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Abstract We consider the facility location problem where each facility can serve at
most U clients. We analyze a local search algorithm for this problem which uses only
the operations of add, delete and swap and prove that any locally optimum solution
is no more than 3 times the global optimum. This improves on a result of Chudak and
Williamson who proved an approximation ratio of 3 + 2

√
2 for the same algorithm.

We also provide an example which shows that any local search algorithm which uses
only these three operations cannot achieve an approximation guarantee better than 3.
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1 Introduction

In a facility location problem we are given a set of clients C and facility locations F .
Opening a facility at location i ∈ F costs fi (the facility cost). The cost of servicing a
client j by a facility i is given by ci, j (the service cost) and these costs form a metric
i.e. for facilities i, i ′ and clients j, j ′, ci ′, j ′ ≤ ci ′, j + ci, j + ci, j ′ . The objective is to
determine which locations to open facilities in, so that the total cost for opening the
facilities and for serving all the clients is minimized. Note that in this setting each
client would be served by the open facility which offers the smallest service cost.

When the number of clients that a facility can serve is bounded, we have a capac-
itated facility location problem. In this paper we assume that these capacities are the
same, U , for all facilities. For this problem of uniform capacities the first approxi-
mation algorithm was due to Korupolu et al. [4] who analyzed a local search algo-
rithm and proved that any locally optimum solution has cost no more than 8 times
the facility cost plus 5 times the service cost of an (global) optimum solution. In this
paper we refer to such a guarantee as a (8,5)-approximation; note that this is differ-
ent from the bi-criterion guarantees for which this notation is typically used. Chudak
and Williamson [3] strengthened the analysis in [4] to obtain a (6,5)-approximation.
Charikar and Guha [2] gave a general technique for scaling facility costs that improves
the approximation guarantee to 3+ 2

√
2.

Given the set of open facilities, the best way of serving the clients, can be deter-
mined by solving an assignment problem. Thus any solution is completely determined
by the set of open facilities. The local search procedure proposed by Korupolu et al.
starts with an arbitrary set of open facilities and then updates this set, using one of
the operations add, delete, swap, whenever that operation reduces the total cost
of the solution. We show that a solution which is locally optimum with respect to this
same set of operations is a (3,3)-approximation. We then show that our analysis of this
local search algorithm is best possible by demonstrating an instance where the locally
optimum solution is 3 times the (global) optimum solution.

When facilities have different capacities, the best result known is a (6,5)-approxi-
mation by Zhang et al. [8]. The local search in this case relies on a multi-exchange
operation, in which, loosely speaking, a subset of facilities from the current solution is
exchanged with a subset not in the solution. This result improves on a (8,7)-approxi-
mation by Mahdian and Pal [5] and a (9,5) approximation by Pal et al. [7].

For capacitated facility location, the only algorithms known are based on local
search. One version of capacitated facility location arises when we are allowed to
make multiple copies of the facilities. Thus if facility i has capacity Ui and opening
cost fi , then to serve k > Ui clients by facility i we need to open �k/Ui� copies of
i and incur an opening cost fi�k/Ui�. This version is usually referred to as “facil-
ity location with soft capacities” and the best known algorithm for this problem is a
2-approximation [6].
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Facility location with uniform capacities 529

All earlier work for capacitated facility location (uniform or non-uniform) reroutes
all clients in a swap operation from the facility which is closing to one of the facilities
being opened. This however can be quite expensive and cannot lead to the tight bounds
that we achieve in this paper. We use the idea of Arya et al. [1] to reassign some cli-
ents of the facility being closed in a swap operation to other facilities in our current
solution. However, to be able to handle the capacity constraints in this reassignment
we need to extend the notion of the mapping between clients used in [1] to a fractional
assignment. As in earlier work, we use the fact that when we have a local optimum, no
operation leads to an improvement in cost. However, we now take carefully defined
linear combinations of the inequalities capturing this local optimality. All previous
work that we are aware of seems to only use the sum of such inequalities and therefore
requires additional properties like the integrality of the assignment polytope to iden-
tify suitable swaps [3]. Our approach is therefore more general and amenable to better
analysis. The idea of doing things fractionally appears more often in our analysis.
Thus, when analyzing the cost of an operation we assign clients fractionally to the
facilities and rely on the fact that such a fractional assignment cannot be better than the
optimum assignment which follows from the integrality of the assignment polytope.

In Sect. 5 we give a tight example that requires the construction of a suitable set-
system. While this construction itself is quite straightforward, this is the first instance
we know of where such an idea has been applied to prove a large locality gap.

2 Preliminaries

Let C be the set of clients and F denote the facility locations. Let S (resp. O) be
the set of open facilities in our solution (resp. optimum solution). We abuse notation
and use S (resp. O) to denote our solution (resp. optimum solution). Initially S is an
arbitrary set of facilities which can serve all the clients. Let cost(S) denote the total
cost (facility plus service) of solution S. The three operations that make up our local
search algorithm are

Add For s /∈ S, if cost(S + {s}) < cost(S) then S← S + {s}.
Delete For s ∈ S, if cost(S − {s}) < cost(S) then S← S − {s}.
Swap For s ∈ S and s′ /∈ S, if cost(S − {s} + {s′}) < cost(S) then S← S − {s} +

{s′}.
S is locally optimum if none of the three operations are possible and at this point our
algorithm stops.

We use fi , i ∈ F to denote the cost of opening a facility at location i . Let S j , O j

denote the service-cost of client j in the solutions S and O , respectively. The presence
of the add operation ensures that the total service cost of the clients in any locally
optimum solution is at most the total cost of the optimum solution [4]. Formally,

Lemma 1 ([4]) For any locally optimum solution S,
∑

j∈C S j ≤ ∑
j∈C O j +∑

o∈O fo.

