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Abstract Consider the BFGS quasi-Newton method applied to a general non-con-
vex function that has continuous second derivatives. This paper aims to construct a
four-dimensional example such that the BFGS method need not converge. The exam-
ple is perfect in the following sense: (a) All the stepsizes are exactly equal to one;
the unit stepsize can also be accepted by various line searches including the Wolfe
line search and the Arjimo line search; (b) The objective function is strongly convex
along each search direction although it is not in itself. The unit stepsize is the unique
minimizer of each line search function. Hence the example also applies to the global
line search and the line search that always picks the first local minimizer; (c) The
objective function is polynomial and hence is infinitely continuously differentiable.
If relaxing the convexity requirement of the line search function; namely, (b) we are
able to construct a relatively simple polynomial example.

Keywords Unconstrained optimization · Quasi-Newton method · Non-convex
function · Global convergence
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1 Introduction

Consider the unconstrained optimization problem

min f (x), x ∈ Rn, (1.1)
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502 Y.-H. Dai

where f is a general non-convex function that has continuous second derivatives. The
quasi-Newton method is a class of well-known and efficient methods for solving (1.1).
It is of the iterative scheme

xk+1 = xk − αk Hkgk, (1.2)

where x1 is a starting point, Hk is some approximation to the inverse Hessian
[∇2 f (xk)]−1, gk = ∇ f (xk), and αk is a stepsize obtained in some way. Defining
the vectors

δk = xk+1 − xk, γ k = gk+1 − gk,

the quasi-Newton method asks the next approximation matrix Hk+1 to satisfy the
secant equation

Hk+1γ k = δk . (1.3)

This similarity to the identical equation [∇2 f (xk+1)]−1γ k = δk in the quadratic case
enables the quasi-Newton method to be superlinearly convergent (see Dennis and
Moré [5], for example) and makes it very attractive in practical optimization.

The first quasi-Newton method was dated back to Davidon [4] and Fletcher and
Powell [8]. The DFP method updates the approximation matrix Hk to Hk+1 by the
formula

Hk+1 = Hk − Hkγ kγ
T
k Hk

γ T
k Hkγ k

+ δkδ
T
k

δT
k γ k

. (1.4)

Nowadays, the most efficient quasi-Newton method is perhaps the BFGS method,
which was proposed by Broyden [2], Fletcher [6], Goldfarb [9], and Shanno [18],
independently. The matrix Hk+1 in the BFGS method can be updated by the way

Hk+1 = Hk − δkγ
T
k Hk + Hkγ kδ

T
k

δT
k γ k

+
(

1 + γ T
k Hkγ k

δT
k γ k

)
δkδ

T
k

δT
k γ k

. (1.5)

To pass the positive definiteness of the matrix Hk to Hk+1, practical quasi-New-
ton algorithms make use of the Wolfe line search to calculate the stepsize αk , which
ensures a positive curvature to be found at each iteration; namely, δT

k γ k > 0. More
exactly, defining the one-dimensional line search function

�k(α) = f (xk − αHkgk), α ≥ 0, (1.6)

the Wolfe line search consists in finding a stepsize αk such that

�k(αk) ≤ �k(0) + μ� ′
k(0) αk (1.7)
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and

� ′
k(αk) ≥ η � ′

k(0), (1.8)

where μ and η are constants with 0 < μ ≤ η < 1.
There have been a large quantity of research works devoting to the global conver-

gence of the quasi-Newton method (see Yuan [21] and Sun and Yuan [20], for exam-
ple). Specifically, Powell [14] showed that the DFP method with exact line searches
is globally convergent for uniformly convex functions. In another paper [15], Powell
established the global convergence of the BFGS method with the Wolfe line search for
uniformly convex functions. This result was extended by Byrd, Nocedal and Yuan [1]
to the whole Broyden’s convex family of methods except the DFP method. Therefore
it is natural to ask the following question: Does the DFP method with the Wolfe line
search converge globally for uniformly convex functions? On the other hand, since the
BFGS method with the Wolfe line search works well for both convex and non-convex
functions, we might ask another question: Does the BFGS method with the Wolfe line
search converge globally for general functions? The difficulty and importance of the
two convergence problems has been addressed in many situations, including Nocedal
[13], Fletcher [7], and Yuan [21].

Recent studies provide a negative answer to the convergence problem of the BFGS
method for nonconvex functions. As a matter of fact, in an early paper [16], which ana-
lyzes the convergence properties of the conjugate gradient method, Powell mentioned
that the BFGS method need not converge if the line search can pick any local mini-
mizer of the line search function �k(α). After further studies on the two-dimensional
example in [16], Dai [3] presented an example with six cycling points and showed by
the example that the BFGS method with the Wolfe line search may fail for nonconvex
functions. Later, Mascarenhas [12] constructed a three-dimensional counter-example
such that the BFGS method does not converge if the line search picks the global mini-
mizer of the function �k(α). It should be noted that the stepsize in the counter-example
of [12] also satisfies the Wolfe line search conditions. However, neither examples are
such that the stepsize is the first local minimizer of the line search function �k(α).

Surprisingly enough, if there are only two variables, and if the stepsize is chosen
to be the first local minimizer of �k(α); namely,

αk = arg min {α > 0 : α is a local minimizer of �k(α)}, (1.9)

Powell [17] established the global convergence of the BFGS method for general twice
continuously differentiable function. Powell’s proof makes use of the principle of con-
tradiction and is quite sophisticated. Assuming the nonconvergence of the method and
the relation lim inf

k→∞ ‖gk‖ 
= 0, Powell showed that the limit points of the BFGS path

P = {x : x lies on the line segment connecting xk and xk+1 for some k ≥ 1}

(that is exactly the same as the Polak-Ribière conjugate gradient path if n = 2 and
gT

k+1δk = 0 for all k) forms some line segment L. The use of the specific line
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search (1.9) is such that the objective function is monotonically decreasing on the line
segment Lk that connects xk and xk+1. It follows that f (x) ≡ lim

k→∞ f (xk) for all

x ∈ L. Consequently, the line segment Lk cannot cross L and all the points xk with
large indices lies in the same side of L. Furthermore, Powell showed that starting
around from one end of the line segment L, the BFGS path can not get any close to the
other end of L and finally obtained a contradiction. Intuitively, it is difficult to extend
Powell’s result to the case when n ≥ 3. This is because, even if it has been shown
that the BFGS path tends to some limit line segment L, each line segment Lk could
turn around L providing that n ≥ 3, making the similar analysis of the BFGS path
complicated and nearly impossible.

The purpose of this paper is to construct a four-dimensional counter-example for
the BFGS method with the following features:

(a) All the stepsizes in the example are exactly equal to one; namely,

αk ≡ 1; (1.10)

For the search direction defined by the BFGS update in the example, a unit step-
size satisfies various line search conditions, including the Wolfe conditions and
the Armijo conditions;

(b) The objective function is strongly convex along each search direction; namely,
the line search function �k(α) is strongly convex for all k, although the objective
function is not in itself. The unit stepsize is the unique minimizer of �k(α). Hence
the example also applies to the global line search and the specific line search
(1.9);

(c) The objective function is polynomial and hence is infinitely continuously
differentiable.

On the other hand, the objective function in our example is linear in the third and
fourth variables and thus has no local minimizer. However, the iterations generated by
the BFGS method tend to a non-stationary point.

As seen from Sect. 3.4, the construction of the example is quite complicated. To be
such that the line search function �k(α) is strongly convex, a polynomial of degree 38
is introduced. Nevertheless, if we relax the convexity requirement of �k(α); namely,
(b) in the above, it is possible to construct a relatively simple polynomial example of
low degree (see Sect. 3.3).

