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Abstract We develop tractable semidefinite programming based approximations
for distributionally robust individual and joint chance constraints, assuming that only
the first- and second-order moments as well as the support of the uncertain parameters
are given. It is known that robust chance constraints can be conservatively approxi-
mated by Worst-Case Conditional Value-at-Risk (CVaR) constraints. We first prove
that this approximation is exact for robust individual chance constraints with concave
or (not necessarily concave) quadratic constraint functions, and we demonstrate that
the Worst-Case CVaR can be computed efficiently for these classes of constraint func-
tions. Next, we study the Worst-Case CVaR approximation for joint chance constraints.
This approximation affords intuitive dual interpretations and is provably tighter than
two popular benchmark approximations. The tightness depends on a set of scaling
parameters, which can be tuned via a sequential convex optimization algorithm. We
show that the approximation becomes essentially exact when the scaling parameters
are chosen optimally and that the Worst-Case CVaR can be evaluated efficiently if the
scaling parameters are kept constant. We evaluate our joint chance constraint approx-
imation in the context of a dynamic water reservoir control problem and numerically
demonstrate its superiority over the two benchmark approximations.

Mathematics Subject Classification (2010) 90C15 · 90C22

1 Introduction

A large class of decision problems in engineering and finance can be formulated as
chance constrained programs of the form

S. Zymler (B) · D. Kuhn · B. Rustem
Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
e-mail: sz02@doc.ic.ac.uk

123



168 S. Zymler et al.

minimize
x∈Rn

cTx

subject to Q

(
ai (ξ̃)Tx ≤ bi (ξ̃) ∀i = 1, . . . , m

)
≥ 1− ε (1)

x ∈ X ,

where x ∈ Rn is the decision vector, X ⊆ Rn is a convex closed set that can be rep-
resented by semidefinite constraints, and c ∈ Rn is a cost vector. Without much loss
of generality, we assume that c is deterministic. The chance constraint in (1) requires
a set of m uncertainty-affected inequalities to be jointly satisfied with a probability of
at least 1− ε, where ε ∈ (0, 1) is a desired safety factor specified by the modeler. The
uncertain constraint coefficients ai (ξ̃) ∈ Rn and bi (ξ̃) ∈ R, i = 1, . . . , m, depend
affinely on a random vector ξ̃ ∈ Rk, whose distribution Q is assumed to be known.
We thus have

ai (ξ̃) = a0
i +

k∑
j=1

a j
i ξ̃ j and bi (ξ̃) = b0

i +
k∑

j=1

b j
i ξ̃ j .

For ease of notation we introduce auxiliary functions y j
i : Rn → R, which are

defined through

y j
i (x) = (a j

i )Tx − b j
i , i = 1, . . . , n, j = 0, . . . , k.

These functions enable us to rewrite the chance constraint in problem (1) as

Q

(
y0

i (x)+ yi (x)Tξ̃ ≤ 0 ∀i = 1, . . . , m
)
≥ 1− ε, (2)

where yi (x) = [y1
i (x), . . . , yk

i (x)]T is affine in x for i = 1, . . . , m. By convention, (2)
is referred to as an individual or joint chance constraint if m = 1 or m > 1, respec-
tively. Chance constrained programs were first discussed by Charnes et al. [8], Miller
and Wagner [18] and Prékopa [23]. Although they have been studied for a long time,
they have not found wide application in practice due to the following reasons.

Firstly, computing the optimal solution of a chance constrained program is noto-
riously difficult. In fact, even checking the feasibility of a fixed decision x requires
the computation of a multi-dimensional integral, which becomes increasingly difficult
as the dimension k of the random vector ξ̃ increases. Furthermore, even though the
inequalities in the chance constraint (2) are biaffine in x and ξ̃ , the feasible set of
problem (1) is typically nonconvex and sometimes even disconnected.

Secondly, in order to evaluate the chance constraint (2), full and accurate informa-
tion about the probability distribution Q of the random vector ξ̃ is required. However,
in many practical situations Q must be estimated from historical data and is therefore
itself uncertain. Typically, one has only partial information about Q, e.g. about its
moments or its support. Replacing the unknown distribution Q in (1) by an estimate
Q̂ corrupted by measurement errors may lead to over-optimistic solutions which often
fail to satisfy the chance constraint under the true distribution Q.
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Distributionally robust joint chance constraints 169