We reprove this Lemma in Sect. 4.
Hence, most of the effort in this paper is towards bounding the facility cost of

a locally optimum solution which we show is no more than 2 times the cost of an
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optimum solution. We prove this by identifying a suitable set of local operations and
determine the increase in cost if these operations were to be performed. Since the
solution is locally optimum, the increase in cost due to these operations is non-neg-
ative.1 This gives us a set of inequalities and a suitable linear combination of these
inequalities yields the bound on the facility cost of the locally optimum solution. Note
that the inequalities generated are only for the purpose of analysis; we do not actually
perform those local operations since we are already at a locally optimum solution.

Combining the bounds of the service cost and the facility cost of a locally optimum
solution then gives us our main theorem.

Theorem 1 For any locally optimum solution S and an optimum solution O to the
facility location problem with uniform capacities, cost(S) ≤ 3cost(O).

To ensure that our procedure has a polynomial running time we use an idea first
proposed in [4]—a local step is performed only if the cost of the solution reduces by
more than (ε/4n)cost(S) where ε > 0 and n = |F | is the number of facility loca-
tions. It is immediate that as a result of this modification the number of local search
steps done is at most 4nε−1 log(cost(S0)/cost(O)) where S0 is the initial solution. In
Sect. 3 we argue the approximation guarantee of this modified local search procedure
increases to at most 3/(1− ε).

The rest of the paper is organized as follows. In Sect. 3 we bound the facility costs
of the locally optimum solution assuming that the facilities in the locally optimum
solution, S are disjoint from the facilities of the optimum solution, O . Most of the
new ideas in the paper appear in this section. In Sect. 4 we extend the argument to the
case when the facilities in S and O are not disjoint. In Sect. 5 we give an example of a
solution which is locally optimal with respect to the operations of add, delete,
swap and has cost three times the optimum. This establishes that our analysis is tight.

3 Bounding the facility costs

Let S denote the locally optimum solution obtained. For the rest of this section we
assume that the sets S and O are disjoint. This assumption allows us to add any facil-
ity of O or to swap any facility in S with a facility in O without worrying about the
possibility that the facility of O included in our solution might already be part of S.

Let NS(s) denote the clients served by facility s in the solution S and NO(o) denote
the clients served by facility o in solution O . Let N o

s denote the set of clients served
by facility s in solution S and by facility o in solution O . We will associate a weight,
wt : C → [0..1], with each client which satisfies the following properties.

1. For a client j ∈ C let σ( j) be the facility which serves j in solution S. Then

wt( j) ≤ min

(

1,
U − |NS(σ ( j))|
|NS(σ ( j))|

)

.

1 In fact, we do not determine the exact increase in cost when a local operation is performed but only an
upperbound on this quantity.
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Fig. 1 Defining πo. The lower arrangement is obtained by splitting the top arrangement at the central
dotted line and swapping the two halves

Let init-wt( j) denote the quantity on the right of the above inequality. Since
|NS(σ ( j))| ≤ U , we have that 0 ≤ init-wt( j) ≤ 1.

2. For all o ∈ O and s ∈ S, wt(N o
s ) ≤ wt(NO(o))/2. Here for X ⊆ C , wt(X)

denotes the sum of the weights of the clients in X .

To determine wt( j) so that these two properties are satisfied we start by assign-
ing wt( j) = init-wt( j). However, this assignment might violate the sec-
ond property. A facility s ∈ S captures a facility o ∈ O if init-wt(N o

s ) >

init-wt(NO(o))/2. Note that at most one facility in S can capture a facility o. If
s does not capture o then for all j ∈ N o

s define wt( j) = init-wt( j). However if
s captures o then for all j ∈ N o

s define wt( j) = α · init-wt( j) where α < 1 is
such that wt(N o

s ) = wt(NO(o))/2. Note that if N o
s = NO(o) then α = 0.

For a facility o ∈ O we define a fractional assignment πo : NO(o)×NO(o)→ �+
with the following properties.

separation πo( j, j ′) > 0 only if j and j ′ are served by different facilities in S.
balance

∑
j ′∈NO (o) πo( j ′, j) = ∑

j ′∈NO (o) πo( j, j ′) = wt( j) for all j ∈
NO(o).

The fractional assignment πo can be obtained along the same lines as the map-
ping in [1]. Associate an interval of length wt( j) for each j ∈ NO(o) and arrange
these intervals on a line segment of length wt(NO(o)) (see Fig. 1). The intervals
are ordered so that intervals corresponding to clients served by the same facility in S
appear together. Consider another arrangement of intervals obtained from the first by
splitting the line segment at the center and swapping the two halves. As a consequence,
one interval might be split and be non-contiguous in the second arrangement. Super-
impose these two arrangements. πo( j, j ′) is now defined as the overlap between the
interval corresponding to j in the first arrangement and the interval j ′ in the second.
The second property of the weights ensures that there is no overlap between an inter-
val in the first arrangement and the corresponding interval in the second arrangement.
Further, it is easy to see that the mapping πo as defined here satisfies the properties of
separation and balance.

