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Abstract Shape optimization of the fine scale geometry of elastic objects is investi-
gated under stochastic loading. Thus, the object geometry is described via parametrized
geometric details placed on a regular lattice. Here, in a two dimensional set up we
focus on ellipsoidal holes as the fine scale geometric details described by the semi-
axes and their orientation. Optimization of a deterministic cost functional as well as
stochastic loading with risk neutral and risk averse stochastic cost functionals are dis-
cussed. Under the assumption of linear elasticity and quadratic objective functions the
computational cost scales linearly in the number of basis loads spanning the possibly
large set of all realizations of the stochastic loading. The resulting shape optimization
algorithm consists of a finite dimensional, constraint optimization scheme where the
cost functional and its gradient are evaluated applying a boundary element method
on the fine scale geometry. Various numerical results show the spatial variation of the
geometric domain structures and the appearance of strongly anisotropic patterns.
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1 Introduction

Shape optimization under deterministic loading is a well-developed field in PDE-con-
strained infinite-dimensional optimization, see e.g. the books [9,33]. In this paper
we investigate shape optimization problems for elastic bodies O ⊂ R

2 with a special
kind of geometry, namely two dimensional perforated plate like domains with possibly
many fine holes on a regular lattice (cf. Fig. 1). Motivation for these objects may be
drawn from the inner structure of bones, the so-called substantia spongiosa. Studies
suggest that it forms characteristic structures depending on the typical loads the specific
bone usually has to withstand. Also from an engineering view point such materials are
interesting because of their mechanical producibility. An alternative model for such a
simplified geometry could be to build a lattice of tiny elastic rods, cf. the very early
work of Michell [25] dating back to 1904.

The elastic body will be subject to volume and surface loadings which may be
fixed but may also vary stochastically over time. The latter is a prevailing issue in
many real-world shape optimization problems, in which unlikely but dramatic failures
must be appropriately taken into account. The aim of this paper is to derive a finite
dimensional constraint optimization scheme to identify the spatially varying, optimal
geometric structures under deterministic or stochastic loading conditions. Before we
start our analysis, let us briefly review some background and related work.

1.1 The impact of stochastic loading

If we assume stochastic loading the objective function, or shape functional, becomes
random. Furthermore, the selection of the shape must be made prior to observing the
realizations of the stochastic loading. This requirement, also called nonanticipativity,
induces a natural two-stage setting in the optimization problem: In the first stage the
decision on the shape is taken. Then stochasticity is unveiled by the realizations of
the random loadings. These random realizations, together with the shape, determine

Fig. 1 The optimized fine scale geometry for a bridge type scenario with color-coded von Mises stress
distribution (color figure online)
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an elasticity PDE whose solution, the displacement, is viewed as the second-stage
“decision”. Replacing the elasticity PDE by its equivalent variational formulation of
minimizing the elastic energy, makes the second-stage “decision” the solution to a
second-stage optimization problem.

Together with the nonanticipative shape, the random displacement enters the shape
objective which, e.g., could be compliance or deviation from a target shape. From
this point of view, the shape functional is a random variable “indexed” by the shapes.
The search for an optimal shape thus amounts to finding a “best” random variable.
In finite-dimensional two-stage stochastic programming the same setting occurs with
Euclidean decision variables taking the roles of the present shapes and displacements,
[28–30]. This motivates the following transfer of solution concepts.

First of all, selection of “best” random variables requires some ranking as a prereq-
uisite, for instance assigning real numbers resulting from statistical parameters. If risk
neutral, one would take the expected value. If risk averse, some risk measure would
be applied.

In the present paper the emphasis is on risk averse optimization models. In vari-
ous practical applications, there are possible realizations of the random variables that
are rather unlikely but which, in case they do occur, have catastrophic consequences.
Because of their low probability such scenarios would not have a significant impact
on the expectation value. We refine the risk measurement and consider the expectation
with respect to suitable nonlinear functions of the cost for each stochastic realization.
In particular, we address the expected excess, which reflects the expectation of the costs
exceeding a given threshold, or the excess probability, which measures the probability
of a failure, i.e., of a realization with a cost value above the threshold.

1.2 Algorithmic treatment of stochastic shape optimization

Robust optimization offers models and algorithms for optimization under uncer-
tainty if there is no distributional information about uncertain parameters but rather
information about their ranges, [8]. This may lead to overly conservative mod-
els when enforcing constraints for the full ranges of parameters. As a remedy,
robust optimization models with controllable level of conservativeness have been
proposed. For robust optimization approaches to shape optimization consult, e.g.,
[11,12,17,22].

