
Math. Program., Ser. A (2013) 141:21–48
DOI 10.1007/s10107-011-0507-6

FULL LENGTH PAPER

A branch-and-cut algorithm for the maximum benefit
Chinese postman problem

Ángel Corberán · Isaac Plana ·
Antonio M. Rodríguez-Chía · José M. Sanchis

Received: 16 March 2011 / Accepted: 6 December 2011 / Published online: 16 December 2011
© Springer and Mathematical Optimization Society 2011

Abstract The Maximum Benefit Chinese Postman Problem (MBCPP) is an
NP-hard problem that considers several benefits associated with each edge, one for
each time the edge is traversed with a service. The objective is to find a closed walk
with maximum benefit. We propose an IP formulation for the undirected MBCPP and,
based on the description of its associated polyhedron, we propose a branch-and-cut
algorithm and present computational results on instances with up to 1,000 vertices and
3,000 edges.

Keywords Chinese postman problem · Maximum benefit Chinese postman
problem · Rural postman problem · Facets · Branch-and-cut

Mathematics Subject Classification (2000) 90C57 · 90C27

1 Introduction

The purpose of this paper is to propose a branch-and-cut algorithm for the undi-
rected Maximum Benefit Chinese Postman Problem (MBCPP) defined as follows. Let
G = (V, E) be an undirected connected graph where V is the vertex set and E is the
edge set. Vertex 1 ∈ V represents the depot. Each edge e ∈ E has ne ≥ 0 benefits,

Á. Corberán (B)
Dept. de Estadística e Investigación Operativa, Universitat de València, Valencia, Spain
e-mail: angel.corberan@uv.es

I. Plana
Dept. Matemáticas para la Economía y la Empresa, Universitat de València, Valencia, Spain

A. M. Rodríguez-Chía
Dept. de Estadística e Investigación Operativa, Universidad de Cádiz, Cádiz, Spain

J. M. Sanchis
Dept. de Matemática Aplicada, Universidad Politécnica de Valencia, Valencia, Spain

123

22 A. Corberán et al.

b1
e , . . . , bne

e , giving the gross benefit of servicing the edge for the first, second,. . ., neth
time. Moreover, each edge e ∈ E has ne +1 different associated costs, c1

e , . . . , cne
e and

cd
e . The ne first ones represent the cost of traversing and servicing edge e for the first,

second,. . ., ne-th time, while the last one corresponds to the cost of just traversing
that edge without servicing it (the deadhead cost). Therefore, the net benefit of the
t th traversal of edge e is given by bt

e − ct
e for t = 1, . . . , ne, while the net benefit of

deadheading an edge is −cd
e . The MBCPP then consists of finding a tour starting from

the depot, traversing some of the edges in E a certain number of times and returning to
the depot, with maximum total net benefit. The MBCPP is NP-hard because the Rural
Postman Problem [18], which was proved to be NP-hard in [14], can be considered a
special case of the MBCPP [20].

The MBCPP was introduced by Malandraki and Daskin [16], who studied its
directed version. They modeled it as a minimum cost flow problem with subtour
elimination constraints. Based on this approach, they proposed a branch-and-bound
procedure and solved instances on a network of 25 vertices.

Applications of this problem arise in the routing of street cleaners and the design of
street snow-plowing and snow-salting routes. These applications are usually formu-
lated as traditional arc routing problems in which only one single service traversal on
each edge is considered. However, an additional benefit can be derived when a street is
plowed multiple times and the benefit may depend upon whether the link represents a
main road or a low-density-traffic street. As is pointed out in [16], “the key advantage
of this approach over the traditional approach is that it allows links to be excluded
from the solution or included multiple times if doing so is advantageous”.

The scientific literature on the MBCPP is rather limited. In [20], an approximate
algorithm for solving the MBCPP on undirected graphs is devised. The procedure is
illustrated on an example with 15 vertices and 26 edges. The algorithm expands the
original graph by replacing each edge with a set of edges of positive net benefit. Min-
imal spanning tree and matching algorithms are then applied to generate a postman
tour. In [19], several heuristic algorithms for solving the MBCPP on directed graphs
are proposed. The authors report computational results on graphs with up to 30 ver-
tices and 780 arcs. In all these papers it is assumed that c1

e = · · · = cne
e ≥ cd

e and
b1

e ≥ · · · ≥ bne
e ≥ 0.

Some related problems have also been studied. Among them, the Prize-Collecting
Arc Routing Problem (PCARP), also called Privatized Rural Postman Problem. In the
PCARP only the edges in a given subset of edges D ⊆ E have an associated benefit
and it is assumed that this benefit can be collected only once, independently of the
number of times the edge is traversed. Note that this problem is a special case of the
MBCPP in which ne = 1 for all the edges in D, while ne = 0 for the remaining ones.
The PCARP was introduced in [3], where an ILP formulation with binary variables
was provided. In particular, the authors used a new family of inequalities, called set-
parity inequalities, which are an adaptation to this problem of the so-called cocircuit
inequalities introduced in [5]. In [2], an LP-based algorithm for solving the problem
on undirected graphs was proposed. A related problem, the Clustered Prize-collecting
Arc Routing Problem, has recently been studied in [1] and [12] for undirected graphs
and in [6] for ‘windy’ graphs. Other arc routing problems with benefits have been
studied in [11] and [4].

123

A branch-and-cut algorithm 23

The scientific contributions of this paper are: a more general and useful framework
for the undirected MBCPP, a formulation for it, a polyhedral study, and a branch-and-
cut algorithm for its exact resolution.

The remainder of this paper is organized as follows. In Sect. 2 some notation for
the problem is introduced and an IP formulation is presented. The polyhedron asso-
ciated with the MBCPP is defined, and its dimension and some basic facet-inducing
inequalities are studied in Sect. 3. Section 4 then introduces three non-trivial families
of valid inequalities, namely parity, K-C and p-connectivity inequalities. The sep-
aration problems associated with all the families of valid inequalities presented are
discussed in Sect. 5, as well as the features of the proposed branch-and-cut algorithm.
The computational results obtained with this procedure on different sets of instances
are presented in Sect. 6. Finally, some concluding comments are given in Sect. 7.

2 Problem formulation

Consider an undirected and connected graph G = (V, E). Associated with each edge
e ∈ E , there are ne + 1 net benefits. The ne first ones, b

t
e = bt

e − ct
e, t = 1, . . . , ne,

correspond to the traversals of the edge servicing it, while the last one, b
ne+1
e = −cd

e ,
is associated with the deadheading of e. Note that additional traversals of this edge
would have an associated net benefit of −cd

e .
We first prove that the above instance can be transformed into an equivalent one

with only two net benefits associated with each edge.

Theorem 1 Solving the MBCPP on a graph with ne + 1 net benefits associated with
each edge e is equivalent to solving it with only two net benefits, bodd

e and beven
e , for

the first and the second traversals of each edge e, respectively, where

bodd
e = max

{
k∑

�=1

b
�

e : k is odd and k ≤ ne + 1

}

beven
e = max

{
k∑

�=1

b
�

e : k is even and k ≤ ne + 1

}
− bodd

e .

If ne = 0, we define beven
e = bodd

e = −cd
e .

Proof Consider an edge e with net benefits b
1
e, . . . , b

ne+1
e . If edge e is tra-

versed an odd number of times in an optimal solution, then it will be tra-

versed exactly kodd = argmaxk

{∑k
�=1 b

�

e : k is odd and k ≤ ne + 1
}

times to

get the maximum benefit from servicing this edge, which will be
∑kodd

�=1 b
�

e. This
is equivalent to traversing and servicing this edge exactly once with net bene-
fit bodd

e . If e is traversed an even number of times, it will be traversed keven =
argmaxk

{∑k
�=1 b

�

e : k is even and k ≤ ne + 1
}

times with a total net benefit of∑keven

�=1 b
�

e. In this case, this is equivalent to traversing the edge twice, the first time
with net benefit bodd

e and the second one with beven
e . ��

123

24 A. Corberán et al.

Consider for instance an edge with the following net benefits: 4, 2, −1, 2, −4.If
this edge is traversed an odd number of times in an optimal solution, then it will
be traversed exactly 3 times, since in this way a maximum net benefit of 5 units is
obtained. Similarly, if it is traversed an even number of times in an optimal solution,
this number should be 4 and the net benefit obtained would be 7. Therefore, we can
solve the same problem in a graph where this edge has only two net benefits bodd = 5
and beven = 2. Note that if this edge is traversed once a net benefit of 5 is obtained,
while if it is traversed twice, we obtain a net benefit of 5+2 units.

As a consequence of the above theorem, the MBCPP can be formulated using two
binary variables xe and ye for each edge e = (i, j) ∈ E . Variable xe takes the value 1
if e is traversed and 0 if e is not traversed, while variable ye takes the value 1 if e is
traversed twice and 0 otherwise. In other words, variables xe and ye represent the first
and second traversal of edge e, respectively.

In this paper we use the following notation. Given two subsets of vertices S, S′ ⊆ V ,
(S : S′) denotes the edge set with one endpoint in S and the other in S′. Given a subset
S ⊆ V , let us denote δ(S) = (S : V \S) and let E(S) = {e = (i, j) ∈ E : i, j ∈ S}
be the set of edges with both endpoints in S. Finally, for any subset F ⊆ E , x(F)

denotes
∑

e∈F
xe and y(F) =

∑
e∈F

ye, while (x − y)(F) =
∑

e∈F
(xe − ye)

and (x + y)(F) =
∑

e∈F
(xe + ye).

