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Abstract The main topic addressed in this paper is trace-optimization of polynomials
in noncommuting (nc) variables: given an nc polynomial f , what is the smallest trace
f (A) can attain for a tuple of matrices A? A relaxation using semidefinite program-
ming (SDP) based on sums of hermitian squares and commutators is proposed. While
this relaxation is not always exact, it gives effectively computable bounds on the
optima. To test for exactness, the solution of the dual SDP is investigated. If it satisfies
a certain condition called flatness, then the relaxation is exact. In this case it is shown
how to extract global trace-optimizers with a procedure based on two ingredients.
The first is the solution to the truncated tracial moment problem, and the other
crucial component is the numerical implementation of the Artin-Wedderburn theo-
rem for matrix ∗-algebras due to Murota, Kanno, Kojima, Kojima, and Maehara.
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Trace-optimization of nc polynomials is a nontrivial extension of polynomial optimi-
zation in commuting variables on one side and eigenvalue optimization of nc poly-
nomials on the other side—two topics with many applications, the most prominent
being to linear systems engineering and quantum physics. The optimization problems
discussed here facilitate new possibilities for applications, e.g. in operator algebras
and statistical physics.
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1 Introduction

A matrix has nonnegative trace if and only if it is a sum of a positive semidefinite
matrix (a hermitian square) and a trace zero matrix (a commutator).

In this article we propose a method for finding and proving trace inequalities
involving symmetric matrices. Our procedure provides certificates holding irrespec-
tive of the size of the matrices involved. Following Helton and his school [11] we
call such situations dimension-free. The algorithm is based on sum of squares and
commutators certificates for noncommutative (nc) polynomials which can be obtained
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The tracial moment problem and trace-optimization of polynomials 559

using semidefinite programming and has been implemented in the open source Matlab
toolbox NCSOStoolswritten by the second, third and fourth author [8]. We refer the
reader to [20,36] for a similar treatment of dimension-free matrix inequalities given via
positive semidefiniteness, and to GloptiPoly [19], SparsePOP [44], YALMIP [27], and
SOSTOOLS [37] for optimization software for polynomials in commuting variables
based on sum of squares methods. Readers interested in symbolic computation with
noncommuting variables are advised to see NCAlgebra [16] under Mathematica.

1.1 Motivation

Starting with Helton’s seminal paper [17], free real algebraic geometry (including
free positivity, the study of positivity of polynomials in noncommutating variables) is
being established. In this article we focus on trace-positive polynomials. These are nc
polynomials all of whose evaluations at tuples of matrices have nonnegative trace.

Much of today’s interest in real algebraic geometry is due to its powerful
applications. For instance, the use of sum of squares and the truncated moment problem
for polynomial optimization on R

n established by Lasserre and Parrilo [24,25,35,38] is
nowadays a common fact in real algebraic geometry with applications to control theory,
mathematical finance or operations research. In the free context there are many facets
of applications as well. A nice survey on connections to control theory, systems engi-
neering and optimization is given by Helton et al. [11]. Another interesting use of nc
sum of squares is given by Cimprič [7], who investigates PDEs and eigenvalues of poly-
nomial partial differential operators. Applications to quantum physics are explained by
Pironio et al. [36] who also consider computational aspects related to nc sum of squares.
Furthermore, optimization of nc polynomials has direct applications in quantum infor-
mation science (to compute upper bounds on the maximal violation of a generic Bell
inequality [39]), and also in quantum chemistry (e.g. to compute the ground-state elec-
tronic energy of atoms or molecules [28]). Another application in quantum physics is
presented by Doherty et al. [12], who use free real algebraic geometry to consider the
quantum moment problem and multi-player quantum games. Certificates of positivity
via sums of squares are often used in the theoretical physics literature to place very
general bounds on quantum correlations (cf. [15]). These applications of free real alge-
braic geometry in quantum physics are based on finding lower bounds or estimates
for the smallest eigenvalue of a given system represented by an nc polynomial.

Considering quantum mechanical many particle systems one often investigates sta-
tistical means of the system instead of the system itself. Hence one is interested in
bounds or estimates of the trace of a quantum statistical system. This brings us to the
consideration of trace-positive nc polynomials, the main topic of this article. Trace-
positive polynomials also arise in the Lieb-Seiringer reformulation of the important
Bessis–Moussa–Villani (BMV) conjecture [3] from statistical quantum mechanics.
This reformulation states on the polynomial level that the nc polynomials Sm,k(X2,Y 2)

that describe the coefficient of tk in (X2 + tY 2)m ∈ R[t] are trace-positive for all
m, k ∈ N. In addition, trace-positive polynomials (and the tracial moment problem
we discuss) occur naturally in von Neumann algebras and functional analysis. For
instance, Connes’ embedding problem [10] on finite II1-factors is a question about
the existence of a certain type of sum of hermitian squares (sohs) certificates for
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560 S. Burgdorf et al.

trace-positive polynomials [21]. It is widely believed that Connes’ conjecture is false
and our results will enable us to look for a counterexample using a computer algebra
system.

We have developed NCSOStools [8] as a consequence of this surge of interest
in free real algebraic geometry and sums of (hermitian) squares of nc polynomials.
NCSOStools is an open source Matlab toolbox for solving sohs problems using
semidefinite programming (SDP). As a side product our toolbox implements sym-
bolic computation with noncommuting variables in Matlab.

For a precise statement of our contribution we need a bit of notation. We start by
explaining the gist of the idea on an example.

Example 1.1 For symmetric matrices A, B of the same size we have

tr(A2 B2 + AB2 A + AB AB + B A2 B + B AB A + B2 A2) ≥ 0, (1)

where tr stands for trace. In fact,

tr(A2 B2 + AB2 A + AB AB + B A2 B + B AB A + B2 A2)

= tr(AB AB + B AB A + AB2 A + B A2 B)+ 2 tr(AB2 A)

= tr((AB + B A)t (AB + B A))+ 2 tr((B A)t (B A)) ≥ 0

since (AB + B A)t (AB + B A) and (B A)t (B A) are positive semidefinite matrices.