The individual fractional assignments πo are extended to a fractional assignment
over all clients, π : C × C → �+ in the obvious way—π( j, j ′) = πo( j, j ′) if
j, j ′ ∈ NO(o) and is 0 otherwise.
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To bound the facility cost of a facility s ∈ S we will close the facility and assign
the clients served by s to other facilities in S and, maybe, some facility in O . The
reassignment of the clients served by s to the facilities in S is done using the fractional
assignment π . Thus if client j is served by s in the solution S and π( j, j ′) > 0 then
we assign a π( j, j ′) fraction of j to the facility σ( j ′). Note that

1. σ( j ′) �= s and this follows from the separation property of π .
2. j is reassigned to the facilities in S to a total extent of wt( j) (balance property).
3. A facility s′ ∈ S, s′ �= s, would get some additional clients. The total extent to

which these additional clients are assigned to s′ is at most wt(NS(s′)) (balance
property). Since

wt(NS(s′)) ≤ init-wt(NS(s′)) ≤ U − ∣
∣NS(s′)

∣
∣,

the total number of clients assigned to s′ after this reassignment is at most U .

Let Δ(s) denote the increase in the service-cost of the clients served by s due to the
above reassignment.

Lemma 2
∑

s∈S Δ(s) ≤∑
j∈C 2O jwt( j)

Proof Let π( j, j ′) > 0. When the facility σ( j) is closed and π( j, j ′) fraction of client
j assigned to facility σ( j ′), the increase in service cost is π( j, j ′)(c j,σ ( j ′) − c j,σ ( j)).
Since c j,σ ( j ′) ≤ O j + O j ′ + S j ′ we have

∑

s∈S

Δ(s) =
∑

j, j ′∈C

π( j, j ′)(c j,σ ( j ′) − c j,σ ( j))

≤
∑

j, j ′∈C

π( j, j ′)(O j + O j ′ + S j ′ − S j )

= 2
∑

j∈C

O jwt( j)

where the last equality follows from the balance property. �
If wt( j) < 1 then some part of j remains unassigned. The quantity 1 − wt( j)

is the residual weight of client j and is denoted by res-wt( j). Clearly 0 ≤
res-wt( j) ≤ 1. Note that

1. If we close facility s ∈ S and assign the residual weight of all clients served by s
to a facility o ∈ O then the total extent to which clients are assigned to o equals
res-wt(NS(s)) which is less than U .

2. Define

cs,o = min
j∈C

(c j,s + c j,o).

The service cost of a client j , which is assigned to o instead of s would increase
by c j,o − c j,s . Since service costs satisfy the metric property, for all clients j ,

c j,o − c j,s ≤ cs,o.
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3. The total increase in service cost of all clients in NS(s) which are assigned (partly)
to o is at most cs,ores-wt(NS(s)).

Let 〈s, o〉 denote the swapping of facilities s, o and the reassignment of clients
served by s to facilities in S−{s}∪{o} as discussed above. Since S is locally optimum
we have

fo − fs + cs,ores-wt(NS(s))+Δ(s) ≥ 0. (1)

The above inequalities are written for every pair (s, o), s ∈ S, o ∈ O . We take a linear
combination of these inequalities with the inequality corresponding to 〈s, o〉 having a
weight λs,o in the combination to get
∑

s,o

λs,o fo −
∑

s,o

λs,o fs +
∑

s,o

λs,ocs,ores-wt(NS(s))+
∑

s,o

λs,oΔ(s) ≥ 0. (2)

where

λs,o = res-wt(N o
s )

res-wt(NS(s))

and is 0 if res-wt(NS(s)) = 0. Let S′ be the subset of facilities in the solution S for
which res-wt(NS(s)) = 0. A facility s ∈ S′ can be deleted from S and its clients
reassigned completely to the other facilities in S. This implies

− fs +Δ(s) ≥ 0 (3)

We write such an inequality for each s ∈ S′ and add them to inequality (2).
Note that for all s ∈ S − S′,

∑
o λs,o = 1. This implies that

∑

s∈S′
fs +

∑

s,o

λs,o fs =
∑

s

fs (4)

and
∑

s∈S′
Δ(s)+

∑

s,o

λs,oΔ(s) =
∑

s

Δ(s) ≤
∑

j∈C

2O jwt( j) (5)

However, the reason for defining λs,o as above is to ensure the following property.

Lemma 3
∑

s,o λs,ocs,ores-wt(NS(s)) ≤∑
j∈C res-wt( j)(O j + S j )

Proof The left hand side in the inequality is
∑

s,o cs,ores-wt(N o
s ). Since for each

client j ∈ N o
s , cs,o ≤ O j + S j we have

cs,ores-wt(N o
s ) =

∑

j∈N o
s

cs,ores-wt( j)

≤
∑

j∈N o
s

res-wt( j)(O j + S j )

which, when summed over all s and o implies the Lemma. �
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Incorporating equations (4), (5) and Lemma 3 into inequality (2) we get

∑

s

fs ≤
∑

s,o

λs,o fo +
∑

j∈C

res-wt( j)(O j + S j )+
∑

j∈C

2O jwt( j)

=
∑

s,o

λs,o fo + 2
∑

j∈C

O j +
∑

j∈C

res-wt( j)(S j − O j ) (6)

We now need to bound the number of times a facility of the optimum solution may be
opened.

Lemma 4 For all o ∈ O,
∑

s λs,o ≤ 2.

Proof We begin with the following observations.

1. For all s, o, λs,o ≤ 1.
2. Let I ⊆ S be the facilities s such that s does not capture o and |NS(s)| ≤

U/2. Let s ∈ I and j ∈ N o
s . Note that wt( j) = init-wt( j) = 1 and so

res-wt( j) = 0. This implies that res-wt(N o
s ) = 0 and so for all s ∈ I ,

λs,o = 0.

Thus we only need to show that
∑

s /∈I λs,o ≤ 2. We now consider two cases.

1. o is not captured by any s ∈ S. Let s be a facility not in I which does not capture
o. For j ∈ N o

s ,

res-wt( j) = 1− wt( j) = 1− init-wt( j) = 2− U

|NS(s)| .