Another means to generalize the single-load assumption in shape optimization is
multiload approaches: A fixed (usually small) number of different loading config-
urations is considered and optimization refers to this set of configurations, see e.g.
[3,20,37] and references therein. Then each evaluation of the objective functional
requires a separate computation for each of the possible stochastic forces, which ren-
ders them infeasible if the set of possible forces is large. In [15,16] shape optimization
of elastic bodies under random loading is viewed from the same stochastic program-
ming perspective as in the present paper. In both articles, with [15] confining to risk
neutral models, the numerical backbone is level set methods with composite finite
elements, in [16] enhanced by topological shape derivatives. Shapes are described
as volumetric macroscopic objects with a piecewise smooth boundary. In the present
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paper, we consider a fixed domain perforated with a large number of holes, and we
optimize the geometry of the holes inside the domain.

1.3 Microscopic structure of optimal materials

Shape optimization problems like the afore mentioned are usually equipped with some
volume constraint to avoid trivial solutions. However, if the shape is allowed to evolve
freely, these problems are generically ill-posed since microstructures tend to form. As
a remedy several regularization techniques have been applied. The simplest way is to
use the spatial discretization which, however, leads to highly mesh-dependent results.
As a more adequate possibility, one might restrict the number of holes. For a two-
dimensional setting existence of a solution to the compliance minimization problem
is shown in [10]. Another approach is the penalization of the shape perimeter which
(if outside the object there is some weak material instead of void) also results in exis-
tence of optimal shapes, see e.g. [6] for a scalar problem and [27] for shape optimiza-
tion. Finally one might relax the problem and define a set of admissible shapes allowing
for microstructures. The so-called homogenization method is a prominent representa-
tive of this approach, see [1,2,4]. Here, an indicator function χO is relaxed, such that it
can attain any intermediate value between 0 and 1, thus becoming a function describing
the relative material density of an elastic body. Restricting the allowed microstruc-
tures to sequential laminates, material properties for compliance minimization can be
computed explicitly based on homogenization. The fine scale geometries investigated
in this paper may be considered a first step towards a two-scale model, where the
microstructure is restricted to parametrized geometries as those discussed here.

The paper is organized as follows. In Sect. 2 we briefly describe the geometric
properties of the investigated materials and introduce the elastic state equation. We
will review shape optimization for the deterministic case in Sect. 3 and define suit-
able cost functionals for a fixed realization of the loading. The shape derivative will
be obtained by using the adjoint technique. Our numerical algorithm is described in
Sect. 4 and some illustrative outcomes for the deterministic case will be presented in
Sect. 5. Section 6 will then introduce a general class of risk averse shape optimization
models, and the examples of expected excess and excess probability as well as proper
smooth approximations. We will elaborate on how to use basis loads and a correspond-
ing basis of primal and dual solutions to compute the shape gradient efficiently even
in the presence of a large number of realizations of the stochastic loading. Finally
we will present our computational results. A short comparison to the setting and the
obtained results of Allaire’s homogenization method will be drawn in Sect. 7.

2 Shape description and elasticity

Let us first describe the particular fine scale geometry of the elastic bodies O ⊂ R
2

investigated in this paper. We consider a fixed domain D perforated with a possibly
large number of ellipsoidal holes. Surely, one might consider—with minor modifi-
cations of the numerical scheme—other types of parametrized geometric details. We
restrict ourselves here to the class of ellipses as a simple class allowing for anisotropic
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Fig. 2 Sketch of the elastic body and the contained ellipsoidal holes

pattern formation. In contrast to usual shape optimization procedures we do not opti-
mize the outer boundary of D but the fine scale geometric structures inside. We further
assume these ellipsoidal holes to be centered at nodes of a regular lattice covering the
domain D. Thus we consider N ellipsoidal holes B(ci , αi , ai , bi ) (1 ≤ i ≤ N ) located
in boxes of diameter h and parametrized by a rotation αi and two scaling factors ai

and bi for the two semiaxes. The boundary of the i th hole is then given by

x(s) = ci + h

(
ai cos(αi ) cos(s)− bi sin(αi ) sin(s)
ai sin(αi ) cos(s)+ bi cos(αi ) sin(s)

)

where the center points ci fulfill ci
h + 1

2 ∈ Z, cf. Fig. 2. To avoid overlapping of
adjacent ellipses or completely vanishing holes, we require the scaling parameters to
be bounded, i.e.

δ ≤ ai , bi ≤ 1

2
− δ (1)

with δ > 0 being a small additional offset to prevent numerical instability. The rotation
angle however we leave unbounded. Furthermore we suppose the total 2D volume of
the elastic body O := D\(⋃i=1,...,N B(ci , αi , ai , bi )) to be fixed. Thus, we impose
the equality constraint

|D| −
N∑

i=1

πh2ai bi = V . (2)

Any shape O fulfilling these requirements is called admissible and we shortly write
O ∈ Uad. Using this description of shapes the resulting shape optimization problem
turns into a finite dimensional optimization problem in R

3N with inequality constraints
for ai and bi and one equality constraint due to the prescribed total 2D volume.