In a few special cases chance constraints can be reformulated as tractable convex
constraints. For example, it is known that if the random vector ξ̃ follows a Gauss-
ian distribution and ε ≤ 0.5, then an individual chance constraint can be equivalently
expressed as a single second-order cone constraint. In this case, the chance constrained
problem becomes a tractable second-order cone program (SOCP), which can be solved
in polynomial time, see Alizadeh and Goldfarb [1]. More generally, Calafiore and El
Ghaoui [6] have shown that for ε ≤ 0.5 individual chance constraints can be con-
verted to second-order cone constraints whenever the random vector ξ̃ is governed
by a radial distribution. Tractability results for joint chance constraints are even more
scarce. In a seminal paper, Prékopa [23] has shown that joint chance constraints are
convex when only the right-hand side coefficients bi (ξ̃) are uncertain and follow a
log-concave distribution. However, under generic distributions, chance constrained
programs are computationally intractable. Indeed, Shapiro and Nemirovski [20] point
out that computing the probability of a weighted sum of uniformly distributed variables
being nonpositive is already NP-hard.

Recently, Calafiore and Campi [5] as well as Luedtke and Ahmed [17] have pro-
posed to replace the chance constraint (2) by a pointwise constraint that must hold at
a finite number of sample points drawn randomly from the distribution Q. A similar
approach was suggested by Erdoǧan and Iyengar [12]. The advantage of this Monte
Carlo approach is that no structural assumptions about Q are needed and that the
resulting approximate problem is convex. Calafiore and Campi [5] showed that one
requires O(n/ε) samples to guarantee that a solution of the approximate problem is
feasible in the original chance constrained program. However, this implies that it may
be computationally prohibitive to solve large problems or to solve problems for which
a small violation probability ε is required.

A natural way to immunize the chance constraint (2) against uncertainty in the prob-
ability distribution is to adopt a distributionally robust approach. To this end, let P
denote the set of all probability distributions on Rk that are consistent with the known
properties of Q, such as its first and second moments and/or its support. Consider now
the following ambiguous or distributionally robust chance constraint.

inf
P∈P

P

(
y0

i (x)+ yi (x)Tξ̃ ≤ 0 ∀i = 1, . . . , m
)
≥ 1− ε (3)

It is easily verified that whenever x satisfies (3) and Q ∈ P , then x also satisfies the
chance constraint (2) under the true probability distribution Q. Replacing the chance
constraint (2) with its distributionally robust counterpart (3) yields the following dis-
tributionally robust chance constrained program

minimize
x∈Rn

cTx

subject to inf
P∈P

P

(
y0

i (x)+ yi (x)Tξ̃ ≤ 0 ∀i = 1, . . . , m
)
≥ 1− ε

x ∈ X ,

(4)

which constitutes a conservative approximation for problem (1) in the sense that it has
the same objective function but a smaller feasible set.
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170 S. Zymler et al.

A common method to simplify the distributionally robust joint chance constraint
(3), which looks even less tractable than (2), is to decompose it into m individual
chance constraints by using Bonferroni’s inequality. Indeed, by ensuring that the total
sum of violation probabilities of the individual chance constraints does not exceed ε,
the feasibility of the joint chance constraint is guaranteed. Nemirovski and Shapiro
[20] propose to divide the overall violation probability ε equally among the m indi-
vidual chance constraints. However, the Bonferroni inequality is not necessarily tight,
and the corresponding decomposition could therefore be over-conservative. In fact, for
positively correlated constraint functions, the quality of the approximation is known
to decrease as m increases [9]. Consequently, the Bonferroni method may result in
a poor approximation for problems with joint chance constraints that involve many
inequalities.

A recent attempt to improve on the Bonferroni approximation is due to Chen et al.
[9]. They first elaborate a convex conservative approximation for a joint chance con-
straint in terms of a Worst-Case Conditional Value-at-Risk (CVaR) constraint. Then,
they rely on a classical inequality in order statistics to determine a tractable conserva-
tive approximation for the Worst-Case CVaR and show that the resulting approximation
for the joint chance constraint necessarily outperforms the Bonferroni approximation.
An attractive feature of this method is that the arising approximate constraints are
second-order conic representable. However, the employed probabilistic inequality is
not necessarily tight, which may again render the approximation over-conservative.

The principal aim of this paper is to develop new tools and models for approximating
robust individual and joint chance constraints under the assumption that only the first-
and second-order moments as well as the support of the random vector ξ̃ are known. We
embrace the modern approach to approximate robust chance constraints by Worst-Case
CVaR constraints, but in contrast to the state-of-the-art methods described above, we
find exact semidefinite programming (SDP) reformulations of the Worst-Case CVaR
which do not rely on potentially loose probabilistic inequalities. These reformulations
are facilitated by the theory of moment problems and by conic duality arguments. We
prove that the CVaR approximation is in fact exact for individual chance constraints
whose constraint functions are either concave or (possibly nonconcave) quadratic in ξ

and for joint chance constraints whose constraint functions depend linearly on ξ . We
also demonstrate that robust individual chance constraints have manifestly tractable
SDP representations in most cases in which the CVaR approximation is exact.