The construction of our examples can be divided into four procedures: (1) Prefix
the special forms of the steps {δk} and gradients {gk}, leaving several parameters to
be determined later. In this case, once x1 is given, the whole sequence {xk} is fixed.
As seen in Sect. 2.1, our steps {δk} and gradients {gk} are asked to possess some
symmetrical and cyclic properties and to push the iterations {xk} tend to the eight
vertices of a regular octagon. This is very helpful in simplifying the construction of
the examples and we can focus our attention on the choice of the parameter t , that
answers for the decay of the last two components of δk and the first two components
of gk . (2) To enable the BFGS method to generate those prefixed steps, investigate
the consistency conditions on the steps {δk} and gradients {gk}. With the prefixed
forms of {δk} and {gk}, we show in Sect. 2.2 that the unit stepsize is indispensable,
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whereas this stepsize is usually used as the first trial stepsize in the implementation of
quasi-Newton methods. Four more consistency conditions on {δk} and {gk} are
obtained in Sect. 2.3 by expressing the vectors Hk+1γ k, Hk+1gk+1, Hk+1gk+2 and
Hk+1gk+3 by some δk’s and gk’s instead of considering the quasi-Newton matrix
Hk+1 itself. (3) Choose the parameters in some way to satisfy the consistency condi-
tions and other necessary conditions on the objective function. As seen in Sect. 2.4, the
first three consistency conditions are actually corresponding to some under-determined
linear system. Substituting its general solution by the Cramer’s rule into the fourth
consistency condition, we are led to a nonlinear equation from which the exact value
can be obtained for the decay parameter t . By suitably choosing the other parameters,
we can express all the quasi-Newton updating matrices including the initial choice for
H1 in Sect. 2.5. (4) Construct a suitable objective function f whose gradients are the
preassigned values; namely, ∇ f (xk) = gk for all k ≥ 1 and the line search has the
desired properties. This will be done in the whole third section. To make full use of
symmetrical and cyclic properties of the steps {δk} and {gk}, we carefully choose a
special form of the objective function. In addition, the introduction of element func-
tion φ in Sect. 3.4 helps us greatly to convexify the line search function and finally
complete the perfect example that meets all the requirements (a), (b) and (c). Some
concluding remarks are given in the last section.

2 Looking for consistent steps and gradients

2.1 The forms of steps and gradients

Consider the case of four dimension. Inspired by [3,16] and [12], we assume that the
steps {δk} have the following form:

δ1 = (η1, ξ1, γ1, τ1)
T ; δk+1 = M δk (k ≥ 1), (2.1)

where M is the 4 × 4 matrix defined by

M =

⎡
⎢⎢⎣
(

cos θ1 − sin θ1
sin θ1 cos θ1

)
0

0 t

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
⎤
⎥⎥⎦ . (2.2)

In the above, t is a parameter satisfying 0 < |t | < 1. This parameter answers for
the decay of the last two components of the steps {δk}. The angles θ1 and θ2 are chosen
so that θ1 = 2 π

m1
and θ2 = 2 π

m2
for some positive integers m1 and m2. Specifically, we

choose in this paper

θ1 = 1

4
π, θ2 = 3

4
π. (2.3)

Consequently, the first two components of the steps {δk} turn to the same after every
eight iterations, and the last two components will shrink at a factor of t8 after every
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eight iterations. Further, we can see that the iterations {xk} will tend to turn around
the eight vertices of some regular octagon (see Sect. 3.1 for more details).

Accordingly, the gradients {gk} are assumed to be of the form

g1 = (l1, h1, c1, d1)
T ; gk+1 = P gk (k ≥ 1), (2.4)

where

P =

⎡
⎢⎢⎣

t

(
cos θ1 − sin θ1
sin θ1 cos θ1

)
0

0

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
⎤
⎥⎥⎦ . (2.5)

Since 0 < |t | < 1, we see that the first two components of {gk} vanish, whereas the
last two components of the gradient {gk}, turn to the same after eight iterations. It
follows that none of the cluster points generated by the BFGS method are stationary
points.

2.2 Unit stepsizes

It is well known that the unit stepsize is usually used as the first trial stepsize in
practical implementations of the BFGS method. Under suitable assumptions on f , the
unit stepsize will be accepted by the line search as the iterates tend to the solution and
will enable a superlinear convergence step (see [5], for example). In the following, we
are going to show that if the line search satisfies

gT
k+1δk = 0, for all k ≥ 1, (2.6)

and if the steps generated by the BFGS method have the form (2.1)–(2.2) and the gra-
dients have the form (2.4)–(2.5), then the use of unit stepsizes is also indispensable.

To begin with, we see that the line search condition (2.6), the secant equation (1.3)
and the definition of the search direction

Hk+1gk+1 = −α−1
k+1δk+1 (2.7)

indicate that

δT
k+1γ k = −αk+1gT

k+1 Hk+1γ k = −αk+1gT
k+1δk = 0. (2.8)

The above relation (2.8) is sometimes called as the conjugacy condition in the context
of nonlinear conjugate gradient methods.

By multiplying the BFGS updating formula (1.5) with gk+1 and using (2.6),

Hk+1gk+1 = Hkgk+1 − γ T
k Hkgk+1

δT
k γ k

δk,
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which with (2.7) gives

Hkgk+1 = −α−1
k+1δk+1 + γ T

k Hkgk+1

δT
k γ k

δk . (2.9)

Multiplying (2.9) by gT
k and noticing gT

k Hkgk+1 = 0, we get that

0 = −α−1
k+1gT

k δk+1 + γ T
k Hkgk+1

δT
k γ k

gT
k δk = −α−1

k+1gT
k δk+1 − γ T

k Hkgk+1.

Thus γ T
k Hkgk+1 = −α−1

k+1gT
k δk+1 = −α−1

k+1gT
k+1δk+1. Hence, by (2.9),

Hkgk+1 = −α−1
k+1δk+1 − α−1

k+1

gT
k+1δk+1

δT
k γ k

δk . (2.10)

It follows from (2.10) and (2.7) with k replaced by k − 1 that

Hkγ k = −α−1
k+1δk+1 +

[
α−1

k − α−1
k+1

gT
k+1δk+1

δT
k γ k

]
δk . (2.11)

Further, substituting this into the BFGS updating formula (1.5) yields

Hk+1 = Hk + α−1
k+1

δkδ
T
k+1 + δk+1δ

T
k

δT
k γ k

+
[

1−α−1
k + α−1

k+1

gT
k+1δk+1

δT
k γ k

]
δkδ

T
k

δT
k γ k

.

(2.12)

The above new updating formula requires the quantity δk+1, that depends on Hk+1
itself, and hence has theoretical meanings only.

Lemma 2.1 Assume that (2.6) holds. Then for all k ≥ 1 and i ≥ 0, the vector
Hkgk+i +α−1

k+iδk+i belongs to the subspace spanned by δk, δk+1, . . . , δk+i−1; namely,

Hkgk+i + α−1
k+iδk+i ∈ Span{δk, δk+1, . . . , δk+i−1}. (2.13)

Proof For convenience, we write (2.12) as

Hk+1 = Hk + V (sk, sk+1), (2.14)

where V (sk, sk+1) means the rank-two matrix in the right hand of (2.12). Therefore
we have for all i ≥ 1,

Hk+i = Hk +
i∑

j=1

V (sk+ j−1, sk+ j ). (2.15)
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The statement follows by multiplying the above relation with gk+i and using (2.7)
with k replaced by k + i − 1 and gT

k+iδk+i−1 = 0. �
Lemma 2.2 To construct a desired example with Det (S1) 
= 0, we must have that

αk = 1, for all k ≥ 4.

Proof Define the following matrices

Gk = [
γ k−1 gk gk+1 gk+2

]
,

Sk = [
δk−1 δk δk+1 δk+2

]
.

By Hkγ k−1 = δk−1 and Lemma 2.1, we can get that

Det(Hk) Det(Gk) = Det
[
Hkγ k−1 Hkgk Hkgk+1 Hkgk+2

]
= Det

[
δk−1 − α−1

k δk − α−1
k+1δk+1 − α−2

k+2δk+2
]

= −α−1
k α−1

k+1α
−1
k+2Det(Sk).