1.2 Words and nc polynomials

Fix n ∈ N and let 〈X〉 be the monoid freely generated by X := (X1, . . . , Xn), i.e.,
〈X〉 consists of words in the n noncommuting letters X1, . . . , Xn (including the empty
word denoted by 1). We consider the free algebra R〈X〉. The elements of R〈X〉 are
linear combinations of words in the n letters X and are called nc polynomials. An
element of the form aw where a ∈ R\{0} and w ∈ 〈X〉 is called a monomial and a its
coefficient. Words are monomials with coefficient 1. The length of the longest word
in an nc polynomial f ∈ R〈X〉 is the degree of f and is denoted by deg f . The set of
all nc polynomials of degree ≤ d will be denoted by R〈X〉≤d . If an nc polynomial f
involves only two variables, we write f ∈ R〈X,Y 〉.

1.3 Sums of hermitian squares

We equip R〈X〉 with the involution ∗ that fixes R ∪ {X} pointwise and thus reverses
words, e.g. (X1 X2

2 X3 − 2X3
3)

∗ = X3 X2
2 X1 − 2X3

3. Hence R〈X〉 is the ∗-algebra
freely generated by n symmetric letters. Let Sym R〈X〉 denote the set of all symmetric
elements, that is,

Sym R〈X〉 := { f ∈ R〈X〉 | f = f ∗}.
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The tracial moment problem and trace-optimization of polynomials 561

An nc polynomial of the form g∗g is called a hermitian square and the set of all sums
of hermitian squares will be denoted by�2. Clearly,�2

� Sym R〈X〉. The involution
∗ extends naturally to matrices (in particular, to vectors) over R〈X〉. For instance, if
V = (vi ) is a (column) vector of nc polynomials vi ∈ R〈X〉, then V ∗ is the row vector
with components v∗

i . We use V t to denote the row vector with components vi .
The main idea in systematizing the verification of inequalities as in Example 1.1

is to look for certificates at the level of nc polynomials. In particular, we propose
a relaxation for finding the trace-optimum based on sums of hermitian squares and
commutators.

1.4 Contribution and reader’s guide

To verify the trace-inequality of Example 1.1 via sums of hermitian squares and com-
mutators at the level of nc polynomials consider

f = X2Y 2 + XY 2 X + XY XY + Y X2Y + Y XY X + Y 2 X2 ∈ R〈X,Y 〉.

This f is of the form

f = (XY XY + Y XY X + XY 2 X + Y X2Y )+ 2XY 2 X

+ (X2Y 2 − XY 2 X)+ (Y 2 X2 − XY 2 X)

= (XY + Y X)∗(XY + Y X)+ 2(Y X)∗(Y X)+ (sum of commutators).

Note that the two differences in the brackets are commutators, e.g. X2Y 2 − XY 2 X =
X · XY 2 − XY 2 · X . Hence f (A, B) is a sum of hermitian squares and commutators
for all symmetric matrices A, B of the same size, and so has nonnegative trace.

The purpose of this paper is threefold.
First, we present how to systematize the search for sum of hermitian squares (sohs)

and commutators certificates using a computer algebra system. This is done via a var-
iant of the classical Gram matrix method. It is purely symbolic and constructs an SDP
whose feasibility is equivalent to the existence of such a certificate. In order to find
the best possible bound (equivalently, what is the greatest lower bound for the trace
an nc polynomial can attain), we study a closely related instance of a semidefinite
programming problem. From the solution of this SDP we extract the desired bound
and the corresponding polynomial sohs certificate.

Second, to investigate exactness of the obtained bound and the corresponding cer-
tificate, we consider the dual SDP, giving rise to the tracial moment problem. Loosely
speaking, it asks which linear functionals on R〈X〉 are integration of the trace of an
nc polynomial. In Sect. 3 we continue the investigation of the tracial moment problem
started in [2] by the first and the third author. Motivated by optimization problems, our
main focus is on the truncated tracial moment problem, like in the classical case of
polynomial optimization on R

n [24,25,35,38]. We define a seemingly more general
version of the tracial moment problem by considering integrals over Borel measures
on tuples of matrices as opposed to finite atomic measures as is done in [2]. In the
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truncated case both definitions are equivalent by the tracial version of the Bayer-Teich-
mann theorem [4] presented in Theorem 3.8 below. Further, we emphasize that the
truncated version is more general than the full tracial moment problem. In fact, solving
the truncated moment problems solves the full moment problem. This is the topic of
Sect. 3.2.

Third, the solution of the truncated tracial moment problem is utilized to give a con-
dition for the exactness of the sohs certificate for trace-optimization of polynomials.
If the solution to the dual SDP satisfies a condition called flatness, then our sohs relax-
ation is exact (Theorem 3.12). While this resembles the classical case of polynomial
optimization on R

n , the extraction of optimizers is more involved and is explained in
detail in Sect. 3.3. First of all, the Gelfand-Naimark-Segal (GNS) construction gives
rise to a set of symmetric matrices X̂ j , one for each of the noncommuting variables.
Unlike in the commutative [24] or the free noncommutative setting [36], an additional
step is needed to recover trace-optimizers. We consider the matrix ∗-algebra generated
by the X̂ j and compute its Artin-Wedderburn decomposition. This is done with the
aid of the algorithm of Murota et al. [31], and Maehara and Murota [32]. It produces
a simultaneous block diagonalization of the X̂ j , and each of these blocks yields a
trace-optimizer.

2 Sums of hermitian squares and commutators

In this section we present the main notions we exploit in the sequel, namely sums of
hermitian squares and commutators of nc polynomials. Via the so-called Gram matrix
method they relate naturally to semidefinite programming.