However, for j ∈ NS(s) we have that

res-wt( j) = 1− wt( j) ≥ 1− init-wt( j) = 2− U

|NS(s)| .

Therefore

λs,o ≤
∣
∣N o

s

∣
∣

|NS(s)|
Hence

∑

s

λs,o =
∑

s /∈I

λs,o ≤
∑

s /∈I

∣
∣N o

s

∣
∣

|NS(s)| ≤
∑

s /∈I

∣
∣N o

s

∣
∣

U/2
≤ |NO(o)|

U/2
≤ 2.

2. o is captured by s′ ∈ S. This implies

init-wt(N o
s′) ≥

∑

s �=s′
init-wt(N o

s )

≥
∑

s /∈I∪{s′}
init-wt(N o

s )
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=
∑

s /∈I∪{s′}

∣
∣N o

s

∣
∣U − |NS(s)|
|NS(s)|

=
∑

s /∈I∪{s′}

(

U

∣
∣N o

s

∣
∣

|NS(s)| −
∣
∣N o

s

∣
∣

)

Since init-wt(N o
s′) ≤

∣
∣N o

s′
∣
∣ rearranging we get,

∑

s /∈I∪{s′}

∣
∣N o

s

∣
∣

|NS(s)| ≤
∑

s /∈I

∣
∣N o

s

∣
∣

U
≤ 1.

Now

∑

s /∈I∪{s′}
λs,o ≤

∑

s /∈I∪{s′}

∣
∣N o

s

∣
∣

|NS(s)| ≤ 1

and since λs′,o ≤ 1 we have

∑

s

λs,o =
∑

s /∈I

λs,o ≤ 2.

This completes the proof. �
Incorporating Lemma 4 into inequality (6) we get

∑

s

fs ≤ 2

⎛

⎝
∑

o

fo +
∑

j∈C

O j

⎞

⎠+
∑

j∈C

res-wt( j)(S j − O j ) (7)

Note that
∑

j∈C res-wt( j)(S j −O j ) is at most
∑

j∈C (S j −O j ) which in turn can
be bounded by

∑
o fo by considering the operation of adding facilities in the optimum

solution. This, however, would lead to a bound of 3
∑

o fo+2
∑

j∈C O j on the facility
cost of our solution.

The key to obtaining a sharper bound on the facility cost of our solution is the
observation that in the swap 〈s, o〉 facility o gets only res-wt(NS(s)) clients and
so can accommodate an additional U − res-wt(NS(s)) clients. Since we need to
bound

∑
j∈C res-wt( j)(S j − O j ), we assign the clients in NO(o) to facility o

in the ratio of their residual weights. Thus client j would be assigned to an extent
βs,ores-wt( j) where

βs,o = min

(

1,
U − res-wt(NS(s))

res-wt(NO(o))

)

.

βs,o is defined so that o gets at most U clients. Let Δ′(s, o) denote the increase in
service cost of the clients of NO(o) due to this reassignment. Hence
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Δ′(s, o) = βs,o

∑

j∈NO (o)

res-wt( j)(O j − S j ). (8)

The inequality (1) corresponding to the swap 〈s, o〉 would now get an additional term
Δ′(s, o) on the left. Hence the term

∑
s,o λs,oΔ

′(s, o) would appear on the left in
inequality (2) and on the right in inequality (6).

Now

∑

s

λs,oΔ
′(s, o) =

∑

s

⎛

⎝λs,oβs,o

∑

j∈NO (o)

res-wt( j)(O j − S j )

⎞

⎠

=
(

∑

s

λs,oβs,o

)
∑

j∈NO (o)

res-wt( j)(O j − S j ).

If
∑

s λs,oβs,o > 1 then we reduce some βs,o so that the sum is exactly 1 (we will later
show that this does not affect the analysis). On the other hand if

∑
s λs,oβs,o = 1−γo,

γo > 0, then we take the inequalities corresponding to the operation of adding the
facility o ∈ O

fo +
∑

j∈NO (o)

res-wt( j)(O j − S j ) ≥ 0 (9)

and add these to inequality (2) with a weight γo. Hence the total increase in the left
hand side of inequality (2) is

∑

s,o

λs,oΔ
′(s, o)+

∑

o

γo

⎛

⎝ fo +
∑

j∈NO (o)

res-wt( j)(O j − S j )

⎞

⎠

=
∑

o

∑

j∈NO (o)

(1− γo)res-wt( j)(O j − S j )

+
∑

o

γo fo +
∑

o

∑

j∈NO (o)

γores-wt( j)(O j − S j )

=
∑

o

∑

j∈NO (o)

res-wt( j)(O j − S j )+
∑

o

γo fo

=
∑

j∈C

res-wt( j)(O j − S j )+
∑

o

γo fo

and so inequality (6) now becomes

∑

s

fs ≤
∑

o

∑

s

λs,o fo + 2
∑

j∈C

O j +
∑

o

γo fo

+
∑

j∈C

res-wt( j)(S j − O j )+
∑

j∈C

res-wt( j)(O j − S j )
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=
∑

o

(

γo +
∑

s

λs,o

)

fo + 2
∑

j∈C

O j

=
∑

o

(

1+
∑

s

λs,o(1− βs,o)

)

fo + 2
∑

j∈C

O j

≤ 2

⎛

⎝
∑

o

fo +
∑

j∈C

O j

⎞

⎠

where the last inequality follows from the following Lemma.

Lemma 5
∑

s λs,o(1− βs,o) ≤ 1.