(2.16)

Replacing k with k + 1 in the above yields

Det(Hk+1) Det(Gk+1) = −α−1
k+1α

−1
k+2α

−1
k+3Det(Sk+1). (2.17)

On the other hand, due to the special forms of {gk} and {δk}, we know that Gk+1 =
PGk and Sk+1 = M Sk . Hence

Det(Gk+1) = Det(P) Det(Gk) = t2 Det(Gk),

Det(Sk+1) = Det(M) Det(Sk) = t2 Det(Sk).
(2.18)

Due to the basic determinant relation of the BFGS update, (2.6) and (2.7), it is not
difficult to see that

Det(Hk+1) = δT
k H−1

k δk

δT
k γ k

Det(Hk) = αkDet(Hk). (2.19)

If Det(S1) 
= 0, (2.16) with k = 1 implies that Det(G1) 
= 0. Then by (2.18),

Det(Gk) 
= 0, Det(Sk) 
= 0, for all k ≥ 1. (2.20)

Dividing (2.17) by (2.16) and using the above relations, we then obtain

αk+3 = 1.

So the statement holds due to the arbitrariness of k ≥ 1. �
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The deletion of the first finite iterations does not influence the whole example. Thus
we will ask our counter-example to satisfy

Det(S1) 
= 0 (2.21)

and

αk ≡ 1. (2.22)

In this case, the updating formula (2.12) of Hk can be simplified as

Hk+1 = Hk + δkδ
T
k+1 + δk+1δ

T
k

δT
k γ k

− gT
k+1δk+1

gT
k δk

δkδ
T
k

δT
k γ k

. (2.23)

2.3 Consistency conditions

Now we ask what else conditions, besides the requirement of unit stepsizes, have to
be satisfied by the parameters in the definitions of {gk} and {δk} so that the steps
{sk; k ≥ 1} can be generated by the BFGS update. Our early idea is based on the
observation on the updating formula (1.5) that Hk+1 is linear with Hk and the linear
system

H8 j+9 = diag(t−4 E2, t4 E2) H8 j+1 diag(t−4 E2, t4 E2), (2.24)

where E2 is the two-dimensional identity matrix. However, this way seems to be quite
complicated.

Notice that the dimension is n = 4 and by Lemma 2.2, the assumption (2.21)
implies (2.20). Then the matrix Hk+1 can be uniquely defined by the equations given
by Hk+1γ k, Hk+1gk+1, Hk+1gk+2 and Hk+1gk+3. As a matter of fact, we have that

Hk+1γ k = δk (the secant equation), (2.25)

Hk+1gk+1 = −δk+1 (by (2.7) and αk ≡ 1), (2.26)

Hk+1gk+2 = −δk+2 + gT
k+2δk+2

gT
k+1δk+1

δk+1 (by (2.10) and αk ≡ 1), (2.27)

Hk+1gk+3 = −δk+3 +
(

gT
k+3δk+3

gT
k+2δk+2

+ gT
k+3δk+1

gT
k+1δk+1

)
δk+2

−
(

gT
k+2δk+2

gT
k+1δk+1

)(
gT

k+3δk+1

gT
k+1δk+1

)
δk+1. (2.28)

The last equality is obtained by multiplying (2.23) by gk+2, using (2.27) and finally
replacing k with k + 1.
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Relations (2.25)–(2.28) provide a system of 16 equations, while the symmetric
matrix Hk+1 only has 10 independent entries. How to ensure that this linear system
has a symmetric solution Hk+1? We have the following general lemma.

Lemma 2.3 Assume that {u1, u2, . . . , un} and {v1, v2, . . . , vn} are two sets of
n-dimensional linearly independent vectors. Then there exists a symmetric matrix
H ∈ Rn×n satisfying

Hui = vi , i = 1, 2, . . . , n (2.29)

if and only if

uT
i v j = uT

j vi , ∀ i, j = 1, 2, . . . , n. (2.30)

Proof The “only if” part. If H = H T satisfies (2.29), we have for all i, j =
1, 2, . . . , n, uT

i v j = uT
i Hu j = uT

i H T u j = (Hui )
T u j = vT

i u j .

The “if” part. Assume that (2.30) holds. Defining the matrices

U = (u1, u2 . . . , un) , V = (v1, v2 . . . , vn) , (2.31)

direct calculations show that

U T HU = U T V =

⎛
⎜⎜⎜⎝

uT
1 v1 uT

1 v2 · · · uT
1 vn

uT
2 v1 uT

2 v2 · · · uT
2 vn

· · · · · · · · · · · ·
uT

n v1 uT
n v2 · · · uT

n vn

⎞
⎟⎟⎟⎠ := A. (2.32)

By (2.30), A is symmetric. So H = U−T AU−1 satisfies H = H T and (2.29). This
completes our proof. �

By the above lemma, the following six conditions are sufficient for the linear system
(2.25)–(2.28) to allow a symmetric solution matrix Hk+1.

gT
k+1(Hk+1γ k) = (Hk+1gk+1)

T γ k,

gT
k+2(Hk+1γ k) = (Hk+1gk+2)

T γ k,

gT
k+3(Hk+1γ k) = (Hk+1gk+3)

T γ k,

gT
k+2(Hk+1gk+1) = (Hk+1gk+2)

T gk+1,

gT
k+3(Hk+1gk+1) = (Hk+1gk+3)

T gk+1,

gT
k+3(Hk+1gk+2) = (Hk+1gk+3)

T gk+2.

Further, considering the whole sequence of {Hk+1; k ≥ 1} and combining the line
search condition gT

k+1δk = 0, we can deduce the following four consistency condi-
tions, which should be satisfied for all k ≥ 1,
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gT
k+1δk = 0, (2.33)

δT
k+1γ k = 0, (2.34)

gT
k+2δk = −δT

k+2γ k, (2.35)

gT
k+3δk = −δT

k+3γ k +
(

gT
k+3δk+3

gT
k+2δk+2

+ gT
k+3δk+1

gT
k+1δk+1

)
δT

k+2γ k . (2.36)

The positive definiteness of the matrix Hk+1 will be further considered in Sect. 2.5.

2.4 Choosing the parameters

In this subsection we focus on how to choose the decay parameter t and suitable vec-
tors δ1 and g1 such that the consistency conditions (2.33), (2.34), (2.35) and (2.36)
hold with k = 1. Due to the special structure of this example, we then know that the
consistency conditions hold for all k ≥ 2.

Define v = (�1 �2 �3 �4)
T , where

�1 = l1η1 + h1ξ1, �2 = h1η1 − l1ξ1, �3 =c1γ1 + d1τ1, �4 = d1γ1 − c1τ1.

(2.37)

As will be seen, the first three consistent conditions provide an under-determined lin-
ear system with v, from which we can get a general solution by the Cramer’s rule. The
substitution of v into the fourth condition (2.36), which is nonlinear, yields a desired
value for the decay parameter t .

At first, the condition δT
1 g2 = δT

1 Pg1 = 0, that is (2.33) with k = 1, asks

[t cos θ1 − t sin θ1 cos θ2 − sin θ2] v = 0. (2.38)

The condition δT
2 γ 1 = δT

1 MT (P − I )g1 = δT
1 (t I − MT )g1 = 0, that is (2.34) with

k = 1, requires the vector v to satisfy

[t − cos θ1 − sin θ1 t (1 − cos θ2) − t sin θ2] v = 0. (2.39)

The requirement (2.35) with k = 1, that is,

0 = δT
1 g3 + δT

3 γ 1 = δT
1 P2g1 + δT

1 (M2)T (P − I )g1

= δT
1 [P2 + t MT − (M2)T ]g1,

yields the equation[
t cos θ1 + (t2 − 1) cos 2θ1 t sin θ1 − (1 + t2) sin 2θ1

t2(cos θ2 − cos 2θ2) + cos 2θ2 t2(sin θ2 − sin 2θ2) − sin 2θ2

]
v = 0. (2.40)

By (2.38), (2.39), (2.40) and the choices of θ1 and θ2, we see that {�i } must satisfy
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⎡
⎢⎢⎣

√
2

2 t −
√

2
2 t −

√
2

2 −
√

2
2

t −
√

2
2 −

√
2

2 (1 +
√

2
2 )t −

√
2

2 t√
2

2 t
√

2
2 t − (1 + t2) −

√
2

2 t2 (
√

2
2 + 1)t2 + 1

⎤
⎥⎥⎦
⎛
⎜⎜⎝

�1
�2
�3
�4

⎞
⎟⎟⎠ = 0. (2.41)

By the Cramer’s rule, to meet (2.41), we may choose {�i } as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 = ±
[
(2 + √

2)t3 + (1 + √
2)t + 1

]
,

�2 = ±
[
(2 + √

2)t3 + (1 + √
2)t − 1

]
,

�3 = ±
[
−√

2 t3 + 2t2 + (1 − √
2)t + 1

]
,

�4 = ±
[√

2 t3 − 2t2 + (1 + √
2)t − 1

]
.