2.1 Matrix-positive polynomials and sums of hermitian squares

Every positive semidefinite matrix A has a square root, i.e., A is a hermitian square.
On the polynomial level we have the following:

Definition 2.1 An nc polynomial f ∈ R〈X〉 is called matrix-positive if

f (A) 	 0 for all tuples of symmetric matrices A of the same size. (2)

If f ∈ R〈X〉 is a sum of hermitian squares, i.e., f ∈ �2, then f is matrix-positive.
Helton [17] (and independently, McCullough [29]) proved the converse of this easy
observation: if f ∈ R〈X〉 is matrix-positive, then f ∈ �2.

2.2 Trace zero polynomials and cyclic equivalence

It is well-known and easy to see that trace zero matrices are (sums of) commutators.
To mimic this property for nc polynomials, we introduce cyclic equivalence [21]:

Definition 2.2 An element of the form [p, q] := pq − qp for p, q ∈ R〈X〉 is called

a commutator. Nc polynomials f, g ∈ R〈X〉 are called cyclically equivalent ( f
cyc
∼ g)
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The tracial moment problem and trace-optimization of polynomials 563

if f − g is a sum of commutators:

f − g =
k∑

i=1

[pi , qi ] =
k∑

i=1

(pi qi − qi pi ) for some k ∈ N and pi , qi ∈ R〈X〉.

Example 2.3 We have 2X2Y 2 X3 + XY 2 X2 + XY 2 X4 cyc
∼ 3Y X5Y + Y X3Y as

2X2Y 2 X3 + XY 2 X2 + XY 2 X4 − (3Y X5Y + Y X3Y )

= [2X2Y,Y X3] + [XY,Y X4] + [XY,Y X2].

It is clear that
cyc
∼ is an equivalence relation. The following remark shows that it can

be easily tested and motivates its name.

Remark 2.4

(a) For v,w ∈ 〈X〉, we have v
cyc
∼ w if and only if there are v1, v2 ∈ 〈X〉 such that

v = v1v2 and w = v2v1. That is, v
cyc
∼ w if and only if w is a cyclic permutation

of v.
(b) Nc polynomials f = ∑

w∈〈X〉 aww and g = ∑
w∈〈X〉 bww (aw, bw ∈ R) are

cyclically equivalent if and only if for each v ∈ 〈X〉,
∑

w∈〈X〉
w

cyc
∼ v

aw =
∑

w∈〈X〉
w

cyc
∼ v

bw. (3)

This notion is important for us because trace zero nc polynomials are exactly sums
of commutators:

Theorem 2.5 (Klep-Schweighofer [21]) Let s ∈ N and f ∈ Sym R〈X〉≤s . Then

f
cyc
∼ 0 if and only if tr( f (A)) = 0 for all n-tuples A = (A1, . . . , An) of symmetric

s × s-matrices.

2.3 Trace-positive polynomials, cyclic equivalence and sums of hermitian squares

A matrix has nonnegative trace if and only if it is a sum of a positive semidefinite
matrix and a trace zero matrix.

Definition 2.6 An nc polynomial f ∈ R〈X〉 is called trace-positive if

tr( f (A)) ≥ 0 for all tuples of symmetric matrices A of the same size. (4)

Clearly, every matrix-positive f ∈ R〈X〉 is trace-positive and the same is true for
every nc polynomial cyclically equivalent to a sum of hermitian squares.
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564 S. Burgdorf et al.

Definition 2.7 Let

�2 := { f ∈ R〈X〉 | ∃g ∈ �2 : f
cyc
∼ g}

denote the convex cone of all nc polynomials cyclically equivalent to a sum of hermi-
tian squares. By definition, the elements in �2 are exactly nc polynomials which can
be written as sums of hermitian squares and commutators.

Unlike in the matrix-positive case, there are trace-positive polynomials which are
not members of�2. The easiest example is the noncommutative Motzkin polynomial,
f = XY 4 X + Y X4Y − 3XY 2 X + 1 [21, Example 4.4]. We also refer the reader to
[22, Example 3.5] for more sophisticated examples obtained by considering the BMV
conjecture. Nevertheless, this obvious certificate for trace-positivity turns out to be
useful in optimization, so merits a further systematic investigation here.

2.4 Gram matrix method

Testing whether a given f ∈ R〈X〉 is an element of�2 can be done using semidefinite
programming as first observed in [22, Sect. 3]. This is based on the Gram matrix
method. The core of the method is given by the following proposition, an extension
of the results for sums of hermitian squares (cf. [17, Sect. 2.2] or [20, Theorem 3.1
and Algorithm 1]), which are in turn variants of the classical result for polynomials in
commuting variables due to Choi et al. ([9, Sect. 2]; see also Parrilo [35], and Parrilo
and Sturmfels [38]).

Proposition 2.8 Suppose f ∈ R〈X〉. Then f ∈ �2 if and only if there exists a positive
semidefinite matrix G such that

f
cyc
∼ W ∗GW, (5)

where W is a vector consisting of all words w ∈ 〈X〉 satisfying 2 deg(w) ≤ deg( f ).
Conversely, given such a positive semidefinite matrix G of rank r , one can construct
nc polynomials g1, . . . , gr ∈ R〈X〉 with

f
cyc
∼

r∑

i=1

g∗
i gi . (6)

The matrix G is called a (tracial) Gram matrix for f . More generally, given a vec-

tor of words V , every symmetric matrix G satisfying f
cyc
∼ V ∗GV is called a Gram

matrix. If f = V ∗GV , then G is an exact Gram matrix. The proof of Proposition 2.8
is straightforward as in the commutative case.

For an nc polynomial f ∈ R〈X〉 the tracial Gram matrix is not unique, hence
determining whether f ∈ �2 amounts to finding a positive semidefinite Gram matrix
from the affine set of all Gram matrices for f . Problems like this can be (in theory)
solved exactly using quantifier elimination. However, this only works for problems of
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The tracial moment problem and trace-optimization of polynomials 565

small size, so a numerical approach is needed in practice. Thus we turn to semidefinite
programming.

