
Math. Program., Ser. A (2013) 137:409–452
DOI 10.1007/s10107-011-0497-4

FULL LENGTH PAPER

Improved lower bounds and exact algorithm
for the capacitated arc routing problem

Enrico Bartolini · Jean-François Cordeau ·
Gilbert Laporte

Received: 31 March 2011 / Accepted: 15 October 2011 / Published online: 3 November 2011
© Springer and Mathematical Optimization Society 2011

Abstract In the capacitated arc routing problem (CARP), a subset of the edges of
an undirected graph has to be serviced at least cost by a fleet of identical vehicles
in such a way that the total demand of the edges serviced by each vehicle does not
exceed its capacity. This paper describes a new lower bounding method for the CARP
based on a set partitioning-like formulation of the problem with additional cuts. This
method uses cut-and-column generation to solve different relaxations of the problem,
and a new dynamic programming method for generating routes. An exact algorithm
based on the new lower bounds was also implemented to assess their effectiveness.
Computational results over a large set of classical benchmark instances show that
the proposed method improves most of the best known lower bounds for the open
instances, and can solve several of these for the first time.

Keywords Arc routing · Set partitioning · Valid inequalities · Column generation ·
Dynamic programming

Mathematics Subject Classification (2000) 90C10 · 90C39 · 90C57

E. Bartolini (B) · J.-F. Cordeau · G. Laporte
HEC Montréal, and Interuniversity Research Centre on Enterprise Networks,
Logistics and Transportation (CIRRELT), Montreal, QC H3T 2A7, Canada
e-mail: Enrico.Bartolini@cirrelt.ca

J.-F. Cordeau
e-mail: Jean-Francois.Cordeau@cirrelt.ca

G. Laporte
e-mail: Gilbert.Laporte@cirrelt.ca

123

410 E. Bartolini et al.

1 Introduction

In arc routing problems, the aim is to determine a least cost traversal of a subset of
arcs or edges of a graph subject to some constraints. The Capacitated Arc Routing
Problem (CARP), introduced by [26], is one of the best known arc routing problems.
It consists in servicing a set of demands associated with required links using a fleet
of capacitated vehicles based at a depot. When all links are required, the problem
is known as the Capacitated Chinese Postman Problem [15]. Solving the CARP and
computing a 1.5-approximation are both NP-hard [26]. In this paper, we restrict our
attention to the undirected version of the CARP.

The CARP arises in a wide variety of contexts, including refuse collection, street
sweeping, winter gritting, postal delivery, inspection of power lines, bridges and pipe-
line systems, meter reading, etc. The surveys of [2] and of [21,22], and the book of [19]
describe several real-world applications and discuss different solution methodologies.
More recent surveys are those of [42] and [17].

1.1 Literature review

The CARP has been much less studied than the Capacitated Vehicle Routing Problem
(CVRP) which is its natural counterpart in a node setting. To date, most of the research
on the CARP concerns heuristics and lower bounding procedures. The earliest lower
bounds for the CARP are based on matching techniques and on dynamic programming
[1,3,10,26,28,38,40,41].

To our knowledge, the first attempt to solve the CARP by means of polyhedral
combinatorics and linear programming (LP) techniques is due to [8]. This paper pre-
sented a polyhedral study of the CARP, and introduced valid inequalities which were
computationally tested within a cutting plane algorithm. Building upon this study,
Belenguer and Benavent [9] have developed a branch-and-cut method based on a very
sparse and compact formulation involving an exponential class of inequalities from
[8], and have introduced a new class of valid inequalities. Their formulation does not
always yield a feasible solution, but it can be used to provide a lower bound on the
CARP optimum. Computational tests reported by Belenguer and Benavent [9] have
shown that lower bounds computed by means of this formulation were significantly
better than previous ones, and matched the best known upper bounds for 47 out of the
87 tested instances.

Column generation algorithms for the CARP were recently proposed by [27,31],
and [36]. These methods are based on formulating the CARP using an exponential
number of variables, each corresponding to a possible vehicle route. Gómez-Cabrero
et al. used a set covering formulation of the CARP where columns correspond to
non-elementary routes, i.e., a relaxation of routes where a link is allowed to be ser-
viced more than once. The LP relaxation of this formulation is strengthened by valid
inequalities for the CARP and solved by cut-and-column generation. Letchford and
Oukil [31] also adopted a set covering formulation and proposed two column gener-
ation methods based on elementary and non-elementary routes, respectively, with the
aim of exploiting the sparsity of the network in generating routes. Non-elementary

123

Improved lower bounds and exact algorithm for the CARP 411

routes were computed by dynamic programming, whereas elementary routes were
computed by solving a mixed-integer problem. Martinelli et al. [36] applied a sim-
ilar approach, but used a set partitioning formulation and dynamic programming to
generate both elementary and non-elementary routes. A branch-and-price algorithm
for the CARP was very recently proposed by [14]. This algorithm can be viewed as a
two-phase method that combines the sparse formulation of Belenguer and Benavent,
and a set partitioning formulation based on non-elementary routes. The idea is to first
solve the sparse formulation using a cutting plane procedure, and then apply a branch-
and-price algorithm based on a set partitioning formulation where the initial master is
initialized with the cuts identified in the first phase.

An indirect approach for solving the CARP was suggested by [33] and [5]. These
two papers independently proposed a method to transform a CARP instance with m
required links into an equivalent CVRP with 2m +1 nodes. In [33] the resulting CVRP
is solved by branch-and-cut-and-price by adapting the algorithm of [23], whereas in
[5] the resulting CVRP is modeled using a two-index formulation and solved by
branch-and-cut.

These transformations appear at present to be the most promising methods for
solving the CARP to optimality. They outperformed all other specific lower bounding
procedures, and could solve to optimality several instances for the first time. However,
we note that preliminary results reported by [14] show that their two-phase method is
also competitive with the best previous methods, and is able to find new optima for
some open benchmark instances.

1.2 Contributions of this paper

We propose a new lower bounding methodology for the CARP based on cut-and-
column generation to solve a set partitioning (SP) formulation of the CARP where
each column corresponds to a route. The LP relaxation of this formulation is strength-
ened using both valid inequalities which are specific to the CARP, and valid inequalities
for the set partitioning polytope.

This method embeds four lower bounding procedures executed in sequence to
progressively obtain better lower bounds. Two of these procedures are based on non-
elementary CARP routes and two on elementary ones. CARP routes are generated by
dynamic programming using a transformation of the original CARP instance into a
Generalized Vehicle Routing Problem (GVRP) in which each required edge is repre-
sented by a cluster containing two nodes. The new dynamic programming algorithm
uses bounding functions and different fathoming rules to reduce the size of the state
space. To assess the effectiveness of the new lower bounds, we have implemented
an exact algorithm that uses the final dual solution computed by the lower bound-
ing method to generate a reduced integer problem which is guaranteed to contain an
optimal solution, and is solved using an integer programming (IP) solver.

We present extensive computational results over five sets of benchmark CARP
instances showing that the proposed lower bound is consistently better than previous
ones. Our results also show that the new exact algorithm based on this lower bound
is competitive with the best known ones, and can solve to optimality 27 previously

123

412 E. Bartolini et al.

unsolved instances with up to 159 required edges, a size that is likely to be intractable
for methods based on a transformation of the problem into a CVRP.

1.3 Organization of this paper

The remainder of the paper is organized as follows. In Sect. 2 we formally describe the
CARP and formulate it as a set partitioning-like integer model. In Sect. 3 we present
the valid inequalities used to strengthen the SP formulation, and we show how some
known valid inequalities for the CARP can be lifted when translated into this for-
mulation. Section 4 provides an overview of our algorithm. It first computes a lower
bound on the CARP optimum and then uses it to attempt to obtain an optimal solu-
tion. In Sect. 5, we describe a transformation of the CARP into an asymmetric GVRP
and establish a one-to-one correspondence between optimal CARP routes and GVRP
routes. In Sect. 6 we describe a dynamic programming algorithm for the generation of
elementary CARP routes based on the results of Sect. 5. In Sect. 7, we detail four lower
bounding procedures based on column generation which are used to compute the final
lower bound. Computational results on the main test instances from the literature are
reported in Sect. 8, followed by conclusions in Sect. 9.

2 Formal problem description and mathematical formulation

Let G = (V, E) be a connected undirected graph where V = {0, . . . , n} is a set of
|V | = n + 1 nodes, node 0 is a depot, and E is a set of edges with endpoints in V .
With each edge e ∈ E are associated a demand qe ≥ 0 and a travel cost ce ≥ 0. Edges
requiring service are called required edges, and the subset of required edges is denoted
by ER ⊆ E . We denote by m = |ER | the number of required edges and following
[8,9], we assume that required edges have a strictly positive demand. We denote by
ie and je the two endpoints of edge e, and by A = {(ie, je), (je, ie) : e ∈ E} the
set of arcs associated with E . Conversely, for any arc a = (ie, je) ∈ A, the mapping
e(a) gives the corresponding edge e. We also denote by AR ⊆ A the subset of arcs
associated with the required edge set ER .

A walk R = (v0, e0, v1, e1, . . . , vp) in G is a an alternating sequence of vertices
v0, . . . , vp ∈ V and edges ek = {vk, vk+1} ∈ E, k = 0, . . . , p − 1. The set of edges
traversed by a walk R is denoted by E(R). A CARP route (or simply a route) is a
walk R for which v0 = vp = 0, and that services a subset S(R) ⊆ E(R) ∩ ER

of required edges whose total demand does not exceed a vehicle capacity Q. Each
route represents the walk of a vehicle based at the depot and servicing a non-empty
subset of the required edges. An edge traversed by a route but not serviced by it, or
an edge traversed more than once is said to be deadheaded by that route. Similarly, a
path corresponding to a sequence of edges deadheaded by the same route is said to be
deadheaded by that route.

The CARP is to find K routes in G such that each required edge is serviced by
exactly one route, and the total cost of all edges traversed by the corresponding walks
is minimized. In the CARP literature, K is either fixed, free, or bounded above. As in
[33] and [9], we assume that K is a free decision variable.

123

Improved lower bounds and exact algorithm for the CARP 413

Let R be the index set of all routes. For each route R�, � ∈ R, let a�e be the number
of times edge e ∈ ER is serviced by route R�, and let b�e be the number of times edge
e ∈ E is traversed by route R�. We denote by S(R�), or simply S�, the set of required
edges serviced by route R�, and by d�e = b�e − a�e the number of times route R�
deadheads edge e ∈ E . Let c� = ∑

e∈E b�ece be the cost of route R�, � ∈ R, and let
x� be a binary variable equal to 1 if and only if route R� is in the solution. The CARP
can be formulated as the following IP model.

z(S P) = min
∑

�∈R

c�x� (1)

s.t.
∑

�∈R

a�ex� = 1, ∀e ∈ ER, (2)

∑

�∈R

x� ≥ K ∗, (3)

x� ∈ {0, 1}, ∀� ∈ R. (4)

Constraints (2) impose that each required edge is serviced by exactly one route, and
(3) is a redundant constraint imposing a lower bound K ∗ = ⌈∑

e∈ER
qe/Q

⌉
on the

number of routes needed to service all required edges.
Note that in any optimal SP solution, the sequence of edges on a route R� between

any two required edges e1 and e2 serviced consecutively by R� corresponds to a short-
est path between an endpoint of e1 and an endpoint of e2. Therefore, we assume that
routes not satisfying this condition do not belong to R. If there are several shortest
paths of equal length between two nodes, we can a priori select one without excluding
all optimal solutions. We henceforth write the shortest path. Let Pi j be the shortest
path from node i ∈ V to node j ∈ V . We denote by ζ �i j the number of times route
R� deadheads both paths Pi j and Pji (i.e., the number of times it deadheads path Pi j ,
plus the number of times it deadheads path Pji).

3 Valid inequalities for SP

The cost z(L S P) of an optimal solution to the LP relaxation of SP (denoted by LSP)
may yield a weak lower bound. We now describe three main classes of valid inequali-
ties that we have incorporated into SP to yield a stronger formulation: odd edge cutset
constraints, capacity constraints, and subset-row inequalities.

3.1 Odd edge cutset constraints

Odd edge cutset constraints were originally introduced by [8,9] and can be defined
as follows. Given a feasible SP solution x, let ze be an integer aggregated variable
representing the number of times edge e is deadheaded:

ze =
∑

�∈R

d�ex�. (5)

123

414 E. Bartolini et al.

For any node set S ⊆ V , let δ(S) = {e ∈ E : ie ∈ S, je ∈ V \S or je ∈ S, ie ∈
V \S}, and let δR(S) = δ(S) ∩ ER . Define S = {S ⊆ V \{0} : |δR(S)| is odd}. Odd
edge cutset inequalities are as follows:

∑

e∈δ(S)
ze ≥ 1, ∀S ∈ S . (6)

Because the solution graph induced by any feasible SP solution is Eulerian, inequali-
ties (6) express the fact that if |δR(S)| is odd, then at least one edge incident to S must
be deadheaded.

Building on the assumption that the shortest path between any two consecutive ser-
viced edges is unique, inequalities (6) can be strengthened as follows. Given a feasible
SP solution x, define an aggregated variable yi j representing the number of times both
shortest paths Pi j and Pji between nodes i, j ∈ V are deadheaded, that is,

yi j =
∑

�∈R

ζ �i j x�, ∀i, j ∈ V . (7)

Using variables yi j , we obtain the following lifted odd edge cutset inequalities:

∑

i∈S
j∈V \S

yi j ≥ 1, ∀S ∈ S . (8)

Constraints (8) are shown to be valid by extending the argument used to prove the
validity of odd edge cutset inequalities. Because |δR(S)| is odd, each route crosses
S an even number of times, and each required edge is serviced by exactly one route,
then at least one path crossing node set S has to be deadheaded.

Let E(Pi j) ⊆ E be the set of edges traversed by path Pi j . Note that because G is
symmetric, we can assume Pi j = Pji , and therefore variables yi j and ze can be linked
by the following equations:

ze =
∑

i, j∈V, i< j,
e∈E(Pi j)

yi j , ∀e ∈ E . (9)

It is then easy to see that an inequality (8) defined by set S corresponds to a lifting of
the corresponding inequality (6) defined by the same node set. In fact, using equations
(9), (6) can be rewritten as

∑

i, j∈V, i< j,
E(Pi j)∩δ(S) �=∅

yi j ≥ 1, ∀S ∈ S , (10)

which is dominated by (8).
Note that inequalities (8) can be written in terms of the x� variables by using equa-

tions (7), and because their right-hand side is equal to one, their coefficients are positive

123

Improved lower bounds and exact algorithm for the CARP 415

S
0

e

b c

d

a

g

S
0

e

b c

d

a

g
2.0

1.0

1.0

1.0

S
0

e

b c

d

a

g
1.0

1.0

1.0

Fig. 1 Example of lifted inequality (8) defined by a node set S. From left to right input graph (dashed
edges are non-required), support graph induced by variables ze , and support graph induced by variables yi j

integers, and x� variables are binary, they can further be lifted to obtain the following
inequalities:

∑

i∈S
j∈V \S

∑

�∈R
ζ �i j>0

x� ≥ 1, ∀S ∈ S . (11)

However, we use inequalities (8) instead of (11) because it is straightforward to incor-
porate these inequalities exactly within the pricing problem.

The following example shows an inequality (6) defined by a set S dominated
by the corresponding lifted inequality (8) defined by the same set. Consider the
graph shown at the left of Fig. 1. In this graph, dashed lines represent non-required
edges and a node set S = {d} is defined. Suppose all edge costs correspond to
Euclidean distances. A feasible LSP solution is given by the four routes R�1 =
(0, a, b, d, g, d, e, 0) with S�1 = {{a, b}, {b, d}, {d, g}}, R�2 = (0, e, d, g, d, e, 0)
with S�2 = {{0, e}, {e, d}, {d, g}}, R�3 = (0, a, b, d, e, 0) with S�3 = {{a, b}, {b, d},
{d, e}}, and R�4 = (0, e, 0) with S�4 = {{0, e}}, and setting x�1 = x�2 = x�3 = x�4 =
0.5. The center and right parts of Fig. 1 show the support graphs defined by vectors
z and y associated with solution x, respectively. It is easy to check that inequality (6)
defined by node set S is satisfied by z, whereas inequality (8) is violated by y.

3.2 Capacity constraints

Let F = {F ⊆ ER : |F | ≥ 2} be the family of all subsets of required edges of cardi-
nality at least 2, and let R(F) ⊆ R be the index-subset of routes servicing at least one
edge in the set F ∈ F . Moreover, for any edge subset F ∈ F , let q(F) = ∑

e∈F qe

be the sum of the demands of the edges in F . Because at least r(F) =
q(F)/Q�
routes are required to service F , the following capacity constraints are valid for SP:

∑

�∈R(F)

x� ≥ r(F), ∀F ∈ F . (12)

Since a route is a closed walk starting and ending at the depot, inequalities (12) can
be reformulated as follows. Let β�e f be a binary coefficient equal to 1 if and only if

123

416 E. Bartolini et al.

route R� services in sequence required edges e, f ∈ ER . Moreover, let β�0e be equal
to 1 if edge e ∈ ER is the first or last edge serviced by route R� (β�0e = 2 if route R�
services only edge e). Given a feasible SP solution x, define aggregated variables ξe f

as follows:

ξe f =
∑

�∈R

β�e f x�, ∀e, f ∈ ER, and ξ0e =
∑

�∈R

β�0ex�, ∀e ∈ ER . (13)

Inequalities (12) can then be written in the following weaker form:

∑

e∈F
f ∈ER\F

ξe f +
∑

e∈F

ξ0e ≥ 2r(F), ∀F ∈ F . (14)

The interest of inequalities (14) is that although they are weaker than (12) they are
stronger than the CARP capacity constraints introduced in [8,9], and can also be
incorporated exactly in the pricing problem.

For any node set S ⊆ V \{0}, let ER(S) = {e ∈ ER : ie, je ∈ S}. The CARP
capacity constraints of Belenguer and Benavent are defined in terms of the aggregated
variables ze as follows:

∑

e∈δ(S)
ze ≥ 2

⌈
q(ER(S))+ q(δR(S))

Q

⌉

− |δR(S)|, ∀S ⊆ V \{0}. (15)

The following theorem shows that inequalities (14) (and therefore (12)) are stronger
than the CARP capacity constraints (15).