We propose the following formulation for the MBCPP:

Maximize
∑
e∈E

(
bodd

e xe + beven
e ye

)
s.t.: ∑

e∈δ(i)

(
xe + ye

) ≡ 0 (mod 2), ∀i ∈V (1)

∑
e∈δ(S)

(
xe + ye

) ≥ 2x f , ∀S ⊂V \{1}, ∀ f ∈ E(S) (2)

xe ≥ ye, ∀e∈ E (3)

xe, ye ∈ {0, 1}, ∀e∈ E . (4)

Constraints (1) force the solution to visit each vertex an even number of times,
possibly 0. Conditions (2) ensure the connectivity of the solution, and constraints (3)
guarantee that a second traversal of an edge can only occur when it has been traversed
previously. Note that constraints (1) are not linear, although they could be linearized
by introducing additional integer variables, which would give an Integer Linear Pro-
gramming formulation. Note also that (x, y) = (0, 0) satisfies the above constraints
and is, therefore, a feasible solution to the MBCPP.

3 MBCPP polyhedron

In this section we study the polyhedron associated with the MBCPP. In particular, its
dimension is obtained and some basic inequalities are proved to be facet-inducing.

123

A branch-and-cut algorithm 25

Let us call each vector (x, y) ∈ {0, 1}2|E | satisfying (1) to (4) an MBCPP tour and
let MBCPP(G) be the convex hull of all MBCPP tours. Obviously, it is a polytope.

Remember that a graph G is called 3-edge connected if every proper cut-set δ(S),
S ⊂ V , contains at least 3 edges. It is well known that G is 3-edge connected if, and
only if, for every pair of vertices i, j ∈ V , there are at least three edge-disjoint paths
in G connecting i and j .

Theorem 2 MBCPP(G) is a full-dimensional polyhedron (dim(MBCPP(G))= 2|E |)
if, and only if, G is 3-edge connected.

Proof If G is not 3-edge connected there is a cut-set δ(S) with at most 2 edges. If
δ(S) contains exactly two edges, namely e and f , it can be seen that all MBCPP tours
satisfy the equation xe − ye = x f − y f . Moreover, if δ(S) = {e}, then all MBCPP
tours satisfy xe = ye. Therefore, in both cases, the polyhedron is not full-dimensional.

On the other hand, let us now suppose that graph G is 3-edge connected. We will
prove that the polyhedron is full-dimensional. Let ax + by = c (that is,

∑
e∈E aexe +∑

e∈E be ye = c) be an equation satisfied by all the MBCPP tours. We have to prove
that a = b = c = 0.

Given that (x, y) = (0, 0) ∈ MBCPP(G), a ·0+b ·0 = c holds and then c = 0. Let
(i, j) ∈ E be an arbitrary edge. Since G is connected, there is a path P joining vertices
1 and i (or j) not containing edge (i, j). The solution that traverses the path P twice
(that is, xe = ye = 1 ∀e ∈ P) is an MBCPP tour and then

∑
e∈P ae + ∑

e∈P be = 0
holds. On the other hand, the solution that traverses the path P and the edge (i, j)
twice is also an MBCPP tour and then

∑
e∈P ae + ∑

e∈P be + ai j + bi j = 0. By
subtracting both expressions, we obtain ai j + bi j = 0 for all (i, j) ∈ E .

Let C be any cycle in graph G. There is a path P joining vertex 1 and a vertex i in the
cycle. The solution that traverses the path P twice (xe = ye = 1) and the cycle C once
(xe = 1, ye = 0) is an MBCPP tour and then

∑
e∈P ae + ∑

e∈P be + ∑
e∈C ae = 0.

Given that ai j + bi j = 0, we obtain
∑

e∈C ae = 0 for any cycle C in G.

Let (i, j) ∈ E be an arbitrary edge. Since G is 3-edge connected, there are two
edge-disjoint paths P1, P2 joining vertices i and j that do not contain edge (i, j).
Then, considering the three cycles P1 ∪ {(i, j)}, P2 ∪ {(i, j)}, and P1 ∪P2, for which∑

e∈C ae = 0, we obtain ai j = 0. Given that ai j + bi j = 0, we obtain bi j = 0 for
each edge (i, j) ∈ E . Hence, a = b = c = 0 and the polyhedron MBCPP(G) is
full-dimensional. ��

In the following, we will assume that graph G is 3-edge connected and thus
MBCPP(G) is full-dimensional. Therefore, every facet of the polyhedron is induced
by a unique inequality (except scalar multiples).

Theorem 3 Inequality yuv ≥ 0, for each edge (u, v) ∈ E, is facet-inducing of
MBCPP(G) (if graph G is 3-edge connected).

Proof Let us suppose there is another valid inequality ax + by ≥ c such that

{(x, y) ∈ MBCPP(G) : yuv = 0} ⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}.

We will prove that inequality ax + by ≥ c is a scalar multiple of yuv ≥ 0. Given
that the tour (0, 0) satisfies yuv = 0, it follows that c = 0. A similar argument to that

123

26 A. Corberán et al.

used in the proof of Theorem 2 leads to ai j + bi j = 0 for all (i, j) ∈ E\{(u, v)}, and∑
e∈C ae = 0 for any cycle C in G. Then, as above, we obtain ai j = 0 for each edge

(i, j) ∈ E . Since ai j + bi j = 0, also bi j = 0 for each edge (i, j) ∈ E\{(u, v)}. Thus,
inequality ax + by ≥ c turns out to be buv yuv ≥ 0 and yuv ≥ 0 is facet-inducing for
MBCPP(G). ��
Theorem 4 Inequality xuv ≤ 1, for each edge (u, v) ∈ E, is facet-inducing for
MBCPP(G) (if graph G is 3-edge connected).

Proof Let us suppose there is another valid inequality ax + by ≤ c such that

{(x, y) ∈ MBCPP(G) : xuv = 1} ⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}.

Let (i, j) ∈ E\{(u, v)}. Given that G is 3-edge connected, graph G\{(i, j)} is con-
nected, and there is an MBCPP tour (x1, y1) that traverses edge (u, v) at least once
and visits vertex i . This tour satisfies x1

uv = 1. The MBCPP tour (x2, y2) obtained
from (x1, y1) by adding edge (i, j) twice, also satisfies x2

uv = 1. After subtracting
ax1+by1 = c from ax2 +by2 = c, we obtain ai j +bi j = 0 for all (i, j) ∈ E\{(u, v)}.

Let P be a path joining vertices 1 and u that does not use edge (u, v). The MBCPP
tour (x1, y1) that traverses the path P and the edge (u, v) twice satisfies x1

uv = 1 and
then ax1 + by1 = c, i.e.

∑
e∈P (ae + be) + auv + buv = c. Since ai j + bi j = 0 for all

(i, j) ∈ E\{(u, v)}, we obtain auv + buv = c. The same argument can be applied to
deduce that

∑
e∈C ae = c for any cycle C containing edge (u, v).

Let C now be any cycle in graph G that does not contain edge (u, v). There is an
MBCPP tour that traverses the edges in C once and a subset F of other edges in E
including (u, v) twice. This tour satisfies x1

uv = 1 and then ax1 + by1 = c, that is,∑
e∈F (ae + be) + ∑

e∈C ae = c. Since ai j + bi j = 0 for all (i, j) ∈ E\{(u, v)} and
auv + buv = c, we obtain

∑
e∈C ae = 0 for all cycles C not containing edge (u, v). By

combining the previous results, we obtain
∑

e∈C be = 0 for any cycle C in G.
Let (i, j) ∈ E be an arbitrary edge. There are two edge-disjoint paths P1, P2 joining

vertices i and j that do not contain the edge (i, j). As in previous theorems, let us con-
sider the cycles P1 ∪ {(i, j)}, P2 ∪ {(i, j)}, and P1 ∪P2. Given that

∑
e∈C be = 0, we

obtain bi j = 0 for each edge (i, j) ∈ E . Since ai j +bi j = 0 for all (i, j) ∈ E\{(u, v)}
and auv + buv = c, we obtain ai j = 0 and auv = c holds. Then, the inequality
ax + by ≤ c turns out to be cxuv ≤ c and xuv ≤ 1 is facet-inducing for MBCPP(G).

��
Theorem 5 Inequalities (3), xuv ≥ yuv for every edge (u, v)∈ E are facet-inducing
for MBCPP(G) if, and only if, graph G\{(u, v)} is 3-edge connected.

Proof If graph G is 3-edge connected but graph G\{(u, v)} is not 3-edge connected,
there is at least one cut-set δ(S) containing exactly the edge (u, v) and two more edges,
say f, g. In this case, it can be seen that the inequality xuv ≥ yuv is not facet-inducing
because it is the sum of two parity inequalities (6), which will be presented in Sect. 4.1,
associated with δ(S) and with F = { f } and F = {g}, respectively. The proof that
inequalities (3) are facet-inducing when G\{(u, v)} is 3-edge connected is similar to
those in the previous theorems and is omitted here. ��

123

A branch-and-cut algorithm 27

Theorem 6 Connectivity inequalities (2) are facet-inducing for MBCPP(G) if graph
G is 3-edge connected and subgraphs G(S) and G(V \S) are 2-edge connected.

Proof Let us suppose there is another valid inequality ax + by ≥ c such that⎧⎨
⎩(x, y) ∈ MBCPP(G) :

∑
e∈δ(S)

(
xe + ye

) − 2x f = 0

⎫⎬
⎭

⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}.

Again, we can assume that c = 0. As in previous theorems, it can be seen that
ai j + bi j = 0 for all (i, j) ∈ E(V \S) ∪ E(S)\{ f }. For each edge (l, m) ∈ δ(S), we
can build an MBCPP tour that uses two copies of each one of the following edges:
each edge in a path in G(V \S) from vertex 1 to vertex l, edge (l, m), each edge in a
path in G(S) from m to an endpoint of edge f , and edge f . This tour satisfies (2) with
equality and, therefore, alm + blm + a f + b f = 0.

Let C be any cycle in graph G(V \S). It is easy to obtain
∑

e∈C ae = ∑
e∈C be = 0.

Let C now be any cycle in graph G(S) that does not contain edge f . Given a vertex i
belonging to cycle C and an endpoint j of edge f , let P be a path joining vertices 1, i ,
and j , such that it traverses δ(S) exactly once. If we consider two copies of each edge
in C∪P∪{ f }, we obtain an MBCPP tour (x1, y1) satisfying

∑
e∈δ(S)

(
x1

e +y1
e

) = 2x1
f .