2.5 Semidefinite programming

Semidefinite programming (SDP) is a subfield of convex optimization concerned
with the optimization of a linear objective function over the intersection of the cone of
positive semidefinite matrices with an affine space. More precisely, given symmetric
matrices C, A1, . . . , Am ∈ R

s×s and a vector b ∈ R
m , we formulate a semidefinite

program in standard primal form (in the sequel we refer to problems of this type by
PSDP) as follows:

inf 〈C,G〉
s. t. 〈Ai ,G〉 = bi , i = 1, . . . ,m

G 	 0.
(PSDP)

Here 〈 , 〉 stands for the standard scalar product of matrices: 〈A, B〉 = tr(Bt A). The
dual problem to (PSDP) is the semidefinite program in the standard dual form

sup 〈b, y〉
s. t.

∑

i

yi Ai � C. (DSDP)

Here y ∈ R
m , and the difference C − ∑

i yi Ai is usually denoted by Z .
The relevance of SDPs increased with the ability to solve these problems efficiently

in theory and in practice. Given an ε > 0 we can extend most interior point methods
for linear programming to polynomial time algorithms giving an ε-optimal solution
for SDPs [34] (provided that both (PSDP) and (DSDP) have non-empty interiors of
feasible sets and we have good initial points). The variables appearing in these poly-
nomial bounds are the size s of the matrix variable, the number m of linear constraints
in (PSDP) and log ε (cf. [45, Ch. 10.4.4] and [5] for details). However, the com-
plexity to obtain exact solutions of an SDP is still an open question in semidefinite
optimization, see e.g. [40]. Nevertheless, there exist several general purpose open
source packages (cf. SeDuMi [42], SDPA [46], SDPT3 [43]) which can efficiently
find ε-optimal solutions in practice. If the problem is of medium size (i.e., s ≤ 1000
and m ≤ 10.000), these packages are based on interior point methods, while packages
for larger semidefinite programs use some variant of the first order methods (see [30]
for a comprehensive list of state-of-the-art SDP solvers, and also [33]). However, once
s ≥ 3,000 or m ≥ 250,000, the problem must share some special property otherwise
state-of-the-art solvers will fail to solve it for complexity reasons.

3 Trace-optimization of nc polynomials

One of the main features of our freely available Matlab software packageNCSOStools
[8] is NCcycMin which uses a sum of hermitian squares and commutators relaxation
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to approximate a trace-minimum of a given nc polynomial. The purpose of this section
is threefold. The first subsection presents our relaxation as an SDP and states its duality
properties. We then recall the tracial moment problem (Sect. 3.2) introduced and stud-
ied by the first and third author in [2], needed in Sect. 3.3 where we show how to use
the solution to the tracial moment problem to test for exactness of our �2-relaxation
and to extract trace-optimizers. This part is influenced by the method of Henrion and
Lasserre [18] for the commutative case, which has been implemented in GloptiPoly
[19]. For a similar investigation in the free noncommutative setting see [36].

Let S
s×s denote the set of symmetric matrices of size s, for some s ∈ N, and let Tr

denote the normalized trace.

3.1 SDP relaxation and its duality properties

Let f ∈ R〈X〉 be given. We are interested in the trace-minimum of f , that is,

f∗ := inf{Tr
(

f (A)
) | s ∈ N, A ∈ (Ss×s)n}. (7)

This is a hard problem. For instance, a good understanding of trace-positive poly-
nomials is likely to lead to a solution of two outstanding open problems: Connes’
embedding conjecture [10] from operator algebras, and the BMV conjecture [3] from
quantum statistical mechanics; see [22,21]. In fact, our computational advances will
make it possible to look for a counterexample to Connes’ conjecture using our software.

We propose the following relaxation of trace-minimization of nc polynomials:

fsos := sup{a | f − a ∈ �2}. (8)

Remark 3.1 Since we are only interested in the trace of the values of f ∈ R〈X〉, we
may use that tr( f (A)) = tr( f ∗(A)) for all real A; hence there is no harm in replacing
f by its symmetrization 1

2 ( f + f ∗). Thus we will mostly focus on symmetric nc
polynomials.

Lemma 3.2 Let f ∈ Sym R〈X〉. Then fsos ≤ f∗.
In general we do not have equality in Lemma 3.2. For instance, the Motzkin poly-

nomial f satisfies f∗ = 0 and fsos = sup ∅ := −∞, see [21]. Nevertheless, fsos
gives a solid approximation of f∗ for most of the examples and is easier to compute.
It is obtained by solving the SDP

sup a
s. t. f − a ∈ �2.

(SDPmin)

Suppose f ∈ Sym R〈X〉 is of degree ≤ 2d (with constant term f1). Let W be a vector
of all words up to degree d with first entry equal to 1. Then (SDPmin) rewrites into

sup f1 − 〈E11,G〉
s. t. f − f1

cyc
∼ W t (G − g11 E11)W

G 	 0.
(SDPmin′)
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Here E11 is the matrix with all entries 0 except for the (1, 1)-entry which is 1, and
g11 denotes the (1, 1)-entry of G. The cyclic equivalence translates into a set of linear
constraints, cf. Remark 2.4.

In general (SDPmin) does not satisfy the Slater condition. Nevertheless:

Theorem 3.3 (SDPmin) satisfies strong duality.

Proof The proof is essentially the same as that of [20, Theorem 5.1] so is omitted. We
only mention, an important ingredient is the closedness of the cone �2 established in
[2, Lemma 4.5]. ��

The dual problem to (SDPmin) can be written as

inf L( f )
s. t. L : R〈X〉≤2d → R is a linear ∗-map

L(1) = 1
L(p) ≥ 0 for all p ∈ �2 ∩ R〈X〉≤2d .