Let us now describe the underlying mechanics of the elastic body. In shape opti-
mization one seeks the realization O of an elastic body which optimizes a particular
mechanical cost functional. Here, we consider the case of linearized elasticity. Given
an admissible shape O ⊂ R

2 we assume the outer boundary ∂D to be partitioned
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into �D on which homogeneous Dirichlet boundary conditions are prescribed and
�N on which a sufficiently regular surface load g is applied. The inner boundary of
the holes ∂O\∂D is considered as a homogeneous Neumann boundary. For the sake
of simplicity we neglect volume forces. In case of stochastic loading we consider a
random variableω following a discrete distribution with scenariosωi and probabilities
πi with i = 1, . . . , Ns (

∑Ns
i=1 πi = 1). The applied surface loads will depend on the

random variable and we will denote them by g(ω). For a single realization or a fixed
deterministic load the displacement u : O → R

2 is determined as the solution of the
system of linear partial differential equations

− div(Cε(u)) = 0 (3)

in O with u = 0 on �D, (Cε(u))n = g on �N , and (Cε(u))n = 0 on ∂O\∂D. Here,
n denotes the outer normal, ε(u) = 1

2 (∇u + ∇u�) is the linearized strain tensor, and
C = (Ci jkl)i jkl the elasticity tensor. Standard results show that for any connected open
set O with Lipschitz boundary and any fixed realization ω the elasticity problem (3)
has a unique weak solution u = u(O, ω) ∈ H1(O; R

2) [13,24]. It can be equivalently
characterized as the unique minimizer of the quadratic functional

E(O, u, ω) := 1

2
A(O, u, u)− l(O, u, ω) (4)

on the Hilbert space H1
�D
(O; R

2) := {
u ∈ H1(O; R

2) : u =0 on �D in the sense of
traces} with A(O, ψ, θ) := ∫

O Ci jklεi j (ψ)εkl(θ) dx and l(O, θ, ω) := ∫
∂O gi (ω)

θi dH1, see [13,19,24] for details. Here and below we implicitly sum over repeated
Cartesian indices.

3 Deterministic cost functional and shape derivative

Let us first focus on deterministic shape optimization and derive the corresponding
objective functional and shape derivative in a single load case, which will later also
serve as ingredients in the stochastic approach.

3.1 Cost functionals

We consider a general objective functional J which depends on both the shape O and
the resulting elastic displacement u(O), and is given by

J (O) := J (O, u (O)) =
∫
�N

k (u (O)) dH1 . (5)

Let us emphasize that the surface load is integrated only over the fixed Neumann
boundary �N which does not undergo any optimization here. We consider a linear or
quadratic function k(·), which will later ensure that even large numbers of stochastic
scenarios can be treated efficiently. As particular instances of the general formula-
tion (5), we study the compliance
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J1 (O) := l(O, u(O)) =
∫
�N

g · u(O) dH1 , (6)

and the squared difference to a target displacement u0

J2 (O) := 1

2

∫
�

|u − u0|2 dH1 (7)

integrated on a subset� of the domain boundary ∂D. In the context of the parametrized
geometries described in Sect. 2 the objective functional for the deterministic case of
a single realization of the loading actually reads

J ((αi , ai , bi )i=1,...,N ) := J

⎛
⎝D\( ⋃

i=1,...,N

B(ci , αi , ai , bi )
)⎞⎠ . (8)

3.2 Shape derivative

For the algorithm to be described in Sect. 4, a gradient of the shape functional in the
objective has to be computed. This shape derivative in direction v, [18], initially takes
the form

J′(O)(v) = J,O(O, u(O))(v)+ J,u(O, u(O))(u′(O)(v)).

The vector field v describes variations of the domain O and will later be induced by
variations of the parameters presented in Sect. 2. To avoid an evaluation of u′(O)(v)
for any test vector field v the dual or adjoint problem is taken into account. Thereby,
the dual solution p = p(O) ∈ H1

�D

(O; R
2
)

is given as the minimizer of the dual
functional

Edual (O, p) := 1

2
A (O, p, p)+ ldual (O, p) , (9)

with ldual(O, p) = ∫
�N

k′(u)p dH1. Note that for the compliance objective (6) one
obtains p = −u. Given p for fixed u and O the shape derivative of the deterministic
cost functional can be rephrased in the following computationally feasible form:

J′(O)(v) = J,O(O, u(O))(v)− ldual,O(O, p(O))(v)+ A,O(O, u(O), p(O))(v)
=

∫
∂O
(v · n)Ci jklεi j (u(O))εkl(p(O)) dH1 (10)

Finally, we obtain the shape gradient

J ′((αi , ai , bi )i=1,...,N ) =
(
(∂α j J , ∂a j J , ∂b j J )((αi , ai , bi )i=1,...,N )

)
j=1,...,N

as a vector in R
3N .
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4 The numerical algorithm in the deterministic case

This section is devoted to the numerical optimization algorithm. We will briefly review
the boundary element method (BEM) which is taken into account to compute the pri-
mal and dual solutions as minimizers of (4) and (9) and comment on some technical
issues regarding the implementation.