Theorem 1 Let S ⊆ V \{0}, and define a corresponding edge set FS = {ER(S) ∪
δR(S)}. Let x be a feasible LSP solution, and let ξ and z be the corresponding vectors
obtained through equations (13) and (5), respectively. An inequality (15) defined by
node set S is dominated by inequality (14) defined by edge set FS.

Proof First note that if δR(S) = ∅ any route R�, � ∈ R, servicing an edge e ∈ FS

deadheads at least one edge in δ(S). Moreover, it deadheads at least two edges in δ(S)
if it services a single edge of FS . Therefore, because of the definition of variables ξe f

and ze the left hand side of inequality (15) defined by S is greater than or equal to that
of inequality (14) defined by edge set FS . Since in this case r(FS) =
q(ER(S))/Q�,
inequality (14) dominates inequality (15). On the contrary, suppose that δR(S) �= ∅,
and let us denote by �e ∈ R the index of the route servicing only required edge
e,∀e ∈ ER . Denote by R1(δR(S)) = {� ∈ R : β�e f = 1, β�eg = 1, e ∈ δR(S), f, g ∈
ER\FS} ∪ {� ∈ R : β�0e = 1, β�e f = 1, e ∈ δR(S), f ∈ ER\FS} ∪ {⋃e∈δR(S) �e},
and let R2(δR(S)) = {� ∈ R : β�e f = 1, β�eg = 1, e ∈ δR(S), f ∈ ER\FS, g ∈
ER(S)} ∪ {� ∈ R : β�0e = 1, β�e f = 1, e ∈ δR(S), f ∈ ER(S)} ∪ {⋃e∈δR(S) �e}. Note

that any route in the set R1(δR(S)) deadheads at least one edge in δ(S). Moreover,
each route R�e , e ∈ ER , deadheads at least two edges in δ(S), and any route servicing
in sequence two edges e, f ∈ ER such that e ∈ ER(S) and f ∈ ER\FS also has to

123

Improved lower bounds and exact algorithm for the CARP 417

deadhead at least one edge in δ(S). Therefore from the definition of variables ze and
ξe f we have

∑

e∈δ(S)
ze ≥

∑

e∈ER(S)
f ∈ER\FS

ξe f +
∑

e∈ER(S)

ξ0e +
∑

�∈R1(δR(S))

x�. (16)

The definitions of sets R1(δR(S)),R2(δR(S)) and of variables ξe f imply

∑

e∈δR(S)
f ∈ER\FS

ξe f +
∑

e∈δR(S)

ξ0e =
∑

�∈R1(δR(S))

x� +
∑

�∈R2(δR(S))

x�, (17)

and therefore, adding
∑
�∈R2(δR(S)) x� to both sides of (16) we obtain

∑

e∈δ(S)
ze +

∑

�∈R2(δR(S))

x� ≥
∑

e∈ER(S)
f ∈ER\FS

ξe f +
∑

e∈ER(S)

ξ0e +
∑

e∈δR(S)
f ∈ER\FS

ξe f +
∑

e∈δR(S)

ξ0e.

(18)

Let Re = {� ∈ R : a�e = 1}. Because x satisfies constraints (2), and R2(δR(S)) ⊆⋃
e∈δR(S) Re, we also have

∑
�∈R2(δR(S)) x� ≤ |δR(S)|, and from (18) we obtain

∑

e∈ER(S)
f ∈ER\FS

ξe f +
∑

e∈ER(S)

ξ0e +
∑

e∈δR(S)
f ∈ER\FS

ξe f +
∑

e∈δR(S)

ξ0e ≤
∑

e∈δ(S)
ze + |δR(S)|, (19)

and the inequality can be strict. Because FS = {ER(S) ∪ δR(S)}, the left-hand side
of (19) can be rewritten as

∑
e∈FS

f ∈ER\FS

ξe f + ∑
e∈FS

ξ0e, and we have 2r(FS) =
2

⌈
q(ER(S))+q(δR(S))

Q

⌉
. Then, subtracting 2r(FS) from both sides of (19) yields

∑

e∈FS
f ∈ER\FS

ξe f +
∑

e∈FS

ξ0e − 2r(FS) ≤
∑

e∈δ(S)
ze + |δR(S)| − 2r(FS), (20)

that is, the slack of inequality (14) defined by edge set FS is at least as small as that
of inequality (15) defined by set S. ��

Note that inequalities (15) are formally the same as rounded capacity inequalities
for the two-index formulation of the CVRP. Indeed, letting E ′

R = ER ∪ {0}, it is easy
to see that any vector ξ associated with a feasible SP solution x satisfies

123

418 E. Bartolini et al.

∑

j∈E ′
R

ξi j = 2, ∀i ∈ ER, (21)

∑

i∈F

j∈E ′
R\F

ξi j ≥ 2

⌈
q(F)

Q

⌉

, ∀F ⊆ ER, |F | ≥ 2 (22)

ξi j ∈ {0, 1}, ∀i, j ∈ ER, (23)

ξ0i ∈ {0, 1, 2}, ∀i ∈ ER . (24)

Thus, any valid inequality for the polytope associated with (22)–(24) is also valid for
SP, and can be translated into the SP model using equations (13). In our preliminary
experiments, we have considered the use of strengthened combs and framed capacity
inequalities, presented in [35], using the CVRPSEP package of [34] to separate them.
However, because the resulting improvement in the lower bounds was marginal, these
inequalities were not used in the computational experiments reported in Sect. 8.

3.3 Subset-row inequalities

Let C = {C ⊆ ER : |C | = 3} be the set of all required edge triplets, i.e., subsets of
three required edges. For C ∈ C , let R2(C) ⊆ R be the subset of routes servicing at
least two edges in C , i.e., R2(C) = {� ∈ R : |S� ∩ C | ≥ 2}. Because each required
edge has to be serviced by exactly one route, the following inequalities are valid for
SP:

∑

�∈R2(C)

x� ≤ 1, ∀C ∈ C . (25)

Inequalities (25) are a subset of the clique inequalities and a special case of the sub-
set-row inequalities introduced by [29].

We denote by LRP the LP relaxation of the problem obtained by adding to SP
all inequalities (8), (14), and (25), and by DRP its dual. Let πe, e ∈ ER , and π0
be the dual variables associated with constraints (2) and (3), respectively, and let
υF , F ∈ F , wS, S ∈ S , and gC ,C ∈ C , be dual variables associated with constraints
(14), (8) and (25), respectively. We denote a DRP solution by (π ,υ,w, g), where π =
(π0, . . . , πm),υ = (υ1, . . . , υ|F |),w = (w1, . . . , w|S |), and g = (g1, . . . , g|C |).

4 Overview of the algorithm

This section provides an overview of our algorithm. This algorithm sequentially exe-
cutes four lower bounding procedures, called BP1, BP2, BP3 and BP4, to solve increas-
ingly tighter relaxations of LRP, and thus to compute a sequence of non-decreasing
lower bounds. An exact algorithm then exploits the final lower bound to generate an

123

Improved lower bounds and exact algorithm for the CARP 419

optimal CARP solution. The four lower bounding procedures use column generation
to dynamically generate the set of routes R. They thus define an initial master problem
in which the full route set R is substituted by a small subset R ⊆ R. At each iteration
they use the current master dual solution to solve the pricing problem which consists
in finding the CARP route of minimum reduced cost with respect to the master dual
solution. A detailed description of procedures BP1, BP2, BP3 and BP4 is provided in
Sect. 7.

To compute the lower bounds, our algorithm first generates CARP routes by trans-
forming the CARP into an equivalent asymmetric GVRP in which GVRP routes cor-
respond to CARP routes. This transformation is described in Sect. 5, whereas Sect. 6
describes a dynamic programming algorithm, called genRoutes, to actually generate
the GVRP routes, and translate them into the corresponding CARP ones.

Lower bounding procedures BP1 and BP2 are based on non-elementary routes,
whereas BP3 and BP4 use elementary routes. The algorithm described in this paper
can thus be viewed as a three-step procedure (see Fig. 2) in which two lower bounding
methods based on elementary and non-elementary CARP routes are first executed in
sequence, and an exact algorithm then attempts to obtain a reduced integer problem
from SP containing at least one optimal solution.

The algorithm requires the knowledge of a valid upper bound zU B on the CARP
optimum. It starts by executing in sequence procedures BP1, BP2, BP3, and BP4 to
compute a final lower bound L B4 and a corresponding dual solution (π4,υ4,w4, g4).
It then generates the largest subset R∗ ⊆ R of routes having a reduced cost smaller
than the gap zU B − L B4 with respect to the final dual solution (π4,υ4,w4, g4). An
optimal CARP solution can then be obtained by solving a reduced problem derived
from SP by replacing the entire route set R with R∗. The full algorithm can be
summarized as follows.

1. Execute in sequence the lower bounding procedures BP1, BP2, BP3, and BP4.
If L Bx = zU B, x ∈ {1, 2, 3, 4}, then stop since zU B is the cost of an optimal
solution.

2. Set 	 = zU B − L B4 and
 =
M AX . Use algorithm genRoutes to generate the
largest subset R∗ of routes having a reduced cost smaller than 	 with respect to
the final dual solution (π4,υ4,w4, g4) computed by BP4.

3. Let S
4
,F

4
, and C

4
be the subsets of inequalities (14), (8), and (25), respectively,

active at the end of procedure BP4. Define the reduced problem SP∗ derived from
SP by (i) replacing the route set R with the set R∗, and (ii) adding to SP∗ all

constraints S
4
,F

4
, and C

4
. The problem SP∗ is solved by an IP solver.

In the following, we refer to Step 1 as a lower bounding method, and to Steps 2 and 3
as an exact algorithm.

Before solving the reduced problem SP∗ at Step 3, the algorithm replaces all inequal-

ities (14) defined by edge sets in F
4

with the corresponding stronger inequalities (12),
and solves the LP relaxation of SP∗. The final lower bound L B4 and the corresponding
dual solution (π4,υ4,w4, g4) are then updated, and all routes having a reduced cost
greater than zU B − L B4 with respect to (π4,υ4,w4, g4) are removed from R∗.

123

420 E. Bartolini et al.

Fig. 2 Overview of the algorithm

123

Improved lower bounds and exact algorithm for the CARP 421

5 Transformation of the CARP into a GVRP

We first show how to transform the CARP into an equivalent asymmetric GVRP. It is
indeed well known (see e.g., [13,24]) that a wide class of arc and node routing prob-
lems can be modeled as a GVRP. Here we describe this transformation in detail over
an asymmetric graph G̃, we establish a one-to-one correspondence between GVRP
routes in G̃ and CARP routes R� indexed in R, and show that GVRP paths can be
combined to yield CARP routes. As a result, we obtain a method for generating CARP
routes as GVRP routes in G̃. In this section, we also describe two relaxations of GVRP
paths, namely the q-path relaxation and the ng-path relaxation (originally introduced
for the CVRP), to be used by algorithm genRoutes in Sect. 5.

5.1 Description of the transformation

Let G̃ = (Ṽ , Ẽ) be a directed graph obtained from G as follows:

• Ṽ contains 2m + 1 nodes partitioned into m + 1 clusters Ṽ0, . . . , Ṽm , where Ṽ0
contains the depot. For each required edge e ∈ ER, Ṽe contains two nodes asso-
ciated with the two arcs (ie, je) ∈ AR and (je, ie) ∈ AR , respectively. We denote
by ν(a) the node v ∈ Ṽ associated with arc a ∈ AR . For each node v ∈ Ṽ \{0},
we denote by α(v) ∈ AR the arc associated with node v, and by i(v) and j (v)
the initial and terminal endpoints of α(v), respectively. Moreover, we denote by
ε(v) = e(α(v)) ∈ ER the required edge corresponding to the arc α(v) associ-
ated with v. Note that Ṽε(v) corresponds to the unique cluster containing v. For
notational convenience, we also define i(0) = j (0) = 0, and ε(0) = e0, where
e0 = {0, 0} is a non-required dummy loop in G of cost ce0 = 0.

• With each node v ∈ Ṽ is associated a demand q̃v = qε(v), (q̃0 = 0).
• Let si j be the cost of the shortest path Pi j from node i ∈ V to node j ∈ V . For

each node pair u, v ∈ Ṽ \{0} such that ε(u) �= ε(v), Ẽ contains two arcs (u, v) and
(v, u) of cost c̃uv = s j (u)i(v)+ 1

2 cε(u)+ 1
2 cε(v) and c̃vu = s j (v)i(u)+ 1

2 cε(u)+ 1
2 cε(v),

respectively. Moreover, for each v ∈ Ṽ \{0}, Ẽ contains two arcs (0, v) and (v, 0)
of cost c̃0v = s0i(v) + 1

2 cε(v) and c̃v0 = s j (v)0 + 1
2 cε(v), respectively.

A GVRP path P = (v1, . . . , vp) is a simple path in G̃ starting from node v1 = b(P),
visiting the nodes of V (P) = {v1, . . . , vp}, ending at node vp = e(P), and such that (i)
its demand q(P) = ∑p

k=1 q̃vk does not exceed Q, and (ii) |V (P)∩ Ṽe| ≤ 1,∀e ∈ ER .
We denote by A(P) and by V (P) the set of arcs and the index set of clusters traversed
by path P , respectively. The cost of path P is defined as c̃(P) = ∑

(u,v)∈A(P) c̃uv .
A GVRP path P is called forward if b(P) = 0, and it is called backward if e(P) = 0.
A GVRP path R̃ such that b(R̃) = e(R̃) = 0 is called a GVRP route. In the following,
we denote by R̃ the index-set of all GVRP routes in G̃.

It is easy to see that any GVRP route R̃�, � ∈ R̃, can be obtained by combining a
forward GVRP path P and a backward GVRP path P such that e(P) = b(P) = v,
for some v ∈ R̃�, and satisfying (A) q(P) + q(P) ≤ Q + q̃v and (B) V (P) ∩
V (P) = {0, ε(v)}. Note that although G̃ is asymmetric, because of the definition
of costs {c̃uv}, any GVRP backward path P = (vp, . . . , v1, 0) in G̃ corresponds

123

422 E. Bartolini et al.

Fig. 3 Example of reverse path
in G̃: a backward path P on the

left, and its reverse P
R

on the
right

to a forward path P
R

of the same cost c̃(P
R
) = c̃(P) obtained by setting P

R =
(0, Ṽε(v1)\{v1}, . . . , Ṽε(vp)\{vp}). The forward path P

R
is called the reverse path of

the backward path P . Figure 3 depicts a backward path P and its reverse path P
R

. It fol-
lows that any GVRP route R̃�, � ∈ R̃, can be obtained by combining two forward paths

P and P
R

such that P
R

is the reverse of a backward path P , and the pair {P, P} satis-

fies conditions (A) and (B), plus the following condition: (C) e(P
R
) = Ṽε(v)\e(P). In

the following we refer to conditions (A), (B), and (C) as route feasibility conditions.

5.2 GVRP paths and CARP routes

The definition of a CARP route given in Sect. 2 gives rise to a number of redundant
routes associated with those walks that traverse a serviced edge more than once, and
this redundancy is not removed by the assumption that the path traversed between two
edges serviced in sequence is the shortest one.

Consider a CARP route R�, and let E(R�) ⊆ E be the set of edges traversed by
this route. We call a line of route R� a subset of edges L ⊆ E(R�) such that: (i) each
edge e ∈ L is traversed exactly twice by R� in opposite directions, (ii) edges in L
form a simple open chain in G, and (iii) L is maximal with respect to inclusion. Each
line L of a route R� such that |S� ∩ L| = r gives rise to 2r routes equivalent to R�
(i.e., having the same cost and servicing the same edges) obtained by switching the
service of each edge e in S� ∩ L from the first to the second time it is visited by R�, or
vice versa. The number of these equivalent routes can be huge, especially for routes
containing more than one line.

A simple method to avoid this drawback is to impose an arbitrary ordering of ser-
vice for all edges on a line. We say that a CARP route R� is a forward-service route if
all edges in S� are serviced the first time they are traversed. Conversely, R� is called
a backward-service route if all required edges in S� are serviced by R� the last time
they are traversed. Similarly, we define a forward-service and backward-service CARP
open route. Clearly, it is possible to assume that in any CARP solution all CARP routes
are forward-service (equivalently, backward-service) routes.

It is easy to see that any GVRP path P = (0, v1, . . . , vp) corresponds to
a CARP open route (a CARP route not ending at the depot) that services in
sequence edges ε(v1), . . . , ε(vp) through arcs α(v1), . . . , α(vp), and deadheads paths

123

Improved lower bounds and exact algorithm for the CARP 423

P0i(v1), . . . , Pj (vp−1)i(vp). Obviously, the same correspondence holds between any
GVRP route R̃�, � ∈ R̃, and a CARP route R�, � ∈ R. Moreover, assuming that
the path deadheaded by any CARP route R�, � ∈ R, between two edges serviced in
sequence is the shortest one, and that R� is a CARP forward-service route, the converse
is also true. We can therefore establish a one-to-one correspondence between CARP
routes in G indexed by R and GVRP routes in G̃ indexed by R̃, and between their
costs. In the following, we denote by R̃�, � ∈ R̃, the GVRP route corresponding to
CARP route R�, � ∈ R.

Note that any GVRP route R̃�, � ∈ R, corresponding to a forward-service CARP
route R� can be obtained by combining a forward GVRP path P and a reverse

GVRP path P
R

satisfying route feasibility conditions, and such that P corresponds

to a forward-service CARP open route and P
R

corresponds to a backward-service
CARP open route. In the next section, we describe a dynamic programming algorithm
that exploits this correspondence to generate CARP routes corresponding to GVRP
routes in G̃. This algorithm uses two relaxations of GVRP paths, namely q-paths and
ng-paths, to compute lower bounds on the cost of the least cost GVRP route that can
be obtained by combining a GVRP path P with any reverse path. These relaxations
are now briefly described.

5.3 q-path relaxation of GVRP paths

The q-path relaxation was introduced by [16] for the CVRP. In the context of the
CARP, a similar relaxation was proposed by [10], and also adopted to relax CARP
routes by [27,31], and [14].