The main contributions of this paper can be summarized as follows:

(1) In Sect. 2 we review and extend existing approximations for distributionally
robust individual chance constraints and prove that a robust individual chance
constraint is equivalent to a tractable Worst-Case CVaR constraint if the
underlying constraint function is either concave or (possibly nonconcave) qua-
dratic in ξ . We also demonstrate that this equivalence can fail to hold even if the
constraint function is convex and piecewise linear in ξ .

(2) In Sect. 3 we develop a new tractable CVaR approximation for robust joint chance
constraints and prove that this approximation consistently outperforms the state-
of-the-art methods described above. We show that the approximation quality
is controlled by a set of scaling parameters and that the CVaR approximation
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Distributionally robust joint chance constraints 171

becomes essentially exact if the scaling parameters are chosen optimally. We
also present an intuitive dual interpretation for the CVaR approximation in this
case.

(3) In Sect. 4 we analyze the performance of the new joint chance constraint approx-
imation when applied to a dynamic water reservoir control problem.

Notation We use lower-case bold face letters to denote vectors and upper-case bold
face letters to denote matrices. The space of symmetric matrices of dimension n is
denoted by Sn . For any two matrices X, Y ∈ Sn , we let 〈X, Y〉 = Tr(XY) be the trace
scalar product, while the relation X � Y (X 
 Y) implies that X − Y is positive
semidefinite (positive definite). Random variables are always represented by symbols
with tildes, while their realizations are denoted by the same symbols without tildes.
For x ∈ R, we define x+ = max{x, 0}.

2 Distributionally robust individual chance constraints

It is known that robust individual chance constraints can be conservatively approxi-
mated by Worst-Case CVaR constraints. In this section, we first show how the theory
of moment problems can be used to reformulate these Worst-Case CVaR constraints in
terms of tractable semidefinite constraints. Subsequently, we prove that the Worst-Case
CVaR constraints are in fact equivalent to the underlying robust chance constraints for
a large class of constraint functions.

Distributional assumptions In the remainder of this paper we let μ ∈ Rk be the mean
vector and � ∈ Sk be the covariance matrix of the random vector ξ̃ under the true
distribution Q. Thus, we implicitly assume that Q has finite second-order moments.
Without loss of generality we also assume that � 
 0. Furthermore, we let P denote
the set of all probability distributions on Rk that have the same first- and second-order
moments as Q. For notational simplicity, we let

� =
[
� + μμT μ

μT 1

]

be the second-order moment matrix of ξ̃ .

2.1 The Worst-Case CVaR approximation

For m = 1, (3) reduces to a distributionally robust individual chance constraint

inf
P∈P

P

(
y0(x)+ y(x)T ξ̃ ≤ 0

)
≥ 1− ε, (5)

whose feasible set is denoted by
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X ICC =
{

x ∈ Rn : inf
P∈P

P

(
y0(x)+ y(x)Tξ̃ ≤ 0

)
≥ 1− ε

}
.

In the remainder of this section we will demonstrate that X ICC has a manifestly trac-
table representation in terms of Linear Matrix Inequalities (LMIs). To this end, we
first recall the definition of CVaR due to Rockafellar and Uryasev [24]. For a given
measurable loss function L : Rk → R, probability distribution P on Rk , and tolerance
ε ∈ (0, 1), the CVaR at level ε with respect to P is defined as

P-CVaRε(L(ξ̃)) = inf
β∈R

{
β + 1

ε
EP

(
(L(ξ̃)− β)+

)}
, (6)

where EP(·) denotes expectation with respect to P. CVaR essentially evaluates the
conditional expectation of loss above the (1 − ε)-quantile of the loss distribution. It
can be shown that CVaR represents a convex functional of the random variable L(ξ̃).

CVaR can be used to construct convex approximations for chance constraints.
Indeed, it is well known that

P

(
L(ξ̃) ≤ P-CVaRε(L(ξ̃))

)
≥ 1− ε

for any measurable loss function L , see, e.g. , Ben-Tal et al. [3, Sect. 4.3.3]. Thus,
P-CVaRε(L(ξ̃)) ≤ 0 is sufficient to imply P(L(ξ̃) ≤ 0) ≥ 1− ε. As this implication
holds for any probability distribution and loss function, we conclude that

sup
P∈P

P-CVaRε

(
y0(x)+ y(x)T ξ̃

)
≤ 0 �⇒ inf

P∈P
P

(
y0(x)+ y(x)T ξ̃≤0

)
≥1− ε.