4.1 The boundary element method

Main ingredient of the boundary element method is the fundamental solution of the
investigated elasticity model [14]. It uses the complex logarithm and thus requires to
map points x ∈ R

2 onto the complex plane via the linear function z(x) = x1 + p x2
for a complex constant p. With Akn, Nnj , Di jn, dti being further appropriately chosen
constants, the fundamental solution and its normal derivative are given by

u∗
ki = 1

2π

∑
t



{∑

n

Akn Nnt ln (zn(x − y))

}
dti ,

v∗
ki = − 1

2π

∑
j,t



{∑

n

Dkjn Nnt

zn(x − y)

}
dti n j .

We now consider the equation A(O, u, θ) = l(O, θ, ω), apply Green’s formula, sub-
stitute θ by the fundamental solutions u∗

i and arrive at

ui (x) =
∫
∂O

(Cε(u)n) · u∗
i dH1(y)−

∫
∂O

(
Cε(u∗

i )n
) · u dH1(y) . (11)

For x ∈ ∂O these are singular integrals to be defined in an appropriate way. (For
details we refer to [21].) Finally, for the displacement u on ∂O and for the normal
tension σn = Cε(u)n on ∂O one obtains from (11) the integral equation

u = U [σn] − V [u] , (12)

where U is a so called single layer operator and V a double layer operator. For the
discretization we consider a polygonal approximation Oh of the domain O and on the
boundary ∂Oh we fix a set Nh of collocation points ξi and approximate u as well as
σn via linear interpolation of corresponding values. Effectively, the collocation points
depend on the free parameters ci , αi , ai , and bi of the ellipses. We now require (12) to
hold for every ξi leading to a linear system of equations for the values of the displace-
ments and the normal tensions at each collocation point. The boundary integral opera-
tors U and V applied to affine basis functions on ∂O can be computed analytically so
that our algorithm does not require any numerical quadrature. Notice that we typically
consider mixed boundary value problems requiring a rearrangement of the discretized
analogon of (12) according to known and unknown displacements and tensions.
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In the BEM approach displacements and tensions need only be computed on the
polygonal boundary. Furthermore, the objective functionals (6) and (7) and the corre-
sponding shape derivatives in (10) are also phrased as boundary integrals. To evaluate
these integrals however full gradients ∇u and ∇ p are required whereas we only have
discrete approximations of the normal stresses at our disposal so far. To reconstruct the
full gradient ∇u = PTx∂O ∇u + ∂nu n (with PTx∂O being the orthogonal projection
onto the tangent space Tx∂O at x ∈ ∂O) we use piecewise constant approximations
of the missing tangential derivative based on a piecewise linear reconstruction of the
displacement on edges of ∂Oh for given collocation data on nodes. Finally, the normal
derivative can be recovered by solving a 2 × 2 system of linear equations for each
collocation point resulting from (Cε(u))n = σn and the given tangential derivative
PTx∂O ∇u.

4.2 Implementation

As already stated in Sect. 2 we finally have to solve a finite dimensional nonlinear
optimization problem in which the 3 N parameters (αi , ai , bi )i=1,...,N of the ellipsoi-
dal holes appear as variables and additional constraints are given by (1) and (2). The
treatment of such constrained optimization problems is a classical and well-developed
field, see e.g. [26]. Here, we rely on the software package Ipopt [35,36] which
implements a Primal-Dual Interior Point Filter Line Search algorithm. The consid-
ered cost functionals are in general non-convex. Thus, we expect to compute only
local minimizers and thus at least locally optimal geometric domain patterns using
such an SQP-type method.

We employ the C++ interface of Ipopt and supply routines for the evaluation
of our (stochastic) cost functionals and the corresponding derivatives. For the Hes-
sian we make use of the built-in approximation by the SR1 update strategy. This
especially guarantees positive definiteness which is of importance here because the
Hessian becomes singular if the scaling parameters for one cell are equal and the
local geometry is invariant with respect to the rotation parameter. In Fig. 3 we plot
the objective functional over the descent iterations of the algorithm. Notice that the
objective drops slightly below the final value at some point. This is due to the fil-
ter approach which accepts an optimization step if either the cost or the constraint
violation is improved.