If we remove one copy of each edge in C from (x1, y1), we obtain another MBCPP
tour (x2, y2) also satisfying

∑
e∈δ(S)

(
x2

e + y2
e

) = 2x2
f . By subtracting ax2 +by2 = 0

from ax1 + by1 = 0, we obtain
∑

e∈C be = 0 and, hence,
∑

e∈C ae = 0 for all the
cycles in graph G(S) that do not contain edge f . Then,

∑
e∈C

ae = 0,
∑
e∈C

be = 0 ∀ cycle C in graphs G(V \S) or G(S)\{ f }.

Let (i, j) ∈ E(V \S). Given that graph G is 3-edge connected, there are two edge-
disjoint paths P1, P2 joining vertices i and j that do not contain the edge (i, j). We
consider several cases:

(a) P1 andP2 are in G(V \S). In this case, the usual process leads us to ai j = bi j = 0.
(b) P1 is in G(V \S) while P2 traverses the cut-set δ(S). We can assume that P2

traverses δ(S) exactly twice. Let (x1, y1) be the MBCPP tour that uses the edge
(i, j) and the path P2 once, the edges needed to connect P2 with f if f is not
in P2 twice, and those needed to connect it with the depot twice, if necessary.
Then, let (x2, y2) be the tour obtained after replacing the edge (i, j) in (x1, y1)

by the edges in the path P1. Note that if 1 is in P1, this could cause some edges
to appear three times and (x2, y2) would not be an MBCPP tour. In that case,
we just remove two copies of these edges. Both tours satisfy inequality (2) with
equality and, by comparing them, we obtain ai j = bi j = 0.

(c) Both P1 and P2 traverse the cut-set δ(S) (exactly twice). We are going to see
that we can use them to construct two edge-disjoint paths joining i and j , where
one of them is in G(V \S), and so we will be in the same situation as in (b). Since
graph G(V \S) is 2-edge connected, there is a path P3 in G(V \S) also joining i

123

28 A. Corberán et al.

and j and not containing (i, j). If P3 and P1 (or P2) are edge-disjoint paths, we
are done. Otherwise, it can be seen that it is possible to modify P3 to construct a
new path P4 consisting of three parts, Pi , Pm and Pj , where Pi (starting at vertex
i) satisfies Pi ⊂ P1 or Pi ⊂ P2, Pj (ending at vertex j) satisfies Pj ⊂ P1 or
Pj ⊂ P2, and Pm contains only edges from P3 and is edge-disjoint with P1∪P2.
Let us assume that Pi ⊂ P1. If Pj ⊂ P1, then P4 and P2 are edge-disjoint paths
and we are done. Otherwise, using the subpath of P2 leaving vertex i and the
subpath of P1 reaching vertex j , we can construct a new path P5, traversing
exactly twice the cut-set δ(S), which is edge-disjoint with P4.

Similarly, for each edge (i, j) ∈ E(S)\{ f }, we obtain ai j = bi j = 0.
Let us denote the edges in δ(S) as e1, . . . , ep , where p ≥ 3 since graph G is 3-

edge connected. Now consider two edges e1, e2 ∈ δ(S). Given that graphs G(S) and
G(V \S) are connected, there is an MBCPP tour (x1, y1) using the edges in a path that
starts at the depot, traverses e1 and ends at edge f twice. Let (x2, y2) be the MBCPP
tour obtained from (x1, y1) after replacing the second traversal of e1 with the first
traversals of the edges in a path joining the endpoints of e1, using e2, and not tra-
versing f . Again, if some edges appear three times, two copies of them are removed.
After subtracting ax1 + by1 = 0 from ax2 + by2 = 0, we obtain be1 = ae2 . If we
interchange the roles of the edges e1 and e2, we obtain be2 = ae1 . Proceeding in this
way with all the pairs of edges in δ(S), we obtain aei = be j for all i = j ∈ {1, . . . , p}
and then aei = ae j = bei = be j for all i, j (because p ≥ 3 holds).

Finally, given that graph G(S) is 2-edge connected, there is a cycle C in graph G(S)

that contains the edge f . Let (x1, y1) be an MBCPP tour using the edges in C once
and the edges in a path P crossing (S : V \S) and joining the depot 1 to a vertex i
belonging to the cycle C twice. Let (x2, y2) be the MBCPP tour using all the edges
in P twice, the edges in the path formed with the edges in the cycle C from vertex
i to an endpoint of edge f twice plus the edge f twice. Both MBCPP tours satisfy∑

e∈δ(S)

(
xe+ye

) = 2x f and, after subtracting ax2+by2 = 0 from ax1+by1 = 0, we
obtain b f = 0. Given that alm + blm + a f + b f = 0 holds for any edge (l, m) ∈ δ(S),
we obtain a f = −2alm and hence the connectivity inequality (2) is facet-inducing for
MBCPP(G). ��
Note The above result is also true when V \S contains only one edge or only the depot,
and when S contains only edge f , as long as G is 3-edge connected.

4 Other inequalities

In this section we present several new families of valid inequalities for the MBCPP,
namely parity, K-C and p-connectivity inequalities, and we study the conditions under
which they are facet-inducing for MBCPP(G).

4.1 Parity inequalities

Constraints (1) are not linear inequalities. In order to force the solution to satisfy these
parity constraints, we can use other linear inequalities as the set-parity inequalities

123

A branch-and-cut algorithm 29

proposed in [2] for the Prize-Collecting Rural Postman Problem (PRPP) which, as
previously mentioned, is a special case of the MBCPP. A first version of these inequal-
ities was proposed in [3], and later corrected in [2]. They are based on the so-called
co-circuit inequalities proposed by Barahona and Grötschel [5] for the binary matroid
problem, and are as follows. Given a vertex set S ⊂ V \{1} and two edge sets F ⊆ δ(S)

and L ⊆ F , such that |F | + |L| is odd, then the set-parity inequality is

x(δ(S)\F) + y(F\L) ≥ x(F) + y(L) − (|F | + |L|) + 1. (5)

It is easy to see that inequalities (5) are valid for the MBCPP, but we failed to prove
that they induce facets of MBCPP(G). However, we found the following ones, which
we will call parity inequalities, that dominate inequalities (5) and are facet-inducing
for MBCPP(G):

(x − y)(δ(S)\F) ≥ (x − y)(F)−|F |+1, ∀S ⊂V, ∀F ⊂δ(S) with |F | odd.

(6)

Theorem 7 Parity inequalities (6) are valid for MBCPP(G).

Proof Let (x∗, y∗) be an MBCPP tour. We have to prove that (x∗ − y∗)(δ(S)\F) ≥
(x∗ − y∗)(F) − |F | + 1. If (x∗ − y∗)(F) ≤ |F | − 1, this inequality reduces to
(x∗ − y∗)(δ(S)\F) ≥ 0, which is obviously satisfied. Let us suppose then that (x∗ −
y∗)(F) = |F |, which is only satisfied when x∗(F) = |F | and y∗(F) = 0. In this
case, the inequality becomes (x∗ − y∗)(δ(S)\F) ≥ 1. Since cut-set (S : V \S) must
be traversed an even number of times and |F | is odd, δ(S)\F must be traversed an
odd number of times. Given that x∗

e ≥ y∗
e for any edge e, x∗

e − y∗
e = 1 must hold for

at least one edge e ∈ (δ(S)\F). ��

Theorem 8 Parity inequalities (6) are stronger than set-parity inequalities (5).

Proof Let S ⊂ V \{1}, F ⊆ δ(S), L ⊆ F, |F | + |L| odd. Define F ′ = F\L . Since
|F | + |L| is an odd number, |F ′| is also odd. We will prove that the parity inequality
(6) associated with S and F ′ dominates the cocircuit inequality (5) associated with
sets S, F and L .

Given that F ′ = F\L , then δ(S)\F ′ = (δ(S)\F) ∪ L and the inequality (6)
associated with sets S and F ′ can be written as:

x(δ(S)\F) + x(L) − y(δ(S)\F) − y(L) ≥ x(F) − x(L) − y(F)

+y(L) − (|F | − |L|) + 1,

or equivalently

x(δ(S)\F) + y(F) − y(L) ≥ x(F) + y(L) − 2x(L)

+y(δ(S)\F) − (|F | − |L|) + 1,

123

30 A. Corberán et al.

which can be written as

x(δ(S)\F) + y(F\L) ≥ x(F) + y(L) − (|F | + |L|) + 1 + 2|L| − 2x(L)

+y(δ(S)\F) = x(F) + y(L) − (|F | + |L|) + 1 + 2(|L| − x(L))

+y(δ(S)\F),

whose RHS is obviously greater than or equal to the RHS in the set-parity inequality.
��

Note 1 Before proving that parity inequalities induce facets of MBCPP(G), in what
follows we will describe two types of MBCPP tours satisfying (6) with equality. Given
a graph G = (V, E) and T ⊂ V , with |T | even, recall that a subset of edges E ′ ⊂ E is
a T-join if, in the subgraph G ′ = (V, E ′), the degree of v is odd if and only if v ∈ T (see
[17], for instance). If G is connected, it has a T-join for each set T ⊂ V with |T | even.

Type 1 Let us consider the cut-set depicted in Fig. 1a, with |F | = 3, where we assume
that G(S) and G(V \S) are connected. Each MBCPP solution traversing all the edges
in F has to traverse the cut-set (V \S, S) at least one more time. Let e′ be either an
edge in δ(S)\F or a copy of an edge in F . Figure 1b shows this second case. Let
T ⊂ V \S be the set of vertices incident with an odd number of edges in F ∪ {e′}.
Given that |F ∪ {e′}| is even, |T | is also even and there is a T-join E ′ in G(V \S). This
same process is done in G(S) (see Fig. 1c). The subgraph in G(V \S), G∗, induced by
the edges in E ′, the vertices incident with F ∪{e′}, and the depot can be disconnected.
G∗ can be transformed into a connected graph (see Fig. 1d) by adding two copies of
some edges connecting its components (and any other vertex i as needed in the proof
of Theorem 9). Then, the two subgraphs built in G(V \S) and G(S), plus the edges in
F ∪ {e′}, define an MBCPP tour that satisfies (6) with equality.