A GVRP (q, v)-path in G̃ is a not necessarily simple path starting from node 0, end-
ing at node v ∈ Ṽ , and whose total demand q does not exceed Q. A GVRP (q, 0)-path
is called a GVRP q-route. Let f (q, v) be the cost of the least cost GVRP (q, v)-path
in G̃ ending in v ∈ Ṽ , and let π(q, v) ∈ ER be the cluster visited just prior to v in this
path. Let g(q, v) be the cost of the least cost GVRP (q, v)-path ending at v with the
constraint that the cluster χ(q, v) visited just before v in this second path is not equal
to π(q, v). We say that a GVRP (q, v)-path contains a loop of k consecutive clusters
(k-cluster-loop) if it visits in sequence k nodes v1, . . . , vk such that ε(v1) = ε(vk).
The functions f (q, v), and g(q, v) can be computed in pseudo-polynomial time by
an extension of the dynamic programming recursion described by [16], imposing the
restriction that the corresponding (q, v)-paths do not contain 2-cluster-loops.

5.4 ng-path relaxation of GVRP paths

The ng-path relaxation was introduced by [6] for the CVRP and the vehicle rout-
ing problem with time windows. This relaxation can be extended to the GVRP as
follows. For each cluster Ṽe, e ∈ ER , let Ñe be a subset of clusters (selected accord-
ing to some criterion) such that Ve ∈ Ñe and |Ñe| ≤
(Ñe), where
(Ñe) is an
a priori defined parameter. Clusters in Ñe are called neighbor clusters of Ṽe. Let �
be the family of all cluster subsets. Using sets Ne, associate with each GVRP path

123

424 E. Bartolini et al.

P = (0, v1, . . . , vp) a cluster subset �(P) ∈ � containing cluster Ṽε(vp) plus every
other cluster Ṽε(vk), k = 1, . . . , p, that belongs to all sets Ñε(vk+1), . . . , Ñε(vp). For-

mally, we have �(P) = {Ṽε(vk) ∈ V (P) : Ṽε(vk) ∈
⋂

s=k+1,...,p
Ñε(vs), k =

1, . . . , p − 1} ∪ {Ṽε(vp)}. Note that �(P) is a subset of the clusters visited by P that
depends on the order in which these clusters are visited by P . For any path P in G̃,
let P ′ be the subpath of P obtained by removing the last node from P . A GVRP
ng-path (N G, q, v) is a not necessarily simple path P in G̃ of demand q, starting
from node 0, ending at node v ∈ Ṽ , and such that �(P) = N G, and ε(v) �∈ �(P ′).
Let f (N G, q, v) be the cost of the least cost ng-path (N G, q, v). Because of the
definition of an ng-path (N G, q, v), a lower bound on the cost c̃(P) of any forward
GVRP path P can be obtained using functions f (N G, q, v) as follows:

c̃(P) ≥ min
N G⊆V (P)∩Nε(e(P))

{ f (N G, q(P), e(P))} . (26)

The functions f (N G, q, v),∀N G ∈ �,∀v ∈ Ṽ , 0 ≤ q ≤ Q, can be computed by
means of a dynamic programming recursion similar to that described in [6]. The com-
putational complexity of this recursion, unlike that used for q-path functions f (q, v)
and g(q, v), is not pseudo-polynomial because of the exponential size of�. However,
in practice it is possible to considerably reduce the time spent for computing functions
f (N G, q, v) by limiting the size of sets Ñe,∀e ∈ ER , and using dominance rules as
described by [7].

Note that, depending on the definition of sets Ñe, ng-paths are allowed to con-
tain two-cluster loops. These loops can be eliminated using the method described by
[16] for computing q-paths without 2-vertex loops. However, we do not implement
this method, as in practice it is often sufficient to set
(Ñe) ≥ 10 to avoid such
loops.

6 Dynamic programming algorithm GENROUTES

We now describe a dynamic programming algorithm, called genRoutes, used by our
lower bounding method to generate CARP routes.

For each route R�, � ∈ R, define the set C (R�) = {C ∈ C : |C ∩ S�| ≥ 2}, and let
β�(F) = ∑

e∈F
f ∈ER\F

β�e f + ∑
e∈F β

�
0e,∀F ∈ F , and ζ�(S) = ∑

i, j∈S
i< j

ζ �i j ,∀S ∈ S .

Given a DRP solution (π̄ , ῡ, w̄, ḡ), the reduced cost c̄r (R�), or simply c̄r
�, of CARP

route R�, � ∈ R, with respect to (π̄ , ῡ, w̄, ḡ) is

c̄r
� = c� −

∑

e∈S�

ae�πe −
∑

F∈F

β�(F)υF −
∑

S∈S

ζ�(S)wS −
∑

C∈C (R�)

gC − π0. (27)

genRoutes generates GVRP routes in G̃ corresponding to forward-service CARP
routes using bounding functions based on the ng-path and q-path relaxations. Given
dual values (π̄ , ῡ, w̄, ḡ), and two user-defined parameters
 and 	, genRoutes

123

Improved lower bounds and exact algorithm for the CARP 425

outputs a subset D ⊆ R containing at most
 forward-service CARP routes R�
having reduced cost c̄r

� not exceeding 	, and such that min�∈R\D {c̄r
�} ≥ min�∈D {c̄r

�}.

6.1 Description of genRoutes

Let P be the set of all GVRP forward paths in G̃, and let Pv ⊆ P be the subset of
paths ending at vertex v ∈ Ṽ . genRoutes is a two-phase procedure that first generates
path sets Pv, v ∈ Ṽ , and then combines these paths to extract the route set D .

genRoutes associates with each GVRP path P ∈ P a modified path cost d̄(P)
such that, for each pair of paths P, P ∈ P that can be combined to obtain a GVRP
route R̃� corresponding to R�, the modified costs satisfy d̄(P)+ d̄(P) = d̄(R̃�) ≤ c̄r

�.
Therefore, the set D of CARP routes can be obtained by generating all GVRP routes
having a modified cost not exceeding 	.

To compute the modified path costs, we associate a modified arc cost d̄uv to each
arc (u, v) ∈ Ã, computed as

d̄uv = c̃uv − 1

2
π̄ε(u) − 1

2
π̄ε(v) −

∑

F∈F s.t.
ε(u)∈F,ε(v) �∈F

ῡF −
∑

S∈S s.t.
j (u)∈S,i(v) �∈S

w̄S, ∀u, v ∈ Ṽ

.(28)

For any edge triplet C = {e1, e2, e3} ∈ C , let C̃ = {Ṽe1, Ṽe2 , Ṽe3} be the cor-
responding cluster triplet in G̃, and define C k(P) = {C ∈ C : |C̃ ∩ V (P)| = k}
for each GVRP path P . Using modified arc costs d̄uv , the modified path cost d̄(P)
associated with path P ∈ P is computed as

d̄(P) =
∑

(u,v)∈A(P)

d̄uv −
∑

C∈C 3(P)

ḡC −
∑

C∈C 2(P)
ε(e(P)) �∈C

ḡC . (29)

The following lemma shows that the modified costs of any two GVRP paths that
can be combined to obtain a GVRP route R̃� corresponding to R� provide a lower
bound on c̄r

�.

Lemma 1 Let P and P be two GVRP forward paths satisfying route feasibility con-
ditions (A) − (C), and let R�, � ∈ R̃, be the GVRP route obtained by combining P
and P. The reduced cost c̄r

� of CARP route R�, � ∈ R, corresponding to R̃�, satisfies
c̄r
� ≥ d̄(P)+ d̄(P).

Proof See Appendix A.

Let P ∈ P be any GVRP path, and let (π̄ , ῡ, w̄, ḡ) be any DRP solution. A com-
pletion bound on P with respect to (π̄ , ῡ, w̄, ḡ) is defined as a lower bound on the
reduced cost with respect to (π̄ , ῡ, w̄, ḡ) of any CARP route corresponding to a GVRP
route containing P . When generating the path set P , genRoutes uses ng-path and
q-path bounding functions to associate with each GVRP path P ∈ P a completion

123

426 E. Bartolini et al.

bound L B
ng
(P) on P with respect to the input DRP solution (π̄ , ῡ, w̄, ḡ). The lower

bound L Bng(P) is used to fathom all paths P generated such that L Bng(P) > 	, and
is computed according to the following.

Lemma 2 A valid lower bound L B
ng
(P) on the reduced cost c̄r

� with respect to a
DRP solution (π̄ , ῡ, w̄, ḡ) of any CARP route R�, � ∈ R, corresponding to a GVRP
route R̃� containing path P can be computed as

L Bng(P) = d̄(P)+ min
N G⊆� s.t. N G∩V (P)={Vε(e(P))}

q≤Q−q(P)+q̃e(P)

{ f (N G, q, e(P))} ,

(30)

where functions f (N G, q, v) are computed using modified arc costs d̄uv .

Proof See Appendix A.

Although ng-path functions usually provide a better bound than q-path functions,
because the computation of L B

ng
(P) can be time-consuming due to the minimization

over�, we first compute a weaker completion bound L B
q
(P) using functions f (q, v)

and g(q, v) as follows:

L B
q
(P)= d̄(P)+ min

q̃e(P)≤q≤Q−q(P)+q̃e(P)

{
f (q, e(P)), if π(q, e(P)) �∈ V (P)

g(q, e(P)), otherwise,

(31)

where f (q, v) and g(q, v) are computed using modified costs d̄uv . All paths P such
that L B

q
(P) > 	 are fathomed.

The two phases of genRoutes are called genP and combineP , respectively.
genP corresponds to a Dijkstra-like algorithm that builds path sets Pv, v ∈ Ṽ ,
by generating a sequence of GVRP forward paths having non decreasing comple-
tion bound with respect to (π̄ , ῡ, w̄, ḡ). combineP is an iterative procedure that is
executed after genP , and generates a sequence of path pairs (P, P) from the sets
Pv, v ∈ Ṽ , that satisfy route feasibility conditions, and that have non-decreasing
modified cost d̄(P)+ d̄(P) ≤ 	. These pairs are combined to obtain the route set D .
genP and combineP use four fathoming rules, fathoming 1 to fathoming 4, in order
to reduce the number of generated paths and pairs. A detailed description of procedures
genP and combineP and of the fathoming rules is provided in Appendix B.

7 Lower bounding procedures

We have developed four lower bounding procedures BP1, BP2, BP3, and BP4 to
compute the final lower bound L B4 on the CARP optimum. Procedure BP1 is an
extension of a procedure originally proposed by [4] for the CVRP that uses a dual
ascent heuristic instead of the simplex algorithm to solve the master problem. Pro-
cedures BP2, BP3, and BP4 use the same simplex-based cut-and-column generation

123

Improved lower bounds and exact algorithm for the CARP 427

method, called LPCG, to solve different relaxations of LRP. A detailed description of
LPCG is provided in Appendix C.

7.1 Lower bounding procedure BP1

Procedure BP1 solves a relaxation of problem LRP, called RF1, where constraints
(14), (8), and (25) are ignored, and the route set R is enlarged to contain all CARP
q-routes in G.

Here, we briefly define CARP q-routes, and relate them with corresponding GVRP
q-routes in G̃ (see Sect. 5.3). A CARP q-route is defined as a CARP route where the
constraint that a required edge is serviced at most once is relaxed. A CARP q-route
ends at arc a if e(a) ∈ ER is the last edge serviced, through arc a, before return-
ing to the depot for the last time. Each CARP q-route ending at arc a corresponds
to a GVRP q-route in G̃ of the same cost ending at node v = ν(a), i.e., visiting
node v = ν(a) ∈ Ṽ just before returning to node 0. Conversely, given any GVRP
q-route R̃ = (0, v1, . . . , v, 0) ending at node v, a corresponding CARP q-route ending
at arc α(v) is obtained by servicing in sequence edges ε(v1), . . . , ε(v) through arcs
α(v1), . . . , α(v), and deadheading the shortest paths P0i(v1), …, Pj (v)0. It is obvious
how to define a CARP (q, a)-path in G, e(a) ∈ ER , using the same correspondence
with a GVRP (q, ν(a))-path in G̃. We say that a CARP q-route contains a loop of k
consecutive edges (k-loop) if it services in sequence k required edges e1, . . . , ek = e1
(note that a 1-loop corresponds to servicing twice the same edge consecutively).

It is worth noting that the q-path relaxation adopted in this paper is slightly dif-
ferent from that commonly adopted in the existing CARP literature. Indeed, since we
assume that a CARP route always deadheads shortest paths, a CARP (q, a)-path as
defined in this paper always ends at a serviced edge e(a), whereas the usual q-path
relaxation for the CARP is obtained by defining, for each vertex i ∈ V , a (q, i)-path
of demand q ending at vertex i . This last definition has the advantage of exploiting
the sparsity of the graph, yielding a pricing algorithm for CARP q-routes which can
be executed in O(Q|E | + |V | log |V |) time (see [31]) rather than in O(Q|ER |2) time
as in this paper. However, our definition enables the generation of CARP q-routes
as corresponding GVRP q-routes in G̃, and because there are no arcs between nodes
of a same cluster in G̃, imposing that GVRP q-routes cannot contain loops of two
consecutive clusters implies that the corresponding CARP q-routes do not contain 3-
loops. That is, pricing GVRP q-routes with 2-cycle elimination yields CARP q-routes
without 3-loops. Therefore, the q-path relaxation adopted in this paper, which is quite
fast to solve in practice, can yield better lower bounds than the classical one even if
2-cycle elimination is used.

Procedure BP1 is a dual ascent method that uses column generation to compute
a near optimal solution π1 of cost L B1 to the dual of RF1, called DRF1. The final
DRP solution of cost L B1 corresponding to π1 is denoted by (π1,υ1,w1, g1), where
υ1 = 0,w1 = 0, g1 = 0. Procedure BP1 is based on the following theorem.

Theorem 2 Let λe ∈ R,∀e ∈ ER, and λ0 ∈ R
+ be penalties associated with con-

straints (2) and (3), respectively. A feasible DRF1 solution π of cost z(DRF1(λ))
can be obtained by means of the following equations:

123

428 E. Bartolini et al.

πe = qe min
�∈R

ae�>0

{
(c� − λ(S�)− λ0)

q(S�)

}

+ λe, ∀e ∈ ER, (32)

π0 = λ0, (33)

where q(S�) = ∑
e∈S� ae�qe and λ(S�) = ∑

e∈S� ae�λe.

Proof Consider any route R�′ , �′ ∈ R. Because ae�′ > 0,∀e ∈ S�′ , we have

qe min
�∈R

ae�>0

{
(c� − λ(S�)− λ0)

q(S�)

}

≤ qe
(c�′ − λ(S�′)− λ0)

q(S�′)
, ∀e ∈ S�′ . (34)

Using expressions (32) and (33), from (34) we obtain

∑

e∈ER

ae�′πe + π0 ≤
∑

e∈ER

ae�′qe
(c�′ − λ(S�′)− λ0)

q(S�′)
+ λ(S�′)+ λ0 = c�′ . (35)

��
Procedure BP1 uses subgradient optimization and column generation to heuristi-

cally solve maxλ{z(DRF1(λ))} as follows. Let RF1 be a restricted problem obtained
from RF1 by substituting R with a subset R ⊆ R, and let π̄ be a solution to the dual
DRF1 of problem RF1. We denote by φ̄(a) the cost of the least cost GVRP q-route
ending at ν(a) with respect to the modified arc costs d̄uv . The value φ̄(a) corresponds
to the reduced cost of the least reduced cost CARP q-route with respect to π̄ . Cost
φ̄(a) is computed as φ̄(a) = minq̄=qν(a),...,Q{ f (q̄, ν(a)) + d̄ν(a)0}, where functions
f (q, v) are calculated using the modified arc costs d̄uv obtained according to Eq. (28)
by setting ῡ = 0 and w̄ = 0

BP1 initializes L B1 = 0,λ = 0,R = ∅, and executes a fixed number maxit1 of
macro-iterations which perform the following steps:

1. execute a fixed number maxit2 of subgradient iterations using Theorem 2 (where
R is replaced by R) to compute a dual solution π̄ of cost z̄ to RF1, and modifying
the penalties λ using the subgradient method;

2. generate a subset N containing the CARP q-route of minimum reduced cost φ̄a

ending at arc a,∀a ∈ AR . If N = ∅ and z̄ is greater than L B1, then update
L B1 = z̄, and π1 = π̄ . Otherwise, update R = R ∪ N .

At Step 1, a subgradient ψ̄ on z(DRF1(λ)) can be computed as follows. Let
�e ∈ R, e ∈ ER , be the index of a route R�e yielding the minimum in (32), and define a
not necessarily feasible LRF1 solution x̄ setting x̄� = ∑

e∈ER
ae�(qe/q(S�e)),∀� ∈ R.

A valid subgradient on z(DRF1(λ)) is given by setting ψ̄e = ∑
�∈R ae� x̄� − 1, and

ψ̄0 = ∑
�∈R x̄� − K ∗.

7.2 Lower bounding procedure BP2

Procedure BP2 solves a relaxation of LRP, denoted by RF2, not containing constraints
(25) and in which the set R of CARP routes is enlarged to contain all CARP q-routes.

123

Improved lower bounds and exact algorithm for the CARP 429

RF2 is solved by a lower bounding procedure called BP2 which is based on LPCG (see
Appendix C). The initial master problem RF2 is obtained from RF2 by substituting R
with a subset R ⊆ R containing a CARP q-route ending in arc a, for each arc a ∈ AR ,
having minimum reduced cost with respect to the dual solution (π1,υ1,w1, g1) com-
puted by BP1. The subsets S ,F , and C of the cuts in the initial master problem
are initialized as S = {{i} : i ∈ V, |δR(i)| is odd}, and F = ∅,C = ∅. More-
over, the pools R and B of inactive routes and cuts used by LPCG are initialized as
R = ∅, and B = ∅. At each iteration of LPCG, the route subset N is obtained by
computing a CARP q-route of minimum reduced cost φ̄a ending at arc a,∀a ∈ AR ,
with respect to the current master dual solution. Values φ̄a,∀a ∈ AR , are computed as
φ̄(a) = minq̄=qν(a),...,Q{ f (q̄, ν(a))+ d̄ν(a)0}, where functions f (q, v) are calculated
using the modified arc costs d̄uv computed according to (28).