Proof When
∑

s λs,oβs,o > 1 we reduced some βs,o to ensure that the sum is exactly
1. In this case

∑

s

λs,o(1− βs,o) =
∑

s

λs,o − 1 ≤ 1,

since by Lemma 4,
∑

s λs,o ≤ 2.
We now assume that no βs,o was reduced. Since

res-wt(NO(o)) ≤ |NO(o)| ≤ U

we have

βs,o = min

(

1,
U − res-wt(NS(s))

res-wt(NO(o))

)

≥ min

(

1, 1− res-wt(NS(s))

res-wt(NO(o))

)

= 1− res-wt(NS(s))

res-wt(NO(o))

Hence

∑

s

λs,o(1− βs,o) ≤
∑

s

res-wt(N o
s )

res-wt(NO(o))
= 1.

�

This completes the proof of the following theorem.

Theorem 2 When S ∩ O = φ, the total cost of open facilities in any locally optimum
solution is at most twice the cost of an optimum solution.
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Recall that to ensure that the local search procedure has a polynomial running time
we modified the local search procedure so that a step was performed only when the
cost of the solution decreases by at least (ε/4n)cost(S). This modification implies
that the right hand sides of inequalities (1), (3) and (9) which are all zero should
instead be (−ε/4n)cost(S). Note that for every choice of s ∈ S and o ∈ O we add
a λs,o multiple of inequality (1) to obtain inequality (2). Since

∑
o λs,o = 1, hence∑

o,s λs,o = |S| ≤ n. We also add inequality (3) for every s ∈ S to inequality (2).
Similarly, for every o ∈ O , a γo (γo ≤ 1) multiple of inequality (9) is added to
inequality (2).

Putting all these modifications together gives rise to an extra term of at most
(3ε/4)cost(S). This implies that the facility cost of solution S is at most 2cost(O) +
(3ε/4)cost(S). Similarly, the service cost of solution S can now be bounded by
cost(O)+ (ε/4)cost(S). Adding these yields

(1− ε)cost(S) ≤ 3cost(O)

which implies that S is a 3/(1− ε) approximation to the optimum solution.

4 When S ∩ O �= φ

We now consider the case when S ∩ O �= φ. We construct a bipartite graph, G, on the
vertex set C ∪ F as in [3]. Every client j ∈ C has an edge from the facility σ( j) ∈ S
and an edge to the facility τ( j) ∈ O , where τ( j) is the facility in O serving client
j . Thus each client has one incoming and one outgoing edge. A facility s ∈ S has
|NS(s)| outgoing edges and a facility o ∈ O has |NO(o)| incoming edges. Decompose
the edges of G into a set of maximal paths, P , and cycles, C. Note that all facilities on
a cycle are from S∩O . Consider a maximal path, p ∈ P which starts at a vertex s ∈ S
and ends at a vertex o ∈ O . Let head(p) denote the client served by s on this path
and tail(p) be the client served by o on this path. Let s0, j0, s1, j1, . . . , sk, jk, o be the
sequence of vertices on this path where s = s0. Note that {s1, s2, . . . , sk} ⊆ S ∩ O . A
shift along this path is a reassignment of clients so that ji which was earlier assigned
to si is now assigned to si+1 where sk+1 = o. As a consequence of this shift, facility
s serves one less client while facility o serves one more client. Let shift(p) denote the
increase in service cost due to a shift along the path p. Then

shift(p) =
∑

c∈C∩p

(Oc − Sc).

We can similarly define a shift along a cycle. The increase in service cost equals the
sum of O j − S j for all clients j in the cycle and since the assignment of clients to
facilities is done optimally in our solution and in the global optimum this sum is zero.
Thus

∑

j∈C
(O j − S j ) = 0. (10)
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Fig. 2 An instance showing the decomposition into cycles (dotted arcs), swap paths (solid arcs) and trans-
fer paths (dashed arcs). The facilities labeled so1, so2, so3 and so4 are in S ∩ O and have been duplicated.
The cycle is so1, so2, so3, so1. The transfer paths are (s1, so2, so1), (s2, so2) and (s2, so3). The swap
paths are s1, so1, so3, o1 and s2, so4, o1

Consider the operation of adding a facility o ∈ O . We shift along all paths which
end at o. The increase in service cost due to these shifts equals the sum of O j − S j

for all clients j on these paths and this quantity is at least − fo.
∑

j∈P
(O j − S j ) ≥ −

∑

o∈O

fo. (11)

Thus
∑

j∈C

(O j − S j ) =
∑

j∈P
(O j − S j )+

∑

j∈C
(O j − S j ) ≥ −

∑

o∈O

fo

which implies that the service cost of S is bounded by
∑

o∈O fo +∑
j∈C O j .

To bound the cost of facilities in S − O we only need the paths that start from a
facility in S − O . Hence we throw away all cycles and all paths that start at a facility
in S ∩ O; this is done by removing all clients on these cycles and paths. Let P denote
the remaining paths and C the remaining clients. Every client in C either belongs to
a path which ends in S ∩ O (transfer path) or to a path which ends in O − S (swap
path). Let T denote the set of transfer paths and S the set of swap paths (see Fig. 2).

We now define N o
s to be the set of paths that start at s ∈ S and end at o ∈ O .

Further, define

NS(s) = ∪o∈O−S N o
s .

Note that we do not include the transfer paths in the above definition. Similarly for all
o ∈ O define

NO(o) = ∪s∈S−O N o
s .

Just as we defined the init-wt(), wt() and res-wt() of a client, we can
define the init-wt(), wt() and res-wt() of a swap path. Thus for a path p
which starts from s ∈ S − O we define
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init-wt(p) = min

(

1,
U − |NS(s)|
|NS(s)|

)

.