Note that the above procedure can also be used if, in addition to the edges in F ∪{e′},
we also consider two copies of any q edges in δ(S)\F . In this case we would obtain:

x(F) = |F |, y(F) = 0, x(δ(S)\F) = 1 + q and y(δ(S)\F) = 0 + q,

if e′ ∈ δ(S)\F, or

x(F) = |F |, y(F) = 1, x(δ(S)\F) = 0 + q and y(δ(S)\F) = 0 + q, if e′ ∈ F.

In both cases, the MBCPP tours satisfy (6) with equality.

Type 2 Consider now all the edges in F , except one of them, and two copies of any q
edges in δ(S)\F . From these |F | − 1 + 2q edges we can apply the above procedure
to obtain an MBCPP tour satisfying:

x(F) = |F | − 1, y(F) = 0, x(δ(S)\F) = 0 + q and y(δ(S)\F) = 0 + q,

and, therefore, satisfying (6) with equality.

Theorem 9 Parity inequalities (6) are facet-inducing for MBCPP(G) if graph G is
3-edge connected and graphs G(S) and G(V \S) are 2-edge connected.

123

A branch-and-cut algorithm 31

SS

S

1

1 1

S

1

(a) (b)

(c) (d)

V \ S V \ S

V \ S V \ S

Fig. 1 Construction of MBCPP tours of type 1 satisfying (6) with equality

Proof Inequalities (6) can be written in the following form:

(x − y)(F) − (x − y)(δ(S)\F)) ≤ |F | − 1. (7)

Let us suppose there is another valid inequality ax + by ≤ c such that

{(x, y) ∈ MBCPP(G) : (x − y)(F) − (x − y)(δ(S)\F)) = |F | − 1}
⊆ {(x, y) ∈ MBCPP(G) : ax + by = c}.

Let (i, j) ∈ E(S)∪ E(V \S). Given that G is 3-edge connected, graph G\{(i, j)} is
connected, and there is an MBCPP tour (x1, y1) that satisfies (7) with equality and vis-
its vertex i (see Note 1). The MBCPP tour (x2, y2) obtained from (x1, y1) by adding
the traversal of edge (i, j) twice, also satisfies (7) with equality. Then ax1 + by1 = c,
ax2 +by2 = c and, after subtracting the first expresion from the second one, we obtain

ai j + bi j = 0 ∀(i, j) ∈ E(S) ∪ E(V \S).

Let (i, j) ∈ E(V \S). Given that G is 3-edge connected and G(V \S) is 2-edge
connected, we can construct, as in the proof of theorem 6, two edge-disjoint paths P1
and P2 joining vertices i and j that do not contain the edge (i, j), such that at least
one of them is in G(V \S).

If both paths are in G(V \S), proceeding as in Note 1, we can build an MBCPP tour
(x1, y1) in G satisfying (7) with equality such that it uses edge (i, j) exactly once. To
do that, the “parity” label of vertices i and j is switched before the T-join is computed
and then the edge (i, j) is added. We define three more MBCPP tours in the following
way. Consider (x1, y1) and suppose we add one copy of each edge in paths P1, P2. The

123

32 A. Corberán et al.

resulting tour is even and connected, but it is not necessarily an MBCPP tour because
some edges can appear three times. If we remove two copies of each one of these edges
used three times, we obtain an even and connected tour (x2, y2) that is a feasible solu-
tion for the MBCPP. Let (x3, y3) be the tour obtained from (x1, y1) after removing the
edge (i, j), adding one copy of each edge in path P1, and then removing two copies
of each one of these edges used three times. Finally, let (x4, y4) be the tour obtained
from (x1, y1) after removing the edge (i, j), adding one copy of each edge that is in
path P2, and then removing two copies of each one of these edges used three times. All
these four MBCPP tours satisfy (7) with equality and then also satisfy ax + by = c.

Let us define α(Pi) = ∑
e∈P1

i
ae+∑

e∈P2
i

be, where P1
i is the set of edges in path Pi

that are traversed only once in (x1, y1) and P2
i the set of edges in path Pi that are not tra-

versed at all or are traversed twice in (x1, y1). If we subtract the expression ax1+by1 =
c from ax2 +by2 = c, we obtain α(P1)+α(P2) = 0. In the same way, by comparing
tours 3 and 4 above, we obtain α(P1) = α(P2) and then α(P1) = α(P2) = 0. Finally,
if we compare tours 1 and 3, we obtain ai j = α(P1) and then ai j = 0. Since ai j +bi j =
0, also bi j = 0. For each edge (i, j) ∈ E(S), a similar process leads to ai j = bi j = 0.

Let us now suppose that path P2 is not in G(V \S), i.e. it leaves the graph G(V \S)

and traverses the cut-set δ(S). Given that graph G(S) is connected, we can assume that
path P2 traverses the cut-set δ(S) exactly once in each direction through two edges,
say e1 and e2. We consider three cases:

(1) e1, e2 ∈ F . Let (x1, y1) be the MBCPP tour of type 2, satisfying (7) with equality,
which traverses (i, j) and all the edges in F\{e2} once and does not traverse e2.
It can be seen that three MBCPP tours (x2, y2), (x3, y3) and (x4, y4) as defined
above would also satisfy (7) with equality. Note that when we add one copy of
each edge to path P2, we obtain an MBCPP tour of type 1 that uses each edge in
F\{e1} exactly once and edge e1 twice.

(2) e1, e2 /∈ F . Let (x1, y1) be the MBCPP tour of type 1, satisfying (7) with equal-
ity, which traverses (i, j) and all the edges in F ∪{e1} once and does not traverse
e2. Again, three MBCPP tours (x2, y2), (x3, y3) and (x4, y4) as defined above
would also satisfy (7) with equality. Note that when we add one copy of each
edge to path P2, we obtain an MBCPP tour of type 1 that uses each edge in
F ∪ {e2} exactly once and the edge e1 twice.

(3) e1 ∈ F, e2 /∈ F . Let (x1, y1) be the MBCPP tour of type 2 satisfying (7) with
equality, traversing (i, j) and all the edges in F\{e1} once and not traversing e2.
Again, the three MBCPP tours (x2, y2), (x3, y3) and (x4, y4) as defined above
would also satisfy (7) with equality. Note that when we add one copy of each
edge to path P2, we obtain an MBCPP tour of type 1 that uses each edge in
F ∪ {e2} exactly once.

In any of the 3 cases above, following a similar reasoning to that of the case in
which path P2 is in G(V \S), we obtain ai j = bi j = 0 for all edges (i, j) ∈ E(V \S).
The same result can be proved for any edge (i, j) ∈ E(S).

Consider now an edge (i, j) ∈ δ(S). As we have seen in Note 1, there is an
MBCPP tour (x1, y1) that satisfies (7) with equality and does not use (i, j), while
visiting vertices i and j . Let (x2, y2) be the tour obtained after adding edge (i, j)

123

A branch-and-cut algorithm 33

twice to (x1, y1). Since ax1 + by1 = ax2 + by2 = c, subtracting these expressions,
we obtain ai j + bi j = 0 for all (i, j) ∈ δ(S).

Let e1, e2 ∈ F . Let (x1, y1) be the MBCPP tour that uses all the edges in F\{e1}
exactly once and edge e1 twice and let (x2, y2) be the tour that uses all the edges in
F\{e2} exactly once and edge e2 twice. Both tours can be constructed satisfying (7)
with equality. By comparing them, and considering that ai j = bi j = 0 for all edges
(i, j) ∈ E(S) ∪ E(V \S), we obtain be1 = be2 and, therefore, ae1 = ae2 . By iterating
this argument, we obtain ai j = λ and bi j = −λ for all (i, j) ∈ F .

For each e1 ∈ δ(S)\F , consider any e2 ∈ F . Let (x1, y1) be the MBCPP tour that
uses all the edges in F ∪ e1 exactly once and let (x2, y2) be the tour that uses all
the edges in F\{e2} exactly once and edge e2 twice. By comparing them, we obtain
ae1 = be2 = −λ and, therefore, be1 = λ.

Then, inequality ax + by ≤ c reduces to λx(F) − λy(F) − λx(δ(S)\F) +
λy(δ(S)\F) ≤ c. Given that the MBCPP tour (x1, y1) above, for example, satis-
fies this inequality with equality, we obtain λ|F | − λ = c and, hence, inequality
ax + by ≤ c reduces to x(F) − y(F) − x(δ(S)\F) + y(δ(S)\F) ≤ |F | − 1. ��

4.2 K-C inequalities

K-C inequalities [10] are a well-known family of facet-inducing inequalities for the
Rural Postman Problem (RPP) and many other arc routing problems. In this section we
show that these inequalities can be transformed in order to obtain new valid and facet-
inducing inequalities for MBCPP(G) that we will continue to call K-C inequalities
for the sake of simplicity.

Let {M0, . . . , MK }, with K ≥ 3, be a partition of V , where for instance 1 ∈
M0 ∪ MK . Given an edge ei ∈ E(Mi) for each i = 1, . . . , K − 1, and a subset
of edges F ⊆ (M0 : MK) with |F | even, the K-C inequalities for the MBCPP are
defined as:

(K − 2)(x − y)
(
(M0 : MK)\F

)
− (K − 2)(x − y)(F)

+
∑

0≤i< j≤K
(i, j) =(0,K)

(
(j − i)x(Mi : M j) + (2 − j + i)y(Mi : M j)

)

−2
K−1∑
i=1

xei ≥ −(K − 2)|F | (8)

The coefficients and structure of the K-C inequalities are shown in Fig. 2. Edges in
F are represented by thick lines. For each pair (a, b) associated with an edge e, a and
b represent the coefficients of xe and ye, respectively. Note that if a solution traverses
each edge in F and each edge ei exactly once, it has to satisfy

(K −2)(x − y)
(
(M0 : MK)\F

)
+

∑
0≤i< j≤K

(i, j) =(0,K)

(
(j − i)x(Mi : M j) + (2 − j + i)y(Mi : M j)

)
≥ 2(K − 1),

123

34 A. Corberán et al.

Fig. 2 Coefficients of the K-C inequality

which, as far as the x variables are concerned, resembles the version of the K-C
inequality for the undirected RPP [10], as well as the “switched” K-C inequalities
presented in [21].