(2.42)

Since gT
1 δ1 = �1 +�3 = ±2(t + 1)(t2 + 1) and 0 < |t | < 1, we choose all the signs

in (2.42) as − so that gT
1 δ1 < 0.

We now want to substitute the general solution to the fourth consistent condition
(2.36). Noting that δT

3 γ 1 = −gT
3 δ1 and gT

4 δ4 = t gT
3 δ3, we know that (2.36) with

k = 1 is equivalent to

gT
4 δ1 + gT

2 δ4 − gT
1 δ4 + gT

3 δ1

[
t + gT

4 δ2

gT
2 δ2

]
= 0. (2.43)

Further, using gT
2 δ2 = t gT

1 δ1, gT
4 δ2 = t gT

3 δ1 and gT
2 δ4 = t gT

1 δ3, (2.43) can be
simplified as

gT
1 δ1

[
gT

4 δ1 − gT
1 δ4 + t (gT

3 δ1 + gT
1 δ3)

]
+ (gT

3 δ1)
2 = 0. (2.44)

Consequently, we obtain the following equation for the parameter t :

(t + 1)2(t2 + 1)2
[

p2(t) + 2tp(t) − 2q(t)
]

= 0, (2.45)

where

p(t) = −(2 + √
2)t2 + (2 + √

2)t − 1,

q(t) = (2 + 3
√

2)t3 − (4 + 3
√

2)t2 + (3 + 2
√

2)t − 2
√

2.

Further calculations provide

(
6 + 4

√
2
)−1 [

p2(t) + 2tp(t) − 2q(t)
]

=
[

t2 + (1 − √
2)t +

(
1 −

√
2

2

)][
t2 + (1 − 3

√
2)t +

(
−3 + 7

2

√
2

)]
.
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Considering the requirement that t ∈ (−1, 1), one can deduce the following quadratic
equation from (2.45),

t2 +
(

1 − 3
√

2
)

t +
(

−3 + 7

2

√
2

)
= 0. (2.46)

The above equation has a unique root of t in the interval (−1, 1),

t = 3
√

2 − 1 −
√

31 − 20
√

2

2
. (2.47)

The numerical value of t is equal to 0.7973 approximately.
Therefore if we choose the above t and the vectors δ1 and g1 such that (2.42)

holds with minus sign, then the prefixed steps and gradients satisfy the consistency
conditions (2.33), (2.34), (2.35) and (2.36) for all k ≥ 1.

There are many ways to choose δ1 and g1 satisfying (2.42). Specifically, we choose(
η1
ξ1

)
=
(√

2
0

)
,

(
c1
d1

)
=
(

0
−√

2

)
. (2.48)

In this case, by (2.42) with minus signs and the definitions of �i ’s, we can get that(
γ1
τ1

)
=
(

(17 − 8
√

2)t + (−17 + 9
√

2)

(−17 + 9
√

2)t + (17 − 9
√

2)

)
,

(
l1
h1

)
=
(

(−4 − 13
√

2)t + (−1 + 11
√

2)

(−4 − 13
√

2)t + (−1 + 12
√

2)

)
.

(2.49)

The initial step δ1 and the initial gradient g1 are then determined.

2.5 Quasi-Newton updating matrices

In this subsection we discuss the form of the BFGS quasi-Newton updating matrices
implied by (2.25)–(2.28) under the consistent conditions (2.33)–(2.36). A byproduct
is that, we will know how to choose the initial matrix H1 for the example.

For this aim, we provide a follow-up lemma of Lemma 2.3.

Lemma 2.4 Assume that (2.30) holds and the matrix H satisfies (2.29). If further, the
matrix A in (2.32) is positive definite, there must exist nonsingular triangular matrices
T1 and T2 such that

A = V T U = T −T
1 T2. (2.50)

Further, denoting V̂ = V T1 = (v̂1, v̂2, . . . , v̂n) and the diagonal matrix T −1
1 T −1

2 =
diag(t1, t2, . . . , tn), we have that

H =
n∑

i=1

ti v̂i v̂T
i . (2.51)
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Proof The truth of (2.50) is obvious by the Cholesky factorization of positive definite
matrices. Further, by (2.50) and the definition of V̂ , we get that

V̂ T U = T2.

Since HU = V , we obtain

H = V U−1 =
(

V̂ T −1
1

) (
T −1

2 V̂ T
)

= V̂
(

T −1
1 T −1

2

)
V̂ T ,

which with the definitions of v̂i ’s and ti ’s implies the truth of (2.51). �
By the above lemma, we can express the form of Hk+1 determined by (2.25)–

(2.26) under the consistent conditions (2.33)–(2.36). At first, we make use of the steps
{δk+i ; i = 0, 1, 2, 3} to introduce the following two vectors that are orthogonal to γ k
and gk+1:

zk = −δT
k+2γ k

δT
k γ k

δk − δT
k+2gk+1

δT
k+1gk+1

δk+1 + δk+2,

wk = −δT
k+3γ k

δT
k γ k

δk − δT
k+3gk+1

δT
k+1gk+1

δk+1 + δk+3.

(2.52)

The vectors zk and wk are well defined because δT
k γ k = −δT

k gk > 0 is positive due
to the descent property of δk . Direct calculations show that

zT
k γ k = zT

k gk+1 = 0, wT
k γ k = wT

k gk+1 = 0. (2.53)

Further, we use zk and wk to define the vector that is orthogonal to gk+2:

vk = −wT
k gk+2

zT
k gk+2

zk + wk . (2.54)

By the choice of vk , it is easy to see that

vT
k γ k = vT

k gk+1 = vT
k gk+2 = 0. (2.55)

Now we could express the matrix Hk+1 by

Hk+1 = −δkδ
T
k

δT
k gk

− δk+1δ
T
k+1

δT
k+1gk+1

− zkzT
k

zT
k gk+2

− vkvT
k

vT
k gk+3

. (2.56)

Since δT
k gk < 0 for all k ≥ 1, we know that the matrix Hk+1 is positive definite if and

only if zT
k gk+2 < 0 and vT

k gk+3 < 0. Direct calculations show that

zT
1 g3 = (

5808 − 3348
√

2
)

t − (
6912 − 4280

√
2
)

< 0,

vT
1 g4 = ( − 88803 + 63514

√
2
)

t + (
109307 − 77868

√
2
)

< 0.
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Therefore we know that the matrix H2 is positive definite. In addition, it is diffi-
cult to build the relations δT

k+1gk+1 = t δT
k gk, zT

k+1gk+3 = t zT
k gk+2, vT

k+1gk+4 =
t vT

k gk+3, zk+1 = Mzk and vk+1 = M vk for all k ≥ 1. Thus we have by (2.56) and
δk+1 = M δk that

Hk+1 = 1

t
M Hk MT , (2.57)

holds for all k ≥ 2 and hence {Hk : k ≥ 2} are all positive definite.
With the above procedure, we can calculate the values of z1, v1 and H2. Further,

by (2.23), we can obtain the initial matrix H1 required by the example of this paper.

H1 = H2 − δ1δ
T
2 + δ2δ

T
1

δT
1 γ 1

+ gT
2 δ2

gT
1 δ1

δ1δ
T
1

δT
1 γ 1

:= H̄1

87278
, (2.58)

where H̄1 is a symmetric matrix with entries

H̄1(1, 1) =
(
−3690 − 13280

√
2
)

t +
(

79982 − 13694
√

2
)

,

H̄1(1, 2) =
(

4474 + 1590
√

2
)

t −
(

1990 + 11308
√

2
)

,

H̄1(1, 3) =
(

1428 + 18496
√

2
)

t −
(

33966 − 11118
√

2
)

,

H̄1(1, 4) =
(
−23256 + 952

√
2
)

t +
(

25092 − 2108
√

2
)

H̄1(2, 2) =
(
−1954 − 10928

√
2
)

t +
(

65266 − 15580
√

2
)

,

H̄1(2, 3) = −10268
√

2 t −
(

5134 − 10268
√

2
)

,

H̄1(2, 4) =
(

13600 + 5508
√

2
)

t −
(

12512 + 9996
√

2
)

,

H̄1(3, 3) =
(

78234 − 415769
√

2
)

t +
(

235654 + 163183
√

2
)

,

H̄1(3, 4) =
(
−875432 + 576963

√
2
)

t +
(

943194 − 626093
√

2
)

,

H̄1(4, 4) =
(

83606 − 164543
√

2
)

t +
(

104210 + 49521
√

2
)

.