(7)

Thus, the Worst-Case CVaR constraint on the left hand side constitutes a conservative
approximation for the distributionally robust chance constraint on the right hand side
of (7). The above discussion motivates us to define the feasible set

Z ICC =
{

x ∈ Rn : sup
P∈P

P-CVaRε

(
y0(x)+ y(x)Tξ̃

)
≤ 0

}
, (8)

and the implication (7) gives rise to the following elementary result.

Proposition 2.1 The feasible set Z ICC constitutes a conservative approximation for
X ICC, that is, Z ICC ⊆ X ICC.

We will now show that Z ICC has a tractable representation in terms of LMIs.

Theorem 21 The feasible set Z ICC can be written as

Z ICC =

⎧⎪⎪⎨
⎪⎪⎩

x ∈ Rn :
∃(β, M) ∈ R× Sk+1,

M � 0, β + 1
ε
〈�, M〉 ≤ 0,

M−
[

0 1
2 y(x)

1
2 y(x)T y0(x)− β

]
� 0

⎫⎪⎪⎬
⎪⎪⎭

.
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Proof By using (6), the Worst-Case CVaR in (8) can be expressed as

sup
P∈P

P-CVaRε

(
y0(x)+ y(x)Tξ̃

)

= sup
P∈P

inf
β∈R

{
β + 1

ε
EP

(
(y0(x)+ y(x)Tξ̃ − β)+

)}

= inf
β∈R

{
β + 1

ε
sup
P∈P

EP

(
(y0(x)+ y(x)T ξ̃ − β)+

)}
, (9)

where the interchange of the maximization and minimization operations is justified by
a stochastic saddle point theorem due to Shapiro and Kleywegt [26], see also Delage
and Ye [11] or Natarajan et al. [19]. We now show that the Worst-Case CVaR (9) of
some fixed decision x ∈ Rn can be computed by solving a tractable SDP. To this end,
we first derive an SDP reformulation of the worst-case expectation problem

sup
P∈P

EP

(
(y0(x)+ y(x)T ξ̃ − β)+

)
,

which can be identified as the subordinate maximization problem in (9). Lemma A.1
in the Appendix enables us to reformulate this worst-case expectation problem as

inf
M∈Sk+1

〈�, M〉
s. t. M � 0,

[
ξT 1
]

M
[
ξT 1
]T ≥ y0(x)+ y(x)Tξ − β ∀ξ ∈ Rk .

(10)

Note that the semi-infinite constraint in (10) can be written as the following LMI.

[
ξ

1

]T (
M−
[

0 1
2 y(x)

1
2 y(x)T y0(x)− β

])[
ξ

1

]
≥ 0 ∀ξ ∈ Rk

⇐⇒ M−
[

0 1
2 y(x)

1
2 y(x)T y0(x)− β

]
� 0

This in turn allows us to reformulate the worst-case expectation problem as

inf
M∈Sk+1

〈�, M〉

s. t. M � 0, M−
[

0 1
2 y(x)

1
2 y(x)T y0(x)− β

]
� 0.

(11)
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By replacing the subordinate worst-case expectation problem in (9) by (11), we obtain

sup
P∈P

P-CVaRε

(
y0(x)+ y(x)T ξ̃

)
= inf β+ 1

ε
〈�, M〉

s. t. M ∈ Sk+1, β∈R

M�0, M−
[

0 1
2 y(x)

1
2 y(x)T y0(x)− β

]
�0,

(12)

and thus the claim follows. ��

2.2 Exactness of the Worst-Case CVaR approximation

So far we have shown that the feasible set Z ICC defined in terms of a Worst-Case CVaR
constraint constitutes a tractable conservative approximation for X ICC. We now dem-
onstrate that this approximation is in fact exact, that is, we show that the implication (7)
is in fact an equivalence. We first recall the nonlinear Farkas Lemma as well as the
S-lemma, which are crucial ingredients for the proof of this result. We refer to Pólik
and Terlaky [22] for a derivation and an in-depth survey of the S-lemma as well as a
review of the Farkas Lemma.

Lemma 2.2 (Farkas Lemma) Let f0, . . . , f p : Rk → R be convex functions, and
assume that there exists a strictly feasible point ξ̄ with fi (ξ̄) < 0, i = 1, . . . , p. Then,
f0(ξ) ≥ 0 for all ξ with fi (ξ) ≤ 0, i = 1, . . . , p, if and only if there exist constants
τi ≥ 0 such that

f0(ξ)+
p∑

i=1

τi fi (ξ) ≥ 0 ∀ξ ∈ Rk .