If the depot 1 /∈ M0 ∪ MK but 1 ∈ Md , for a d ∈ {1, . . . , K − 1}, and |F | ≥ 2, the
corresponding K-C inequality is

(K − 2)(x − y)
(
(M0 : MK)\F

)
− (K − 2)(x − y)(F)

+
∑

0≤i< j≤K
(i, j) =(0,K)

(
(j − i)x(Mi : M j) + (2 − j + i)y(Mi : M j)

)

−2
K−1∑
i=1
i =d

xei ≥ −(K − 2)|F | + 2. (9)

Note that when |F | = 0 or K = 2, the K-C inequality (9) is not valid since (0, 0)

is a feasible solution while the RHS is 2. Moreover, when K = 2, the K-C inequality
(8) reduces to a connectivity inequality (2).

Theorem 10 K-C inequalities (8) and (9) are valid for MBCPP(G).

Proof We will prove only the validity of inequalities (8) since the proof for inequalities
(9) is analogous. Let (x∗, y∗) be an MBCPP tour. If x∗

e j
= 0 for a j ∈ {1, . . . , K −1},

then we could consider a new K-C configuration with K − 1 subsets where M j and
M j+1 have been merged into a single subset M j ∪ M j+1, and it can be proved that if
its associated K-C inequality is satisfied by (x∗, y∗), then the original K-C inequality
is also satisfied by (x∗, y∗). Then, in what follows, we can assume that x∗

e1
= · · · =

x∗
eK−1

= 1 and we have to prove that

123

A branch-and-cut algorithm 35

(a) (b) (c)

Fig. 3 MBCPP solutions used in the proof of Theorem 10

(K − 2)(x∗ − y∗)
(
(M0 : MK)\F

)
− (K − 2)(x∗ − y∗)(F)

+
∑

0≤i< j≤K
(i, j) =(0,K)

(
(j − i)x∗(Mi : M j) + (2 − j + i)y∗(Mi : M j)

)

≥ 2(K − 1) − (K − 2)|F |. (10)

Let us suppose first that (x∗ − y∗)(F) = |F |. This means that (x∗, y∗) traverses
each edge in F once. In this case, inequality (10) reduces to

(K − 2)(x∗ − y∗)
(
(M0 : MK)\F

)
+

∑
0≤i< j≤K

(i, j) =(0,K)

(
(j − i)x∗(Mi : M j) + (2 − j + i)y∗(Mi : M j)

)
≥ 2(K − 1).

It is easy to see that this inequality holds since (x∗, y∗) starts at M0, visits all the
subsets M1, . . . , MK−1 and returns to M0 (see Fig. 3a, b), where edges in F used by
the tour are depicted in bold).

Consider now that (x∗ − y∗)(F) = |F | − 1, that is, (x∗, y∗) traverses the edges in
F an odd number of times. In this case, inequality (10) reduces to

(K − 2)
(
x∗ − y∗)

(
(M0 : MK)\F

)
+

∑
0≤i< j≤K

(i, j) =(0,K)

(
(j − i)x∗(Mi : M j) + (2 − j + i)y∗(Mi : M j)

)
≥ K .

The best way of starting at M0, visiting M1, . . . , MK−1 and ending at MK (remember
that the edges in F are traversed an odd number of times) gives a left-hand side value
greater than or equal to K (see Fig. 3c), and the previous inequality holds.

All the other cases when (x∗ − y∗)(F) < |F | − 1 can be proved easily since, in
this case, the right-hand side of the inequality is 2 or less, which should be clearly
satisfied by any feasible solution. ��
Theorem 11 K-C inequalities (8) and (9) are facet-inducing for MBCPP(G) if graph
G is 3-edge connected, graph G(Mi) is 3-edge connected for i = 0, . . . , K , |(Mi :
Mi+1)| ≥ 2 for i = 0, . . . , K − 1, and |F | ≥ 2.

123

36 A. Corberán et al.

Proof K-C inequalities have been proved to be facet-defining for other arc routing
problems. Therefore, we will omit the proof for this new variant for the sake of brevity.

��

4.3 p-connectivity inequalities

Consider an MBCPP instance defined on the complete graph with 5 vertices, K5.
Consider the fractional solution shown in Fig. 4a, where a double solid (dotted) line
means that both variables x and y take value 1 (0.5). It can be seen that it satisfies all
the inequalities presented in previous sections. In particular, it satisfies the connec-
tivity inequality (2) associated with set S1 = {2, 3} and f1 = (2, 3), as well as that
associated with S2 = {4, 5} and edge f2 = (4, 5).

Note, however, that sets S1 and S2 are not properly connected to the depot. As we
will show later, the following inequality is valid for the MBCPP and cuts fractional
solutions like the one depicted in Fig. 4a:

(x + y)(δ({1}) + 2x(S1 : S2) ≥ 2x23 + 2x45.

The above inequality can be extended as follows. Let {S0, S1, S2} be a partition of
V and assume that 1 ∈ S0. Let e1 ∈ E(S1) and e2 ∈ E(S2). The following inequality
will be referred to as a 2-connectivity inequality:

(x + y)(δ(S0)) + 2x(S1 : S2) ≥ 2xe1 + 2xe2 .

This inequality is represented in Fig. 4b, where for each pair (a, b) associated with
an edge e, a and b represent the coefficients of xe and ye, respectively. A different
version of these 2-connectivity inequalities is obtained when the depot is not in S0. If,
for example, 1 ∈ S1 (see Fig. 4c), the inequality takes the form:

(x + y)(δ(S0)) + 2x(S1 : S2) ≥ 2xe0 + 2xe2 ,

where e0 is a given edge in S0.

Fig. 4 2-connectivity inequalities

123

A branch-and-cut algorithm 37

2-connectivity inequalities can be generalized by considering any number p + 1 of
sets. Let {S0, . . . , Sp} be a partition of V . Assume that 1 ∈ Sd , d ∈ {0, . . . , p} and
consider one edge e j ∈ E(S j) for every j ∈ {0, . . . , p}\{d}. The following inequality

(x + y)(δ(S0)) + 2
∑

1≤r<t≤p

x(Sr : St) ≥ 2
p∑

i=0,i =d

xei (11)

is valid and will be referred to as a p-connectivity inequality.

Theorem 12 p-connectivity inequalities (11) are valid for MBCPP(G).

Proof For the sake of simplicity we will assume that 1 ∈ S0. Let (x∗, y∗) be an MBCPP
tour. We have to prove that (x∗ + y∗)(δ(S0))+2

∑
1≤r<t≤p x∗(Sr : St) ≥ 2

∑p
i=1 x∗

ei
.

Note that if x∗
e j

= 0 for certain j ∈ {1, . . . , p}, then we could consider a new p-con-
nectivity configuration with p − 1 vertices where S j and S j+1 have been merged into
a single vertex S j ∪ S j+1. It can be proved that if its associated (p − 1)-connectivity
inequality is satisfied by (x∗, y∗), then the original p-connectivity inequality is also
satisfied by (x∗, y∗). Then, in what follows, we can assume that x∗

e1
= · · · = x∗

ep
= 1.

Similarly, if x∗
e = 1 for certain e ∈ (Sr , St) with 1 ≤ r < t ≤ p, we can define a

new partition with p−1 elements where Sr and St have been merged into S′
r = Sr ∪ St

and where e′
r = er . Again, if its associated (p − 1)-connectivity inequality is satisfied

by (x∗, y∗), then the original p-connectivity inequality is also satisfied by (x∗, y∗).
Hence, we can assume that (x∗ + y∗)(Si , S j) = 0 for any i, j ∈ {1, . . . , p}.

Therefore, since x∗
ei

= 1, (x∗ + y∗)(S0, Si) ≥ 2 for each i , and the inequality holds.
��

Theorem 13 p-connectivity inequalities (11) are facet-inducing for MBCPP(G) if
graph G is 3-edge connected, subgraphs G(Si), i = 1, . . . , p, are 3-edge connected,
|(S0 : Si)| ≥ 2, ∀ i = 1, . . . , p, and the graph induced by V \S0 is connected.

Proof We will assume that 1 ∈ S0. The case 1 ∈ Si , i = 0, is similar and the proof is
omitted here. Let us suppose there is another valid inequality ax + by ≥ c such that

⎧⎨
⎩(x, y) ∈ MBCPP(G) : (x + y)(δ(S0)) + 2

∑
1≤r<t≤p

x(Sr : St) − 2
p∑

i=1

xei = 0

⎫⎬
⎭

⊆ {(x, y) ∈ MBCPP(G) : ax + by = c},

where, w.l.o.g., we can assume that c = 0.
Since subgraphs G(Si) are 3-edge connected, similar arguments to those used in

the proof of Theorem 9 apply to proving that auv = buv = 0 for every edge (u, v) ∈
E(Si)\{ei } for all i = 0, . . . , p, and that bei = 0 for all i = 1, . . . , p.