(DSDPmin)

(L is a ∗-map means L(p∗) = L(p) for all p. Note the last constraint enforces
L(pq − qp) = 0 for all p, q ∈ R〈X〉 with deg(pq) = deg(qp) ≤ 2d, i.e., L is
tracial.) Let f sos denote the optimal value of (DSDPmin). By Theorem 3.3, we have
fsos = f sos. The question is, does fsos = f sos = f∗ hold? And if so, can we detect
this using the above SDP? If the dual optimizer L∗ satisfies an easy to check condition
called flatness (see Sect. 3.3.1 for a definition), then the answer to both questions
is affirmative. In particular, the proposed �2-relaxation is then exact. Furthermore,
in this case we can even extract global trace-minimizers of f . This is based on the
solution to the truncated tracial moment problem, uses the Gelfand–Naimark–Segal
construction and the Artin-Wedderburn theorem; see Sect. 3.3.

3.2 Tracial moment problem

The moment problem is a classical question in functional analysis, well studied because
of its importance and applications [1,6,26]. For the free noncommutative moment
problem see McCullough [29]. In this section we recall the tracial moment prob-
lem from [2], which is essentially the study of feasible points of (DSDPmin). In fact,
we define a seemingly more general version using integrals over Borel measures as
opposed to finite atomic measures as is done in [2]. However, in the truncated case
both versions are equivalent by the tracial version of the Bayer-Teichmann theorem
[4] presented in Theorem 3.8 below. Our emphasis on the truncated tracial moment
problem is justified for two reasons. First of all, this is what is needed for the applica-
tion to trace-optimization of nc polynomials. Second, by Theorem 3.6, a tracial analog
of the classical result of Stochel [41], solving the truncated tracial moment problems
solves the full tracial moment problem.

Definition 3.4 A sequence of real numbers (yw) indexed by wordsw ∈ 〈X〉 satisfying

yw = yu whenever w
cyc
∼ u, yw = yw∗ for all w, (9)

and y1 = 1, is called a (normalized) tracial sequence.
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Example 3.5 (a) Given s ∈ N and a probability measureμ on (Ss×s)n , the sequence
given by

yw :=
∫

Tr(w(A)) dμ(A) (10)

is a tracial sequence since the traces of cyclically equivalent words coincide.
(b) Every feasible point L of (DSDPmin) induces a truncated tracial sequence

yL := (L(w))w, where w ∈ 〈X〉 are constrained by degw ≤ 2d. Conversely,
every finite tracial sequence (yw)≤2d yields a linear ∗-map (often called the Riesz
functional) L y : R〈X〉≤2d → R, w �→ yw.

For us the converse of Example 3.5(a) (the tracial moment problem) is of impor-
tance: for which sequences (yw) do there exist an s ∈ N and a probability measure μ
on (Ss×s)n such that (10) holds? We then say that (yw) has a tracial moment represen-
tation and call it a tracial moment sequence. The truncated tracial moment problem
is the study of (finite) tracial sequences (yw)≤k where w is constrained by degw ≤ k
for some k ∈ N, and properties (9) hold for these w. For instance, which sequences
(yw)≤k have a tracial moment representation, i.e., when does there exist a representa-
tion of the values yw as in (10) for degw ≤ k? If this is the case, the sequence (yw)≤k

is called a truncated tracial moment sequence.

3.2.1 Stochel’s theorem

The truncated tracial moment problem is more general than the full tracial moment
problem in the sense explained in Theorem 3.6.

Theorem 3.6 Suppose y = (yw)w is a tracial sequence. If there is an s ∈ N such
that for all k ∈ N there is a probability measure μk on (Ss×s)n satisfying (10) for all
w ∈ 〈X〉 with degw ≤ k, then y is a tracial moment sequence. Furthermore, there is
a probability measure μ on (Ss×s)n such that (10) holds for all w ∈ 〈X〉.

We start by a preliminary lemma showing that a specific function needed in the
proof of Theorem 3.6 vanishes at infinity.

Lemma 3.7 Let s ∈ N be fixed. For u ∈ 〈X〉 the map ϕu : (Ss×s)n → R defined by

ϕu(A) := Tr
(
u(A)

)

1 + ∑n
i=1 Tr

(
A2 deg(u)+2

i

)

lies in C0
(
(Ss×s)n,R

)
.

Proof Let u ∈ R〈X〉 be fixed with deg(u) =: d and let A ∈ (Ss×s)n be such that∑n
i=1 Tr(A2

i ) > �2 for some � ∈ N. Choose the index i A ∈ {1 . . . , n} such that
Tr(A2

i A
) ≥ Tr(A2

i ) for all i = 1, . . . , n. Then

Tr(A2
i A
) ≥

∑
i Tr(A2

i )

n
>
�2

n
.
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Since the matrices A2
i are positive semidefinite we have Tr(A2d+2

i ) = ‖A2
i ‖d+1

d+1,
where ‖ ‖p denotes the normalized p-Schatten norm on S

s×s , which generalizes the
Hilbert-Schmidt norm (p = 2) and is given by

‖T ‖p
p = Tr(|T |p) with |T | =

√
T 2 for T ∈ S

s×s .

Since S
s×s is finite dimensional, the (d + 1)-Schatten norm is equivalent to the

1-Schatten norm, also known as the trace-norm, on S
s×s . Hence there is a c ∈ R>0

such that

c Tr(A2
i )

d+1 = c‖A2
i ‖d+1

1 ≤ ‖A2
i ‖d+1

d+1 = Tr(A2d+2
i )

for all Ai ∈ S
s×s . Further, for the numerator of ϕu we have

(
Tr(u(A))

)2 ≤ sd−2u(Tr(A2
1), . . . ,Tr(A2

n)) ≤ sd−2(Tr(A2
i A
))d

by induction on d and the Cauchy-Schwarz inequality. All together this implies

ϕu(A)
2 =

(
Tr(u(A))

)2

(
1 + ∑n

i=1 Tr(A2d+2
i )

)2 ≤ sd−2(Tr(A2
i A
))d

(
1 + ∑n

i=1 Tr(A2d+2
i )

)2

≤ sd−2(Tr(A2
i A
))d

(
1 + c

∑n
i=1(Tr(A2

i ))
d+1

)2 <
sd−2(Tr(A2

i A
))d

c2(Tr(A2
i A
))2d+2

≤ sd−2

c2 Tr(A2
i A
)d+2

<
sd−2nd+2

c2�2d+4

which goes to zero for large �. Hence ϕu ∈ C0
(
(Ss×s)n,R

)
. ��

Proof of Theorem 3.6 Endow C0 := C0
(
(Ss×s)n,R

)
with the maximum norm ‖ ‖∞.