The notion of capture remains the same and we reduce the initial weights on the paths
to obtain their weights. Thus wt(p) ≤ init-wt(p) and for every s ∈ S and
o ∈ O , wt(N o

s ) ≤ wt(NO(o))/2. For every o ∈ O − S we define a fractional
mapping πo : NO(o)× NO(o)→ �+ such that

separation πo(p, p′) > 0 only if p and p′ start at different facilities in S − O .
balance

∑
p′∈NO (o) πo(p′, p) = ∑

p′∈NO (o) πo(p, p′) = wt(p) for all p ∈
NO(o).

This fractional mapping can be constructed in the same way as done earlier. The way
we use this fractional mapping, π , will differ slightly. When facility s is closed, we
will use π to partly reassign the clients served by s in the solution S to other facilities
in S. If p is a path starting from s and π(p, p′) > 0, then we shift along p and the
client tail(p) is assigned to s′, where s′ is the facility from which p′ starts. This whole
operation is done to an extent of π(p, p′). The cost of assigning client tail(p) to s′
can be bounded by the sum of the service cost of tail(p) in solution O and the length
of the path p′ where

length(p′) =
∑

c∈C∩p′
(Oc + Sc).

Let Δ(s) denote the total increase in service cost due to the reassignment of clients
on all swap paths starting from s. Then

∑

s

Δ(s) ≤
∑

s

∑

p∈NS(s)

∑

p′∈P
π(p, p′)(shift(p)+ length(p′))

=
∑

p∈S
wt(p)(shift(p)+ length(p)) (12)

As a result of the above reassignment a facility s′ ∈ S − O, s′ �= s might get
additional clients whose “number” is at most wt(NS(s′)). Note that this is less than
init-wt(NS(s′)) which is at most U − ∣

∣NS(s′)
∣
∣. The number of clients s′ was

serving equals
∣
∣NS(s′)

∣
∣+ ∣

∣T (s′)
∣
∣ where T (s′) is the set of transfer paths starting from

s′. This implies that the total number of clients s′ would have after the reassignment
could exceed U . To prevent this violation of our capacity constraint, we also perform
a shift along these transfer paths (Fig. 3).

Suppose s′ gets an additional client, say tail(p), to an extent of π(p, p′), where
p′ ∈ NS(s′). Then for all paths q ∈ T (s′), we would shift along path q to an extent
π(p, p′)/wt(NS(s′)). This ensures that

1. The total extent to which we will shift along a path q ∈ T (s′) is given by

∑

p

∑

p′∈NS(s′)

π(p, p′)
wt(NS(s′))
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Fig. 3 The figure shows the assignment of clients to facilities after facility s1 has been closed (U = 3)
in the instance given in Fig. 2. The dotted lines show the earlier assignment while the solid lines show the
new assignment. Those assignments which do not change are shown with dashed lines. Note that o serves
two clients j, k which are the heads of swap paths s1, so1, so3, o1 and s2, so4, o1. These two clients are
mapped to each other in the mapping π . When facility s1 is closed we perform a shift along transfer path
s1, so2, so1. We also perform a shift along the swap path s1, so1, so3, o1 with the last client on this path,
j now assigned to s2. Since, s2 was already serving 3 clients, we move one of its clients along a transfer
path (s2, so2)

which is at most 1. This in turn implies that we do not violate the capacity of
any facility in S ∩ O . This is because, if there are t transfer paths ending at a
facility o ∈ S ∩ O then o serves t more clients in solution O than in S. Hence,
in solution S, o serves at most U − t clients. Since the total extent to which we
could shift along a transfer path ending at o is 1, even if we were to perform shift
along all transfer paths ending in o, the capacity of o in our solution S would not
be violated.

2. The capacity constraint of no facility in S− O is violated. If a facility s′ ∈ S− O
gets an additional x clients as a result of reassigning the clients of some facility
s �= s′, then it would also lose some clients, say y, due to the shifts along the
transfer paths. Now

y = ∣
∣T (s′)

∣
∣
∑

p

∑

p′∈NS(s′)

π(p, p′)
wt(NS(s′))

= x
∣
∣T (s′)

∣
∣

wt(NS(s′))

and hence the additional number of clients served by s′ is x − y which equals

x

(

1−
∣
∣T (s′)

∣
∣

wt(NS(s′))

)

≤ wt(NS(s′))− ∣
∣T (s′)

∣
∣ ≤ U − ∣

∣NS(s′)
∣
∣− ∣

∣T (s′)
∣
∣,

where the first inequality follows from the fact that x ≤ wt(NS(s′)) and the sec-
ond inequality by definition ofwt. Since, initially, s′was serving

∣
∣NS(s′)

∣
∣+∣

∣T (s′)
∣
∣

clients, the total number of clients that s′ is serving after the reassignment is at
most U .

Note that when we close facility s we shift on transfer paths starting from s as well
as on some transfer paths starting at s′ �= s. Let �(s) denote the total increase in service
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cost due to shifts on all transfer paths when facility s is closed. Consider a transfer
path, q, starting from s. We would shift once along path q when we close facility s. We
would also be shifting along q to an extent of

∑
p
∑

p′∈NS(s) π(p, p′)/wt(NS(s))
(which is at most 1) when facilities other than s are closed. Hence,

∑

s

�(s) ≤ 2
∑

q∈T
shift(q) (13)

For a swap path p, define res-wt(p) = 1 − wt(p). Let j be head(p) and
define wt( j) = wt(p) and res-wt( j) = res-wt(p). Let p start from facility
s. When s is closed, client j is assigned to an extent wt( j) to other facilities in S.
We will be assigning the remaining part of j to a facility o ∈ O − S that will be
opened when s is closed. Hence the total number of clients that will be assigned to
o is res-wt(NS(s)) which is less than U . The increase in service cost due to this
reassignment is at most cs,ores-wt(NS(s)). As done earlier, the inequality corre-
sponding to the swap 〈s, o〉 is counted to an extent λs,o in the linear combination.
Since cs,o ≤ length(p) for all p ∈ N o

s , we have the following equivalent of Lemma 3

∑

s,o

λs,ocs,ores-wt(NS(s)) ≤
∑

p∈S
res-wt(p)length(p). (14)

The remaining available capacity of o is utilized by assigning each client j ∈ NO(o)

to an extent βs,ores-wt( j), where βs,o is defined as before. This assignment is actu-
ally done by shifting along each path, p ∈ NO(o), by an extent βs,ores-wt(p). Let
Δ′(s, o) be the increase in cost due to this reassignment of clients in NO(o). Then

Δ′(s, o) ≤ βs,o

∑

p∈NO (o)

res-wt(p)shift(p).