Let Si and S j , i, j = 0 be two sets such that there is an edge ei j ∈ (Si : S j). Since
(S0 : Si) = ∅, we can construct the tour that traverses both an edge f ∈ (S0 : Si) and
an edge ei twice, which satisfies the inequality (11) as an equality. If we compare this
tour with the empty tour, we obtain a f + b f + aei = 0. This result also holds for set

123

38 A. Corberán et al.

(a) (c)(b)

(d) (e)

Fig. 5 MBCPP solutions satisfying (11) with equality

S j . We now construct three tours such as those depicted in Fig. 5a–c) satisfying (11)
with equality. Comparing them, we conclude ae0i + be0i = aei j + bei j = ae0 j + be0 j =
−aei = −ae j , for all edges e0i ∈ (S0 : Si) and e0 j ∈ (S0 : S j). Given that the graph
induced by V \S0 is connected, we can iterate this argument to conclude that

aeuv + beuv = −aei = 2λ

for every edge euv ∈ (Su : Sv) and for every edge ei , i = 1, . . . , p.
Let e0i , e′

0i ∈ (S0 : Si). Since G(V \S0) is connected, there is a subset S j such
that (Si : S j) = ∅. Let ei j ∈ (Si : S j) and e0 j ∈ (S0 : S j). Then, we can construct
an MBCPP tour traversing edges e0i , ei j , e0 j , ei , and e j once, and a second tour tra-
versing edges e′

0i , ei j , e0 j , ei , and e j once (see Fig. 5d). Comparing both tours, we
obtain ae0i = ae′

0i
and, since ae0i + be0i = ae′

0i
+ be′

0i
, be0i = be′

0i
. Now we consider

two new MBCPP tours (see Fig. 5e), the first one using e0i twice and ei once, and the
second one using e0i , e′

0i , and ei once. Comparing them, we obtain be0i = ae′
0i

. Thus,
ae0i = ae′

0i
= be0i = be′

0i
= λ for any edges e0i , e′

0i ∈ (S0 : Si), i = 1, . . . , p.
As above, let Si and S j , i, j = 0 be two sets such that there is an edge ei j ∈ (Si : S j).

The tour (see Fig. 5d) that traverses edge ei j once, one edge e0i ∈ (S0 : Si), one edge
e0 j ∈ (S0 : S j), and edges ei and e j satisfies inequality (11) with equality. Therefore,
it satisfies aei j +ae0i +ae0 j +aei +ae j = aei j +λ+λ−2λ−2λ = 0, and consequently
aei j = 2λ, which implies bei j = 0.

Finally, since the right-hand side c is 0, dividing the inequality by λ we get the
coefficients of the p-connectivity inequality and the proof is completed. ��

123

A branch-and-cut algorithm 39

5 Branch-and-cut algorithm for the MBCPP

The branch-and-cut method presented here is based on a cutting-plane procedure that
identifies violated inequalities of the classes described in the previous sections.

The initial LP relaxation contains inequalities (3), which guarantee that a second
traversal of an edge can only occur when it has been traversed previously, the bounds
on the variables, and a parity inequality (6) with F = δ(v) for each odd degree vertex v.

5.1 Separation algorithms

In this section, we present the separation algorithms that have been used to identify the
inequalities that are violated by the current LP solution at any iteration of the cutting-
plane algorithm. Given a fractional solution (x∗, y∗), we will use two support graphs,
G+ and G−, which are the graphs induced by the edges e ∈ E with x∗

e + y∗
e > 0 and

x∗
e − y∗

e > 0, respectively, plus the depot vertex, if necessary.

5.1.1 Separation of connectivity inequalities

Connectivity inequalities (2) can be separated exactly in polynomial time with the
following well-known algorithm. For each edge f such that x∗

f > 0, compute the
minimum cut in graph G+ separating edge f from the depot. If the weight of this cut
is less than 2x∗

f , then the corresponding inequality (2) is violated.
Although polynomial, the above exact algorithm is quite time consuming and usu-

ally produces a large number of violated inequalities that are very similar to each
other. Therefore, we use the following labeling strategy to reduce both the number of
minimum cuts computed and the number of inequalities added to the LP.

Initially, all the edges are labeled as “unexplored”. An edge such as e is selected at
random and the minimum cut δ(S) (1 ∈ V \S) between the depot and e is computed.
Then the edge f with x∗

f = max
{

x∗
e : e ∈ E(S)

}
is selected and the associated con-

nectivity inequality is checked for violation. If it is not violated, the procedure starts
again with another unexplored edge e′. Otherwise the violated inequality is added
to the LP, and edges that are within distance d of f are labeled as “explored”. The
distance between two edges is defined as the minimum number of edges needed to
join them. At each node of the branch-and-cut tree, d is set to 4, and it is incremented
by one unit after this heuristic algorithm has been executed if it fails to find more
than 4 violated inequalities, while it is decreased by one unit otherwise (but never
taking a value lower than 4). Moreover, for any unexplored edge f ′ ∈ E(S) such that
x∗

f ′ ≥ 0.9x∗
f , we add the associated inequality (2) to the LP if it is violated, and all

the edges within distance d are labeled as explored. Then the next unexplored edge e
is selected and the procedure starts again.

Note that if there are no violated inequalities, the above algorithm is equivalent to
an exact one. However, if there are violated inequalities, it may not find all of them.
Thus, although it is strictly speaking a heuristic algorithm, we will refer to it as the
exact connectivity separation procedure.

123

40 A. Corberán et al.

Two more heuristic algorithms have been implemented. The first one is based on
the computation of the connected components of the graph induced by the edges such
that x∗

e + y∗
e > ε1, where ε1 is a given parameter. The inequality (2) associated with

each connected component and with the edge f in it having maximum x∗
f is checked

for violation.
The second heuristic algorithm is based on the computation of minimum cuts on a

smaller graph. First, the connected components of the graph induced by those edges
e with x∗

e ≥ 1 − ε2 are computed and are shrunk into a single vertex each, where ε2 is
another parameter. Then all the minimum cuts between the vertex corresponding to the
component containing the depot and the other ones are computed, and the associated
connectivity inequalities are checked.

5.1.2 Separation of parity inequalities

Parity inequalities (6) can be separated in polynomial time. Note that if we change
x − y for x in

(x − y)(δ(S)\F)≥ (x − y)(F)−|F |+1, ∀S ⊂V, ∀F ⊂δ(S) with |F | odd,

we obtain the cocircuit inequalities presented in [13], which can be separated exactly
in polynomial time with the algorithm described by Letchford et al. [15].

For parity inequalities with S = {v}, an exact and simple procedure (see [13]) can
be applied to obtain the set of edges that define the set F in the maximally violated
inequality associated with cut-set δ(v), if there is one.

A heuristic algorithm based on the computation of cut-sets in the graph G− is also
used. These cut-sets are obtained from the connected components induced by the edges
with xe − ye ≥ ε in G−, where ε is a given parameter. For each cut-set obtained, the
corresponding set F is found by applying the above procedure proposed in [13].

5.1.3 Separation of K-C inequalities

It is not known whether the problem of separating K-C inequalities can be solved in
polynomial time or not, but our guess is that this problem is NP-hard. Here we propose
a heuristic algorithm that is an adaptation of the one proposed in [7] for the General
Routing Problem (GRP). In the GRP there is a set of edges that have to be traversed
by the solution, called required edges. These edges play an important role in the defi-
nition of the partition of V in {M0, . . . , MK }. In order to apply our algorithm, we will
consider as required edges those with x∗

e ≥ 1 − ε1, where ε1 is a given parameter.
Once we have partitioned V , we choose the set F as the set of required edges with
y∗

e ≤ ε2, where ε2 is another parameter.

5.1.4 Separation of p-connectivity inequalities

As with the K-C inequalities, we do not know whether the separation problem of
p-connectivity inequalities is NP-hard or not. We have devised a heuristic algorithm
that seems to work well. The input for this algorithm is a cut-set (S : V \S) for which

123

A branch-and-cut algorithm 41

the corresponding connectivity inequality (2) is tight. Let us suppose that 1 ∈ V \S
and choose S0 = V \S. In order to determine the remaining sets S1, . . . , Sp, we com-
pute the connected components Ci in the subgraph induced by the edges e ∈ E(S)

with x∗
e ≥ 1 − ε in G(S), where ε is a given parameter. For each pair Ci , C j of such

components, we compute

si j = 2x∗(Vi : Vj) − 2 min
{

x∗
ei
, x∗

e j

}
,

where Vi and Vj are the sets of vertices in components Ci and C j , and ei and e j are
the edges in Ci and C j with the highest value of x∗

e . Note that si j represents the saving
obtained in the left-hand side of the p-connectivity inequality

(x + y)(δ(S0)) + 2
∑

1≤r<t≤p

x(Sr : St) − 2
p∑

r=1

xer ≥ 0,

after shrinking components Ci and C j . We shrink the components with maximal si j .
This process is repeated while a positive saving si j is achieved. The sets obtained with
this procedure define sets S1, . . . , Sp and the corresponding p-connectivity inequality
is checked for violation.

5.2 The cutting-plane algorithm

At each iteration of the cutting plane algorithm the separation procedures are called
in the following order:

1. The first heuristic algorithm for separating connectivity inequalities is applied
with ε1 = 0. If no violated inequalities are found, it is called again with ε1 =
0.25, 0.5. If this fails, the second heuristic algorithm is run with different values
of ε2 = 0, 0.1, 0.2, 0.3, 0.4 while it does not find any violated inequality.

2. The exact separation algorithm for connectivity inequalities is applied only if the
previous heuristics fail. Since this routine is too time consuming, we have tried
to reduce the number of times it is executed for large-size instances (more than
1,300 edges). When the improvement obtained in the lower bound with the last
executions is insignificant, this procedure is no longer called at this point of the
cutting-plane and it is relegated to step 8.

3. For each cut-set obtained by the second connectivity heuristic and the exact proce-
dure whose associated connectivity inequality is tight, the p-connectivity heuristic
separation algorithm is called.

4. Parity inequalities with S = {v} are separated exactly for every vertex v ∈ V .
5. If the previous algorithm fails, the heuristic procedure for parity inequalities is

applied with ε = 0, 0.25, 0.5.
6. If no violated parity inequalities are found, the exact procedure is applied.
7. If no violated connectivity inequalities have been found, the heuristic algo-

rithm for separating K-C inequalities is executed consecutively with parameters

123

42 A. Corberán et al.

(ε1, ε2) ∈ {(0, 0), (0, 0.2), (0.2, 0), (0.2, 0.2)}, while it does not find any violated
inequality.