For the solution of the primal and dual problems as well as for the management of
our domain boundary we apply a C++ library [23] taylored to 2D BEM applications.
A typical optimization problem like in Fig. 4 below comes with 1,200 parameters
to be optimized and about 5,000 collocation points, leading to about 10,000 degrees
of freedom. Around 40 relaxation steps are performed by Ipopt until convergence
is detected. Each step on average requires 1.2 evaluations of the cost functional and
one gradient evaluation. As cached solutions are retrieved not every evaluation of the
cost functional requires the solution of the underlying elastic system. However the
corresponding matrix is dense and we have to use a direct solver—in the case cur-
rently QR-decomposition—amounting to about 98 % of the overall CPU time of 30
hours on moderate desktop hardware. The computational complexity can be drastically
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Fig. 3 Objective during optimization by Ipopt. The final value is indicated by the dashed line

Fig. 4 Different deterministic loadings and the resulting locally optimal shapes

reduced by using hierarchical preconditioning of the discretized integral equation via
the concept of H-matrices. We refer to [23] where the integration of the AHMED library
into our framework is discussed. The AHMED library provides an implementation of
the adaptive cross approximation for the construction of hierarchical matrices [7].
Based on the measurements in [23] we may expect a speedup of factor 200.

In the result sections we will also show stress plots of our investigated domains (cf.
Fig. 5). Solely for this post processing purpose a triangulation of the computational
domain is generated using the software Triangle [31,32]. At each interior vertex
the linearized strain tensor is then computed using (11). Indicator values are finally
color-coded and interpolated on each triangle using a self-written software based on
The Visualization Toolkit (VTK).

5 Deterministic structure optimization

As a counterpart to subsequent discussion of stochastic models and the optimal shapes
in a risk averse setup let us at first present some illustrative outcomes of the optimization
algorithm from Sect. 4 for a carrier plate and a cantilever under deterministic loadings.
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Fig. 5 Different types of loading indicators: determinant of the displacement gradient det ∇u, trace of the
displacement gradient tr ∇u, integrand of the compliance energy J1, von Mises stress and an additional
blow-up of the square marked in red (color figure online)

Fig. 6 Locally optimal fine scale structure of a cantilever, color-coded with the von Mises stresses on the
right (color figure online)

5.1 Carrier plate

Consider a 2D carrier plate D = [0, 1] × [0, 1] with 20 × 20 ellipsoidal holes on a
regular lattice. The shape to be optimized is a supporting construction between a fixed
floor plate, where homogeneous Dirichlet boundary conditions are prescribed, and an
upper plate, where the loading attacks. Everywhere else, i.e. especially on ellipses’
boundaries, homogeneous Neumann boundary values are assumed. Figure 4 shows
three different loading scenarios and the corresponding outcomes of our shape optimi-
zation algorithm. In Fig. 5 different types of loading indicators for the shearing case
are displayed.

5.2 Cantilever

As a second application, we study shape optimization of a 2D cantilever. Here D =
[0, 2]× [0, 1], now perforated with 40×20 holes and we aim at modeling a cantilever
that is fixed on the left side and has a deterministic downward pointing force applied
on a centered, small part of the boundary on the right. Figure 6 displays the result
together with the von Mises stress.

Let us point out that, although the above shapes have a fixed topology and lack flex-
ibility to evolve when compared to the level-set description in [15,16], one can clearly
recognize characteristic structures in the obtained results. Relatively sharp interfaces
between “void” and “non-void” regions are formed and small elongated ellipses are
approximately aligned with the main loading directions in the trusses.
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6 Risk averse stochastic structure optimization

We now turn to shape optimization under stochastic loadings. The aim is to find shapes
of elastic bodies withstanding in some “best way” not just an individual load but rather
a multitude of loads arising with certain probabilities. When exposed to some fixed
shape O, the stochastic loading induces stochastic displacements and finally, in (5),
stochastic costs J(O, ω). Thus, for any admissible shape O, the optimization criterion
yields a random cost variable J(O, ω). Shape optimization then is rephrased as mini-
mization over the family of random cost variables {J(O, ω) : O ∈ Uad}. Minimizing
over this set requires a concept of how to rank its members. In the present paper this
is achieved by applying statistical parameters.

6.1 Expected value

The most apparent approach might be to consider the expected value QE(O) :=
E (J (O, ω)) which was investigated in a classical shape optimization setup in [15].
This model already yields significantly different results compared to optimization of
the (deterministic) expected value of the applied loadings. Still it is risk neutral; critical
realizations of J(O, ω) with little impact on the expected value are given only little
priority.

To remedy this, a risk averse point of view was introduced for macroscopic geome-
try optimization in [16] which we will pick up here in the context of fine scale structure
optimization. Minimization of the expectation of the objective function is replaced by
minimization of the expectation of suitable nonlinear transformations of the objective
function

min

{
Q(O) := E (q(J(O, ω))) =

Ns∑
i=1

πi q(J(O, ωi )) : O ∈ Uad

}
, (13)

where q : R → R is a monotonically increasing function. Here, we recall that ωi

are stochastic realizations with probabilities πi for i = 1, . . . , Ns . For q(t) = t this
obviously reduces to minimizing the expected value. In the following we will how-
ever consider two different risk measures, namely the expected excess and the excess
probability.