In the following, we denote by (π2,υ2,w2, g2), g2 = 0, the final DRP solution of
cost L B2 computed by procedure BP2.

7.3 Lower bounding procedure BP3

Procedure BP3 solves a relaxation RF3 of problem LRP obtained by ignoring con-
straints (25). RF3 is solved by a lower bounding procedure called BP3 which is based
on LPCG, and applies algorithm genRoutes to generate CARP routes.

Let M(R2) and M(P2
v) be two parameters defined a priori. Before starting LPCG,

BP3 applies genRoutes to generate a subset R2 ⊆ R containing at most M(R2)

CARP routes having reduced cost with respect to (π2,υ2,w2, g2) less than or equal
to the gap zU B − L B2. Let P2 be the set of all paths generated by genRoutes to
compute R2. When generating R2, we impose that |P2

v | ≤ M(P2
v),∀v ∈ Ṽ , and

both fathoming 3 and fathoming 4 (see Appendix B) are applied within genRoutes
using DRP solutions (π1,υ1,w1, g1) and (π2,υ2,w2, g2). The path set P2 is called
optimal if |P2

v | < M(P2
v),∀v ∈ Ṽ . Note that if P2 is optimal, it is not required to

use genRoutes within BP3, as all routes that can be part of an optimal solution can
be generated by combining paths in the set P2.

The initial master problem of LPCG is obtained setting R = R2, and S =
∅,F = ∅, and C = ∅. The route pool R is initialized as R = ∅, and the cut pool B
initially contains all inequalities found by procedure BP2. Let M(N) be a parameter
of LPCG defined a priori. At each iteration of LPCG, a subset N ⊆ R containing at
most M(N) routes of negative reduced cost is generated according to the following
two cases:

1. P2 �= ∅:

(i) Extract from P2 a subset Pv ⊆ P2
v containing the M(Pv) (M(Pv)

defined a priori) paths of minimum modified cost d̄(P) ending at node
v,∀v ∈ Ṽ , and such that L B

ng
(P) ≤ 0,∀P ∈ Pv, v ∈ Ṽ .

(ii) Use procedure combineP to combine paths in Pv,∀v ∈ Ṽ , setting
 =
M(N) and 	 = 0.

(iii) If |N | = 0 we have to consider two cases:
(a) P2 is not optimal: set P2 = ∅, and go to case 2.

123

430 E. Bartolini et al.

(b) P2 is optimal and |Pv| < |P2
v | for some v ∈ Ṽ : set M(Pv) = ∞

and return to (i).

2. P2 = ∅:
(i) Use genRoutes to compute route subset N by setting
 = M(N) and

	 = 0, and imposing |Pv| ≤ M(Pv),∀v ∈ Ṽ , within genP .
(ii) If |N | = 0 and |Pv| = M(Pv) for some v ∈ Ṽ , then set M(Pv) = ∞

and repeat case 2.
In both cases 1 and 2, whenever |N | = ∅ or genRoutes runs out of memory
procedure BP3 terminates prematurely.

When generating N , fathoming 3 and fathoming 4 are applied within genRoutes
using both DRP solutions (π1,υ1,w1, g1) and (π2,υ2,w2, g2). Moreover, any route
R such that c(R) ≥ c(R�), for some � ∈ R ∪ R, and such that S(R) = S(R�) is
removed from N . In the following, we denote by (π3,υ3,w3, g3), g3 = 0, the final

DRP solution of cost L B3 computed by procedure BP3, and by R
3
,S

3
and F

3
the

subsets of routes and inequalities (8) and (14), respectively, of the final master RF3 at
the end of BP3.

7.4 Lower bounding procedure BP4

Procedure BP4 is similar to BP3 except that it incorporates constraints (25). It is
executed after BP3 and starts by generating a subset R3 ⊆ R containing at most
M(R3) CARP routes having reduced cost with respect to (π3,υ3,w3, g3) less than
or equal to the gap zU B − L B3, where M(R3) is defined a priori. Fathoming 3
and fathoming 4 are applied within genP and combineP using DRP solutions
(π1,υ1,w1, g1), (π2,υ2,w2, g2), and (π3,υ3,w3, g3). When generating R3, we
impose that |P3| ≤ M(P3), where P3 is the set of all paths that are generated by
genRoutes to compute route set R3, and M(P3) is a parameter defined a priori.
Path set P3 is called optimal if |P3| < M(P3).

BP4 uses the route set R3 to update the pool R as R = R ∪ R3, whereas the

master problem is initialized by setting R = R
3
, and S = S

3
,F = F

3
. At each

iteration of LPCG, the subset N ⊆ R is generated according to the same strategy as
in procedure BP3 where P2 is replaced with P3, and fathoming rules 3 and 4 are
applied within genRoutes using DRP solutions (π1,υ1,w1, g1), (π2,υ2,w2, g2),
and (π3,υ3,w4, g3).

8 Computational experiments

All algorithms were coded in C and compiled under Visual Studio 2008. CPLEX 12.1
[18] was used as the LP solver in procedures BP2, BP3, BP4, and as the IP solver in
the exact algorithm. All computational experiments were run on an Intel Xeon E5310
Workstation clocked at 1.6 GHz with 8 Gb RAM running Windows Server 2003 x64
Edition.

123

Improved lower bounds and exact algorithm for the CARP 431

8.1 Test instances

We have used five sets of CARP benchmark instances called egl [9], val [10], gdb
[25], kshs [30], and bmcv [12]. The sets val, gdb, and kshs correspond to Capacitated
Chinese Postman Problems in that all edges of the corresponding graphs are required.
Data set egl is based on data from a winter gritting application in Lancashire, England
[32,20] and contains 24 instances based on two networks created by changing the set
of required edges and the capacities of the vehicles. These instances involve up to 140
nodes and 190 edges, and the demand quantities for the required edges are proportional
to their costs. Data set val contains 34 instances with up to 50 vertices and 97 edges
obtained from 10 randomly generated graphs by changing the capacity of the vehicles.
Data sets gdb and kshs contain 23 randomly generated instances with up to 27 nodes
and 55 edges, and six instances with up to 10 nodes and 15 edges, respectively. Finally,
the data set bmcv is made up of 100 instances with up to 97 vertices and 142 edges
obtained by partitioning the inter-city road network of Flanders, Belgium, into districts
in the context of winter gritting. The latter instances are further partitioned into four
classes, called C, D, E and F. Instances D and F are defined over the same graphs as
instances C and E but double the vehicle capacity. Data sets egl, val, gdb, and kshs are
publicly available at http://www.uv.es/~belengue/carp.html, whereas instances bmcv
were kindly provided to us by [11].

8.2 Computational results

In Tables 1, 2, 3, 4, 5 we compare the results obtained by the four lower bounding
procedures BP1, BP2, BP3, and BP4, and by our exact algorithm (columns headed
“Our algorithm”) with those obtained by the methods of [5] (columns “BM”), [33]
(columns “LPU”), [9] (columns “BB”), and [12] (columns “BMCV”).

The algorithm of Baldacci and Maniezzo works by transforming the CARP into an
equivalent CVRP which is solved by branch-and-cut using a two-index formulation
strengthened by the generation of several classes of valid inequalities for the CVRP.
The algorithm of Longo et al. is also based on a transformation of the CARP into
a CVRP. However, these authors model this CVRP as a set covering-like problem
which is solved by branch-and-cut-and-price. This formulation is strengthened using
rounded capacity cuts, framed capacity, and strengthened comb cuts. The algorithm
of Belenguer and Benavent is a cutting plane method based on a sparse formulation
described by integer variables representing the number of times an edge is deadhead-
ed. This formulation contains capacity constraints, odd edge cutset constraints, and
disjoint path inequalities. Finally, the lower bounds computed by Beullens et al. are
obtained by first applying the cutting plane algorithm of Belenguer and Benavent, but
ignoring disjoint path inequalities, and then using the CPLEX IP solver to obtain an
integer solution.

In all instances, edge costs are represented as integers, and therefore the final lower
bounds obtained by procedures BP1, BP2, BP3, and BP4 are rounded up to the nearest
integer. Tables 1, 2, 3, 4, 5 display the following data for each instance. Column “I ns.”
reports the instance name whereas column “zU B” reports the best known upper bound

123

http://www.uv.es/~belengue/carp.html

432 E. Bartolini et al.

Table 1 Lower bounds on gdb and kshs instances

I ns. zU B Our algorithm LPU
t∗1

%L B1 t1 %L B2 t2 %L B3 t3 %L B4 t4 |R∗| t∗

gdb1 316 91.14 0.7 100.00 0.9 100.00 0.9 100.00 0.9 – 0.9 3.1

gdb2 339 93.81 0.1 100.00 0.2 100.00 0.2 100.00 0.2 – 0.2 1.4

gdb3 275 92.36 0.1 100.00 0.2 100.00 0.2 100.00 0.2 – 0.2 0.8

gdb4 287 93.73 0.1 100.00 0.1 100.00 0.1 100.00 0.1 – 0.1 0.8

gdb5 377 96.55 0.2 100.00 0.2 100.00 0.2 100.00 0.2 – 0.2 1.0

gdb6 298 95.97 0.1 100.00 0.1 100.00 0.1 100.00 0.1 – 0.1 0.3

gdb7 325 90.15 0.1 100.00 0.3 100.00 0.3 100.00 0.3 – 0.3 1.8

gdb8 348 94.83 0.3 100.00 1.2 100.00 1.2 100.00 1.2 – 1.2 32.5

gdb9 303 97.03 0.5 100.00 1.2 100.00 1.2 100.00 1.2 – 1.2 31.0

gdb10 275 93.09 0.1 100.00 0.2 100.00 0.2 100.00 0.2 – 0.2 6.3

gdb11 395 93.16 0.6 100.00 2.6 100.00 2.6 100.00 2.6 – 2.6 1364.6

gdb12 458 96.51 0.1 99.13 0.1 99.13 0.2 99.78 0.2 65 0.2 5.2

gdb13 536 98.13 0.2 99.63 0.3 99.63 0.6 99.63 0.7 3642 2.6 93.0

gdb14 100 100.00 0.1 100.00 0.1 100.00 0.1 100.00 0.1 – 0.1 0.2

gdb15 58 100.00 0.2 100.00 0.2 100.00 0.2 100.00 0.2 – 0.2 3.8

gdb16 127 96.06 0.3 100.00 0.4 100.00 0.4 100.00 0.4 – 0.4 26.4

gdb17 91 95.60 0.2 100.00 0.3 100.00 0.3 100.00 0.3 – 0.3 34.8

gdb18 164 100.00 0.5 100.00 0.5 100.00 0.5 100.00 0.5 – 0.5 56.4

gdb19 55 100.00 0.0 100.00 0.0 100.00 0.0 100.00 0.0 – 0.0 0.1

gdb20 121 94.21 0.2 100.00 0.3 100.00 0.3 100.00 0.3 – 0.3 4.5

gdb21 156 97.44 0.3 100.00 0.4 100.00 0.4 100.00 0.4 – 0.4 20.9

gdb22 200 98.50 0.4 100.00 0.6 100.00 0.6 100.00 0.6 – 0.6 112.1

gdb23 233 100.00 0.7 100.00 0.7 100.00 0.7 100.00 0.7 – 0.7 145.5

Average 96.01 0.3 99.95 0.5 99.95 0.5 99.97 0.5 0.6 84.6

kshs1 14661 94.64 0.6 100.00 0.6 100.00 0.6 100.00 0.6 – 0.6 0.8

kshs2 9863 90.53 0.3 100.00 0.4 100.00 0.4 100.00 0.4 – 0.4 0.5

kshs3 9320 91.18 0.1 100.00 0.2 100.00 0.2 100.00 0.2 – 0.2 1.0

kshs4 11498 97.04 0.0 99.89 0.1 100.00 0.1 100.00 0.1 – 0.1 1.0

kshs5 10957 94.53 0.2 100.00 0.3 100.00 0.3 100.00 0.3 – 0.3 0.7

kshs6 10197 91.64 0.2 100.00 0.3 100.00 0.3 100.00 0.3 – 0.3 1.5

Average 93.26 0.2 99.98 0.3 100.00 0.3 100.00 0.3 0.3 0.9

1 Total computing time spent by the branch-and-cut-and-price of Longo et al. for solving the problem to
optimality by transforming it into a CVRP

(either taken from [39], or computed by our exact algorithm; bold values indicate
an improvement over the best known upper bound). Column “zL B” reports the best
lower bound found by our algorithm. Columns “%L Bx”, x = 1, . . . , 4, report the
percentage ratio of lower bounds L Bx computed by procedures BPx (i.e., %L Bx =
L Bx/zU B · 100); columns “tx ”, report the total (cumulative) time in seconds spent

123

Improved lower bounds and exact algorithm for the CARP 433

Ta
bl

e
2

L
ow

er
bo

un
ds

on
bm

cv
in

st
an

ce
s,

cl
as

se
s

C
an

d
E

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
B

M
C

V
%

L
B

2

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |

t∗

C
01

41
50

41
05

93
.5

2
3.

4
98
.9

2
42
.6

98
.9

2
M

25
71
.3

98
.9

2
25

71
.3

–
–

98
.3

1

C
02

31
35

31
35

95
.1

8
1.

0
10

0.
00

5.
0

10
0.

00
5.

0
10

0.
00

5.
0

–
5.

0
10

0.
00

C
03

25
75

25
67

94
.3

7
2.

0
99
.5

7
16
.3

99
.5

7
21

9.
9

99
.6

9
50

9.
0

55
34

4
54

7.
7

98
.0

6

C
04

35
10

34
78

93
.7

3
2.

7
99
.0

9
30
.8

99
.0

9
M

19
99
.1

99
.0

9
19

99
.1

–
–

98
.4

3

C
05

53
65

53
65

95
.5

6
2.

0
99
.4

8
20
.2

99
.4

8
18

34
.1

10
0.

00
24

61
.7

–
24

61
.7

98
.8

8

C
06

25
35

25
32

93
.4

5
1.

0
99
.5

7
15
.2

99
.5

7
24

8.
6

99
.8

8
65

2.
8

21
13

26
12

77
.8

98
.4

2

C
07

40
75

40
63

93
.3

3
0.

9
98
.6

7
14
.4

98
.8

0
37

2.
8

99
.7

1
81

4.
9

93
65

82
7.

1
98
.5

3

C
08

40
90

40
83

94
.2

8
1.

6
99
.4

4
21
.5

99
.4

4
59
.0

99
.8

3
90
.6

54
15

94
.6

97
.8

0

C
09

52
60

52
33

95
.2

5
4.

0
99
.4

9
73
.9

99
.4

9
M

32
70
.9

99
.4

9
32

70
.9

–
–

99
.1

4

C
10

47
00

46
60

93
.9

1
0.

8
98
.5

3
5.

4
98
.6

6
47
.0

99
.1

5
10

3.
8

33
55

7
12

7.
8

98
.3

0

C
11

46
35

45
83

95
.1

9
5.

1
98
.7

9
56
.0

98
.8

8
14

72
.8

98
.8

8
M

97
95
.7

–
–

98
.1

7

C
12

42
40

42
09

94
.2

9
1.

8
98
.7

0
42
.2

98
.7

3
14

10
.4

99
.2

7
63

86
.2

M
–

97
.6

4

C
13

29
55

29
40

94
.6

5
1.

1
98
.7

1
9.

6
98
.8

2
30

4.
1

99
.4

9
23

01
.2

37
22

09
42

00
.2

97
.9

7

C
14

40
30

40
30

96
.1

5
1.

2
99
.5

5
16
.2

99
.7

3
21

4.
6

10
0.

00
38

0.
9

–
38

0.
9

98
.5

1

C
15

49
40

49
12

95
.9

1
8.

6
99
.4

3
10

1.
3

99
.4

3
M

58
29
.1

99
.4

3
58

29
.1

–
–

98
.0

8

C
16

14
75

14
75

93
.2

9
0.

8
99
.9

3
6.

4
99
.9

3
20
.5

10
0.

00
24
.2

–
24

.2
99
.6

6

C
17

35
55

35
55

93
.5

0
0.

7
10

0.
00

3.
4

10
0.

00
3.

4
10

0.
00

3.
4

–
3.

4
99
.4

4

C
18

56
20

55
77

95
.4

6
9.

5
99
.2

3
13

3.
6

99
.2

3
M

66
37
.5

99
.2

3
66

37
.5

–
–

98
.7

5

C
19

31
15

30
96

93
.9

0
2.

7
99
.3

9
23
.0

99
.3

9
M

13
41
.4

99
.3

9
13

41
.4

–
–

98
.3

9

C
20

21
20

21
20

93
.0

7
1.

4
10

0.
00

12
.1

10
0.

00
12
.1

10
0.

00
12
.1

–
12

.1
10

0.
00

C
21

39
70

39
60

95
.2

9
3.

3
99
.7

5
59
.1

99
.7

5
M

30
84
.1

99
.7

5
30

84
.1

–
–

99
.5

0

C
22

22
45

22
45

95
.5

9
1.

2
10

0.
00

5.
0

10
0.

00
5.

0
10

0.
00

5.
0

–
5.

0
10

0.
00

123

434 E. Bartolini et al.

Ta
bl

e
2

co
nt

in
ue

d

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
B

M
C

V
%

L
B

2

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |

t∗

C
23

40
85

40
32

91
.5

5
5.

7
98
.7

0
59
.3

98
.7

0
M

60
57
.7

98
.7

0
60

57
.7

–
–

98
.2

9

C
24

34
00

33
84

96
.3

2
5.

6
99
.5

3
46
.4

99
.5

3
M

29
71
.3

99
.5

3
29

71
.3

–
–

99
.1

2

C
25

23
10

23
10

95
.0

2
0.

7
10

0.
00

2.
1

10
0.

00
2.

1
10

0.
00

2.
1

–
2.

1
10

0.
00

A
ve

ra
ge

94
.4

7
2.

7
99
.3

8
32
.8

99
.4

0
15

99
.7

99
.5

8
22

92
.4

98
.7

8

So
lv

ed
14

4

E
01

49
10

48
85

95
.9

7
2.

2
99
.1

2
30
.3

99
.1

4
24

67
.8

99
.4

9
13

00
9.