8. If no violated inequalities of any type have been found and the exact separation
procedure for connectivity inequalities has not yet been applied at this iteration,
this exact algorithm is now run.

The above cutting-plane procedure is applied at each vertex of the tree until no new
violated inequalities are found.

6 Computational results

We present here the computational results obtained on different sets of instances. The
branch-and-cut procedure has been coded in C/C++ using the CPLEX 9.0 MIP Solver
with Concert Technology 2.0. Default settings for CPLEX were not used. Specifically,
the CPLEX presolve and heuristic algorithms and cut generation are turned off, the
optimality gap tolerance is set to zero, and strong branching and the depth-first search
are selected. Tests were run on an Intel Core 2 2.40 GHz and 2 GB RAM. All the data
instances are publicly available [9]. Since there is no previous exact algorithm for the
resolution of the MBCPP, we have compared our algorithm with the one by Araoz et
al. [2] for the PCARP which, as mentioned before, is a special case of the MBCPP.
In order to do that, we have tested the branch-and-cut algorithm described here on
a set of 118 instances with the same underlying graphs as those used in [2]. Their
characteristics are shown in Table 1(a). All of them were originally Rural Postman
Problem instances, in which the solution has to traverse a certain subset of edges called
required edges. Benefits are generated differently for required and non-required edges.
The net benefit associated with the first traversal of an edge e is randomly generated in
the intervals [0, 2ce] and [−ce, 0] for required and non-required edges, respectively,
while the net benefit associated with the second traversal of any edge e is given by
−ce. Since this strategy is the same one used in [2], although the benefits may differ,
we think that the two sets of instances are similar enough to be used to compare the
performance of both procedures.

In order to test our algorithm on instances of larger sizes, we have used the original
RPP instances from which the WRPP instances in [8] were obtained. The character-
istics of these instances are shown in Table 1(b). From these sets of RPP instances,
two different sets of MBCPP instances using different strategies have been created to
generate the net benefits. The net benefits of the first one have been generated using
the same strategy described before. To check whether the difficulty of the instances
depends on the benefits structure, we have generated the net benefits of the second set
of instances completely at random in [−ce, ce].

Table 2 reports the computational results obtained by the exact algorithm (AFM)
proposed in [2] on the PCARP instances described in that paper and with our exact
algorithm (CPRS) on the equivalently generated MBCPP instances. All the instances
were solved to optimality by both exact procedures. Columns headed “Gap” and “#
opt” show the average percentage gap for all the instances in each set and the num-
ber of optimal solutions obtained by the cutting-plane algorithm of the corresponding
exact procedures, respectively. The average number of nodes in the branch-and-cut

123

A branch-and-cut algorithm 43

Table 1 Instance characteristics
Set # inst |V | |E |
(a)

D16 9 16 31–32

D36 9 36 72

D64 9 64 128

D100 9 100 200

G16 9 16 24

G36 9 36 60

G64 9 64 112

G100 9 100 180

R20 5 20 37–75

R30 5 30 70–112

R40 5 40 82–203

R50 5 50 130–203

P 24 7–50 10–184

AlbaidaA 1 102 160

AlbaidaB 1 90 144

(b)

B3 3 318–490 630–873

B4 3 357–498 884–1,114

B5 3 388–498 1,106–1,326

B6 3 409–498 1,392–1,537

C3 3 502–737 1,013–1,319

C4 3 534–746 1,339–1,693

C5 3 582–749 1,705–2,005

C6 3 622–750 2,080–2,269

D3 3 661–979 1,297–1,738

D4 3 708–996 1,867–2,182

D5 3 783–999 2,361–2,678

D6 3 817–999 2,793–3,073

tree and the average time taken by the CPRS procedure are given in the columns
“Nodes” and “Time”. The last two columns show the average time employed by the
cutting plane and the overall cut-and-branch procedure (C&B) in [2]. All the times
are given in seconds. It can be seen that our cutting plane obtains a higher number of
optimal solutions, 110 compared with 94, and the average gap is a bit lower, 0.14%
compared with 0.37%. Moreover, the times taken to solve all the instances optimally
are considerably lower with our algorithm. We would like to point out that the times
from the AFM algorithm were obtained with a much slower machine (Sun ULTRA
10 at 440 Mhz, 1 GB RAM).

Table 3 contains the average number of violated inequalities found by the different
separation algorithms in the branch-and-cut procedure. Columns two to four show
the connectivity inequalities added by the two heuristics and the exact separation
procedures described in Section 5.2.1. The violated parity inequalities found by the

123

44 A. Corberán et al.

Table 2 Computational results on the instances described in Araoz et al. [2]

Set # inst CPRS AFM

Cutting plane B & C Cutting plane C & B

Gap # opt Nodes Time Gap # opt Time Time

D16 9 0.00 9 0.00 0.05 0.51 8 0.3 0.68

D36 9 0.00 9 0.00 0.10 0.12 5 14.58 29.74

D64 9 0.00 9 0.00 0.21 0.14 7 105.34 212.39

D100 9 0.00 9 0.00 1.75 0.40 4 1,890.71 3,270.28

G16 9 0.00 9 0.00 0.03 0.00 9 0.28 0.28

G36 9 0.00 9 0.00 0.12 0.00 9 18.31 18.31

G64 9 1.11 8 0.44 0.67 1.85 8 139.97 236.77

G100 9 0.45 7 1.11 3.52 0.44 6 2,798.35 3,079.73

R20 5 0.00 5 0.00 0.05 0.26 4 0.4 0.41

R30 5 0.00 5 0.00 0.11 0.00 5 2.7 2.7

R40 5 0.00 5 0.00 0.13 0.00 4 3.69 3.80

R50 5 0.06 4 0.20 0.24 0.07 4 60.86 61.21

P 24 0.07 20 0.21 0.07 0.44 20 1.97 2.69

Alb-A 1 0.00 1 0.00 0.38 0.19 0 562.5 589.7

Alb-B 1 0.00 1 0.00 0.22 0.00 1 25.15 25.15

Average 118 0.14 110 0.17 0.53 0.37 94 387.15 530.96

Table 3 Average no. of cuts added during the branch-and-cut algorithm on the instances in [2]

Connectivity Parity K-C p-conn

H1 H2 Exact H Ex1v Ex

D16 8.4 1.2 1.6 1.4 16.7 1.6 0.2 1.1

D36 17.6 2.4 4.3 5.1 47.0 0.2 0.2 2.9

D64 24.3 8.6 14.4 15.1 83.1 3.4 2.0 7.4

D100 40.6 39.6 38.7 23.4 130.1 93.3 10.6 32.4

G16 9.0 1.9 0.2 0.2 16.0 0.3 0.0 0.0

G36 22.7 10.3 3.6 3.6 47.2 8.4 0.8 3.1

G64 37.3 20.4 17.8 7.6 80.3 24.3 4.9 34.2

G100 52.7 101.8 50.1 18.2 131.2 173.8 13.4 86.0

R20 10.4 0.8 2.4 1.6 21.8 0.4 0.0 0.0

R30 23.8 1.8 7.0 10.2 41.4 3.8 0.0 1.8

R40 26.0 2.2 3.2 4.4 45.0 14.2 0.8 0.0

R50 33.2 6.6 11.6 9.8 66.2 20.6 0.0 2.2

P 7.8 1.3 2.7 1.6 25.0 2.5 0.9 1.3

Alb-A 43.0 6.0 14.0 8.0 93.0 44.0 0.0 0.0

Alb-B 33.0 11.0 6.0 4.0 70.0 10.0 0.0 2.0

Average 22.4 15.1 11.7 7.2 55.9 25.9 2.7 11.2

123

A branch-and-cut algorithm 45

Table 4 Computational results on the large size instances

Set # inst Net benefits as in [2] Random net benefits

Gap # opt 0 # opt Nodes Time Gap # opt 0 # opt Nodes Time

B3 3 0.18 0 3 3.00 55.2 0.02 1 3 3.33 190.9

B4 3 0.08 1 3 4.33 119.8 0.01 2 3 1.33 100.8

B5 3 0.00 3 3 0.00 63.4 0.00 3 3 0.00 70.3

B6 3 0.00 3 3 0.00 42.3 0.00 3 3 0.00 58.6

C3 3 0.03 1 3 1.33 251.4 0.01 1 2 0.67 857.9

C4 3 0.00 2 3 0.33 503.0 0.00 3 3 0.00 420.3

C5 3 0.01 1 3 2.67 831.4 0.00 3 3 0.00 385.2

C6 3 0.00 3 3 0.00 410.0 0.00 3 3 0.00 317.4

D3 3 0.01 1 3 0.67 1,265.6 0.00 1 2 1.00 1,896.2

D4 3 0.00 2 3 0.33 2,366.3 0.00 3 3 0.00 3,578.8

D5 3 0.00 3 3 0.00 1,252.8 0.00 3 3 0.00 350.9

D6 3 0.00 3 3 0.00 380.1 0.00 3 3 0.00 660.4

Average 36 0.06 23 36 1.06 628.5 0.01 29 34 0.53 703.2

heuristic and the exact method for |S| = 1 and the general case are shown in columns
five to seven, respectively. Finally, columns eight and nine report the average number
of violated K-C and p-connectivity inequalities found for each set of instances. It
can be seen that violated parity inequalities are found more frequently than the other
types of inequalities, followed by connectivity inequalities. However, note that they
are the only two types of inequalities for which an exact separation algorithm is known.
Moreover, the separation procedure for K-C inequalities is only executed when all the
connectivity inequalities are satisfied.