6.2 Expected excess

Let us assume we are given a threshold value η ∈ R reflecting some critical level
of loading. The expected excess then arises by using the weight function q(t) =
max{t − η, 0}:

QEEη (O) := E (max{J(O, ω)− η, 0}) . (14)
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Effectively this expectation “ignores” realizationsωwhose cost is below the threshold,
thereby paying more attention to those exceeding it. To improve numerical tractability
we replace the max-function by a smooth approximation

Qε
EEη (O) := E

(
qε(J(O, ω)))

where qε(t) := 1
2

(√
(t − η)2 + ε + (t − η)

)
, ε > 0.

6.3 Excess probability

If, for a given threshold η, it only matters whether the cost threshold η is exceeded
or not, one ends up with the weight function q(t) = H(t − η) with H denoting
the Heaviside function defined by H(t) = 1 for t > 0 and 0 otherwise. The excess
probability then reads:

QEPη (O) := E (H (J(O, ω)− η)) . (15)

In fact, this objective just adds up the probabilities of the realizations exceeding the
threshold. A suitable smooth approximation is given by

Qε
EPη (O) := E

(
H ε(J(O, ω)))

for H ε(t) :=
(

1 + e− 2(t−η)
ε

)−1
.

6.4 Evaluation of objectives and derivatives

To be able to evaluate the various objective functionals and their gradients the primal
and dual solutions u(O, ω) ∈ H1

�D
(D; R

2) and p(O, ω) ∈ H1
�D
(D; R

2) need to be
known for all ω. However under our requirement that k(·) is a linear or quadratic
function, we can employ a significant shortcut for Ns � 1, which was broken down
in [15]. The crucial point is that the dependence of the primal and dual solution onω is
linear. We can therefore consider a “basis” of (deterministic) surface loads g1, . . . , gK

and write the actual loads g(ω) as linear combinations

g(ω) =
K∑

j=1

cg
j (ω)g j

with uncertain coefficients cg
j (ω) ∈ R, j = 1, . . . , K . Doing so we only need to solve

as many PDEs as there are basis forces, which will significantly reduce the computing
cost in case Ns � K . Let us assume we obtain primal solutions u j for surface loads
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g := g j and j = 1, . . . , K . Then for linearity reasons

u (O;ω) :=
K∑

j=1

cg
j (ω)u

j (16)

is the unique minimizer of (4) with surface load g := g(ω). If we additionally assume∑K
j=1 cg

j (ω) = 1—which can always be achieved by altering the basis forces appro-
priately—a similar relation holds for the adjoint solution. Here it is important that
because of k depending linearly or quadratically on u, the dependence of k,u on u is
linear. Therefore, given the dual solutions for the basis forces p j one obtains

p (O;ω) :=
K∑

j=1

cg
j (ω)p

j (17)

as the unique minimizer of (9) belonging to u (O;ω).
With the primal and dual solutions at hand we can compute the stochastic shape

derivative of the objective functionals. Because of the transformations q the chain rule
has to be applied and we finally obtain

(QE)
′ (O) (v) = E

(
J′(O, ω)(v)) =

Ns∑
i=1

πi J ′(O;ωi )(v),

(
Qε

EEη

)′
(O) (v) =

Ns∑
i=1

πi

2
J′ (O;ωi )(v)

(
J (O, ωi )− η√

(J (O, ωi )− η)2 + ε
+ 1

)
,

(
Qε

EPη

)′
(O) (v) =

Ns∑
i=1

2

ε
πi J′ (O, ωi )(v) e− 2

ε (J(O,ωi )−η)
(

1 + e− 2
ε (J(O,ωi )−η)

)−2
.

To assemble the cost functional and the gradient of the cost in the optimization algo-
rithm one has to compute for the current discretized domain Oh once the K discretized
primal base deformations U j (Oh) and the corresponding discretized dual base states
P j (Oh). From these, we can efficiently compute the effective deformations U (O, ωi )

and the effective dual states P(O, ωi ) for a possibly very large set of scenarios and
then evaluate the stochastic shape derivative.

6.5 Results

In the remainder of this section we will present results for two applications already con-
sidered with respect to macroscopic geometry optimization in [16]. The first one fea-
tures two fixed bearings which are loaded in different directions from the top whereas
the bottom of the investigated domain is kept fixed. We consider the compliance cost
and search for the optimal construction of trusses underneath these bearings. The sec-
ond one models a cantilever fixed on the left hand side with a vertical load distribution
applied on the lower boundary. Here we look for an optimal design minimizing the
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Fig. 7 Initial configuration with
a sketch of the applied stochastic
loading

(a) (b) (c) (d)

Fig. 8 Results for optimization with respect to the expected value for different values of volume V

displacement of the loaded surface. All computations are performed on the domain
D = [0, 2] × [0, 1] perforated with 40 × 20 ellipsoidal holes and start from the initial
configuration shown in Figs. 7 and 12 respectively. To ensure an effective minimiza-
tion of the stochastic cost functional, it turned out that in the excess probability case a
substantial regularization is indispensable. In fact, here we have chosen the regulariza-
tion parameter ε such that the transition range between Hε = 0.2 and Hε = 0.8 takes
place on an approximate fraction of 0.3 of the total cost range in the application. The
regularization in the expected excess model is less critical. Indeed, we have chosen
values for ε between 10−5 and 10−8.