0
M

–
98
.3

7

E
02

39
90

39
78

96
.6

7
1.

4
99
.2

7
9.

3
99
.5

7
74
.3

99
.7

0
18

5.
1

53
65

0
25

1.
6

99
.2

5

E
03

20
15

20
15

92
.3

1
1.

1
10

0.
00

8.
5

10
0.

00
8.

5
10

0.
00

8.
5

–
8.

5
10

0.
00

E
04

41
55

41
54

95
.9

6
3.

7
99
.7

8
40
.9

99
.8

1
10

10
.8

99
.9

8
20

46
.4

14
44

5
20

62
.4

99
.2

8

E
05

45
85

45
85

96
.1

0
1.

6
99
.7

6
15
.6

99
.9

3
49
.4

10
0.

00
61
.2

–
61

.2
99
.3

5

E
06

20
55

20
55

96
.6

9
0.

8
10

0.
00

4.
3

10
0.

00
4.

3
10

0.
00

4.
3

–
4.

3
10

0.
00

E
07

41
55

41
33

95
.8

4
0.

8
98
.9

2
6.

4
99
.0

9
94
.2

99
.4

7
29

1.
1

26
68

7
31

9.
0

97
.1

1

E
08

47
10

47
02

94
.8

2
1.

3
99
.5

5
18
.3

99
.6

6
10

4.
8

99
.8

3
16

5.
6

40
98

3
20

0.
2

98
.5

1

E
09

58
20

57
80

95
.5

7
5.

7
99
.3

1
53
.2

99
.3

1
M

24
28
.5

99
.3

1
24

28
.5

–
–

98
.7

1

E
10

36
05

36
05

97
.5

3
0.

8
10

0.
00

3.
7

10
0.

00
3.

7
10

0.
00

3.
7

–
3.

7
10

0.
00

E
11

46
55

46
37

94
.4

4
4.

6
99
.6

1
49
.4

99
.6

1
M

88
81
.2

99
.6

1
88

81
.2

–
–

99
.4

6

E
12

41
80

41
61

96
.3

4
1.

5
98
.6

4
20
.3

99
.0

2
10

05
.1

99
.5

5
47

61
.4

61
14

60
65

85
.4

97
.2

5

E
13

33
45

33
37

95
.8

7
1.

0
99
.0

7
9.

7
99
.1

6
31

2.
5

99
.7

6
12

17
.6

76
84

7
13

62
.1

99
.2

5

E
14

41
15

41
15

94
.6

3
1.

4
99
.9

5
10
.5

10
0.

00
67
.1

10
0.

00
67
.1

–
67

.1
99
.2

7

E
15

42
05

41
89

92
.7

0
8.

9
99
.6

2
13

4.
3

99
.6

2
M

67
43
.7

99
.6

2
67

43
.7

–
–

99
.1

7

E
16

37
75

37
55

96
.5

8
2.

4
99
.4

7
20
.3

99
.4

7
M

17
87
.4

99
.4

7
17

87
.4

–
–

98
.9

4

E
17

27
40

27
40

92
.0

1
0.

7
10

0.
00

2.
7

10
0.

00
2.

7
10

0.
00

2.
7

–
2.

7
10

0.
00

123

Improved lower bounds and exact algorithm for the CARP 435

Ta
bl

e
2

co
nt

in
ue

d

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
B

M
C

V
%

L
B

2

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |

t∗

E
18

38
35

38
25

94
.0

0
5.

8
99
.7

4
10

4.
8

99
.7

4
M

59
99
.8

99
.7

4
59

99
.8

–
–

99
.7

4

E
19

32
35

32
22

94
.1

9
2.

8
99
.6

0
37
.6

99
.6

0
M

22
70
.5

99
.6

0
22

70
.5

–
–

98
.9

2

E
20

28
25

28
02

93
.8

1
1.

8
99
.0

1
27
.0

99
.1

9
26

16
.3

99
.1

9
M

10
02

9.
8

–
–

98
.5

8

E
21

37
30

37
28

94
.6

6
3.

6
99
.9

5
26
.3

99
.9

5
M

23
48
.3

99
.9

5
23

48
.3

–
–

99
.8

7

E
22

24
70

24
70

94
.4

5
2.

2
99
.8

4
10
.2

10
0.

00
14

9.
4

10
0.

00
14

9.
4

–
14

9.
4

98
.7

9

E
23

37
10

36
86

91
.2

9
4.

5
99
.3

5
92
.4

99
.3

5
M

63
50
.0

99
.3

5
63

50
.0

–
–

99
.0

6

E
24

40
20

40
01

93
.6

3
5.

9
99
.5

3
48
.0

99
.5

3
M

26
82
.9

99
.5

3
26

82
.9

–
–

97
.7

6

E
25

16
15

16
15

95
.7

3
0.

4
10

0.
00

1.
2

10
0.

00
1.

2
10

0.
00

1.
2

–
1.

2
10

0.
00

A
ve

ra
ge

94
.8

7
2.

7
99
.5

6
31
.4

99
.6

3
18

98
.6

99
.7

3
28

59
.9

99
.0

7
So

lv
ed

14
5

1
M

:A
lg

or
ith

m
g

en
R

o
u

te
s

ru
ns

ou
to

f
m

em
or

y
2

L
ow

er
bo

un
d

ob
ta

in
ed

by
[1

2]
by

op
tim

al
ly

so
lv

in
g

a
re

la
xa

tio
n

of
th

e
pr

ob
le

m

123

436 E. Bartolini et al.

Ta
bl

e
3

L
ow

er
bo

un
ds

on
bm

cv
in

st
an

ce
s,

cl
as

se
s

D
an

d
F

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
B

M
C

V
%

L
B

2

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |

t∗

D
01

32
15

32
15

92
.0

7
6.

4
10

0.
00

83
.9

10
0.

00
83
.9

10
0.

00
83
.9

–
83

.9
10

0.
00

D
02

25
20

25
20

93
.5

7
2.

4
10

0.
00

18
.8

10
0.

00
18
.8

10
0.

00
18
.8

–
18

.8
10

0.
00

D
03

20
65

20
65

92
.7

4
2.

0
10

0.
00

49
.4

10
0.

00
49
.4

10
0.

00
49
.4

–
49

.4
10

0.
00

D
04

27
85

27
85

89
.4

8
5.

8
10

0.
00

70
.0

10
0.

00
70
.0

10
0.

00
70
.0

–
70

.0
10

0.
00

D
05

39
35

39
35

91
.6

9
3.

8
10

0.
00

21
.9

10
0.

00
21
.9

10
0.

00
21
.9

–
21

.9
10

0.
00

D
06

21
25

21
25

89
.1

8
2.

8
10

0.
00

15
.8

10
0.

00
15
.8

10
0.

00
15
.8

–
15

.8
10

0.
00

D
07

31
15

30
78

90
.6

9
1.

6
97
.6

6
26
.3

98
.0

7
91

1.
9

98
.8

1
44

78
.4

41
83

61
10

44
6.

1
96
.7

9

D
08

30
45

29
95

91
.0

7
1.

7
98
.3

6
67
.2

98
.3

6
M

67
14
.5

98
.3

6
67

14
.5

–
–

97
.7

0

D
09

41
20

41
20

93
.1

1
12
.4

10
0.

00
10

2.
8

10
0.

00
10

2.
8

10
0.

00
10

2.
8

–
10

2.
8

10
0.

00

D
10

33
40

33
35

96
.1

4
1.

9
99
.7

9
17
.7

99
.7

9
76
.6

99
.8

5
10

4.
6

57
89

10
7.

2
99
.7

0

D
11

37
45

37
45

90
.3

3
10
.9

10
0.

00
12

2.
5

10
0.

00
12

2.
5

10
0.

00
12

2.
5

–
12

2.
5

10
0.

00

D
12

33
10

33
10

89
.5

2
4.

1
10

0.
00

77
.7

10
0.

00
77
.7

10
0.

00
77
.7

–
77

.7
10

0.
00

D
13

25
35

25
35

88
.3

6
2.

1
10

0.
00

18
.0

10
0.

00
18
.0

10
0.

00
18
. 0

–
18

.0
10

0.
00

D
14

32
80

32
72

90
.0

0
2.

8
99
.7

6
49
.0

99
.7

6
M

52
61
.1

99
.7

6
52

61
.1

–
–

99
.7

0

D
15

39
90

39
90

90
.6

0
17
.2

10
0.

00
33

6.
3

10
0.

00
33

6.
3

10
0.

00
33

6.
3

–
33

6.
3

10
0.

00

D
16

10
60

10
60

98
.1

1
0.

8
10

0.
00

8.
6

10
0.

00
8.

6
10

0.
00

8.
6

–
8.

6
10

0.
00

D
17

26
20

26
20

90
.4

6
0.

7
10

0.
00

8.
6

10
0.

00
8.

6
10

0.
00

8.
6

–
8.

6
10

0.
00

D
18

41
65

41
65

92
.7

0
26
.2

10
0.

00
45

4.
9

10
0.

00
45

4.
9

10
0.

00
45

4.
9

–
45

4.
9

10
0.

00

D
19

24
00

23
93

93
.0

0
3.

8
99
.7

1
11

5.
6

99
.7

1
M

34
13
.1

99
.7

1
34

13
.1

–
–

98
.7

5

D
20

18
70

18
70

91
.1

8
3.

3
10

0.
00

27
.4

10
0.

00
27
.4

10
0.

00
27
.4

–
27

.4
10

0.
00

D
21

30
50

29
85

91
.6

1
8.

5
97
.8

7
15

6.
2

97
.8

7
M

52
92
.3

97
.8

7
52

92
.3

–
–

96
.3

9

D
22

18
65

18
65

92
.1

2
3.

0
10

0.
00

19
.7

10
0.

00
19
.7

10
0.

00
19
.7

–
19

.7
10

0.
00

123

Improved lower bounds and exact algorithm for the CARP 437

Ta
bl

e
3

co
nt

in
ue

d

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
B

M
C

V
%

L
B

2

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |

t∗

D
23

31
30

31
14

91
.5

7
12
.5

99
.4

9
97

6.
4

99
.4

9
M

68
97
.1

99
.4

9
68

97
.1

–
–

99
.3

6

D
24

27
10

26
76

91
.7

7
14
.2

98
.7

5
30

4.
5

98
.7

5
M

71
05
.6

98
.7

5
71

05
.6

–
–

98
.1

5

D
25

18
15

18
15

91
.9

6
0.

9
10

0.
00

11
.1

10
0.

00
11
.1

10
0.

00
11
.1

–
11

.1
10

0.
00

A
ve

ra
ge

91
.7

2
6.

1
99
.6

5
12

6.
4

99
.6

7
14

84
.8

99
.7

0
16

28
.6

99
.4

6

So
lv

ed
19

17

F0
1

40
40

40
40

87
.9

7
8.

5
10

0.
00

88
.1

10
0.

00
88
.1

10
0.

00
88
.1

–
88

.1
10

0.
00

F0
2

33
00

33
00

94
.0

0
2.

9
10

0.
00

18
.9

10
0.

00
18
.9

10
0.

00
18
.9

–
18

.9
10

0.
00

F0
3

16
65

16
65

92
.3

1
2.

6
10

0.
00

23
.4

10
0.

00
23
.4

10
0.

00
23
.4

–
23

.4
10

0.
00

F0
4

34
85

34
76

89
.0

7
7.

4
99
.7

4
12

6.
3

99
.7

4
M

41
09
.4

99
.7

4
41

09
.4

–
–

99
.7

1

F0
5

36
05

36
05

90
.8

5
4.

1
10

0.
00

27
.5

10
0.

00
27
.5

10
0.

00
27
.5

–
27

.5
10

0.
00

F0
6

18
75

18
75

90
.7

2
2.

1
10

0.
00

12
.1

10
0.

00
12
.1

10
0.

00
12
.1

–
12

.1
10

0.
00

F0
7

33
35

33
35

92
.0

8
1.

8
10

0.
00

11
.2

10
0.

00
11
.2

10
0.

00
11
.2

–
11

.2
10

0.
00

F0
8

37
05

36
90

89
.2

6
2.

3
99
.6

0
50
.3

99
.6

0
M

33
85
.6

99
.6

0
33

85
.6

–
–

99
.7

3

F0
9

47
30

47
30

90
.9

7
15
.8

10
0.

00
13

6.
6

10
0.

00
13

6.
6

10
0.

00
13

6.
6

–
13

6.
6

10
0.

00

F1
0

29
25

29
25

92
.9

9
2.

0
10

0.
00

8.
4

10
0.

00
8.

4
10

0.
00

8.
4

–
8.

4
10

0.
00

F1
1

38
35

38
35

88
.8

9
13
.7

10
0.

00
13

3.
5

10
0.

00
13

3.
5

10
0.

00
13

3.
5

–
13

3.
6

10
0.

00

F1
2

33
95

33
90

91
.2

2
4.

3
99
.8

5
77
.1

99
.8

5
M

31
25
.7

99
.8

5
31

25
.7

–
–

99
.7

1

F1
3

28
55

28
55

91
.2

4
2.

0
10

0.
00

14
.3

10
0.

00
14
.3

10
0.

00
14
.3

–
14

.3
10

0.
00

F1
4

33
30

33
30

90
.1

5
3.

0
10

0.
00

26
.3

10
0.

00
26
.3

10
0.

00
26
.3

–
26

.3
10

0.
00

F1
5

35
60

35
60

87
.0

5
25
.1

10
0.

00
27

9.
3

10
0.

00
27

9.
3

10
0.

00
27

9.
3

–
27

9.
3

10
0.

00

F1
6

27
25

27
25

96
.7

0
4.

8
10

0.
00

27
.2

10
0.

00
27
.2

10
0.

00
27
.2

–
27

.2
10

0.
00

F1
7

20
55

20
55

94
.3

1
0.

7
10

0.
00

6.
0

10
0.

00
6.

0
10

0.
00

6.
0

–
6.

0
10

0.
00

123

438 E. Bartolini et al.

Ta
bl

e
3

co
nt

in
ue

d

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
B

M
C

V
%

L
B

2

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |

t∗

F1
8

30
75

30
63

91
.7

1
14
.0

99
.6

1
31

8.
5

99
.6

1
M

99
00
.6

99
.6

1
99

00
.6

–
–

99
.5

1

F1
9

25
25

25
00

91
.5

6
6.

6
99
.0

1
13

4.
9

99
.0

1
M

58
14
.4

99
.0

1
58

14
.4

–
–

98
.4

2

F2
0

24
45

24
45

90
.4

7
5.

1
10

0.
00

42
.1

10
0.

00
42
.1

10
0.

00
42
.1

–
42

.1
10

0.
00

F2
1

29
30

29
30

92
.3

5
9.

2
10

0.
00

70
.4

10
0.

00
70
.4

10
0.

00
70
.4

–
70

.4
10

0.
00

F2
2

20
75

20
75

88
.6

3
2.

8
10

0.
00

18
.1

10
0.

00
18
.1

10
0.

00
18
.1

–
18

.1
10

0.
00

F2
3

30
05

29
94

90
.4

8
9.

5
99
.6

3
34

0.
4

99
.6

3
M

92
60
.5

99
.6

3
92

60
.5

–
–

99
.3

3

F2
4

32
10

32
10

90
.6

9
15
.2

10
0.

00
14

6.
2

10
0.

00
14

6.
2

10
0.

00
14

6.
2

–
14

6.
2

10
0.

00

F2
5

13
90

13
90

92
.0

1
0.

8
10

0.
00

2.
1

10
0.

00
2.

1
10

0.
00

2.
1

–
2.

1
10

0.
00

A
ve

ra
ge

91
.1

1
6.

6
99
.9

0
85
.6

99
.9

0
14

67
.5

99
.9

0
14

67
.5

99
.8

6

So
lv

ed
19

19

1
M

:A
lg

or
ith

m
g

en
R

o
u

te
s

ru
ns

ou
to

f
m

em
or

y
2

L
ow

er
bo

un
d

ob
ta

in
ed

by
B

eu
lle

ns
et

al
.b

y
op

tim
al

ly
so

lv
in

g
a

re
la

xa
tio

n
of

th
e

pr
ob

le
m

123

Improved lower bounds and exact algorithm for the CARP 439

Ta
bl

e
4

L
ow

er
bo

un
ds

on
eg

l
in

st
an

ce
s

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
L

PU
B

M
B

B

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |1

t∗
%

L
B

2
t

t∗
%

L
B

3
t

t∗
%

L
B

4
t

e1
-A

35
48

35
48

95
.6

9
3.

9
10

0.
00

15
.9

10
0.

00
15
.9

10
0.

00
15
.9

–
15

.9
10

0.
00

14
4.

2
14

4.
2

10
0.

00
12
.7

12
.7

99
.0

7
32
.0

e1
-B

44
98

44
87

94
.4

0
3.

5
99
.3

3
16
.1

99
.4

9
73

6.
4

99
.7

6
25

27
.8

43
69

9
26

19
.5

99
.3

3
52
.6

–
99
.2

4
23
.7

45
0.

3
98

.6
2

35
.8

e1
-C

55
95

55
80

96
.9

4
1.

6
99
.1

1
9.

6
99
.3

4
33

2.
6

99
.7

3
71

4.
7

10
46

5
73

2.
7

99
.0

5
46
.1

–
98
.8

9
38
.5

–
97

.4
6

22
.4

e2
-A

50
18

50
12

93
.8

0
10
.9

99
.8

8
10

4.
6

99
.8

8
M

14
85
.1

99
.8

8
14

85
.1

–
–

99
.8

6
52

1.
2

–
99
.8

6
15

9.
1

18
2.

0
99

.5
2

50
.5

e2
-B

63
17

62
84

94
.6

3
5.

4
99
.4

8
36
.9

99
.4

8
M

23
68
.4

99
.4

8
23

68
.4

–
–

99
.4

1
19

8.
5

–
99
.2

7
12

1.
0

–
98

.9
2

19
.1

e2
-C

83
35

83
19

97
.3

7
3.

5
99
.0

8
14
.1

99
.4

7
56

4.
9

99
.8

1
39

34
.9

93
01

8
42

04
.1

98
.7

9
66
.9

–
97
.9

6
15

3.
2

–
97

.3
5

18
.8

e3
-A

58
98

58
98

95
.0

7
15
.9

10
0.