This operation is a part of 〈s, o〉 and hence is counted to an extent λs,o in the linear
combination. Therefore the contribution of this term is

∑

s,o

λs,oΔ
′(s, o) ≤

∑

o

(
∑

s

λs,oβs,o

)
∑

p∈NO (o)

res-wt(p)shift(p). (15)

Adding facility o ∈ O−S and shifting each path p ∈ NO(o) by an extentres-wt(p)
gives us the following inequality.

fo +
∑

p∈NO (o)

res-wt(p)shift(p) ≥ 0 (16)

As before, if
∑

s λs,oβs,o > 1 then we reduce some βs,o so that the sum is exactly 1.
Else, we add a 1−∑

s λs,oβs,o multiple of inequality (16) to inequality (15) to get
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∑

s,o

λs,oΔ
′(s, o) ≤

∑

o

γo fo +
∑

o

∑

p∈NO (o)

res-wt(p)shift(p). (17)

where γo = max
{
0, 1−∑

s λs,oβs,o
}
.

The inequality corresponding to the swap 〈s, o〉 is

fo − fs + cs,ores-wt(NS(s))+Δ(s)+ �(s)+Δ′(s, o) ≥ 0,

and taking a linear combination of the inequalities corresponding to the swaps 〈s, o〉,
s ∈ S − O , o ∈ O − S with weights λs,o yields

∑

s,o

λs,o fo −
∑

s,o

λs,o fs +
∑

s,o

λs,ocs,ores-wt(NS(s))

+
∑

s,o

λs,o(Δ(s)+ �(s))+
∑

s,o

λs,oΔ
′(s, o) ≥ 0.

Since, for all s,
∑

o λs,o = 1, we get

∑

s∈S−O

fs ≤
∑

s,o

λs,o fo +
∑

s,o

λs,oΔ
′(s, o)

+
∑

s,o

λs,ocs,ores-wt(NS(s))+
∑

s

(Δ(s)+ �(s)) (18)

Putting the bounds from inequalities (12),(13),(14) and (17) into the right hand side
of inequality (18), yields

∑

s∈S−O

fs ≤
∑

o∈O−S

(

γo +
∑

s

λs,o

)

fo +
∑

p∈S
res-wt(p)shift(p)

+
∑

p∈S
res-wt(p)length(p)+

∑

p∈S
wt(p)(shift(p)+ length(p))

+2
∑

p∈T
shift(p)

≤ 2
∑

o∈O−S

fo +
∑

p∈S
res-wt(p)(shift(p)+ length(p))

+
∑

p∈S
wt(p)(shift(p)+ length(p))+ 2

∑

p∈T
shift(p)

= 2
∑

o∈O−S

fo +
∑

p∈S
(shift(p)+ length(p))+ 2

∑

p∈T
shift(p)

≤ 2

⎛

⎝
∑

o∈O−S

fo +
∑

j∈C

O j

⎞

⎠
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where the first inequality follows from Lemmas 5 and 4. This implies that

∑

s∈S

fs ≤ 2

⎛

⎝
∑

o∈O−S

fo +
∑

j∈C

O j

⎞

⎠+
∑

o∈S∩O

fo ≤ 2

⎛

⎝
∑

o∈O

fo +
∑

j∈C

O j

⎞

⎠

which is the statement of Theorem 2 when S ∩ O �= φ.

5 A tight example

Our tight example consists of r facilities in the optimum solution O , r facilities in
the locally optimum solution S and rU clients. The facilities are F = O ∪ S. Since
no facility can serve more than U clients, each facility in S and O serves exactly U
clients. Our instance has the property that a facility in O and a facility in S share at
most one client.

We can view our instance as a set-system—the set of facilities O is the ground set
and for every facility s ∈ S we have a subset Xs of this ground set. o ∈ Xs iff there
is a client which is served by s in the solution S and by o in the solution O . This
immediately implies that each element of the ground set is in exactly U sets and that
each set is of size exactly U . A third property we require is that two sets have at most
one element in common.

We now show how to construct a set system with the properties mentioned above.
With every o ∈ O we associate a distinct point xo = (xo

1 , xo
2 , . . . xo

U ) in a U -dimen-
sional space where for all i , xo

i ∈ {1, 2, 3, . . . , U }. For every choice of coordinate i ,
1 ≤ i ≤ U we form UU−1 sets, each of which contains all points differing only in
coordinate i . Thus the total number of sets we form is r = UU which is the same as
the number of points. Each set can be viewed as a line in U -dimensional space. To
see that this set system satisfies all the properties note that each line contains U points
and each point is on exactly U lines. It also follows from our construction that two
distinct lines meet in at most one point.

We now define the facility and the service costs. For a facility o ∈ O , fo = 2U
while for facility s ∈ S, fs = 6U − 6. For a client j ∈ N o

s , we have cs, j = 3 and
co, j = 1. All other service costs are given by the metric property.