Lemma 2.2 (S-lemma) Let fi (ξ) = ξTAiξ with Ai ∈ Sn be quadratic functions of
ξ ∈ Rn for i = 0, . . . , p. Then, f0(ξ) ≥ 0 for all ξ with fi (ξ) ≤ 0, i = 1, . . . , p, if
there exist constants τi ≥ 0 such that

A0 +
p∑

i=1

τi Ai � 0.

For p = 1, the converse implication holds if there exists a strictly feasible point ξ̄ with
f1(ξ̄) < 0.

Theorem 2.2 Let L : Rk → R be a continuous loss function that is either

(i) concave in ξ , or
(ii) (possibly nonconcave) quadratic in ξ .

Then, the following equivalence holds.

sup
P∈P

P-CVaRε

(
L(ξ̃)
)
≤ 0 ⇐⇒ inf

P∈P
P

(
L(ξ̃) ≤ 0

)
≥ 1− ε (13)
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Proof Consider the Worst-Case Value-at-Risk of the loss function L , which is defined
as

WC-VaRε(L(ξ̃)) = inf
γ∈R

{
γ : inf

P∈P
P

(
L(ξ̃) ≤ γ

)
≥ 1− ε

}
. (14)

By definition, the WC-VaR is indeed equal to the (1− ε)-quantile of L(ξ̃) evaluated
under some worst-case distribution in P . We first show that the following equivalence
holds.

inf
P∈P

P

(
L(ξ̃) ≤ 0

)
≥ 1− ε ⇐⇒ WC-VaRε

(
L(ξ̃)
)
≤ 0 (15)

Indeed, if the left hand side of (15) is satisfied, then γ = 0 is feasible in (14), which
implies that WC-VaRε(L(ξ̃)) ≤ 0. To see that the converse implication holds as
well, we note that for any fixed P ∈ P , the mapping γ �→ P(L(ξ̃) ≤ γ ) is upper
semi-continuous, see [21]. Thus, the related mapping γ �→ inf

P∈P
P(L(ξ̃) ≤ γ ) is also

upper semi-continuous. If WC-VaRε(L(ξ̃)) ≤ 0, there exists a sequence {γn}n∈N that
converges to zero and is feasible in (14), which implies

inf
P∈P

P

(
L(ξ̃) ≤ 0

)
≥ lim sup

n→∞
inf
P∈P

P

(
L(ξ̃) ≤ γn

)
≥ 1− ε.

Thus, (15) follows.
To prove the postulated equivalence (13), it is now sufficient to show that

sup
P∈P

P-CVaRε

(
L(ξ̃)
)
=WC-VaRε

(
L(ξ̃)
)

.

Note that (14) can be rewritten as

WC-VaRε(L(ξ̃)) = inf
γ∈R

{
γ : sup

P∈P
P

(
L(ξ̃) > γ

)
≤ ε

}
. (16)

We proceed by simplifying the subordinate worst-case probability problem
sup
P∈P

P(L(ξ̃) > γ ), which, by Lemma A.2 in the Appendix, can be expressed as

inf
M∈Sk+1

{
〈�, M〉 : M � 0,

[
ξT 1
]

M
[
ξT 1
]T ≥ 1 ∀ξ : γ − L(ξ) < 0

}
.

(17)

We will now argue that for all but one value of γ problem (17) is equivalent to

inf 〈�, M〉
s. t. M ∈ Sk+1, τ ∈ R, M � 0, τ ≥ 0[

ξT 1
]

M
[
ξT 1
]T − 1+ τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk .

(18)
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For ease of exposition, we define h = infξ∈Rk γ − L(ξ). The equivalence of (17)
and (18) is proved case by case. Assume first that h < 0. Then, the strict inequal-
ity in the parameter range of the semi-infinite constraint in (17) can be replaced by
a weak inequality without affecting its optimal value. The equivalence then follows
from the Farkas Lemma (when L(ξ) is concave in ξ ) or from the S-lemma (when
L(ξ) is quadratic in ξ ). Assume next that h > 0. Then, the semi-infinite constraint in
(17) becomes redundant and, since � 
 0, the optimal solution of (17) is given by
M = 0 with a corresponding optimal value of 0. The optimal value of problem (18)
is also equal to 0. Indeed, by choosing τ = 1/h, the semi-infinite constraint in (18) is
satisfied for any M � 0. Finally, note that (17) and (18) may be different for h = 0.

Since (17) and (18) are equivalent for all but one value of γ and since their optimal
values are nonincreasing in γ , we can express WC-VaRε(L(ξ̃)) in (16) as

WC-VaRε(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R

〈�, M〉 ≤ ε, M � 0, τ ≥ 0[
ξT 1
]

M
[
ξT 1
]T − 1+ τ (γ − L(ξ)) ≥ 0 ∀ξ ∈ Rk .