00
72
.6

10
0.

00
72
.6

10
0.

00
72
.6

–
72

.6
10

0.
00

92
4.

9
92

4.
9

10
0.

00
14

3.
5

14
3.

5
99

.5
1

86
.8

e3
-B

77
75

77
11

96
.1

5
9.

5
99
.0

1
59
.8

99
.1

8
10

78
.7

99
.1

8
M

88
94
.6

–
–

99
.0

0
37

5.
6

–
98
.8

8
35

0.
2

–
98

.3
4

58
.3

e3
-C

10
29

2
10

24
4

96
.7

5
5.

3
98
.9

8
22
.7

99
.1

3
65

8.
0

99
.5

3
23

45
.4

M
–

98
.7

5
14

2.
1

–
98
.4

5
59

4.
4

–
97

.3
5

19
.9

e4
-A

64
44

63
95

94
.9

4
19
.2

99
.2

4
18

4.
3

99
.2

4
M

38
56
.8

99
.2

4
38

56
.8

–
–

99
.2

4
11

71
.6

–
99
.1

8
39

1.
2

–
98

.8
8

43
.1

e4
-B

89
61

89
35

95
.5

0
9.

4
99
.2

6
46
.8

99
.4

3
83

0.
1

99
.7

1
84

55
.4

M
–

99
.1

4
41

9.
0

–
99
.0

4
69

8.
2

–
98

.3
0

15
.9

e4
-C

11
56

2
11

49
3

97
.3

1
7.

4
99
.0

5
28
.1

99
.2

1
64

4.
1

99
.4

0
20

60
.6

M
–

98
.8

3
20

2.
7

–
98
.3

7
68

2.
3

–
97

.5
3

16
.5

s1
-A

50
18

50
18

95
.7

2
7.

2
99
.9

2
84
.7

99
.9

6
79

4.
6

10
0.

00
12

32
.3

–
12

32
.3

99
.9

2
75

0.
4

–
99
.9

5
89
.7

91
.8

99
.4

8
10

85
.5

s1
-B

63
88

63
88

95
.1

3
4.

4
99
.8

7
64
.3

99
.9

4
31

5.
4

10
0.

00
34

4.
1

–
34

4.
1

99
.8

6
20

4.
5

–
99
.8

5
14

8.
2

–
97

.0
7

21
6.

1

s1
-C

85
18

85
17

96
.8

2
3.

5
99
.6

6
26
.5

99
.9

4
15

5.
8

99
.9

9
17

3.
9

21
15

8
19

5.
8

99
.5

5
67
.0

–
99
.4

6
45

7.
1

–
97

.5
6

10
2.

7

s2
-A

98
84

98
25

96
.3

2
36
.2

99
.4

0
36

9.
5

99
.4

0
tl

99
.4

0
tl

–
–

99
.3

9
32

60
.3

–
–

–
–

98
.9

5
52

1.
8

s2
-B

13
10

0
13

01
7

97
.0

5
21
.8

99
.0

3
13

4.
5

99
.2

4
83

0.
4

99
.3

7
37

77
.8

M
–

98
.9

9
89

6.
7

–
–

–
–

98
.3

7
17

0.
2

s2
-C

16
42

5
16

40
7

98
.5

7
14
.7

99
.6

3
59
.3

99
.7

5
86

7.
9

99
.8

9
24

68
.6

60
26

30
15

08
2.

9
99
.5

6
40

8.
9

–
–

–
–

98
.7

6
27

4.
2

s3
-A

10
22

0
10

14
5

95
.6

7
40
.1

99
.2

7
43

5.
9

99
.2

7
M

50
66
.1

99
.2

7
50

66
.1

–
–

99
.2

5
16

80
.4

–
–

–
–

98
.0

9
20

6.
3

s3
-B

13
68

2
13

64
8

97
.2

8
26
.1

99
.5

4
15

5.
5

99
.6

4
15

36
.0

99
.7

5
10

72
1.

5
M

–
99
.5

2
16

39
.5

–
–

–
–

99
.0

6
50

4.
3

s3
-C

17
18

8
17

16
3

98
.6

2
17
.6

99
.5

7
71
.9

99
.7

0
12

61
.9

99
.8

5
40

91
.0

43
80

07
13

20
1.

8
99
.4

9
63

5.
3

–
–

–
–

98
.7

3
18

2.
7

123

440 E. Bartolini et al.

Ta
bl

e
4

co
nt

in
ue

d

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
L

PU
B

M
B

B

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |1

t∗
%

L
B

2
t

t∗
%

L
B

3
t

t∗
%

L
B

4
t

s4
-A

12
26

8
12

14
1

96
.2

7
57
.6

98
.9

6
45

9.
9

98
.9

6
M

75
06

.0
98

.9
6

75
06

.0
–

–
98
.9

8
14

31
8.

1
–

–
–

–
98
.0

4
32

4.
7

s4
-B

16
32

1
16

09
8

96
.1

2
37
.2

98
.5

4
21

9.
3

98
.6

3
25

90
.8

98
.6

3
tl

–
–

98
.6

0
27

61
.1

–
–

–
–

97
.6

2
11

73
.0

s4
-C

20
48

1
20

43
0

98
.0

0
24
.8

99
.5

2
12

5.
2

99
.6

3
65

5.
9

99
.7

5
33

55
.9

M
–

99
.4

8
11

20
.0

–
–

–
–

98
.5

3
21

1.
0

A
ve

ra
ge

5
96
.2

5
16
.1

99
.3

9
11

7.
4

99
.5

0
20

26
.0

99
.6

1
43

44
.5

99
.3

3
13

33
.6

–
–

98
.3

8
22

4.
6

A
ve

ra
ge

6
95
.7

5
7.

4
99
.4

6
52
.5

99
.5

8
92

7.
3

99
.7

1
25

65
.5

99
.3

8
35

2.
5

99
.2

3
27

0.
9

98
.3

3
12

1.
6

So
lv

ed
10

2
5

0

1
M

:a
lg

or
ith

m
g

en
R

o
u

te
s

ru
ns

ou
to

f
m

em
or

y
2

L
ow

er
bo

un
d

ob
ta

in
ed

by
L

on
go

et
al

.w
ith

ou
tb

ra
nc

hi
ng

by
tr

an
sf

or
m

in
g

th
e

pr
ob

le
m

in
to

a
C

V
R

P
3

L
ow

er
bo

un
d

ob
ta

in
ed

by
B

al
da

cc
ia

nd
M

an
ie

zz
o

w
ith

ou
tb

ra
nc

hi
ng

by
tr

an
sf

or
m

in
g

th
e

pr
ob

le
m

in
to

a
C

V
R

P
4

L
ow

er
bo

un
d

ob
ta

in
ed

by
B

el
en

gu
er

an
d

B
en

av
en

tw
ith

ou
tb

ra
nc

hi
ng

by
so

lv
in

g
a

re
la

xa
tio

n
of

th
e

pr
ob

le
m

5
A

ve
ra

ge
ov

er
al

li
ns

ta
nc

es
co

ns
id

er
ed

by
L

on
go

et
al

.
6

A
ve

ra
ge

ov
er

al
li

ns
ta

nc
es

co
ns

id
er

ed
by

B
al

da
cc

ia
nd

M
an

ie
zz

o

123

Improved lower bounds and exact algorithm for the CARP 441

Ta
bl

e
5

L
ow

er
bo

un
ds

on
v

al
in

st
an

ce
s

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
L

PU
B

M
B

B

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |1

t∗
%

L
B

2
t

t∗
%

L
B

3
t

t∗
%

L
B

4
t

va
l1

A
24

7
24

7
89

.0
7

1.
4

10
0.

00
5.

9
10

0.
00

5.
9

10
0.

00
5.

9
–

5.
9

10
0.

00
98
.3

98
.3

10
0.

00
2.

0
2.

0
10

0.
00

0.
5

va
l1

B
24

7
24

7
90

.2
8

0.
8

10
0.

00
4.

8
10

0.
00

4.
8

10
0.

00
4.

8
–

4.
8

10
0.

00
54
.6

54
.6

10
0.

00
2.

1
2.

1
10

0.
00

0.
6

va
l1

C
31

9
31

4
92

.7
9

0.
1

98
.1

2
1.

7
98
.1

2
15
.4

98
.4

3
39
.7

54
99

2
13

3.
8

97
.8

1
77

1.
9

89
16

.8
97
.3

5
45
.8

89
0.

4
96
.8

7
0.

7

va
l2

A
29

8
29

8
91

.6
1

1.
0

10
0.

00
5.

5
10

0.
00

5.
5

10
0.

00
5.

5
–

5.
5

10
0.

00
79
.4

5.
5

10
0.

00
0.

5
0.

5
10

0.
00

0.
1

va
l2

B
33

0
33

0
92

.1
2

0.
6

99
.7

0
8.

1
10

0.
00

29
0.

3
10

0.
00

29
0.

3
–

29
0.

3
99
.7

0
16

9.
0

67
1.

3
99
.6

1
9.

9
11

.1
10

0.
00

0.
2

va
l2

C
52

8
52

8
98

.1
1

0.
1

10
0.

00
0.

2
10

0.
00

0.
2

10
0.

00
0.

2
–

0.
2

10
0.

00
1.

0
1.

0
99
.6

7
4.

8
7.

8
99
.6

2
0.

4

va
l3

A
10

5
10

5
88

.5
7

0.
8

10
0.

00
5.

5
10

0.
00

5.
5

10
0.

00
5.

5
–

5.
5

10
0.

00
12

7.
6

12
7.

6
10

0.
00

1.
5

1.
5

10
0.

00
0.

2

va
l3

B
11

1
11

1
90

.9
9

0.
3

10
0.

00
3.

6
10

0.
00

3.
6

10
0.

00
3.

6
–

3.
6

10
0.

00
13

4.
3

13
4.

3
10

0.
00

1.
3

1.
3

10
0.

00
0.

2

va
l3

C
16

2
16

2
95

.6
8

0.
2

99
.3

8
1.

3
10

0.
00

3.
0

10
0.

00
3.

0
–

3.
0

99
.3

8
3.

2
32

8.
9

10
0.

00
5.

3
5.

3
99
.3

8
0.

9

va
l4

A
52

2
52

2
91

.7
6

12
.5

10
0.

00
80
.0

10
0.

00
80
.0

10
0.

00
80
.0

–
80

.0
10

0.
00

24
75
.3

24
75

.3
10

0.
00

60
.8

60
.8

10
0.

00
0.

5

va
l4

B
53

4
53

4
92

.1
3

6.
0

10
0.

00
49
.5

10
0.

00
49
.5

10
0.

00
49
.5

–
49

.5
10

0.
00

11
78
.4

11
78

.4
10

0.
00

54
.8

54
.8

10
0.

00
0.

3

va
l4

C
55

0
55

0
93

.6
4

5.
3

10
0.

00
28
.2

10
0.

00
28
.2

10
0.

00
28
.2

–
28

.2
10

0.
00

82
4.

6
82

4.
6

10
0.

00
86
.7

86
.7

10
0.

00
1.

0

va
l4

D
65

2
64

9
95

.0
9

1.
8

99
.3

9
20
.2

99
.3

9
13

86
.6

99
.5

4
79

26
.6

M
–

99
.3

9
76
.6

–
98
.4

0
18

6.
1

–
98
.7

7
7.

2

va
l5

A
56

6
56

6
92

.9
3

7.
9

10
0.

00
34
.2

10
0.

00
34
.2

10
0.

00
34
.2

–
34

.2
10

0.
00

62
9.

4
62

9.
4

10
0.

00
53
.0

53
.0

10
0.

00
1.

4

va
l5

B
58

9
58

8
93

.0
4

5.
8

99
.8

3
48
.8

99
.8

3
M

27
37
.4

99
.8

3
27

37
.4

–
–

99
.8

3
38

8.
1

–
99
.4

4
99
.8

42
02

.3
10

0.
00

2.
1

va
l5

C
61

7
61

3
93

.6
8

4.
9

99
.3

5
37
.8

99
.3

5
91

2.
0

99
.3

5
12

93
.4

M
–

99
.3

5
27

4.
8

–
98
.6

3
11

4.
2

–
99
.1

9
1.

7

va
l5

D
71

8
71

7
96

.1
0

1.
6

99
.5

8
9.

3
99
.7

2
10

8.
6

99
.8

6
28

0.
6

29
50

09
70

2.
0

99
.7

2
62
.8

–
99
.1

0
15

5.
0

–
99
.4

4
1.

0

va
l6

A
33

0
33

0
91

.5
2

2.
3

10
0.

00
11
.3

10
0.

00
11
.3

10
0.

00
11
.3

–
11

.3
10

0.
00

15
8.

7
15

8.
7

10
0.

00
9.

8
9.

8
10

0.
00

0.
6

va
l6

B
34

0
33

7
91

.4
7

0.
9

99
.1

2
10
.8

99
.1

2
M

16
47
.3

99
.1

2
16

47
.3

–
–

99
.1

2
16

9.
3

–
98
.5

0
24
.3

20
1.

6
99
.4

1
2.

3

va
l6

C
42

4
42

1
95

.7
5

0.
5

98
.8

2
2.

2
98
.8

2
17
.3

99
.2

9
26
.7

29
79

8
55

.7
99
.0

6
11

9.
4

–
98
.5

8
14
.0

31
2.

0
98
.5

8
1.

8

va
l7

A
38

2
38

2
92

.1
5

3.
1

10
0.

00
24
.6

10
0.

00
24
.6

10
0.

00
24
.6

–
24

.6
10

0.
00

31
9.

4
31

9.
4

10
0.

00
9.

2
9.

2
10

0.
00

0.
3

va
l7

B
38

6
38

6
91

.9
7

2.
6

10
0.

00
13
.3

10
0.

00
13
.3

10
0.

00
13
.3

–
13

.3
10

0.
00

16
3.

8
16

3.
8

10
0.

00
8.

3
8.

3
10

0.
00

0.
2

va
l7

C
43

7
43

7
92

.4
5

0.
9

99
.0

8
23
.8

99
.0

8
31

9.
7

10
0.

00
17

60
.0

–
17

60
.0

99
.7

7
60

7.
6

13
2.

0
99
.7

0
15
.5

92
.6

99
.7

7
3.

2

123

442 E. Bartolini et al.

Ta
bl

e
5

co
nt

in
ue

d

In
s.

z U
B

z L
B

O
ur

al
go

ri
th

m
L

PU
B

M
B

B

%
L

B
1

t 1
%

L
B

2
t 2

%
L

B
31

t 3
%

L
B

41
t 4

|R
∗ |1

t∗
%

L
B

2
t

t∗
%

L
B

3
t

t∗
%

L
B

4
t

va
l8

A
52

2
52

2
93

.8
7

6.
0

10
0.

00
20
.9

10
0.

00
20
.9

10
0.

00
20
.9

–
20

.9
10

0.
00

35
9.

4
35

9.
4

10
0.

00
32
.7

32
.7

10
0.

00
0.

3

va
l8

B
53

1
53

1
94

.7
3

4.
0

10
0.

00
16
.4

10
0.

00
16
.4

10
0.

00
16
.4

–
16

.4
10

0.
00

16
8.

9
16

8.
9

10
0.

00
34
.7

34
.7

10
0.

00
0.

1

va
l8

C
65

7
65

5
97

.1
1

1.
2

99
.5

4
6.

6
99
.5

4
52
.7

99
.7

0
22

6.
7

60
79

71
24

96
.3

99
.5

4
37

6.
9

–
98
.5

2
98
.1

–
99
.3

9
3.

7

va
l9

A
45

0
45

0
90

.6
7

30
.2

10
0.

00
21

2.
8

10
0.

00
21

2.
8

10
0.

00
21

2.
8

–
21

2.
8

10
0.

00
17

72
2.

6
17

72
2.

6
10

0.
00

40
6.

5
40

6.
5

10
0.

00
4.

32

va
l9

B
45

3
45

3
91

.3
9

14
.4

10
0.

00
11

4.
7

10
0.

00
11

4.
7

10
0.

00
11

4.
7

–
11

4.
7

10
0.

00
45

20
.0

3
45

20
.0

3
10

0.
00

43
0.

6
43

0.
6

10
0.

00
1.

97

va
l9

C
45

9
45

9
91

.7
2

9.
7

10
0.

00
63
.2

10
0.

00
63
.2

10
0.

00
63
.2

–
63

.2
10

0.
00

14
60
.8

9
14

60
.8

9
10

0.
00

51
7.

8
51

7.
8

10
0.

00
2.

07

va
l9

D
51

6
51

2
94

.3
8

2.
7

99
.2

2
31
.1

99
.2

2
57

9.
8

99
.2

2
82

37
.1

M
–

99
.2

2
30

5.
16

–
97
.2

1
78

5.
9

–
98
.6

4
21
.8

4

va
l1

0A
63

7
63

7
92

.7
8

31
.1

10
0.

00
21

4.
7

10
0.

00
21

4.
7

10
0.

00
21

4.
7

–
21

4.
7

10
0.

00
13

33
6.

6
13

33
6.

6
99
.8

8
39

4.
1

87
9.

3
10

0.
00

1.
67

va
l1

0B
64

5
64

5
92

.8
7

17
.9

10
0.

00
15

6.
5

10
0.

00
15

6.
5

10
0.

00
15

6.
5

–
15

6.
5

10
0.

00
13

71
9.

4
13

71
9.

4
99
.4

3
32

7.
3

42
50

.4
10

0.
00

1.
44

va
l1

0C
65

5
65

5
93

.1
3

10
.9

10
0.

00
96
.8

10
0.

00
96
.8

10
0.

00
96
.8

–
96

.8
10

0.
00

50
78
.5

7
50

78
.5

7
99
.4

4
46

8.
3

55
60

.1
10

0.
00

0.
83

va
l1

0D
73

4
73

4
94

.8
2

4.
0

10
0.

00
60
.8

10
0.

00
60
.8

10
0.

00
60
.8

–
60

.8
10

0.
00

47
3.

63
47

3.
63

99
.1

6
68

4.
7

–
99
.7

3
8.

38

A
ve

ra
ge

92
.9

5
5.

7
99
.7

4
41
.9

99
.7

7
27

3.
3

99
.8

3
75

5.
7

99
.7

6
19

53
.2

99
.4

9
15

1.
3

99
.6

7
2.