Lemma 6 For a client j and facility s ∈ S, the three smallest values that cs, j can
have are 3,5 and 11. Similarly, the three smallest values that co, j , o ∈ O can have are
1,7 and 9.

Proof A client j can be served at a cost 1 by exactly one facility in O and at a cost 3
by exactly one facility in S. The distance between a facility in O and a facility in S is
at least 4. �

Since the service cost of each client in O is 1 and the facility cost of each facility
in O is 2U , we have cost(O) = 3UU+1. Similarly, cost(S) = (3− 2/U )3UU+1 and
hence cost(S) = (3− 2/U )cost(O). We now need to prove that S is indeed a locally
optimum solution with respect to the local search operations of add, delete and swap.
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Adding a facility o ∈ O to the solution S, would incur an opening cost of 2U .
The optimum assignment would reassign only the clients in No(O), and all these are
assigned to o. The reduction in the service cost due to this is exactly 2U which is offset
by the increase in the facility cost. Hence the cost of the solution does not improve.

If we delete a facility in the solution S, the solution is no longer feasible since the
total capacity of the facilities is now UU+1 −U and the number of clients is UU+1.

Now, consider swapping a facility s ∈ S with a facility o ∈ O . The net decrease
in the facility cost is 4U − 6. To bound the increase in service costs we consider a
bipartite graph with the facilities S ∪ {o} and the clients C forming the two sides of
the bipartition. Let E be the edges corresponding to the original assignment of clients
to facilities and E ′ be the edges of the new assignment. The symmetric difference
of E and E ′ is a collection of U edge-disjoint paths between s and o. Let P be this
collection and P be one of these paths. We define the net-cost of P as the difference
between the costs of the edges of E ′ and E in P .

Lemma 7 The two paths in P with the smallest net-cost have a total net-cost of at
least 2. All other paths in P have net-cost of at least 4.

Note that the increase in service cost as a result of the swap 〈s, o〉 equals the total
net-cost of the paths in P . The lemma implies that the net-cost of the paths is at least
4(U − 2)+ 2 which is exactly equal to the decrease in facility cost. Hence, swapping
any pair of facilities s ∈ S and o ∈ O does not improve the solution.

Proof The edges of E on path P have cost 3. From Lemma 6 it follows that the edge
on path P incident to o has cost 1,7 or higher while the remaining edges of P ∩ E ′
have cost 5,9 or higher. Edges on P alternate between sets E and E ′. Hence starting
from s we can pair consecutive edges of P with the first edge of each pair from E and
the other from E ′. Note that every pair, except the last, contributes at least 2 to the
net-cost of P while the last pair contributes at least −2.

1. If the edge of P incident to o has cost 7 or higher then the last pair contributes at
least 4 to the net-cost of P and hence the net-cost of P is at least 4.

2. If any edge of P ∩ E ′ has cost 9 or higher then the corresponding pair contributes
at least 6 to the net-cost. Since the last pair contributes at least−2, the net-cost of
P is at least 4.

As a consequence of the above we can assume that all edges of P ∩ E ′ have cost 5,
except the edge incident to o which has cost 1. This implies that the path P corresponds
to a path S1, S2, . . . Sk in our set-system where consecutive sets have a common ele-
ment and S1 corresponds to facility s while Sk contains the element corresponding
to o. Alternatively, in our construction of the set-system, the path P corresponds to a
sequence of lines where consecutive lines in the sequence intersect and the first line is
the one corresponding to facility s while the last line contains the point correspond-
ing to o. Note that the paths in P are edge-disjoint but not vertex-disjoint. Hence the
sequence of lines corresponding to two paths in P may have common lines but no
pair of consecutive lines can be common in the two sequences. Further, the sequences
should end in different lines.

A path P containing k sets, corresponds to a sequence of lines containing k lines
and has a net-cost of 2(k − 2). Hence paths with 4 or more lines have a net-cost at
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Fig. 4 U = 3. The figure shows the three cases corresponding to P0 having length 1, 2 and 3. P0 is the
dotted path, P1 is the path with small dashes while P2 is the path with longer dashes

least 4 and so to prove the lemma we need to argue that there are at most 2 paths in
P having less than 4 lines. Let P0, P1 be the two paths with the smallest lengths with
P0 being the smallest.

1. If P0 has length 1 then the line corresponding to s, say ys , contains the point cor-
responding to o, say xo. From our construction it follows that any other sequence
of lines which starts with ys and ends with a line containing xo which is different
from ys must contain at least 4 lines (including line ys). Hence path P1 has a
net-cost at least 4. Thus the total net-cost of paths P0 and P1 is at least 2 (see
Fig. 4).

2. If P0 has length 2 then the line ys and the point xo, have identical values for
U − 2 coordinates. Let ya be the line in P0 containing xo. Once again, from our
construction it follows that any other sequence of lines which starts with ys and
ends with a line containing xo which is different from ya must contain at least
3 lines. Hence P1 has length at least 3 and so the total net-cost of paths P0 and
P1 is at least 2. Further the other paths of P would end with lines which are in
dimensions other than the last lines of P0, P1 and so the length of these paths is
at least 4 (see Fig. 4).

3. If P0 has length 3 then ys and xo have identical values for U − 3 coordinates. In
this case, the net-cost of paths P0, P1 is at least 2 and the other paths of P have at
least 4 lines (see Fig. 4).

�

6 Conclusions

While the local search algorithm for capacitated facility location is easy to specify,
the analysis, even for the case of uniform capacities, can be quite involved. Ana-
lyzing the more general case of non-uniform capacities would be quite a challenge.
This suggests that one should explore other, non-LP, non-local-search approaches to
capacitated facility location.
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