(19)

It can easily be shown that 〈�, M〉 ≥ 1 for any feasible solution of (19) with vanishing
τ -component. However, since ε < 1, this is in conflict with the constraint 〈�, M〉 ≤ ε.
We thus conclude that no feasible point can have a vanishing τ -component. This allows
us to divide the semi-infinite constraint in problem (19) by τ . Subsequently we per-
form variable substitutions in which we replace τ by 1/τ and M by M/τ . This yields
the following reformulation of problem (19).

WC-VaRε(L(ξ̃)) = inf γ

s. t. M ∈ Sk+1, τ ∈ R, γ ∈ R
1
ε
〈�, M〉 ≤ τ, M � 0, τ ≥ 0[
ξT 1
]

M
[
ξT 1
]T − τ + γ − L(ξ) ≥ 0 ∀ξ ∈ Rk

Note that, since � 
 0 and M � 0, we have 1
ε
〈�, M〉 ≥ 0. This allows us to remove

the redundant nonnegativity constraint on τ . We now introduce a new decision variable
β = γ − τ , which allows us to eliminate γ .

WC-VaRε(L(ξ̃)) = inf β + τ

s. t. M ∈ Sk+1, τ ∈ R, β ∈ R
1
ε
〈�, M〉 ≤ τ, M � 0[
ξT 1
]

M
[
ξT 1
]T + β − L(ξ) ≥ 0 ∀ξ ∈ Rk

Note that at optimality τ = 1
ε
〈�, M〉, which finally allows us to express WC-VaRε

(L(ξ̃)) as
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Distributionally robust joint chance constraints 177

WC-VaRε(L(ξ̃)) = inf β + 1
ε
〈�, M〉

s. t. M ∈ Sk+1, β ∈ R, M � 0[
ξT 1
]

M
[
ξT 1
]T + β − L(ξ) ≥ 0 ∀ξ ∈ Rk .

(20)

Recall now that by Lemma A.1 we have

sup
P∈P

P-CVaRε

(
L(ξ̃)
)
= inf

β∈R

{
β + 1

ε
sup
P∈P

EP

(
(L(ξ̃)− β)+

)}

= inf β + 1
ε
〈�, M〉

s. t. M ∈ Sk+1, β ∈ R, M � 0
[
ξT 1
]

M
[
ξT 1
]T + β − L(ξ) ≥ 0 ∀ξ ∈ Rk,

which is clearly equivalent to (20). This observation completes the proof. ��
Corollary 2.1 The following equivalence holds

sup
P∈P

P-CVaRε

(
y0(x)+ y(x)Tξ̃

)
≤ 0 ⇐⇒ inf

P∈P
P

(
y0(x)+ y(x)T ξ̃ ≤ 0

)
≥ 1− ε,

which implies that Z ICC = X ICC.

Proof The claim follows immediately from Theorem 2.2 by observing that L(ξ) =
y0(x)+ y(x)Tξ is linear (and therefore concave) in ξ . ��

In the following example we demonstrate that the equivalence (13) can fail to hold
even if the loss function L is convex and piecewise linear in ξ .

Example 2.1 Let ξ̃ be a scalar random variable with mean μ = 0 and standard devi-
ation σ = 1. Moreover, let P be the set of all probability distributions on R con-
sistent with the given mean and standard deviation. Consider now the loss function
L(ξ) = max{ξ − 1, 4ξ − 4}, and note that L is strictly increasing and convex in ξ .
In particular, L is neither concave nor quadratic and thus falls outside the scope of
Theorem 2.2. We now show that for this particular L the Worst-Case CVaR constraint
supP∈P P-CVaR 1

2
(L(ξ̃)) ≤ 0 is violated even though the distributionally robust indi-

vidual chance constraint infP∈P P(L(ξ̃) ≤ 0) ≥ 1/2 is satisfied. To this end, we note
that the Chebychev inequality P(ξ̃ − μ ≥ κσ) ≤ 1/(1+ κ2) for κ = 1 implies

sup
P∈P

P

(
ξ̃ ≥ 1
)
≤ 1

2
⇐⇒ sup

P∈P
P

(
L(ξ̃) ≥ L(1) = 0

)
≤ 1

2

�⇒ sup
P∈P

P

(
L(ξ̃) > 0

)
≤ 1

2

⇐⇒ inf
P∈P

P

(
L(ξ̃) ≤ 0

)
≥ 1

2
,

where the first equivalence follows from the monotonicity of L . Assume now that
the true distribution Q of ξ̃ is discrete and defined through Q(ξ̃ = −2) = 1/8,
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Q(ξ̃ = 0) = 3/4, and Q(ξ̃ = 2) = 1/8. It is easy to verify that Q ∈ P and that
Q-CVaR 1

2
(L(ξ̃)) = 0.25. Thus, supP∈P P-CVaR 1

2
(L(ξ̃)) ≥ 0.25 > 0. We therefore

conclude that the Worst-Case CVaR constraint is not equivalent to the robust chance
constraint.

