̄}. If v

is next to, w. l. o. g., ū then in view of the previous case the remaining relevant
cases are, w. l. o. g., . . . u [kuv] v ū v̄ w̄ [kw̄w] w . . . and . . . w [kwu] u [kuv] v ū v̄ w̄ . . ..
If v is neither next to ū nor to w̄, the remaining relevant cases are, w. l. o. g.,
. . . ū v̄ w̄ [kw̄w] w [kwv] v [kvu] u . . . and . . . u [kuū] ū v̄ w̄ [kw̄w] w [kwv] v . . .. Each of
these induces at most 4 elements of (23).

Finally, suppose C ∩ (E+
1 ∪ E+

2 ) = ∅ and assume, w. l. o. g., ūv̄w ∈ C . All other
elements of E+

3 are then excluded from C . By C ∩ E+
2 = ∅, w̄ is not next to ū, so first

suppose v is next to ū, then the relevant configuration is . . . u [kuv] v ū v̄ w [kww̄] w̄ . . .

(w̄ v ū ∈ E+
1 may not be used). If u is next to ū we have the relevant config-

urations . . . v w̄ u [kuū] ū v̄ w . . . and . . . v [kvu] u [kuū] ū v̄ w [kww̄] w̄ . . .. In the last
case, none of these nodes is next to ū, so the remaining relevant configurations are
. . . ū v̄ w [kwv] v w̄ u . . . as well as . . . ū v̄ w [kwu] u w̄ v . . .. In all cases the number of
elements of (23) is at most 4, which completes the proof of validity.

The proof that (23) is facet defining for n ≥ 13 follows the structure and uses the
notation of Theorem 2.3. We set, w. l. o. g., u = 1, v = 2, w = 3, ū = 4, v̄ = 5, w̄ = 6
and use an n̄-permutation block with roots of (23) for n̄ = 9. This results in r9 = 349,
so due to the comb-structure the rank is reduced by one in comparison to Theorem 2.3.
The iterative steps creating the set Cn̄,2

dim need to be adapted so that the subsequences
can indeed be completed to roots of (23), i.e., we will show afterwards that there are
realizations containing exactly four of the edges or 2-edges of inequality (23). Up to
the exchange 1 ↔ 7 and the generation sequence, the steps cover exactly the same
2-edges as (I1)–(I5) and read
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(IC -1) . . . a k 7 (k + 1)�k n . . . , for a ∈ {8, . . . , k − 1}
(the 2-edge 〈k, 7, k + 1〉 is not used as an ei

k),
(IC -2) . . . 7 k a (k + 1) �k n . . . , for a ∈ {8, . . . , k − 1},
(IC -3) . . . a k b (k + 1)�k n . . . , for a, b ∈ {8, . . . , k − 1}, a < b,
(IC -4) . . . m k a b (k + 1)�k n . . . , for a, b∈{7, . . . , k −1} with m ∈{7, . . . , k −1},

|{a, b, m}| = 3,
(IC -5) . . . a k b (k + 1)�k n . . . , for a ∈ {1, . . . 6}, b ∈ {7, . . . , k − 1},
(IC -6) . . . m o (k + 1)�k n S a k b S′ . . . , for a, b ∈ {1, . . . , 6}, a < b, with m, o ∈

{7, . . . , k −1}, m �= o, S, S′ ⊂ {1, . . . , 6}\{a, b}, S �= ∅, S′ �= ∅, S ∩ S′ = ∅,
|S ∪ S′ ∪ {a, b}| = 6,

(IC -7) . . . k a (k + 1) �k n . . . , for a ∈ {1, . . . 6},
(IC -8) . . . a b (k + 1) �k n m o . . . , for a, b ∈ {1, . . . , k − 1}, {a, b} ∩ {1, . . . , 6} �=

∅, with m, o ∈ {1, . . . , k − 1}, |{a, b, m, o}| = 4,
(IC -9) . . . (k + 1)�k n a b . . . , for a, b ∈ {1, . . . , k}, a �= b, k ∈ {a, b}.

Because n̄ = 9 and n ≥ 13 we have |{7, . . . , k − 1}| ≥ 3, so the constructions of
steps (IC -1)–(IC -9) are possible for all n̄ + 1 ≤ k ≤ n − 2. The rules ensure that each
underlined 2-edge has not appeared in any tour constructed earlier. It remains to show
that tours can be chosen so as to yield roots of (23).

(Case 1) If k is not supposed to be adjacent to any node of {1, . . . , 6}, we may
place the subsequence 4 1 2 3 6 5 (= ū u v w w̄ v̄) anywhere in the free
area. This applies to tours in steps (IC -1)–(IC -4), and step (IC -9) with
a, b ∈ {7, . . . , k}.