(2.59)

Direct calculations show that (2.57) also holds with k = 1 and hence H1 is a positive
definite matrix.

3 Constructing a suitable objective function

3.1 Recovering the iterations and the function values

Denote the rotation matrices

R1 =
(

cos θ1 − sin θ1
sin θ1 cos θ1

)
, R2 =

(
cos θ2 − sin θ2
sin θ2 cos θ2

)
. (3.1)
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If we write the steps {δk} and gradients {gk} into the forms

δ8 j+i =

⎛
⎜⎜⎝

ηi

ξi

t8 jγi

t8 jτi

⎞
⎟⎟⎠ , g8 j+i =

⎛
⎜⎜⎝

t8 j li
t8 j hi

ci

di

⎞
⎟⎟⎠ ; i = 1, . . . , 8, (3.2)

we have from (2.1), (2.2), (2.4) and (2.5) that

(
ηi+1
ξi+1

)
= R1

(
ηi

ξi

)
,

(
γi+1
τi+1

)
= t R2

(
γi

τi

)
,

(
li+1
hi+1

)
= t R1

(
li
hi

)
,

(
ci+1
di+1

)
= R2

(
ci

di

)
.

(3.3)

For simplicity, we want the iterations {xk} asymptotically to turn around the eight
vertices of some regular octagon � of the subspace spanned by the first and second
coordinates. More exactly, such a regular octagon � has the origin as its center and
its eight vertices Vi are given by Vi = (ai , bi , 0, 0)T with

(
a1
b1

)
=
(

−
√

2
2

−1 −
√

2
2

)
,

(
ai+1
bi+1

)
= R1

(
ai

bi

)
. (3.4)

Here we should note that if there is no confusion, we also regard that � and Vi ’s are
defined in the subspace spanned by the first and second coordinates. To this aim, we
ask the iterations {xk} to be of the form

x8 j+i =

⎛
⎜⎜⎝

ai

bi

t8 j pi

t8 j qi

⎞
⎟⎟⎠ , (3.5)

where (
pi+1
qi+1

)
= t R2

(
pi

qi

)
. (3.6)

To decide the values of p1 and q1, noting that

x1 − V1 = x1 − lim
j→∞ x8 j+1 = −

∞∑
i=0

δi ,

we have that

(
p1
q1

)
= −

∞∑
i=0

(
γi

τi

)
= −(E2 − t R2)

−1
(

γ1
τ1

)
, (3.7)
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where again E2 is the two-dimensional identity matrix. Direct calculations show that

(
p1
q1

)
= 1

4633

(
(−15720 + 4019

√
2 )t + (32931 − 17534

√
2 )

(4376 − 1977
√

2 )t + (9563 − 9433
√

2 )

)
. (3.8)

Now, let us assume that the limit of f (xk) is f ∗. Since for any j , the first two
coordinates of {x8 j+i } always keep the same as those of its limit Vi , we can get that

f (x8 j+i ) − f ∗ = t8 j
(

ci

di

)T (
pi

qi

)

= t8 j
[

Ri−1
2

(
c1
d1

)]T [
(t R2)

i−1
(

p1
q1

)]

= t8 j+i−1
(

c1
d1

)T (
p1
q1

)
= t8 j+i−1( f (x1) − f ∗),

where

f (x1) − f ∗ = c1 p1 + d1q1 = ( 3954 − 4376
√

2 ) t + ( 18866 − 9563
√

2 )

4633
.

Now we see the value of gT
8 j+iδ8 j+i . Direct calculations show that

gT
8 j+iδ8 j+i =

⎛
⎜⎜⎝

t8 j li
t8 j hi

ci

di

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

ηi

ξi

t8 jγi

t8 jτi

⎞
⎟⎟⎠ = t8 j

⎛
⎜⎜⎝

li
hi

ci

di

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

ηi

ξi

γi

τi

⎞
⎟⎟⎠

= t8 j+i−1(l1η1 + h1ξ1 + c1γ1 + d1τ1) = t8 j+i−1gT
1 δ1,

where

gT
1 δ1 = l1η1 + h1ξ1 + c1γ1 + d1τ1 = (−44 + 13

√
2)t + (40 − 18

√
2).

Therefore

f (x8 j+i+1) − f (x8 j+i )

α8 j+i gT
8 j+iδ8 j+i

= ( f (x8 j+i+1) − f ∗) − ( f (x8 j+i ) − f ∗)
gT

8 j+iδ8 j+i

= (t8 j+i − t8 j+i−1)( f (x1) − f ∗)
t8 j+i−1gT

1 δ1

= (t − 1)( f (x1) − f ∗)
gT

1 δ1

≈ 2.6483E − 02. (3.9)
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The above relation, together with gT
8 j+i+1δ8 j+i = 0, implies that the stepsize α8 j+i =

1 can be accepted by the Wolfe line search, the Armijo line search and the Goldstein
line search with suitable line search parameters.

3.2 Seeking a suitable form for the objective function

We now consider how to construct a smooth function f such that its gradient at any
point x8 j+i given in (3.5) are the one given in (3.2); namely,

∇ f (x8 j+i ) = g8 j+i , for all j ≥ 0 and i = 1, . . . , 8. (3.10)

To this aim, we assume that f is of the form

f (x1, x2, x3, x4) = λ(x1, x2) x3 + μ(x1, x2) x4, (3.11)

where λ and μ are two-dimensional functions to be determined. Since the function
(3.11) is linear with x3 and x4, we know that f has no lower bound inRn . Consequently,
for the sequence {xk} generated by some optimization method for the minimization
of this function, it is expected that f (xk) tends to −∞, but this will not happen in our
examples.

With the prefixed form (3.11), we have that

∇ f (x1, x2, x3, x4) =

⎛
⎜⎜⎝

∂λ
∂x1

x3 + ∂μ
∂x1

x4
∂λ
∂x2

x3 + ∂μ
∂x2

x4

λ(x1, x2)

μ(x1, x2)

⎞
⎟⎟⎠ . (3.12)

Comparing the last two components of the right hand vector in (3.12) with the gradients
in (3.2), we must have that

λ(Vi ) = ci , μ(Vi ) = di . (3.13)

Consequently, by (2.48) and (3.3), we can obtain the concrete values of λ and μ at the
eight vertices of �, which are listed in the second and third rows in Table 1.

Further, for each i , let Ji be the Jacobian of (λ, μ) at vertex Vi and denote

Ji =
(

∂λ
∂x1

∂μ
∂x1

∂λ
∂x2

∂μ
∂x2

) ∣∣∣∣
Vi

, J1 =
(

ω1 ω2
ω3 ω4

)
. (3.14)

The comparison of the first two components of the right hand vector in (3.12) with the
gradients in (3.2) leads to the relation

Ji

(
pi

qi

)
=
(

li
hi

)
. (3.15)
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Table 1 Function values and gradients of λ and μ at Vi ’s

V1 V2 V3 V4 V5 V6 V7 V8

λ 0 1 −√
2 1 0 -1 −√

2 −1

μ −√
2 1 0 -1

√
2 -1 0 1

∂λ
∂x1

ω1 −ω1 ω1 -ω1 ω1 −ω1 ω1 −ω1
∂λ
∂x2

ω3 −ω3 ω3 −ω3 ω3 −ω3 ω3 −ω3
∂μ
∂x1

ω3 −ω3 ω3 −ω3 ω3 −ω3 ω3 −ω3
∂μ
∂x2

−ω1 ω1 -ω1 ω1 −ω1 ω1 −ω1 ω1

To be such that (3.15) always holds, we ask Ji+1 and Ji to meet the condition

Ji+1 = R1 Ji RT
2 (3.16)

for all i ≥ 1. In this case, if (3.15) holds for some i , we have by this, (3.6) and (3.3)
that

Ji+1

(
pi+1
qi+1

)
= (R1 Ji RT

2 )(t R2)

(
pi

qi

)
= t R1 Ji

(
pi

qi

)
= t R1

(
li
hi

)
=
(

li+1
hi+1

)
,

which means that (3.15) holds with i + 1. Therefore by the induction principle, to be
such that (3.15) holds for all i ≥ 1, it remains to choose J1 such that (3.15) holds with
i = 1. Noticing that there are still two degrees of freedom, we ask the special relations

ω2 = ω3, ω4 = −ω1. (3.17)

Then the values of ω1 and ω3 can be solved from (3.15) with i = 1 and (3.17),

ω1 = (163 + 106
√

2) t − (195 + 129
√

2)

34
, ω3 = (57 + 33

√
2) t + (53 + 45

√
2)

34
.