To every finite measure η on (Ss×s)n we associate the linear functional η̂ : C0 → R,

η̂( f ) :=
∫

f (A) dη(A).

Due to our normalization, for all k ∈ N we have

|μ̂k( f )| ≤
∫

‖ f ‖∞ dμk = ‖ f ‖∞ for all f ∈ C0,

so all the μ̂k belong to B, the closed unit ball in the dual space C∨
0 = C0

(
(Ss×s)n,R

)∨.
By the Banach-Alaoglu theorem, there is a subsequence (μ̂k� )� of (μ̂k)k converging

to some ψ ∈ B. For simplicity of notation, we omit the subindex � in the sequel and
assume that (μ̂k)k converges to ψ . If f ∈ C0 and f ≥ 0, then

ψ( f ) = lim
k→∞ μ̂k( f ) ≥ 0.
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Hence by the Riesz representation theorem, there is a finite positive Borel measure μ
on (Ss×s)n with μ̂ = ψ . Since μ̂(1) = 1, μ is a probability measure.

Let u ∈ 〈X〉 be fixed with deg(u) =: d and 	u(A) := 1 + ∑n
i=1 Tr

(
A2d+2

i

)
. The

assumption that (yw)≤k is a truncated tracial moment sequence with corresponding
measure μk , implies

∫
	u dμk =

∫ (
1 +

n∑

i=1

Tr
(

A2d+2
i

)
)

dμk(A) = 1 +
n∑

i=1

yX2d+2
i

,

for all k ≥ 2d + 2.

Thus the sequence (̂νk)k of linear functionals associated to the Borel measures νk on
(Ss×s)n which are defined by

dνk(A) = 	u(A) dμk(A),

is uniformly bounded. We now proceed to show that the Borel measure ν, given by

dν(A) = 	u(A) dμ(A),

is finite. Let (U�)� be an increasing sequence of compact subsets of
(
S

s×s
)n with⋃∞

�=1 U� = (
S

s×s
)n . For each � ≥ 1 there is a continuous function τ� : (

S
s×s

)n → R

with compact support such that 0 ≤ τ� ≤ 1 and τ� = 1 on U�. Then,

∫
dν =

∫
	u dμ

= lim
�→∞

∫

X�

	u dμ ≤ lim sup
�→∞

lim
k→∞

∫
τ�	u dμk ≤ lim sup

k→∞

∫
	u dμk < ∞.

The finiteness of ν yields that (̂νk)k converges pointwise to ν̂ ∈ C∨
0 in the σ(C∨

0 , C0)-
topology. Since ϕu : (Ss×s)n → R,

ϕu(A) := Tr
(
u(A)

)

1 + ∑n
i=1 Tr

(
A2 deg(u)+2

i

)

lies in C0 by Lemma 3.7, we get the desired conclusion

yu = lim
k→∞

∫
Tr(u(A)) dμk(A) = lim

k→∞

∫
ϕu	u dμk =

∫
ϕu	u dμ

=
∫

Tr
(
u(A)

)
dμ(A).

��
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3.2.2 Bayer-Teichmann theorem

Our next theorem is a tracial version of the classical result of Bayer and Teichmann [4]
stating that every truncated moment sequence y that admits a representing measure,
admits a finite atomic representing measure. That is, the corresponding linear map L y

is given by a cubature formula. Our proof is an easy modification of the Schweighofer
adaptation of the original proof as presented by Laurent in [26, Sect. 5.2].

Theorem 3.8 If y = (yw)≤k is a truncated tracial moment sequence with probability
measure μ on (Ss×s)n for some s ∈ N, then there exist N ∈ N, λi ∈ R>0 with∑N

i λi = 1 and n-tuples A(i) = (A(i)1 , . . . , A(i)n ) ∈ (Ss×s)n, such that for all w with
degw ≤ k:

yw =
N∑

i=1

λi Tr(w(A(i))). (11)

Proof Let S = suppμ ⊆ (Ss×s)n and

C = conv cone{y A = (y A
w)≤k | y A

w = Tr(w(A)) for some A ∈ suppμ}.

The closure of C can be written as the intersection of supporting halfspaces H , that is,

C = {z = (zw)≤k | ∀c ∈ H : ct z ≥ 0}.

Thus y ∈ C . We now proceed to show that y ∈ rel int C . For this, consider a support-
ing hyperplane {z = (zw)≤k | ct z = 0} that does not contain C and assume ct y = 0.
Let

U = {A ∈ S | ct y A > 0} and U� =
{

A ∈ S | ct y A ≥ 1

�

}
.

Then U �= ∅ and U = ⋃
� U�, hence there is some � with μ(U�) > 0. We have

0 = ct y =
∫

X

ct y Adμ(A) ≥
∫

X�

ct y Adμ(A) ≥ 1

�

∫

X�

dμ = 1

�
μ(U�) > 0,

a contradiction. This shows ct y > 0 thus y ∈ rel int C = rel int C . Whence y ∈ C , as
desired. ��
Remark 3.9 Using Carathéodory’s theorem, we deduce that y from Theorem 3.8 can
be written as a convex combination of at most N ≤ 1+∑k

�=1 Bn(�) tracial sequences
y A, where

Bn(�) =
⎧
⎨

⎩

1
2 Nn(�)+ 1

4 (n + 1)n�/2; if � even

1
2 Nn(�)+ 1

2 n(�+1)/2; if � odd
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is the bracelet number,

Nn(�) = 1

�

∑

d|�
φ

(
�

d

)
nd

is the necklace number, and φ is the Euler function.

3.3 Exactness of the �2-relaxation and extraction of trace-optimizers

In this subsection we shall use our results on the truncated tracial moment problem
and flat extensions of tracial moment matrices to detect exactness of the�2-relaxation
and to extract global trace-optimizers.