6.5.1 Trusses underneath two fixed bearings

The loading scenario we consider here is depicted in Fig. 7. Five loads act on the
right bearing with probability 0.19. Corresponding loads on the left bearing are twice
as strong but only appear by a chance of 0.01. These loads are supposed to be the
critical ones. However, on average, they only have minor impact. All of them can be
combined using four basis forces consisting of the two unit vectors on top of the left
and the right bearing.

In Fig. 8 we compare the shapes which (locally) minimize the expected value of
the compliance cost functional for different volumes V . As expected the results dif-
fer significantly from those that would have been obtained when optimizing for the
expected value of the applied loadings. In the latter case the resulting shape would
actually consist of two vertical trusses which have a very weak response to transversal
loadings.

Next, we investigate risk averse shape optimization for this setting. In Fig. 9 a fam-
ily of optimized shapes for varying excess parameter η is depicted. Here and below we
used V = |D|−0.3752π for the volume constraint. We experimentally observe a con-
tinuous evolution of the geometry with η, even though each of the computations has
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(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 9 A sequence of results for the optimization with respect to the expected excess for varying η. The
underlying loading is shown in Fig. 7

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 10 Objective values (scaled by 103) are rendered with bar charts for the shapes in Fig. 9. The bar
thickness is chosen proportional to the probability of the corresponding scenario

been restarted from the same initial configuration (cf. Fig. 7). For small values of η the
observed shapes are still close to the one obtained when optimizing for the expected
value. However as the threshold parameter is increased scenarios with low objectives,
i.e. the ones on the right, become more and more disregarded, see also Fig. 10. Because
of the regularized formulation of the stochastic cost functional they are still taken into
account but only with decreasing weight. As a consequence less “material” is needed
for these realizations permitting more flexibility for the specific optimization of the
critical scenarios on the left bearing. Beyond a certain threshold value even those are
no longer relevant, which becomes apparent in the last two images.

We now turn to the excess probability risk measure. Albeit somewhat related to the
expected excess different phenomena can be observed. Because the amount of excess
is completely irrelevant, low weighted scenarios with high objective values (the ones
on the left) are considered to be “lost” for small values of η, thereby leaving the left
part of the computational domain unoptimized (cf. Fig. 11). Indeed one observes that
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(a) (b) (c) (d)

Fig. 11 A sequence of results for the optimization with respect to the excess probability for varying η. The
underlying loading is shown in Fig. 7

objective values for the 5 scenarios on the left increase while the algorithm focuses on
pushing the costs for the high-probability realizations on the right below the threshold.

To sum up we remark that the expected value causes a weighted averaging over
all optimal shapes for single scenarios. In contrast for the expected excess there is no
further need to optimize scenarios whose objective values have already been pushed
below the threshold thereby allowing more flexibility for cost reduction of the other
realizations. Finally the excess probability only addresses how likely scenarios exceed
the threshold leading to full ignorance of scenarios high above. As to the used regu-
larization for the risk measures Qε

EEη
,Qε

EPη
one has to bear in mind that the threshold

behavior discussed above is smeared out. Cost reduction of single scenarios in the
vicinity of η is therefore always favorable.

6.5.2 Cantilever with vertical loading distribution

Our second investigated example deals with a cantilever construction fixed at a Di-
richlet boundary on the left whose lower boundary is subject to vertical loads with a
random spatial distribution. We use five basis loads and build up two different random
loading schemes, each consisting of ten scenarios with varying probability (cf. Fig. 12).
The two different loading schemes have the same expected value of the loads (cf. bot-
tom sketch of the load distribution in both loading schemes of Fig. 12). Their main
difference is that the first configuration is characterized by a single, high probability
load scenario on the right end of the lower beam whereas the second configuration has
a single, high probability load scenario acting on the left.

For this example we use the deflection of the lower beam ((7) with u0 = 0) as objec-
tive functional leading to an adjoint problem truly different from the primal problem.
We have chosen V = |D| − 0.3752π for the volume constraint.