(3.18)

Therefore if we choose J1 to be the one in (3.14) with the values in (3.17) and (3.18)
and ask the relation (3.16) for all i ≥ 1, then we will have (3.15) for all i ≥ 1.

Now, using (3.13), (3.16) and (3.17), we can list the function values and gradients
of λ and μ at the vertices Vi ’s of the octagon � into Table 1.

By using the special choice of � and observing the values in Table 1, we can ask
the functions λ and μ to have the properties

μ(x1, x2) = λ(−x2, x1) (3.19)

and

λ(x1, x2) = −λ(−x1,−x2) (3.20)
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for all (x1, x2) ∈ R2. Further, by (3.20), we could think of constructing the function
λ by a polynomial function with only odd orders.

In the next subsection, we will construct a simple function that only meets the
requirements (a) and (c) that are described in the first section. In Sect. 3.4, we con-
struct a complicated function that can meet all the requirements (a), (b) and (c).

3.3 A simple function that meets (a) and (c)

If we ignore the convexity requirement (b) of the line search function, we can con-
struct a relatively simple function λ(x1, x2) to meet the interpolation conditions listed
in Table 1 and the function μ(x1, x2) is then given by (3.19).

In fact, we can check that the following function

λ f (x1, x2)=
(

15− 21

2

√
2

)
x5

1 +
(

6− 9

2

√
2

)(
x4

1 x2+2x2
1 x3

2

)
+
(
−15 + 10

√
2
)

x3
1

+(−1 + √
2)(6x2

1 x2 + x3
2) +

(
15

4
− 15

8

√
2

)
x1 − 9

8

√
2x2.

has values of 0, 1, −√
2, 1 at vertices V1, V2, V3, V4, respectively, and zero derivatives

at all the vertices Vi ’s. Further, we can check the following function

λg(x1, x2) = −3 − 2
√

2

4
(2x2

1 − 1)[2x2
1 − (3 + 2

√
2)]x2

has zero function values at all the vertices Vi ’s, but could be used to interpolate the
derivatives of λ(x1, x2) at Vi ’s. Consequently, we know that

λ̄(x1, x2) = λ f (x1, x2) + ω1λg(x1, x2) + ω3λg(−x2, x1) (3.21)

meets all the interpolation conditions required by λ(x1, x2) in Table 1. Consequently,
we could say that for the function defined by (3.11), (3.21) and (3.19), the BFGS
method with the Wolfe line search using the unit initial step does not converge.

Observing that

�i (α) = t�i (α), � ′
i (α) = t� ′

i (α) at α = 0, 1,

we ideally wish there is the following relation between �i (α) and �i+1(α):

�i+1(α) = t �i (α), for all α ≥ 0 (3.22)

so that the neighboring line search functions only differ up to a constant multiplier of
t . However, the choice (3.21) of λ̄(x1, x2) does not lead to (3.22). Nevertheless, we
can propose the following compensation function

λc(x1, x2) = x1
[
x2

1 + x2
2 − (2 + √

2)
]2
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and define

λ̂(x1, x2) = λ̄(x1, x2) + c̄1λc(x1, x2) + c̄2λc(−x2, x1), (3.23)

where

c̄1 = (−39 + 15
√

2)t − (2529 − 1756
√

2)
272 ,

c̄2 = (−65 + 8
√

2)t + (681 − 462
√

2)
272 .

In this case, the relation (3.22) will always hold and the corresponding line search
function at the first iteration is

�̂1(α) =
6∑

i=0

ρi αi , (3.24)

where

ρ6 = (−3186 + 2233
√

2)t + (3414 − 2398
√

2)
2 ,

ρ5 = (40347402 − 28052171
√

2)t − (44367385 − 31014036)
9266 ,

ρ4 = (−18674096 + 12804379
√

2)t + (20961677 − 14552090
√

2)
4633 ,

ρ3 = (12350618 − 8366705
√

2)t − (13736673 − 9508816
√

2)
9266 ,

ρ2 = (−211982 + 366273
√

2)t + (40258 − 176758
√

2)
9266 ,

ρ1 = gT
1 δ1 = (−44 + 13

√
2)t + (40 − 18

√
2),

ρ0 = f (x1) = (3954 − 4376
√

2)t + (18866 − 9563
√

2)
4633 .

To sum up at this stage, for the function (3.11) with λ(x1, x2) given in (3.21) or
(3.23) and μ(x1, x2) = λ(−x2, x1), if the initial point is x1 = (a1, b1, p1, q1)

T (see
(3.4), (3.8), (2.47) for their values) and if the initial matrix is H1 given by (2.58) and
(2.59), then the BFGS method (1.2) and (1.5) with αk ≡ 1 will generate the iterations
in (3.5) whose gradients are given by (2.4)–(2.5). Therefore the method will asymp-
totically cycle around the eight vertices of a regular octagon without approaching a
stationary point or pushing f (xk) → −∞.

3.4 A complicated function that meets (a), (b) and (c)

To meet the requirement (b), this subsection gives a further compensation to the func-
tion λ̂(x1, x2) in (3.23) such that each line search function �k(α) is strongly convex.
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To this aim, we consider the straight line connecting x8 j+i and x8 j+i+1:

li (α) = x8 j+i + α δ8 j+i =

⎛
⎜⎜⎝

ai + α ηi

bi + α ξi

t8 j (pi + α γi )

t8 j (qi + α τi )

⎞
⎟⎟⎠ . (3.25)

By (3.12), the line search function at the (8 j + i)th iteration is

�8 j+i (α) = t8 j [λ(ai + α ηi , bi + α ξi )
(

pi + α γi
)

+μ(ai + α ηi , bi + α ξi )
(
qi + α τi

)]
. (3.26)

To be such that each line search function is a strongly convex function that has the
unique minimizer α = 1, we firstly construct �1(α) as follows

�1(α) = ζ1(α − 1)38 + ζ2(α − 1)2 + ζ3, (3.27)

where

ζ1 = (173256 − 38127
√

2)t + (−138064 + 48586
√

2)
166788 ≈ 1.5468E − 1,

ζ2 = (377472 − 359709
√

2)t + (−712544 + 577958
√

2)
166788 ≈ 1.0405E − 3,

ζ3 = (−11344 + 6675
√

2)t + (42494 − 26967
√

2)
4633 ≈ 6.1270E − 1.

Due to our special construction, we know from (3.3) and |t | < 1 that the third and
fourth components of {xk} tend to zero. This with the general function form (3.11)
implies that the limit of f (xk) is f ∗ = 0. So the above �1 is constructed such
that

�1(0) = f (x1), �1(1) = f (x2), � ′
1(0) = gT

1 δ1, � ′
1(1) = gT

2 δ1 = 0, (3.28)

where the values of f (x1), f (x2) and gT
1 δ1 are given in Sect. 3.1 and by f ∗ = 0. In

addition, the positiveness of ζi ’s implies that �1 is strongly convex. Thus we see that
�1 is a desired strongly convex function that takes α = 1 as the unique minimizer.
A reason why we choose a polynomial (3.27) of degree 38 will be explained in the
last section.