2

So
lv

ed
29

26
28

22

1
M

:a
lg

or
ith

m
g

en
R

o
u

te
s

ru
ns

ou
to

f
m

em
or

y
2

L
ow

er
bo

un
d

ob
ta

in
ed

by
L

on
go

et
al

.w
ith

ou
tb

ra
nc

hi
ng

by
tr

an
sf

or
m

in
g

th
e

pr
ob

le
m

in
to

a
C

V
R

P
3

L
ow

er
bo

un
d

ob
ta

in
ed

by
B

al
da

cc
ia

nd
M

an
ie

zz
o

w
ith

ou
tb

ra
nc

hi
ng

by
tr

an
sf

or
m

in
g

th
e

pr
ob

le
m

in
to

a
C

V
R

P
4

L
ow

er
bo

un
d

ob
ta

in
ed

by
B

el
en

gu
er

an
d

B
en

av
en

tw
ith

ou
tb

ra
nc

hi
ng

by
so

lv
in

g
a

re
la

xa
tio

n
of

th
e

pr
ob

le
m

123

Improved lower bounds and exact algorithm for the CARP 443

by procedures “BPx” (e.g., t4 is the total time spent for computing L B1, L B2, L B3,
and L B4). Columns “%L B” under headings LPU, BM, BB, and BMCV report the
percentage ratio of the best lower bound obtained by the respective authors, and col-
umns “t”, give the corresponding computing times in seconds (computing times for
BMCV are not available). Lower bound ratios reported for Longo et al., Baldacci
and Maniezzo, and Belenguer and Benavent are computed with respect to the root
lower bounds, whereas those of Beullens et al. are relative to the best lower bound at
termination. Columns “|R∗|” give the cardinality of the final route set R∗ computed
by the exact method described in Section 4. Finally, column “t∗” provides the total
computing time for the instances solved to optimality.

A time limit of 4 h was imposed to all lower bounding procedures described in
this paper. An entry tl in column “tx ” indicates that the time limit was reached. An
additional time limit of 6 h was then allowed to the execution of the exact algorithm
described in Sect. 4. An entry M in columns “L Bx” and in column “|R∗|” indicates
that genRoutes ran out of memory in generating the route set N within procedure
BPx and route set R∗ at Step 2 of the exact algorithm, respectively. In these cases, the
algorithm terminated prematurely.

All computing times reported for Longo et al., and Baldacci and Maniezzo are rel-
ative to an Intel Pentium IV clocked at 2.8 GHz, and to an Intel Pentium IV clocked at
2.4 GHz, respectively. In order to allow a fair comparison between the running times
of these algorithms and ours, we have used the CPU2000 benchmarks, reported by the
Standard Performance Evaluation Corporation (SPEC 2005), which are publicly avail-
able at http://www.spec.org/cpu/results/. According to these benchmarks the SPECint
and SPECfp scores for the Intel Xeon E5310 used in this paper are 1,680 and 1,619,
whereas the scores for the Pentium IV at 2.8 GHz of Longo et al. are 976 and 915,
and those of the Pentium IV at 2.4 GHz of Baldacci and Maniezzo are 852 and 840.
Therefore, we estimate that our computer is approximately 1.8 times faster than that
of Longo et al., and twice faster than that of Baldacci and Maniezzo. Belenguer and
Benavent used a SUN Sparc 20. We could not find benchmarks for this computer, but
our machine is clearly much faster, probably by at least one order of magnitude.

The following parameter settings were used by our algorithm to obtain all
results reported in Tables 1, 2, 3, 4, 5: maxit1 = 100, and maxit2 = 50 in
procedure BP1; η = 10 and γ = 50 in algorithm LPCG (see Appendix C);
M(R2) = 100000,M(P2

v) =
 10000000
|ER | �, in procedure BP3; M(R3) = 50000 and

M(P3) = 50000000, in procedure BP4; M(N) = 500 and M(Pv) = 50000, in
both procedures BP3 and BP4. Finally, we set
M AX = 1000000 in the exact method.

8.3 Analysis of the computational results

The results reported in Tables 1, 2, 3, 4, 5 show that the new lower bounds are tighter
than the previous best ones. Lower bound L B2 is on average better and significantly
faster than all previous best ones. An exception is data-set val where L B2 is on average
slightly worse than the lower bound of LPU but runs approximately 20 times faster.
The final lower bound L B4 is more time consuming, but is on average significantly
tighter than previous ones on all data-sets tested. Indeed, L B4 is never worse than

123

http://www.spec.org/cpu/
results/

444 E. Bartolini et al.

previous lower bounds, except for two instances (F8 from data-set bmcv, and s4-A
from data-set egl). On average, it is always within less than 0.5% from the best known
upper bounds.

Concerning the exact method, our results confirm the usefulness of the new lower
bounds. A total of 27 instances could be solved for the first time by the exact algorithm:
six from data-set egl, and 21 from data-set bmcv. Five new upper bounds were also
found, two of which are optimal. The two val instances 5D and 8C are solved for the
first time by our exact algorithm and by the algorithm of [14]. The latter algorithm
also optimally solves instances 4D and 5C for the first time. Note that because in the
instances from data-set bmcv edge costs are multiples of 5, the lower bound found by
our algorithm for instance E21 can be raised to 3730, thus proving the optimality of
the best known upper bound. At present, 13 instances from egl, and 33 from bmcv
remain open. Tables 1, 4, and 5 show that our exact algorithm outperforms the branch-
and-cut-and-price of Longo et al., solving 11 more instances from data-sets egl and
val, and being on average faster. It is also competitive with the branch-and-cut of
Baldacci and Maniezzo, solving six more instances from data-sets egl and val, even
though it is on average slower on data-set egl. Note that the model used by Baldacci
and Maniezzo assumes that the number of vehicles K is fixed.

It is interesting to note that on data-set val the improvement of lower bound L B3
over L B2 is rather marginal. This seems to suggest that for these instances, pricing
elementary routes instead of non-elementary ones may not be worth the extra compu-
tational effort. Indeed, BP2 alone yields in this case very strong lower bounds within
a rather limited computing time, suggesting that a branch-and-cut-and-price based on
non-elementary routes may prove to be an effective solution method. The preliminary
results reported by Bode and Irnich seem to confirm this hypothesis, although the
incorporation of BP2 as a lower bounding method could provide some advantages
because of the stronger cuts and q-route relaxation.

9 Conclusions

We have developed a new lower bounding methodology and an exact algorithm based
on a set partitioning-like formulation of the CARP strengthened by additional valid
inequalities. We have reported results of an extensive computational study over a set
of CARP benchmark instances showing that the new bounding scheme yields very
tight lower bounds, and significantly improves most of the best known lower bounds
for the open benchmark instances. To the best of our knowledge, this study represents
the first implementation and computational evaluation of a direct solution method
for the CARP based on column generation, and combining elementary CARP routes
and cutting planes. The effectiveness of our proposed lower bounding algorithm was
assessed by embedding it into an exact algorithm which proved to be competitive with
the best known exact algorithms. It was capable of solving 27 open instances for the
first time.

The methodology described in this paper can be extended in different ways. As
is usually the case for cut-and-column-generation methods, major improvements can
come from a more efficient column generation or stronger cutting planes. The most

123

Improved lower bounds and exact algorithm for the CARP 445

recent studies on the classical CVRP and the VRP with time windows [4,6,23,29] have
reported major improvements in the effectiveness of state-of-the-art solution methods
stemming from new developments in column generation techniques, and from a bet-
ter integration between pricing and cutting. However, in the case of the CARP the
situation is less clear. Polyhedral and mathematical programming approaches to the
CARP can still be considered in their infancy, and pure branch-and-cut approaches
suffer from the lack of a practical formulation containing a polynomial number of
variables. This paper demonstrates that a direct cut-and-column-generation approach
to the CARP using elementary CARP routes and cutting planes derived from different
relaxations constitutes a promising solution approach. However, pricing elementary
CARP routes seems to be particularly challenging and, unlike what happens for the
CVRP, a set partitioning-like formulation for the CARP using elementary routes,
but without incorporating additional cuts, yields a rather weak lower bound (in our
preliminary experiments, the average lower bound ratio was ∼93.5% for data-set val,
and ∼97.5% for data-set egl). We therefore believe that improvements to the effec-
tiveness of cut-and-column-generation methods for the CARP can come both from
the development of new pricing techniques, and from the integration of new cutting
planes.

Acknowledgments This work was partly funded by the Canadian Natural Sciences and Engineering
Research Council under grants 227837-09 and 39682-10. This support is gratefully acknowledged. Thanks
are due to the Associate Editor and the referees for their valuable comments.

Appendix A: Proofs of Lemmas 1 and 2

Lemma 1 Let P and P be two GVRP forward paths satisfying route feasibility con-
ditions (A) − (C), and let R�, � ∈ R̃, be the GVRP route obtained by combining P
and P. The reduced cost c̄r

� of CARP route R�, � ∈ R, corresponding to R̃�, satisfies
c̄r
� ≥ d̄(P)+ d̄(P).

Proof Because R̃� corresponds to R�, we have V (P) ∪ V (P) = {Ṽe ⊂ Ṽ : e ∈ S�},
and C (R�) = C 3(P)∪C 3(P)∪C 2(P)∪C 2(P). From the definition of costs {d̄uv},
we have

c̄r
� =

∑

(u,v)∈P

d̄uv −
∑

C∈C (R�)

ḡC . (36)

Consider any edge triplet C ∈ C (R�), and let C̃ be the corresponding cluster triplet
in Ṽ , we have the following two cases:

(i) |C̃ ∩ V (P)| = 3: because V (P) ∩ V (P) = {Ṽ0, Ṽε(e(P))}, we have |C̃ ∩
V (P)| ≤ 1. The same holds for the symmetric case when |C̃ ∩ V (P)| = 3.

(ii) |C̃ ∩ V (P)| = 2: because V (P) ∩ V (P) = {Ṽ0, Ṽε(e(P))}, we have |C̃ ∩
V (P)| ≤ 1 + |C̃ ∩ Ṽε(e(P))|.

From (i) it follows that C 3(P) ∩ C 3(P) = ∅, and from (ii) we have C 2(P) ∩
C 2(P) ⊆ {C ∈ C : Ṽε(e(P)) ∈ C̃}. Therefore,

∑
C∈C (R�) ḡC ≤ ∑

C∈C 3(P) ḡC +

123

446 E. Bartolini et al.

∑
C∈C 2(P)
ε(e(P)) �∈C

ḡC + ∑
C∈C 3(P) ḡC + ∑

C∈C 2(P)
ε(e(P)) �∈C

ḡC , and because g ≤ 0 from (36) we

have c̄r
� ≥ d̄(P)+ d̄(P). ��

Lemma 2 A valid lower bound L B
ng
(P) on the reduced cost c̄r

� with respect to a
DRP solution (π̄ , ῡ, w̄, ḡ) of any CARP route R�, � ∈ R, corresponding to a GVRP
route R̃� containing path P can be computed as

L Bng(P) = d̄(P)+ min
N G⊆� s.t. N G∩V (P)={Vε(e(P))}

q≤Q−q(P)+q̃e(P)

{ f (N G, q, e(P))} , (37)

where functions f (N G, q, v) are computed using modified arc costs d̄uv .

Proof Let R be the CARP route having smallest reduced cost c̄r (R) with respect to
(π̄ , ῡ, w̄, ḡ) and corresponding to a GVRP route R̃ containing P . Moreover, let P be
the GVRP path that gives R̃ when combined with P . Denote by d̄ ′(P) the cost of path
P using modified arc costs d̄uv (i.e., d̄ ′(P) = ∑

(uv)∈A(P) d̄uv), from expression (26)
we have

d̄ ′(P) ≥ min
N G⊆V (P)∩Ñε(e(P))

{
f (N G, q(P), e(P))

}
. (38)

Because P and P satisfy route feasibility conditions (A)− (C) we have that ε(e(P))
= ε(e(P)), say ε(e(P)) = e, and V (P) ∩ V (P) = {Ṽ0, Ṽe}, and therefore

{N G ⊆ � : N G ⊆ V (P) ∩ Ñe} ⊆ {N G ⊆ � : N G ∩ V (P) = {Ṽe}}. (39)

Moreover, from condition (A),

q(P) ≤ Q − q(P)+ qe. (40)

Therefore, from (38) using (39), (40) we obtain

d̄ ′(P) ≥ min
N G∩V (P)={Ṽe}
q≤Q−q(P)+qe

{
f (N G, q, e(P))

}
. (41)

Finally, because g ≤ 0 and from Lemma 1 we obtain

c̄r (R) ≥ d̄(P)+ d̄(P) ≥ d̄(P)+ d̄ ′(P). (42)

From (41) and (42) we obtain L Bng(P) ≤ c̄r (R). ��

Appendix B: Detailed description of procedures GENP and COMBINEP

We now describe in detail the two procedures genP and combineP that correspond
to the two phases of algorithm genRoutes.

123

Improved lower bounds and exact algorithm for the CARP 447

B.1 Procedure genP

Procedure genP corresponds to a Dijkstra-like algorithm that generates a sequence
of GVRP forward paths (P1, . . . , Ph) satisfying the following conditions:

(C1) L B
ng
(P1) ≤ · · · ≤ L B

ng
(Ph) ≤ 	;

(C2) c̃(Pk) ≤ c̃(Ps), for each path Ps such that V (Pk) = V (Ps), 1 ≤ k, s ≤ h;
(C3) q̃(Pk) ≤
Q/2� + q̃e(Pk), 1 ≤ k ≤ h;
(C4) Pk, 1 ≤ k ≤ h, corresponds to either a forward-service CARP open route, or

a backward-service CARP open route.

genP uses a set T of temporary paths which is initialized as T = {P0}, where
P0 = (0) is an empty path visiting only node 0. At each iteration of genP , a path
P ∈ T having smallest value L B

ng
(P) is extracted from T and inserted in Pe(P).

A new path Pv is then created for each v ∈ Ṽ by inserting v at the end of P . Path
Pv is rejected if it does not satisfy (C1)–(C4), otherwise it is inserted in T . genP
terminates when either T = ∅, or L B

ng
(P) > 	.

In order to reduce the number of generated paths, genP uses three fathoming
rules: fathoming 1, fathoming 2, and fathoming 3. Fathoming 1 and 2 are dominance
rules used to eliminate GVRP paths that are not optimal with respect to the arc costs
c̃uv: fathoming 1 performs a two-opt check of the cluster sequence visited by a path,
whereas fathoming 2 keeps the cluster sequence fixed and checks whether the path
is the shortest one visiting this sequence. Fathoming 3 requires the knowledge of a
valid upper bound zU B on z(S P), and a feasible DRP solution (π̂ , υ̂, ŵ, ĝ) of cost
ẑ. It is based on the observation that the reduced cost ĉr

� with respect to (π̂ , υ̂, ŵ, ĝ)
of any route R� being part of a feasible solution of cost zU B satisfies cr

� ≤ zU B − ẑ.
Fathoming 3 was introduced by [6].

Fathoming 1. Let P ∈ P be a forward GVRP path such that |P| ≥ 4
and let e3(P), e2(P), e1(P), be the three nodes preceding e(P) in this path
(i.e., P = (0, v1, . . . , e3(P), e2(P), e1(P), e(P))). Path P can be fathomed
if the subpath (e3(P), e2(P), e1(P), e(P)) has a cost greater than the subpath
(e3(P), e1(P), e2(P), e(P)) with respect to arc costs c̃uv .

Fathoming 2. Let P = (0, v1, . . . , vp) ∈ P be a forward GVRP path, and let
P∗ be the shortest GVRP path in G̃ using arc costs c̃uv , visiting the cluster sequence
(Ṽ0, Ṽε(v1), . . . , Ṽε(vp−1)), and ending in vp. Path P can be fathomed if c̃(P) > c̃(P∗).

Fathoming 3. Let (π̂ , υ̂, ŵ, ĝ) be a feasible DRP solution of cost ẑ, and let
L̂ B

ng
(P), P ∈ P , be a completion bound on P with respect to (π̂ , υ̂, ŵ, ĝ). Any

path P ∈ P such that L̂ B
ng
(P) > zU B − ẑ can be fathomed as it cannot generate

any GVRP route corresponding to a CARP route of any SP solution of cost less than
or equal to zU B .

The completion bound L̂ B
ng
(P) required by fathoming 3 is computed as described

in Sect. 6 using (37) and replacing (π̄ , ῡ, w̄, ḡ) with (π̂ , υ̂, ŵ, ĝ). The shortest path
P∗ and its cost c̃(P∗) required by fathoming 2 can be computed in O(|P|) time
as follows. Let s̃(P, vk) be the cost of the shortest path in G̃ starting at 0, visit-
ing cluster sequence (Ṽ0, Ṽε(v1), . . . , Ṽε(vk)), k ≤ p − 1, and ending at vertex vp.
Moreover, define v̄ = Vε(v)\{v},∀v ∈ Ṽ . We have, s̃(P, v1) = c̃0v1 , s̃(P, v̄1) =
c̃0v̄1 , and s̃(P, vk) = min{s̃(P, vk−1) + c̃vk−1vk , s̃(P, v̄k−1) + c̃v̄k−1vk }, s̃(P, v̄k) =

123

448 E. Bartolini et al.

min{s̃(P, vk−1) + c̃vk−1v̄k , s̃(P, v̄k−1) + c̃v̄k−1v̄k }. The cost c̃(P∗) is then given by
setting c̃(P∗) = min{s̃(P, vp−1) +c̃vp−1vp , s̃(P, v̄p−1)+ c̃v̄p−1vp .

Note that both fathoming 1 and 2 can be viewed as special cases of condition (C2).
However, because of duals υ and w, given any two paths Pk, Ps, 1 ≤ k, s,≤ h, it
is often the case that c̃(Pk) ≤ c̃(Ps), but d̄(Pk) ≥ d̄(Ps), and the path sequence
(P1, . . . , Ph) generated by genP does not in general satisfy c̃(P1) ≤ · · · ≤ c̃(Ph).
Therefore, using fathoming 1 and 2 can result in practice in a significant reduction in
the computing time and memory required by procedure genP .