3.3.1 The flatness condition

The tracial moment matrix Mk(y) of a truncated tracial sequence y = (yw)≤2k is

Mk(y) = (yu∗v)u,v,

a matrix indexed by words u, v with deg u, deg v ≤ k. The tracial moment matrix
represents the bilinear form on R〈X〉≤k × R〈X〉≤k given by ( f, g) �→ L y( f ∗g),
cf. Example 3.5(b). Hence if y is a truncated tracial moment sequence, then Mk(y) is
positive semidefinite.

Example 3.10 A feasible point L of (DSDPmin) with corresponding tracial sequence
yL has a tracial moment matrix ML = Md(yL). Since L(p∗ p) ≥ 0 for all p ∈ R〈X〉≤d

the tracial moment matrix ML is positive semidefinite.

Definition 3.11 Let A ∈ S
s×s be given. A (symmetric) extension of A is a matrix

Ã ∈ S
(s+�)×(s+�) of the form

Ã =
[

A B
Bt C

]

for some B ∈ R
s×� and C ∈ R

�×�. Such an extension is flat if rank A = rank Ã, or,
equivalently, if B = AZ and C = Zt AZ for some matrix Z .

The property we use is that a truncated tracial sequence y = (yw)≤2k with a positive
semidefinite tracial moment matrix Mk(y) which is a flat extension of Mk−1(y), is a
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The tracial moment problem and trace-optimization of polynomials 573

truncated tracial moment sequence [2, Corollary 3.19]. How the finite atomic measure
as in (11) can be explicitly constructed we explain in Sects. 3.3.2 and 3.3.3 below.

Theorem 3.12 If the optimizer L∗ of (DSDPmin) satisfies the flatness condition,
i.e., ML∗ = Md(yL∗) is flat over Md−1(yL∗), then the �2-relaxation is exact:
fsos = f sos = f∗.

Proof By assumption the tracial moment matrix ML∗ is a flat extension of Md−1(yL∗).
From L∗(�2 ∩R〈X〉≤2d) ⊆ [0,∞) it follows that ML∗ is positive semidefinite. Then,
by [2, Theorem 3.18], there exists a unique (infinite) tracial extension ỹ of yL∗ with
tracial moment matrix M(ỹ) being a flat extension of ML∗ . Thus yL∗ is a truncated tra-
cial moment sequence [2, Corollary 3.19], and has a finite representation (11). Hence
there exist N ∈ N, λi ∈ R>0 with

∑N
i λi = 1 and tuples A(i) ∈ (Ss×s)n , such that

L∗( f ) =
N∑

i=1

λi Tr( f (A(i))).

Since L∗ is the optimizer of (DSDPmin), we have L∗( f ) = f sos = fsos. Further,

Tr( f (A(i))) ≥ fsos

for each i = 1, . . . , N . Hence

f∗ ≤ Tr( f (A(i))) = fsos ≤ f∗.

Thus the minimum f∗ = fsos is attained at each of the A(i). ��
For the rest of this section assume f ∈ Sym R〈X〉≤2d is such that the optimizer L

of (DSDPmin) is flat. By Theorem 3.12, f∗ = fsos = f sos. In the next two subsections
we explain how to construct the trace-minimizing tuples A(i) for f .

3.3.2 GNS construction

In this subsection we use the Gelfand–Naimark–Segal (GNS) construction to associate
a matrix ∗-algebra A to L .

Since Md = Md(yL) is flat over Md−1 = Md−1(yL), there exist s = rank Md

linear independent columns of Md−1 labeled by words w ∈ 〈X〉 with degw ≤ d − 1
which form a basis B of E = Ran Md , the range of Md . Now L (or Md ) induces a
positive definite bilinear form (i.e., a scalar product) 〈 , 〉E on E .

Let X̂i be the right multiplication with Xi on E , i.e., if w denotes the column of
Md labeled by w ∈ 〈X〉≤d , then X̂i u := u Xi for u ∈ 〈X〉≤d−1. The operator X̂i is
well defined and symmetric by the tracial property of L:

〈X̂i p, q〉E = L(Xi p∗q) = L(p∗q Xi ) = 〈p, X̂i q〉E .

Therefore we can construct matrix representations Ai ∈ S
s×s of these multi-

plication operators X̂i by calculating their image according to our chosen basis B.
To be more specific, X̂i u1 for u1 ∈ 〈X〉≤d−1 being the first label in B, can be writ-
ten as a unique linear combination

∑s
j=1 λ j u j with words u j labeling B such that
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L
(
(u1 Xi − ∑

λ j u j )
∗(u1 Xi − ∑

λ j u j )
) = 0. Then

[
λ1 . . . λs

]t will be the first
column of Ai .

Remark 3.13 We note there is an alternative and more abstract approach to the con-
struction of the X̂i based upon properties of flat moment matrices. Let L̃ : R〈X〉 → R

be the linear functional corresponding to the unique flat extension ỹ of yL [2, Theorem
3.18]. Since L̃|

R〈X〉≤2d = L we write L instead of L̃ . Equip R〈X〉 with the bilinear
form given by

〈p, q〉 := L(p∗q).

Let I = {p ∈ R〈X〉 | L(p∗ p) = 0}. By [2, Proposition 3.7], I is an ideal of R〈X〉.
Thus E := R〈X〉/I with the induced scalar product is a Hilbert space of dimen-
sion rank Md(y) < ∞. Let X̂i be the right regular representation of Xi on E , i.e.,
X̂i p := pXi for p = p + I ∈ E . The operator X̂i is well defined and symmetric with
respect to the scalar product induced by L . The construction of the matrices Ai is now
similar as above.

Let A denote the unital (∗-)subalgebra of R
s×s generated by A1, . . . , An .

3.3.3 Artin-Wedderburn block decomposition

The matrix ∗-algebra A is semisimple and thus admits an Artin-Wedderburn block
decomposition [23, (3.5)]. In this subsection we employ this block decomposition of
A; each of the blocks obtained will yield a trace-minimizer of f .