To utilize the function λ̂(x1, x2) in (3.23), we firstly develop the following relation
between (3.27) and (3.24),

�1(α) = �̂1(α) +
4∑

i=0

[
α (α − 1)

]4i+2
7∑

j=0

σ8i+ j α j , (3.29)
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where σi = 0 (i = 39, . . . , 35) and

σ34 = ζ1, σ33 = −20ζ1, σ32 = 190ζ1,

σ31 = −1140ζ1, σ30 = 9405ζ1, σ29 = −41724ζ1,

σ28 = 134406ζ1, σ27 = −346104ζ1, σ26 = 735471ζ1,

σ25 = −1307504ζ1, σ24 = 1961256ζ1, σ23 = −2496144ζ1,

σ22 = 12688732ζ1, σ21 = −28289632ζ1, σ20 = 38155344ζ1,

σ19 = −37442160ζ1, σ18 = 30421755ζ1, σ17 = −21474180ζ1,

σ16 = 13123110ζ1; σ15 = −6906900ζ1, σ14 = 30735705ζ1,

σ13 = −55057860ζ1, σ12 = 51389130ζ1, σ11 = −28048800ζ1,

σ10 = 10518300ζ1, σ9 = −3365856ζ1, σ8 = 906192ζ1,

σ7 = −201376ζ1, σ6 = 841464ζ1, σ5 = −1357056ζ1,

σ4 = 1041600ζ1, σ3 = −376992ζ1, σ2 = 58905ζ1 − ρ6,

σ1 = −7140ζ1 − ρ5 + 4ρ6, σ0 = 630ζ1 − ρ4 + 3ρ5 − 6ρ6.

Secondly, noting that the following relations hold for all i ≥ 1,(
ai+1 + α ηi+1
bi+1 + α ξi+1

)
= R1

(
ai + α ηi

bi + α ξi

)
,

(
pi+1 + α γi+1
qi+1 + α τi+1

)
= t R2

(
pi + α γi

qi + α τi

)
,

we look for some element functions φ(x1, x2) that satisfy for all (x1, x2) ∈ R2,(
φ(x̄1, x̄2)

φ(−x̄2, x̄1)

)
= R2

(
φ(x1, x2)

φ(−x2, x1)

)
, where

(
x̄1
x̄2

)
= R1

(
x1
x2

)
. (3.30)

There are a lot of possibilities for the choice of φ(x1, x2). The following are some of
them required in this paper.

φ1(x1, x2) = x3
1 − 3x1x2

2 , φ3(x1, x2) = x3
1 x2

2 − x1x4
2 ,

φ5(x1, x2) = x5
1 − 5x3

1 x2
2 , φ7(x1, x2) = x5

1 x2
2 − x1x6

2 .
(3.31)

We take φ1 as an illustrative example. In fact, for any (x1, x2) ∈ R2, (x̄1, x̄2)
T =

R1(x1, x2)
T means that

x̄1 =
√

2

2
(x1 − x2), x̄2 =

√
2

2
(x1 + x2).

Therefore we have that(
φ(x̄1, x̄2)

φ(−x̄2, x̄1)

)
=
(

x̄1(x̄2
1 − 3x̄2

2 )

x̄2(3x̄2
1 − x̄2

2 )

)

=
(√

2
4 (x1 − x2)((x1 − x2)

2 − 3(x1 + x2)
2)√

2
4 (x1 + x2)(3(x1 − x2)

2 − (x1 + x2)
2)

)

=
(

−
√

2
2 (x1 − x2)(x2

1 + 4x1x2 + x2
2 )√

2
2 (x1 + x2)(x2

1 − 4x1x2 + x2
2 )

)
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=
(

−
√

2
2 [(x3

1 − 3x1x2
2 ) + (3x2

1 x2 − x3
2)]√

2
2 [(x3

1 − 3x1x2
2 ) − (3x2

1 x2 − x3
2)]

)

=
(

−
√

2
2 [φ(x1, x2) + φ(−x2, x1)]√
2

2 [φ(x1, x2) − φ(−x2, x1)]

)

= R2

(
φ(x1, x2)

φ(−x2, x1)

)
.

So φ1(x1, x2) is a desired element function. Similarly, we can check that the other
φi ’s in (3.31) have the same property. In addition, it is easy to see that if φ(x1, x2) has
the property (3.30), then φ(−x2, x1) keeps the same property. So we also consider the
following element function

φ2i (x1, x2) = φ2i−1(−x2, x1), for i = 1, 2, 3.

Thirdly, we consider the linear combination of φi (i = 1, . . . , 8) and define

λφ(x1, x2) =
8∑

i=1

νi φi (x1, x2). (3.32)

Meanwhile, we define μφ(x1, x2) = λφ(−x2, x1). For any vector κ = (κ0, . . . κ7)
T

in R8, we are going to claim that there exists a unique solution of ν := (ν1, . . . , ν8)
T

such that the related functions λφ and μφ satisfy

λφ(a1 + α η1, b1 + α ξ1)
(

p1 + α γ1
)

+μφ(a1 + α η1, b1 + α ξ1)
(
q1 + α τ1

) =
7∑

i=0

κi αi . (3.33)

In fact, it is easy to see that the above relation leads to a linear system of ν:

W ν = κ . (3.34)

Direct calculations show that

W = (
W1 + W2

√
2
)

t + (W3 + W4
√

2
)
, (3.35)

where Wi (i = 1, . . . , 4) are given in the Appendix.
By further calculations, we know that

Det(W ) = (
c̄3 + c̄4

√
2
)

t + (
c̄5 + c̄6

√
2
) 
= 0,

where

c̄3 = −27257845112258321913344128791249391071037800448,

c̄4 = −19354403625460153870213404828142913697757847552,
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c̄5 = 21709509966956378375726991567920438736281239552,

c̄6 = 15449462608361267330121261246186521297040162816.

Hence W is nonsingular and (3.34) is a nonsingular linear system. Therefore for any
vector κ ∈ R8, there exists a unique ν or λφ such that the relation (3.33) holds. For
convenience, we denote such λφ by λφ,κ .

Denoting the following vectors related to the coefficients {σi ; i = 0, . . . , 39} in
(3.29),

κ i = (σ8i , . . . , σ8i+7)
T , i = 0, . . . , 4,

and noticing that for any point x = (x1, x2, x3, x4)
T in the line li (α) (i any),

x2
1 + x2

2 − (2 + √
2) = 2 α (α − 1), (3.36)

we can finally present the desired function of λ:

λ(x1, x2) = λ̂(x1, x2) +
4∑

i=0

[
x2

1 + x2
2 − (2 + √

2)

2

]4i+2

λφ,κ i (x1, x2). (3.37)

Thus by the choice of λ̂(x1, x2) in (3.23), the relation (3.36), the definitions of κ i and
λφ,κ i and the relation (3.29), we know that the function (3.11) with λ(x1, x2) given
in (3.37) and μ(x1, x2) = λ(−x2, x1) not only satisfies those necessary interpolation
conditions but gives the line search function

�i+1(α) = t i �1(α), for any i ≥ 0, (3.38)

where �1(α) is given by (3.27).
Since the polynomial function λ(x1, x2) in (3.37) is of order 43, we see that the

final objective function in (3.11) is a polynomial of order 44 and hence is infinitely
times differentiable. The line search functions, which are given by (3.38) and (3.27),
is strongly convex and has the unit stepsize as its unique minimizer. The requirement
(b) is then satisfied.

In summary, for the function (3.11) with λ(x1, x2) given in (3.37) and μ(x1, x2) =
λ(−x2, x1), if the initial point is x1 = (a1, b1, p1, q1)

T (see (3.4), (3.8), (2.47) for
their values) and if the initial matrix is H1 given by (2.58) and (2.59), then the BFGS
method (1.2) and (1.5) with αk ≡ 1 will generate the iterations in (3.5) whose gradients
are given by (2.4)–(2.5). Therefore the method will asymptotically cycle around the
eight vertices of a regular octagon without approaching a stationary point or pushing
f (xk) → −∞. This counter-example is perfect in the sense that all the requirements
(a), (b) and (c) are satisfied.