The results obtained with our algorithm on the large-size instances are shown in
Table 4. The column headed “# opt 0” shows the number of instances optimally solved
by the cutting-plane algorithm, while the number of optimal solutions found by the
branch-and-cut algorithm for each set is given in the column “# opt”. Furthermore, the
column “Gap” reports the average percentage gap at the root node for those instances
for which an optimal solution has been found, i.e. the unsolved instances have not
been taken into account. As far as the instances with benefits generated as in [2] are
concerned, note that 23 out of 36 instances were optimally solved at the root node with
the cutting-plane algorithm. For the other 13 instances, the branch-and-cut algorithm
needed a very small number of nodes to solve them to optimality. This behavior is
probably due to the low average gaps obtained at the root node. All but one of the
instances were solved to optimality in <1 h of CPU time. The remaining instance,
belonging to set D4a, took 1 h and 14 min. Regarding the instances with random ben-
efits, 33 out of 36 instances were solved to optimality in <1 h of CPU time. As for the
other three, one of them was solved in 69 min while the other two could not be solved in
2 h. Note that the number of instances optimally solved by the cutting-plane algorithm
is even higher in this case, 29 out of 36. The gaps obtained, as well as the number

123

46 A. Corberán et al.

Table 5 Average no. of cuts added on the large-size instances with benefits generated as in [2]

Connectivity Parity K-C p-conn

H1 H2 Exact H Ex1v Ex

B3a 200.7 492.0 373.3 211.0 465.0 300.7 12.7 110.3

B4a 74.7 63.3 559.0 291.3 525.3 702.3 48.7 83.0

B5a 50.0 22.0 154.0 269.3 490.0 84.3 33.0 9.3

B6a 25.3 4.0 24.3 158.7 449.7 44.7 5.3 1.7

C3a 251.3 995.3 1,073.7 312.0 668.0 1,186.7 1.3 179.3

C4a 120.3 51.0 535.0 369.3 736.7 397.3 16.7 53.0

C5a 65.3 8.7 609.3 357.0 724.3 984.3 16.3 19.3

C6a 37.0 0.7 105.3 364.7 727.3 812.7 10.0 6.3

D3a 447.7 2,261.0 1,599.0 549.7 993.0 4,195.0 6.3 317.3

D4a 174.7 204.3 1,123.3 523.0 979.7 1,604.3 72.7 119.0

D5a 124.7 18.0 745.7 457.3 973.3 367.0 33.7 31.3

D6a 68.0 3.7 90.3 328.3 933.3 379.3 0.0 37.7

Average 136.6 343.7 582.7 349.3 722.1 921.6 21.4 80.6

of nodes in the branch-and-cut tree are very low which, in addition to the reasonable
computing times, show that our algorithm is robust and behaves excellently.

The number of violated inequalities found for the instances with net benefits as in
[2] is shown in Table 5. In general, this number seems to decrease when the density of
the graphs increases. The heuristic algorithms for separating connectivity and parity
inequalities seem to do a good job identifying violated inequalities, which helps to
reduce the number of executions of the corresponding, and considerably more time
consuming, exact algorithms. Table 6 reports the same numbers for the instances with
random net benefits. We notice here that the number of violated inequalities found
decreases more drastically than before when the density of the underlying graphs
increases. It is worth noting that the behavior of the heuristic for separating parity
inequalities is quite good, and that the number of p-connectivity inequalities found is
very high in the low density instances and seems to be strongly related to the number
of violated connectivity inequalities identified.

7 Conclusions

In this paper, an IP formulation for the undirected MBCPP has been proposed for
the first time. We have presented a study of its associated polyhedron and introduced
several families of valid inequalities inducing facets of it. Some of these families are
based on previously known ones for other related arc routing problems. Although
previously known cocircuit inequalities can be applied to this problem, we have pre-
sented a stronger version that is facet-inducing. A new class of facet-defining inequal-
ities (p-connectivity inequalities), that we think could be extended to other arc routing
problems, has also been presented. The separation problems for all these families have

123

A branch-and-cut algorithm 47

Table 6 Average no. of cuts added on the large-size instances with benefits generated at random

Connectivity Parity K-C p-conn

H1 H2 Exact H Ex1v Ex

B3b 176.0 220.3 1,388.3 176.3 461.0 615.0 98.0 351.0

B4b 53.7 9.3 145.7 297.0 518.3 620.0 45.7 33.3

B5b 4.0 0.3 19.0 263.7 479.3 80.0 0.3 0.0

B6b 1.7 0.0 2.0 149.0 449.0 82.0 0.0 0.7

C3b 225.7 358.7 3,416.7 308.0 737.7 3,219.3 46.0 998.3

C4b 48.7 8.7 400.0 187.7 643.3 74.0 2.7 75.0

C5b 5.7 3.0 62.3 364.3 707.0 102.0 0.0 1.0

C6b 0.3 0.3 7.7 381.3 759.3 38.7 0.0 0.3

D3b 387.3 1,280.3 8,580.3 474.3 1,006.0 3,274.7 80.3 1,322.0

D4b 56.0 17.7 2,617.3 496.0 958.0 174.3 5.3 139.3

D5b 2.7 0.0 11.3 278.0 884.0 19.7 0.0 0.0

D6b 0.7 0.0 9.0 317.0 941.0 59.0 0.0 0.3

Average 80.2 158.2 1,388.3 307.7 712.0 696.6 23.2 243.4

been studied and several heuristic and exact procedures for their resolution have been
proposed. Furthermore, we have presented here a branch-and-cut algorithm for the
MBCPP resolution. The computational results have shown that its behavior is very
good, being capable of solving to optimality instances of up to 1,000 vertices and
3,000 edges.

Acknowledgments The authors wish to thank the Ministerio de Innovación y Ciencia/FEDER of Spain
(projects MTM2009-14039-C06-02, MTM2010-19576-C02-02 and DE2009-0057) and Junta de Anda-
lucía/FEDER (grant number FQM-5849) for its support. They also thank two anonymous referees for their
careful reading of the manuscript and for their many suggestions and comments that have helped to improve
the contents and readability of the paper.

References

1. Aráoz, J., Fernández, E., Franquesa, C.: The clustered price-collecting arc-routing problem. Transp.
Sci. 43, 287–300 (2009)

2. Aráoz, J., Fernández, E., Meza, O.: Solving the prize-collecting rural postman problem. Eur. J. Oper.
Res. 196, 886–896 (2009)

3. Aráoz, J., Fernández, E., Zoltan, C.: Privatized rural postman problems. Comput. Oper. Res. 33, 3432–
3449 (2006)

4. Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The undirected capacitated arc routing problem
with profits. Comput. Oper. Res. 37, 1860–1869 (2010)

5. Barahona, F., Grötschel, M.: On the cycle polytope of a binary matroid. J. Comb. Theory B 40,
40–62 (1986)

6. Corberán, Á., Fernández, E., Franquesa, C., Sanchis, J.M.: The windy clustered prize-collecting prob-
lem. Transp. Sci. 45, 317–334 (2011)

7. Corberán, Á., Letchford, A.N., Sanchis, J.M.: A cutting-plane algorithm for the general routing prob-
lem. Math. Progr. 90, 291–316 (2001)

123

48 A. Corberán et al.

8. Corberán, Á., Plana, I., Sanchis, J.M.: A branch & cut algorithm for the windy general routing problem
and special cases. Networks 49, 245–257 (2007)

9. Corberán, Á., Plana, I., Sanchis, J.M.: Arc Routing Problems: Data Instances. http://www.uv.es/
corberan/instancias.htm

10. Corberán, Á., Sanchis, J.M.: A polyhedral approach to the rural postman problem. Eur. J. Oper. Res.
79, 95–114 (1994)

11. Feillet, D., Dejax, P., Gendreau, M.: The profitable arc tour problem: solution with a branch-and-price
algorithm. Transp. Sci. 39, 539–552 (2005)

12. Franquesa, C.: The Clustered Prize-collecting Arc Routing Problem. PhD Thesis, Technical University
of Catalonia, Barcelona (2008)

13. Ghiani, G., Laporte, G.: A branch-and-cut algorithm for the undirected rural postman problem. Math.
Progr. 87, 467–481 (2000)

14. Lenstra, J.K., Rinnooy Kan, A.H.G.: On general routing problems. Networks 6, 593–597 (1976)
15. Letchford, A.N., Reinelt, G., Theis, D.O.: Odd minimum cut-sets and b-matchings revisited. SIAM J.

Discret. Math. 22, 1480–1487 (2008)
16. Malandraki, C., Daskin, M.S.: The maximum benefit chinese postman problem and the maximum

benefit traveling salesman problem. Eur. J. Oper. Res. 65, 218–234 (1993)
17. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-Interscience Series

in Discrete Mathematics and Optimization, Wiley, New York (1988)
18. Orloff, C.S.: A fundamental problem in vehicle routing. Networks 4, 35–64 (1974)
19. Pearn, W.L., Chiu, W.C.: Approximate solutions for the maximum benefit Chinese postman prob-

lem. Int. J. Syst. Sci. 36, 815–822 (2005)
20. Pearn, W.L., Wang, K.H.: On the maximum benefit Chinese postman problem. OMEGA 31,

269–273 (2003)
21. Reinelt, G., Theis, D.O.: Transformation of facets of the general routing problem polytope. SIAM J.

Optim. 16, 220–234 (2005)

123

http://www.uv.es/corberan/instancias.htm
http://www.uv.es/corberan/instancias.htm

	A branch-and-cut algorithm for the maximum benefit Chinese postman problem
	Abstract
	1 Introduction
	2 Problem formulation
	3 MBCPP polyhedron
	4 Other inequalities
	4.1 Parity inequalities
	4.2 K-C inequalities
	4.3 p-connectivity inequalities

	5 Branch-and-cut algorithm for the MBCPP
	5.1 Separation algorithms
	5.1.1 Separation of connectivity inequalities
	5.1.2 Separation of parity inequalities
	5.1.3 Separation of K-C inequalities
	5.1.4 Separation of p-connectivity inequalities

	5.2 The cutting-plane algorithm

	6 Computational results
	7 Conclusions
	Acknowledgments
	References