Elements of A can be presented as p̂ := p(A1, . . . , An) for p ∈ R〈X〉. Let
L̂ : A → R be the induced linear functional given by L̂( p̂) = L(p). By construc-
tion, L̂ is a tracial state, that is, L̂ maps positive semidefinite matrices to nonnegative
scalars, L̂(1) = 1, and L̂ vanishes on commutators.

By [2, Proposition 3.13], the tracial state L̂ is given by a conic combination of
normalized traces on the Artin-Wedderburn blocks of A. More precisely, there exist
unital ∗-subalgebras A(i) of R

s×s , each isomorphic to a full matrix algebra over R,C

or H, a ∗-isomorphism

A →
N⊕

i=1

A(i), (12)

and λ1, . . . , λN ∈ R>0 with
∑

i λi = 1, such that for all A ∈ A,

L̂(A) =
N∑

i=1

λi Tr(A(i)).

Here,
⊕

i A(i) denotes the image of A under the isomorphism (12). In particular,

L(p) = L̂( p̂) =
N∑

i=1

λi Tr(p(A(i)1 , . . . , A(i)n )) for p ∈ R〈X〉. (13)
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As Tr( f (A(i)1 , . . . , A(i)n )) ≥ f∗ ≥ L( f ) for all i , (13) implies L( f ) = Tr( f (A(i)1 ,

. . . , A(i)n )). That is, each of the tuples (A(i)1 , . . . , A(i)n ) is a trace-minimizer for f .

3.3.4 Implementation

All steps in our algorithm to extract trace-minimizers are straightforward with the pos-
sible exception of the last one where one has to construct for given matrices A j ∈ S

s×s ,

the matrices A(i)j as in Sect. 3.3.3, i.e., one has to implement the decomposition of
A into simple components. The first efficient algorithm to decompose a semisimple
algebra over a number field into simple components goes back to Friedl and Rónyai
[14]. Later, Eberly and Giesbrecht [13] modified their method to obtain an efficient
algorithm to find the simple components of a separable algebra over an infinite field
by decomposing its center. In particular, their algorithm works for semisimple alge-
bras over a field of characteristic 0. One can employ the probabilistic method from
Murota et el. [31] (see also Maehara and Murota [32]) which produces an orthogonal
change of basis U for R

s so that the matrix ∗-algebra A ⊆ R
s×s decomposes into a

direct sum of simple matrix algebras A(i) which cannot be further decomposed. Then
U t A jU = ⊕i A(i)j .

The entire algorithm using the probabilistic method of Murota et al. has been imple-
mented in NCSOStools [8]. We conclude by an example.

Example 3.14 Let

f = 3 + X2
1 + 2X3

1 + 2X4
1 + X6

1 − 4X4
1 X2 + X4

1 X2
2 + 4X3

1 X2 + 2X3
1 X2

2 − 2X3
1 X3

2

+ 2X2
1 X2−X2

1 X2
2 +8X1 X2 X1 X2 + 2X2

1 X3
2 −4X1 X2+4X1 X2

2 +6X1 X4
2 −2X2

+ X2
2 − 4X3

2 + 2X4
2 + 2X6

2.

The minimum of f on R
2 is 1.0797. Using NCcycMin we obtain the floating-point

trace-minimum fsos = 0.2842 for f which is different from the commutative min-
imum. In particular, the minimizers will not be scalar matrices. The tracial moment
matrix ML∗ of the optimizer L∗ in (DSDPmin) is of rank 4 and flat over M2(yL∗). Thus
the matrix representation of the multiplication operators X̂i is given by 4×4 matrices:

X̂1 =

⎡

⎢⎢⎣

−1.0761 0.1802 0.5107 0.2590
0.1802 −0.3393 −0.1920 0.9428
0.5107 −0.1920 0.5094 0.0600
0.2590 0.9428 0.0600 −0.3020

⎤

⎥⎥⎦ ,

X̂2 =

⎡

⎢⎢⎣

0.7108 0.7328 0.1043 0.4415
0.7328 −0.3706 0.4757 −0.2147
0.1043 0.4757 0.0776 −0.9102
0.4415 −0.2147 −0.9102 0.1393

⎤

⎥⎥⎦ .

The Artin-Wedderburn decomposition for the matrix ∗-algebra A generated
by X̂1, X̂2 gives in this case only one block. Using NCcycOpt leads to the
trace-minimizer
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A1 =

⎡

⎢⎢⎣

−1.1843 0 −0.2095 0.3705
0 −1.1843 0.3705 0.2095

−0.2095 0.3705 0.5803 0
0.3705 0.2095 0 0.5803

⎤

⎥⎥⎦ ,

A2 =

⎡

⎢⎢⎣

−0.1743 0 0.4851 −0.8577
0 −0.1743 −0.8577 −0.4851

0.4851 −0.8577 0.4529 0
−0.8577 −0.4851 0 0.4529

⎤

⎥⎥⎦ .

The reader can easily verify that Tr( f (A1, A2)) = 0.2842.
Note that A is (as a real ∗-algebra) isomorphic to M2(C). For instance,

A1 =
[ −1.1843 0.3705 − 0.2095i

0.3705 + 0.2095i 0.5803

]
,

A2 =
[ −0.1743 −0.8577 + 0.4851i
−0.8577 − 0.4851i 0.4529

]
.

In this case it is possible to find a unitary matrixU ∈ C
2×2 with A′

j = U∗ A jU ∈ R
2×2,

e.g.

U =
[

0.180122 − 0.0473861i 0.950143 − 0.250076i
0.950143 + 0.250076i −0.180122 − 0.0473861i

]
,

A′
1 =

[
0.674861 0.0731923
0.0731923 −1.27886

]
, A′

2 =
[

0.0705101 −1.03179
−1.03179 0.20809

]
.

Then (A′
1, A′

2) ∈ (
S

2×2
)2 is also a trace-minimizer for f .
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