2.3 Tractability of the Worst-Case CVaR approximation

We have already seen that Worst-Case CVaR constraints are equivalent to distribution-
ally robust chance constraints when the loss function is continuous and either concave
or quadratic in ξ . We now prove that the Worst-Case CVaR can also be computed
efficiently for these classes of loss functions.

Theorem 2.3 Assume that L : Rk → R is either

(i) concave piecewise affine in ξ with a finite number of pieces or
(ii) (possibly nonconcave) quadratic in ξ .

Then, supP∈P P-CVaRε(L(ξ̃)) can be computed efficiently as the optimal value of a
tractable SDP.

Proof Assume that (i) holds and that L(ξ̃) = mini=1,...,l{ai + bT
i ξ̃} for some ai ∈ R

and bi ∈ Rk, i = 1, . . . , l. Then, the Worst-Case CVaR is representable as

inf
β∈R

{
β + 1

ε
sup
P∈P

EP

([
min

i=1,...,l
{ai + bT

i ξ̃} − β

]+)}
. (21)

By Lemma A.1, the subordinate worst-case expectation problem in (21) can be rewrit-
ten as

inf
M∈S k+1

〈�, M〉
s. t. M � 0,

[
ξT 1
]

M
[
ξT 1
]T ≥ min

i=1,...,l
{ai + bT

i ξ} − β ∀ξ ∈ Rk .
(22)

Noting that

min
i=1,...,l

{ai + bT
i ξ} = min

λ∈	

l∑
i=1

λi (ai + bT
i ξ),

where 	 = {λ ∈ Rl : ∑l
i=1 λi = 1, λ ≥ 0} denotes the probability simplex in Rl ,

we can use techniques developed in [4, Theorem 2.1] to reexpress the semi-infinite
constraint in (22) as
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[
ξT 1
]

M
[
ξT 1
]T −min

λ∈	

l∑
i=1

λi (ai + bT
i ξ)+ β ≥ 0 ∀ξ ∈ Rk

⇐⇒ min
ξ∈Rk

max
λ∈	

{[
ξT 1
]

M
[
ξT 1
]T −

l∑
i=1

λi (ai + bT
i ξ)+ β

}
≥ 0

⇐⇒ max
λ∈	 min

ξ∈Rk

{[
ξT 1
]

M
[
ξT 1
]T −

l∑
i=1

λi (ai + bT
i ξ)+ β

}
≥ 0

⇐⇒ min
ξ∈Rk

{[
ξT 1
]

M
[
ξT 1
]T −

l∑
i=1

λi (ai + bT
i ξ)+ β

}
≥ 0, λ ∈ 	

⇐⇒ M−
[

0
∑l

i=1
λi
2 bi∑l

i=1
λi
2 bT

i

∑l
i=1 λi ai − β

]
� 0, λ ∈ 	.

The second equivalence in the above expression follows from the classical saddle
point theorem. Thus, the Worst-Case CVaR (21) can be rewritten as the optimal value
of the following tractable SDP.

inf β + 1
ε
〈�, M〉

s. t. β ∈ R, M ∈ Sk+1, λ ∈ Rl

M � 0, M−
[

0
∑l

i=1
λi
2 bi∑l

i=1
λi
2 bT

i

∑l
i=1 λi ai − β

]
� 0, λ ∈ 	

(23)

Assume now that (ii) holds and that L(ξ) = ξTQξ+qTξ+q0 for some Q ∈ Sk,

q ∈ Rk , and q0 ∈ R. In this case we have

sup
P∈P

P-CVaRε(L(ξ̃)) = inf
β∈R

{
β + 1

ε
sup
P∈P

EP

([
ξ̃TQξ̃ + ξ̃Tq + q0 − β

]+)}
.

(24)

As usual, we first find an SDP reformulation of the subordinate worst-case expectation
problem in (24). By Lemma A.1, this problem can be rewritten as

inf
M∈S k+1

〈�, M〉
s. t. M � 0,

[
ξT 1
]

M
[
ξT 1
]T ≥ ξTQξ + ξTq + q0 − β ∀ξ ∈ Rk .