4 Concluding remarks

No matter whether the simple example(s) in Sect. 3.3 or the complicated example in
Sect. 3.4, we can see that the BFGS method with unit stepsizes produces the same
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iterations {xk} and simultaneously, their objective functions provide the same gra-
dients {gk}. As analyzed in Sect. 3.1, the unit stepsize is acceptable by the Wolfe
line search, the Armijo line search or the Goldstein line search. If we do not impose
the convexity on the line search function �k(α) for all k, it is possible for us to
construct a relatively simple polynomial example shown in Sect. 3.3. The exam-
ples have the dimension 4, but can be used to show that the BFGS method may
also fail for general functions when n ≥ 5 since four-dimensional functions can be
regarded as special cases of higher-dimensional functions. In the case that n ≥ 5,
we can just take the same objective function and ask the starting point x1 to have
zero components except the first four. Then for all k, the first four components of xk

remain the same as in the example and its components from the fifth will be always
zero.

The counter-example in Sect. 3.4 is perfect in stepsize choices and function prop-
erties. However, it is still not perfect in the sense that the objective function is very
complicated with large numbers and some coefficients are expressed by nonsingu-
lar linear systems. Here we provide the reason why a polynomial (3.27) of degree
38 is used to guarantee the strong convexity of �1(α). Equivalently, the problem
of finding a strictly convex polynomial that satisfies (3.28) (in this case � ′′

1 (α) is
nonnegative for all α ∈ R) can be transferred to the feasibility problem of some
semi-definite program (SDP). This is because, by Shor [19], if n = 1, a polyno-
mial is nonnegative if and only if it can be written into a sum of squares (s.o.s.);
further, by Lasserre [10], for an any-dimensional polynomial, it has the form of
s.o.s. if and only if the coefficient matrix, which is formed when lifting the outer
product of the vector of monomials and its transpose into the matrix variable, is
semi-definite. The other interpolation conditions can be treated as linear constraints.
However, even when we chose some relatively high numbers for the order of the
desired polynomial, our numerical calculations showed that the corresponding SDP
feasibility problems have no solution. This is not expected since there are many
freedoms in these polynomials, but there are only four interpolation conditions in
(3.28). Instead, we considered the following simple form for �1(α) with variable but
even p.

�1(α) = c̄1(α − 1)p + c̄2(α − 1)2 + ζ3, (4.1)

where c̄1 and c̄2 are parameters and ζ3 is the same constant in (3.27). With this form,
it can be deduced from (3.28), f ∗ = 0 and the calculations in Sect. 3.1 that

1

p
≤ �1(1) − �1(0)

� ′
1(0)

= f (x2) − f (x1)

gT
1 δ1

≈ 2.6483E − 02. (4.2)

Since the reciprocal of 2.6483E−02 is about 37.76, we choose p to be the least even
integer, that is 38, to meet the condition (4.2).

In spite of the existence of large numbers, we have observed the cycle exactly
predicted by the simple example in Sect. 3.3 [with the function λ̂(x1, x2) given by
(3.23)], thanks to the powerful symbolic computation software MAPLE. With such
software, it is also possible to observe how numerical errors affect the example. When
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the machine error is set to 10−64 (this is possible in MAPLE), we found that the
cycle can go on for ten rounds and during the rounds, the iterations really tend to
the eight vertices of the octagon according to the predicted way. Influenced by the
numerical errors, however, the iterations jump out from the cycle during the eleventh
round.

For quasi-Newton methods, there is global convergence if the norms of the matrix
Hk and its inverse are uniformly bounded for all k, in which case the angle between the
quasi-Newton direction and the negative gradient must be uniformly less than some
angle strictly less than π/2. For our examples, with the help of (2.2) and (2.57), we can
see that the matrices {H8 j+1; j = 1, 2, . . .} satisfy the relation (2.24). Consequently,
we have for all j ≥ 1,

H8 j+1 = diag(t−4 j E2, t4 j E2) H1 diag(t−4 j E2, t4 j E2). (4.3)

By comparing H8 j+1 and the right matrices in (4.3) but with the middle matrix H1
replaced by λmin(H1)E4 and λmax(H1)E4, respectively, we can show that

λmax(H8 j+1) ≥ t−8 jλmin(H1), λmin(H8 j+1) ≤ t8 jλmax(H1), (4.4)

where λmax(·) and λmin(· · · ) mean the largest and smallest eigenvalues of the matrix.
Since t is the decay parameter that lies in the interval (0, 1), the relation (4.4) implies
that both ||H8 j+1||2 and ||H−1

8 j+1||2 tend to infinity at an exponential rate. This analysis
is also valid for {H8 j+i ; j = 1, 2, . . .} with other i’s.

The number of the cyclic points in the above example(s) is eight due to the special
choices of θ1 and θ2 in (2.3). This number of eight could be decreased to seven since
if

θ1 = 2

7
π, θ2 = 4

7
π,

the consistent conditions (2.33)–(2.36) also allow a nonzero solution of t , whose
numerical value is approximately 0.8642. However, it is difficult to obtain its analytic
expression. In addition, we found that the system (2.33)–(2.36) has no solution of t in
(−1, 1) for

θ1 = i

6
π, θ2 = j

6
π, wherei, j is any integer in [1,6],

which implies that the number of cyclic points cannot be decreased to six.
As mentioned in Sect. 1, if the stepsize is chosen to be the first local minimizer

along the line; namely, by (1.9), Powell [17] established the global convergence of the
BFGS method for general differentiable functions when n = 2. We argued there that
it is difficult to extend Powell’s result to the case that n = 3. Considerable attentions
have also been drawn to the construction of a three-dimensional example (see also
Section 5 of Powell [17]). This construction is almost successful, but remains one
condition always not satisfied. It is not known yet whether the BFGS method with
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the specific line search (1.9) converges for three-dimensional general differentiable
functions.

Another direction of research is how to present a suitable modification of the BFGS
algorithm, with which global convergence can be established for general nonconvex
functions. A typical work of this kind is Li and Fukushima [11].
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Appendix

The matricies Wi (i = 1, . . . , 4) in the relation (3.35) are given in the following
sequentially.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−62168 −15364 −50467 −19383 −50467 −19383 −170784 −69850

325732 7844 164094 202386 412766 −356414 617846 774894

−993360 196008 −4160 −201438 −2561400 1153290 −149012 −1366496

921688 0 3698860 −613452 −114596 463300 −869492 −653360

−296512 −333576 −407704 890484 −2569920 −2316500 −168300 3018560

0 0 296512 −333576 1546864 1667880 1142176 −3712088

0 0 0 0 −593024 −667152 −1408432 2448120

0 0 0 0 0 0 593024 −667152

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−38766 −23402 −34925 −15542 −34925 −15542 −120317 −50467

64624 102164 94362 165678 249426 −238058 422668 564826

94320 101688 144215 −260041 −1444145 928375 25696 −1083960

−563244 −500364 −488404 −117052 1201020 −648620 −1191110 3882

315044 315044 213118 206782 1009350 880270 1283770 1018070

0 0 −18532 −18532 −1700980 −1575220 −1143596 −1018308

0 0 0 0 630088 630088 463300 450628

0 0 0 0 0 0 −37064 −37064

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

66580 −22806 48866.5 −2955.5 48866.5 −2955.5 162176 −419

−305222 82838 −149974 −138071 −193910 377473 −543381 −565187

1072146 −156966 2300535 8467 135353 −905635 75885 1149501

−1085404 −74128 43774 654056 −3792690 −741280 700702 782668

333576 333576 444768 −845924 3017860 2409160 429750 −2916010

0 0 −296512 296512 −1948424 −1704944 −1357948 3555920

0 0 0 0 667152 667152 1482560 −2284872

0 0 0 0 0 0 −593024 593024

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

31153 16895 32221.5 2746 32221.5 2746 113309.5 2536.5

49886 −124014 −72850 −147478 −49206 243454 −360117 −438519

−280980 12822 −169365 304282 980815 −762350 −120120 1044365

632088 444768 −554550 465018 10702 509630 1166840 −228060

−315044 −315044 −194586 −93378 −1538890 −880270 −1213170 −445520

0 0 18532 −18532 1838668 1575220 1059760 467608

0 0 0 0 −630088 −630088 −426236 −149692

0 0 0 0 0 0 37064 −37064

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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