It is clear that by removing condition (C3) procedure genP can be used directly to
generate GVRP routes. In our computational experiments, we have observed a clear
trade-off between the speedup obtained by imposing condition (C3) when generating
path set P and the time spent combining these paths to obtain routes. In particular,
whenever |P| becomes large (say |P| > 106) we found it convenient to turn genRo-
utes into a single phase procedure that directly generates GVRP routes using genP .
In this case, it is possible to modify condition (C4) to also fathom all GVRP paths cor-
responding to backward-service CARP open routes. Directly generating routes using
genP also avoids the drawback of combining path pairs giving rise to routes that
would be rejected by fathoming 1 or 2.

B.2 Procedure combineP

Procedure combineP is an iterative procedure which is executed after genP to
combine paths Pv, v ∈ Ṽ , and is designed to avoid symmetries when combining path
pairs to extract route set D . It is based on the observation that any forward-service
CARP route having reduced cost less than or equal to 	 corresponds to a GVRP route
R̃�, � ∈ R̃, that can be decomposed into two forward GVRP paths P and P such that:

(C5) d̄(P)+ d̄(P) ≤ 	;
(C6) P and P satisfy route feasibility conditions (A)− (C) (see Sect. 5.1);
(C7) q(P)− q̃e(P) ≤ q(P) ≤ q(P)+ q̃e(P).

combineP initializes D = ∅ and generates a sequence of GVRP forward path pairs
L = ((Pr1 , P

s1
), (Pr2 , P

s2
), …, (Prp , P

sp
)) such that each pair (Prk , P

sk
)∈ L sat-

isfies (C5)–(C7), and d̄(Pr1)+ d̄(P
s1
) ≤ d̄(Pr2)+ d̄(P

s2
) ≤ · · · ≤ d̄(Prp)+ d̄(P

sp
).

For each pair h, 1 ≤ h ≤ p, a corresponding CARP route Rh is obtained, and if
c̄r (Rh) ≤ 	, then Rh is added to D . Procedure combineP terminates whenever
either |D | ≥
, or no more pairs (P, P) satisfying (C5)–(C7) can be extracted from
path sets Pv .
Step-by-step description of combineP . Let Pv = (P1

v , . . . , Phv
v), v ∈ Ṽ , be the set

of all GVRP paths ending at node v computed by procedure genP . In the following,
we assume that each Pv is ordered by non-decreasing values of modified path costs,
i.e., d̄(P1

v) ≤ · · · ≤ d̄(Phv
v). For the sake of simplicity, we denote by Pk

e the path in

position k of ordered set Pv such that ε(v) = e and i(v) < j (v), and by P
k
e the path

in position k of ordered set Pv such that ε(v) = e and i(v) > j (v),∀e ∈ ER . Thus,

Pk
e and P

k
e correspond to CARP open routes ending at edge e and servicing it through

arc (ie, je) and (je, ie), respectively. Moreover, we define v̄ = Vε(v)\{v},∀v ∈ Ṽ .
A step-by-step description of procedure combineP is as follows.

123

Improved lower bounds and exact algorithm for the CARP 449

1. Initialize L = ((P1
e , P

1
e) : P1

e , P
1
e satisfy (C5)− (C7)),∀e ∈ ER .

2. If L = ∅, then STOP. Otherwise, extract from L a pair (Pr
e , P

s
e) having smallest

value d̄(Pr
e)+ d̄(P

s
e), and execute the following steps.

3. Let Rrs
e be the CARP route obtained by combining paths Pr

e , P
s
e. If c̄r (Rrs

e) ≤ 	

and c(Rrs
e) < c(R),∀R ∈ D such that S(R) = S(Rrs

e), then, add R to D . If
|D | ≥
, STOP. Otherwise, execute the following steps.

4. Add the following pairs to L :
(a) (Pr ′

e , P
s
e), where r ′ = min{r̄ = r + 1, . . . , |Pv| s.t. d̄(Pr̄

e) + d̄(P
s
e) ≤ 	,

and Pr̄
e , P

s
e satisfy (C5)− (C7), if r − s ≥ 0.

(b) (Pr
e , P

s′
e), where s′ = min{s̄ = s + 1, . . . , |Pv̄| s.t. d̄(Pr

e) + d̄(P
s̄
e) ≤ 	,

and Pr
e , P

s̄
e satisfy (C5)− (C7), if r − s ≤ 0.

5. If r − s = 1, or r = s and r − s′ < −1; then set r = r + 1, s = s + 1, add pair
(Pr

e , P
s
e) to L , and go to Step 4. Otherwise, go to Step 2.

A dominance rule similar to fathoming 3 described for genP is also applied at
Step 3 of combineP . Specifically, the following fathoming procedure is applied for
each route Rrs

e generated at Step 3.
Fathoming 4. Let (π̂ , υ̂, ŵ, ĝ) be a feasible DRP solution of cost ẑ, and let ĉr

� be the
reduced cost with respect to (π̂ , υ̂, ŵ, ĝ) of any CARP route R�, � ∈ R. Any route
R� such that ĉr

� > zU B − ẑ can be fathomed as it cannot be part of any SP solution of
cost less than or equal to zU B .

Appendix C: Cut-and-column generation algorithm LPCG

LPCG is a simplex-based cut-and-column generation method for solving LRP which
constitutes the skeleton of procedures BP2, BP3, and BP4. It can be briefly described
as follows.

Let η, γ , and M(N) be a priori defined parameters. LPCG starts by defining an
initial master problem L R P obtained from LRP by substituting the route set R with
a subset R ⊆ R, and the sets S ,F , and C of inequalities (8), (14), and (25) with
subsets S ⊆ S ,F ⊆ F , and C ⊆ C . At each iteration, it solves L R P using the
simplex algorithm to obtain an optimal L R P solution x̄, and a corresponding DRP
solution (π̄ , ῡ, w̄, ḡ). It then generates at most η constraints (14), (8), (25) violated by
x̄, adds them to S ,F , and C , respectively, and executes a new iteration. Whenever
no violated inequality is found, or after at least γ inequalities have been added to
L R P in subsequent iterations, LPCG solves the pricing problem to generate a sub-
set N ⊂ R containing at most M(N) CARP routes having negative reduced cost
with respect to (π̄ , ῡ, w̄, ḡ). The new routes are then added to R. LPCG terminates
whenever N = ∅, and no violated inequalities (14), (8), or (25) were identified in the
last iteration. In order to keep the LP compact, at each iteration, LPCG removes from
L R P all variables and cuts that were inactive in the last θ iterations (say, θ = 20), and
moves them into a route pool R and and a cut pool B, respectively. These pools are
checked at each iteration before attempting to solve the pricing problem and before
generating violated inequalities.

123

450 E. Bartolini et al.

Violated inequalities at each iteration of LPCG are detected in the order (14), (8),
and (25), and the corresponding separation problems are solved as follows.

Capacity constraints (14). Inequalities (14) are separated as CVRP rounded capac-
ity inequalities over a weighted undirected graph Ĝ(ξ) = (V̂ (ξ), Ê(ξ)) defined by the
aggregated variables ξe f obtained through equations (13). The graph Ĝ(ξ) is defined
as follows. The node set V̂ (ξ) contains a node 0 and a node ue of demand qe for each
required edge e ∈ ER . The edge set Ê(ξ) contains an edge {ue, u f } of weight ξe f for
each pair e, f such that ξe f > 0, and an edge {0, e} of weight ξ0e for each edge e ∈ ER

such that ξ0e > 0. Let q(Ŝ) be the total demand of nodes in Ŝ, for any Ŝ ⊆ V̂ (ξ), and
let ξ(δ(Ŝ)) be the total weight of edges in Ê(ξ) crossing Ŝ. Any set Ŝ ⊆ V̂ (ξ)\{0}
such that ξ(δ(Ŝ)) <
q(Ŝ)/Q� corresponds to a violated inequality (14) defined by
an edge set F = {e ∈ ER : ue ∈ Ŝ}. We use the package CVRPSEP [34] to identify
sets in Ĝ(ξ) corresponding to violated inequalities (14).

Odd edge cutset constraints (8). Inequalities (8) can be separated exactly sim-
ilarly to CARP odd edge cutset constraints (6) over a weighted undirected graph
G(ȳ) = (V (ȳ), E(ȳ)) defined by the aggregated variables yi j obtained through equa-
tions (7). Node set V (ȳ) of G(ȳ) corresponds to V , and edge set E(ȳ) contains an edge
{i, j} of weight ȳi j for each node pair i, j, i < j , such that ȳi j > 0. For each node in
i ∈ V (ȳ), node i is labeled “odd” if |δR(i)| is odd, and “even” otherwise. Let ȳ(δ(S))
be the total weight of edges in E(ȳ) crossing S. Any set S ⊆ V (ȳ)\{0} containing
an odd number of odd nodes and such that ȳ(δ(S)) < 1 corresponds to a violated
inequality (8) defined by a node set S. To determine set S, we use the algorithm of
[37] to compute the minimum weight odd cut (S : V (ȳ)\S) in G(ȳ). Note that the size
of graph G(ȳ) can be reduced by iteratively shrinking edges having weight greater
than or equal to one, and if G(ȳ) is not connected the search can be restricted by
considering each connected component of G(ȳ) separately.

Subset row inequalities (25). Let R
ε = {� ∈ R : x̄� > ε}, where ε is an a priori

defined parameter. Inequalities (25) are separated by enumerating all triplets C and
checking the degree of violation of the corresponding inequality with respect to the
routes in R

ε
. When detecting violated inequalities (25), an attempt is made to avoid

generating violated inequalities that will likely be redundant in subsequent iterations.
To this end, let C ′ be the set of triplets corresponding to all violated inequalities iden-
tified in the current iteration, and let ω(C) be the degree of violation of inequality (25)
defined by C,∀C ∈ C ′. All triplets C such that, for some C ′ ∈ C ′, ω(C) < ω(C ′),
and |C ′ ∩ C | = 2 are then removed from C ′.

References

1. Amberg, A., Voß, S.: A hierarchical relaxations lower bound for the capacitated arc routing problem.
In: Sprague H.R. (ed.) Proceedings of the 35th Hawaii International Conference on System Sciences,
vol. 3, pp. 1–10. IEEE Computer Society, Washington, DC (2002)

2. Assad, A.A., Golden, B.L.: Arc routing methods and applications. In: Ball, M.O., Magnanti, T.L.,
Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, North-Holland, Amsterdam (1995)

3. Assad, A.A., Pearn, W.L., Golden, B.L.: The capacitated postman problem: lower bounds and solvable
cases. Am. J. Math. Manage. Sci. 7, 63–88 (1987)

123

Improved lower bounds and exact algorithm for the CARP 451

4. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle routing problem based
on the set partitioning formulation with additional cuts. Math. Program. A 115, 351–385 (2008)

5. Baldacci, R., Maniezzo, V.: Exact methods based on node-routing formulations for undirected arc-
routing problems. Networks 47, 52–60 (2006)

6. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies for the vehicle
routing problem. Oper. Res. (2011, to appear)

7. Baldacci, R., Mingozzi, A., Roberti, R.: New state space relaxations for solving the traveling salesman
problem with time windows. INFORMS J. Comput. doi:10.1287/ijoc.1110.0456 (2011)

8. Belenguer, J.M., Benavent, E.: The capacitated arc routing problem: valid inequalities and facets. Com-
put. Optim. Appl. 10, 165–187 (1998)

9. Belenguer, J.M., Benavent, E.: A cutting plane algorithm for the capacitated arc routing problem. Com-
put. Oper. Res. 30, 705–728 (2003)

10. Benavent, E., Campos, V., Corberán, A., Mota, E.: The capacitated arc routing problem: lower bounds.
Networks 22, 669–690 (1992)

11. Beullens, P., Muyldermans, L.: Personal communication (2010)
12. Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local search heuristic for

the capacitated arc routing problem. Eur. J. Oper. Res. 147, 629–643 (2003)
13. Blais, M., Laporte, G.: Exact solution of the generalized routing problem through graph transforma-

tions. J. Oper. Res. Soc. 54, 906–910 (2003)
14. Bode, C., Irnich, S.: Cut-first branch-and-price-second for the capacitated arc-routing problem. Tech-

nical Report LM-2011-01 (preliminary version), Chair of Logistics Management, Gutenberg School
of Management and Economics, Johannes Gutenberg University, Mainz, Germany (2011)

15. Christofides, N.: The optimum traversal of a graph. Omega 1, 719–732 (1973)
16. Christofides, N., Mingozzi, A., Toth, P.: Exact algorithms for the vehicle routing problem based on

spanning tree and shortest path relaxation. Math. Program. 20, 255–282 (1981)
17. Corberán, A., Prins, C.: Recent results on arc routing problems: an annotated bibliography. Networks

56, 50–69 (2010)
18. CPLEX: ILOG CPLEX 12.1 Callable Library. (ILOG, Nevada 2008)
19. Dror, M. (ed.): Arc Routing: Theory, Solutions and Applications. Kluwer, Boston (2000)
20. Eglese, R.W.: Routeing winter gritting vehicles. Discr. Appl. Math. 48, 231–244 (1994)
21. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part I: The Chinese postman problem.

Oper. Res. 43, 231–242 (1995)
22. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part II: The rural postman problem.

Oper. Res. 43, 399–414 (1995)
23. Fukasawa, R., Longo, H., Lysgaard, J., Poggi de Aragão, M., Reis, M., Uchoa, E., Werneck, R.F.: Robust

branch-and-cut-and-price for the capacitated vehicle routing problem. Math. Program. A 106,
491–511 (2006)

24. Ghiani, G., Improta, G.: An efficient transformation of the generalized vehicle routing problem. Eur.
J. Oper. Res. 122, 11–17 (2000)

25. Golden, B.L., DeArmon, J.S., Baker, E.K.: Computational experiments with algorithms for a class of
routing problems. Comput. Oper. Res. 10, 47–59 (1983)

26. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11, 305–315 (1981)
27. Gómez-Cabrero, D., Belenguer, J.M., Benavent, E.: Cutting plane and column generation for the

capacitated arc routing problem. Presented at ORP3 MEETING, Valencia, Spain (2005)
28. Hirabayashi, R., Nishida, N., Saruwatari, Y.: Node duplication lower bounds for the capacitated arc

routing problems. J. Oper. Res. Soc. Jpn 35, 119 (1992)
29. Jepsen, M., Petersen, B., Spoorendonk, S., Pisinger, D.: Subset-row inequalities applied to the vehicle

routing problem with time windows. Oper. Res. 56, 497–511 (2008)
30. Kiuchi, M., Shinano, Y., Hirabayashi, R., Saruwatari, Y.: An exact algorithm for the capacitated arc

routing problem using parallel branch and bound method. In: Abstracts of the 1995 Spring National
Conference of the Operations Research Society of Japan, pp. 28–29 (1995)

31. Letchford, A.N., Oukil, A.: Exploiting sparsity in pricing routines for the capacitated arc routing
problem. Comput. Oper. Res. 36, 2320–2327 (2009)

32. Li, L.Y.O., Eglese, R.W.: An interactive algorithm for vehicle routing for winter-gritting. J. Oper. Res.
Soc. 47, 217–228 (1966)

33. Longo, H., Poggi de Aragão, M., Uchoa, E.: Solving capacitated arc routing problems using a trans-
formation to the CVRP. Comput. Oper. Res. 33, 1823–1837 (2006)

123

http://dx.doi.org/10.1287/ijoc.1110.0456

452 E. Bartolini et al.

34. Lysgaard, J.: CVRPSEP: A package of separation routines for the capacitated vehicle routing problem.
Technical Report Working paper 03-04, Department of Management Science and Logistics, Aarhus
School of Business, Denmark (2003)

35. Lysgaard, J., Letchford, A.N., Eglese, R.W.: A new branch-and-cut algorithm for the capacitated vehi-
cle routing problem. Math. Program. A 100, 423–445 (2004)

36. Martinelli, R., Pecin, D., Poggi de Aragão, M., Longo, H.: Column generation bounds for the capaci-
tated arc routing problem. Presented at XLII SBPO, Bento Gonçalves, Brazil (2010)

37. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper. Res. 1, 67–80 (1982)
38. Pearn, W.L.: New lower bounds for the capacitated arc routing problem. Networks 18, 181–191 (1988)
39. Santos, L., Coutinho-Rodrigues, J., Current, J.R.: An improved ant colony optimization based algo-

rithm for the capacitated arc routing problem. Transport. Res. B 44, 246–266 (2010)
40. Win, Z.: Contributions to Routing Problems. PhD thesis, University of Augsburg, Germany (1987)
41. Wøhlk, S.: New lower bound for the capacitated arc routing problem. Comput. Oper. Res. 33, 3458–

3472 (2006)
42. Wøhlk, S.: A decade of capacitated arc routing. In: Golden, B.L., Raghavan, S., Wasil, A. (eds.) The

Vehicle Routing Problem: Latest Advances and New Challenges, Springer, New York (2008)

123

	Improved lower bounds and exact algorithm for the capacitated arc routing problem
	Abstract
	1 Introduction
	1.1 Literature review
	1.2 Contributions of this paper
	1.3 Organization of this paper

	2 Formal problem description and mathematical formulation
	3 Valid inequalities for SP
	3.1 Odd edge cutset constraints
	3.2 Capacity constraints
	3.3 Subset-row inequalities

	4 Overview of the algorithm
	5 Transformation of the CARP into a GVRP
	5.1 Description of the transformation
	5.2 GVRP paths and CARP routes
	5.3 q-path relaxation of GVRP paths
	5.4 ng-path relaxation of GVRP paths

	6 Dynamic programming algorithm genRoutes
	6.1 Description of genRoutes

	7 Lower bounding procedures
	7.1 Lower bounding procedure BP1
	7.2 Lower bounding procedure BP2
	7.3 Lower bounding procedure BP3
	7.4 Lower bounding procedure BP4

	8 Computational experiments
	8.1 Test instances
	8.2 Computational results
	8.3 Analysis of the computational results

	9 Conclusions
	Acknowledgments
	Appendix A: Proofs of Lemmas 1 and 2
	Appendix B: Detailed description of procedures textsc gen lcP and textsccombine P
	B.1 Procedure textsc gen lcP
	B.2 Procedure textsccombine P

	Appendix C: Cut-and-column generation algorithm LPCG
	References