In this example the basis loads are applied spatially separated and only positive
weights are used for building up the load for each scenario. Therefore no cancellation
effect as in our first example can occur and the resulting shapes for the expected value
measure differ only slightly from the one obtained by optimizing for the expected value
of the loads. On the other hand the stochastic loadings are applied on a continuous
part of the boundary which seems to bring up a more complicated energy landscape
than in the example before. Let us emphasize that we are able to search only for local
minima and that we started all our computations from the same initial domain shown
in Fig. 12. In contrast to the first example, we are dealing with at least one dominating
scenario in each of the two schemes leading to a broader range of objective values.
We therefore drop an analysis of the shapes for varying threshold η here and use this
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Fig. 12 Top Initial configuration, basis loads on lower boundary and result for deterministic optimization
with respect to the expected value of the applied loadings. Bottom Sketch of the loadings for the two dif-
ferent loading schemes consisting of 10 scenarios each and results of the optimization with respect to the
expected excess (top) and excess probability (bottom) for η = 1

example to again underline the differences of the considered risk measures for η = 1
being fixed.

For the first loading scheme all scenarios except the last one have an objective value
close to the threshold already for the initial configuration. Optimization with respect
to the expected excess therefore focuses on improving the structure for the scenario
loading the right end of the lower boundary. This especially results in a thicker truss
on the right when compared to the outcome of the optimization with respect to the
expected value (cf. Fig. 12). For the excess probability however the last scenario is out
of reach and therefore “lost”. Because of the regularization parameter several other
scenarios still have influence on the overall cost. Among these scenarios 1 and 3 have
significantly higher probabilities than the rest and optimization is therefore basically
carried out for their loads.

For the second loading scheme scenario 2 imposes a high load on the right end
of the lower border and thereby clearly exceeds the threshold. Its probability how-
ever is among the lowest and so it enters the expected excess only with a negligible
weight. The optimization is rather steered by the dominating scenario 10 leading
to massive support in the left area of the domain. This scenario also characterizes
the outcome for the excess probability risk measure. Like in the first scheme, sce-
nario 2 gets very low priority in the optimization. High probability scenarios near the
threshold are again considered for optimization showing a structure similar to the one
obtained for the expected excess. However due to the fact that the amount of excess
is not crucial, scenario 10 is less dominant resulting in a less dense structure than
before.
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To conclude we present a cross-check of the results for each scheme in the follow-
ing table which lists values for each of the considered risk measures on each of the
different domains obtained by running our optimization algorithm for the different
cost functionals.

QE(·) QEEη (·) QEPη (·)
Loading scheme 1

OE 1.177 0.402 0.466
OEEη 1.205 0.377 0.511
OEPη 1.501 0.808 0.418

Loading scheme 2
OE 1.102 0.279 0.495
OEEη 1.127 0.259 0.532
OEPη 1.181 0.384 0.483

7 A brief comparison of perforated materials and laminates

As mentioned earlier our computed shape optimization results reveal two interesting
phenomena: On the one hand one can observe the formation of macroscopic geom-
etries represented by the region with holes with radii below ( 1

2 − δ)h. On the other
hand fine anisotropic structures are developing within these (macroscopic) shapes.
Although our model presented here aims at allowing many fine holes it is still a one-
scale approach. However when looking at the results (e.g. Fig. 4) a periodic pattern
with respect to the shape of the ellipsoidal holes attracts attention and a two-scale
approach assuming a periodic mircostructure seems natural.

Such a setting is related to the homogenization method introduced by Allaire [1]
in the field of shape optimization. The main difference being the type of admissible
microstructure. In [2,4] nested sequential laminates as microstructure were taken into
account. The resulting macroscopic material properties can be computed explicitly
and hence a relaxing variational approach could be used on the macroscale. Indeed,
optimization is then carried out for the lamination directions and the relative mate-
rial density. In particular, for a single fixed load rank-2 sequential laminates with the
lamination directions aligned with the stress eigendirections are known to be optimal
for compliance minimization in 2D. However, different from the perforated domains
they are difficult to manufacture. For this reason, optimization is often followed by a
postprocessing step in which composite regions are penalized. The outcomes reveal
similar structures to the ones we observed for our results, compare for instance Fig. 1
with [1, Fig. 5.28, p. 399]. Furthermore it seems that the orientations of the ellipses’
semi-major axes also aligned with the main directions of stress. Similar observations
for numerical optimization results have been made e.g. in [34].

In the context of the homogenization method employing laminates [5] formally
derives an interesting relation: If the Lagrange multiplier related to the volume con-
straint tends to infinity the relaxed optimization problem is asymptotically equivalent
to the Michell truss problem [25]. In this setting one optimizes a network made up of
arbitrarily many hinge joints connected by elastic rods. It is assumed that the cross-
section of the rods is proportional to the tensile or compressive stress the rod can
withstand. To achieve an optimal design the rods have to be aligned with the principal
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stress directions and have to be able to bear a load proportional to the correspond-
ing principal stresses. Thus, searching for the lightest structure one has to minimize
the integral over the sum of the principal stresses. Indeed, up to material constants
this minimization problem coincides with the limit of the relaxed formulation in the
context of laminates in [5]. It is therefore not surprising that the results obtained here
share characteristic features with optimal Michell truss networks.
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