(Case 2) If only one node q ∈ {1, . . . , 6} is supposed to be adjacent to a node
p ∈ {7, . . . , k} and there are no further requirements on the continuation
of the tour in the region beyond q, the nodes of {1, . . . , 6} can be arranged
consecutively with q in first or last position (see the marked node below).

Thus, there are appropriate tours for step (IC -5), step (IC -8) with a ∈
{1, . . . , 6}, b ∈ {7, . . . , k − 1} and in step (IC -9) with a = k, b ∈
{1, . . . , 6}.

(Case 3) In step (IC -6) node k is required to be adjacent to at least two nodes
of {1, . . . , 6} on either side. This is possible for any 2-edge akb with
a, b ∈ {1, . . . , 6} as illustrated by the marked 2-edge below.

(Case 4) If a node q ∈ {1, . . . , 6} is supposed to lie between two nodes in
V \{1, . . . , 6} but on one side the continuation of the tour is free, the
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remaining nodes {1, . . . , 6}\{q} can be arranged on the free side as fol-
lows (node q is marked).

Thus, appropriate tours are available in step (IC -7), in step (IC -8) with
a ∈ {7, . . . , k −1}, b ∈ {1, . . . , 6} and in step (IC -9) with a ∈ {1, . . . , 6},
b = k.

(Case 5) Finally, in step (IC -8) with a, b ∈ {1, . . . , 6}, it is required to provide
the ordered pair ab with one side being free for any continuation. For
each required pair the graphs below depict an appropriate ordering (ab is
marked), that allows to arrange the nodes {1, . . . , 6}\{a, b} in an appro-
priate sequence on this free side.

Next, using the same arguments, the steps (L1)–(L8) are adapted so that for fixed
w1, w2, w3 ∈ {7, . . . , n − 2}, |{w1, w2, w3}| = 3, all required tours of Cn̄,3

dim can be
realized as roots of (23); in some cases the distance between nodes n − 1 and n needs
to be increased. The possible situations are similar to the ones for steps (IC -1)–(IC -9).

• Tours in (L1): There are three cases.
– a, b ∈ {7, . . . , n −2}: We can place the subsequence 4 1 2 3 6 5 right to w2, see

(Case 1).
– a ∈ {1, . . . , 6}, b ∈ {7, . . . , n − 2}: The continuation of the left side of a is

free and can be done according to the sequences in (Case 2).
– a, b ∈ {1, . . . , 6}: The situation equals (Case 3). With adapted tours

. . . S a (n − 1) b S′w1 n w2 . . . , S, S′ ⊂ {1, . . . , 6}\{a, b}, |S| = 1, |S′| =
3, S ∩ S′ = ∅, S ∪ S′ ∪ {a, b} = {1, . . . , 6} according to (Case 3) we get tours
that are roots of (23) and there are still at least two nodes between n − 1 and n.

• Tours in (L2): Using m, o ∈ {7, . . . , n − 2}\{w1, w2, w3}, m �= o, we place the
subsequence 4 1 2 3 6 5 right to w3.

• Tours in (L3), (L4), (L5): There are two cases. Note, in (L5) b /∈ {1, . . . , 6} by
a < b and definition of w1, w2, w3.
– a ∈ {7, . . . , n − 2}: We can place the subsequence 4 1 2 3 6 5 left to a.
– a ∈ {1, . . . , 6}: The continuation of the tour on the left side of a is free and so

we can use one of the subsequences presented in (Case 2).
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• Tours in (L6): We can place the subsequence 4 1 2 3 6 5 to the left of n, see (Case 1).
• Tours in (L7): There are three cases.

– a, b ∈ {7, . . . , n − 2}: We set m = w1 and place the subsequence 4 1 2 3 6 5 to
the right of n − 1.

– a ∈ {1, . . . , 6}, b ∈ {7, . . . , n − 2}: We set m = w1 and continue the tour on
the left side of a according to the sequences presented in (Case 2).

– a, b∈{1,. . ., 6}: With adapted tours . . . S a n b S′(n−1) . . ., S, S′ ⊂{1,. . ., 6}\
{a, b}, |S| = 1, |S′| = 3, S ∩ S′ = ∅, S ∪ S′ ∪ {a, b} = {1, . . . , 6} according
to (Case 3) we get tours that are roots of (23) and there are still at least two
nodes between n − 1 and n.

• Tours in (L8): There are two cases.
– a ∈ {7, . . . , n − 2}: We can place the subsequence 4 1 2 3 6 5 to the right of n.
– a ∈ {1, . . . , 6}: The continuation on both sides of the tour is free and so we can

use one of the subsequences presented in (Case 2) on an arbitrary side.

In summary, we created exactly one tour less than in the proof of Theorem 2.3, hence
Theorem 3.20 follows. ��
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