(25)

Note that the semi-infinite constraint in (25) is equivalent to

[
ξ

1

]T (
M−
[

Q 1
2 q

1
2 qT q0−β

])[
ξ

1

]
≥0 ∀ξ ∈ Rk ⇐⇒ M−

[
Q 1

2 q
1
2 qT q0 − β

]
�0,
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which enables us to rewrite the Worst-Case CVaR (24) as the optimal value of

inf β + 1
ε
〈�, M〉

s. t. M ∈ Sk+1, β ∈ R

M � 0, M−
[

Q 1
2 q

1
2 qT q0 − β

]
� 0,

which is indeed a tractable SDP. ��
Remark If the loss function is concave but not piecewise affine, the Worst-Case CVaR
can sometimes still be evaluated efficiently, though not by solving an explicit SDP.
Indeed, the Worst-Case CVaR can be computed in polynomial time with an ellipsoid
method if L(ξ) is concave and if, for any ξ ∈ Rk , one can evaluate both L(ξ) as
well as a super-gradient ∇ξ L(ξ) in polynomial time. This is an immediate conse-
quence of a result on the computation of worst-case expectations by Delage and Ye
[11, Proposition 2].

3 Distributionally robust joint chance constraints

We define the feasible set X JCC of the distributionally robust joint chance constraint (3)
as

X JCC =
{

x ∈ Rn : inf
P∈P

P

(
y0

i (x)+ yi (x)Tξ̃ ≤ 0 ∀i = 1, . . . , m
)
≥ 1− ε

}
.

The aim of this section is to investigate the structure of X JCC and to elaborate tractable
conservative approximations. We first review two existing approximations and discuss
their benefits and shortcomings.

3.1 The Bonferroni approximation

A popular approximation for X JCC is based on Bonferroni’s inequality. Note that the
robust joint chance constraint (3) is equivalent to

inf
P∈P

P

(
m⋂

i=1

{
y0

i (x)+ yi (x)Tξ̃ ≤ 0
})
≥ 1− ε

⇐⇒ sup
P∈P

P

(
m⋃

i=1

{
y0

i (x)+ yi (x)Tξ̃ > 0
})
≤ ε.

Furthermore, Bonferroni’s inequality implies that

P

(
m⋃

i=1

{
y0

i (x)+ yi (x)Tξ̃ > 0
})
≤

m∑
i=1

P

(
y0

i (x)+ yi (x)Tξ̃ > 0
)
∀P ∈ P.

123



Distributionally robust joint chance constraints 181

For any vector of safety factors ε ∈ E = {ε ∈ Rm+ :
∑m

i=1 εi ≤ ε}, the system of
distributionally robust individual chance constraints

inf
P∈P

P

(
y0

i (x)+ yi (x)Tξ̃ ≤ 0
)
≥ 1− εi ∀i = 1, . . . , m (26)

represents a conservative approximation for the distributionally robust joint chance
constraint (3). By Theorem 21, we can reformulate each of the individual chance con-
straints in (26) in terms of tractable LMIs. In fact, we can further reduce these LMIs to
SOCP constraints, but this further simplification is irrelevant for our purposes. Thus,
for any ε ∈ E , the assertion that x ∈ ZJCC

B (ε), where

ZJCC
B (ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn :
∃(βi , Mi ) ∈ R× Sk+1 ∀i = 1, . . . , m,

Mi � 0, βi + 1
εi
〈�, Mi 〉 ≤ 0 ∀i = 1, . . . , m,

Mi −
[

0 1
2 yi (x)

1
2 yi (x)T y0

i (x)− βi

]
� 0 ∀i = 1, . . . , m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

is a sufficient condition to guarantee that x satisfies the original distributionally robust
joint chance constraint (3). The above arguments culminate in the following result.

Theorem 3.1 (Bonferroni approximation) For any ε ∈ E we have ZJCC
B (ε) ⊆ X JCC.

A major shortcoming of the Bonferroni approximation is that the approximation
quality depends critically on the choice of ε ∈ E . Unfortunately, the problem of finding
the best ε ∈ E for a generic chance constrained problem of type (4) is nonconvex and
believed to be intractable [20]. As a result, in most applications of Bonferroni’s inequal-
ity the “risk budget” ε is equally divided among the m individual chance constraints
in (26) by setting εi = ε/m for i = 1, . . . , m. This approach was first advocated by
Nemirovski and Shapiro [20].

The Bonferroni approximation can be overly conservative even if ε ∈ E is chosen
optimally. The following example, which is adapted from Chen et al. [9], highlights
this shortcoming.

Example 3.1 Assume that the inequalities in the chance constraint (3) are perfectly
positively correlated in the sense that

y0
i (x) = δi ŷ0(x) and yi (x) = δi ŷ(x)

for some affine functions ŷ0 : Rn → R and ŷ : Rn → Rk and for some fixed con-
stants δi > 0 for i = 1, . . . , m. In this case, it can readily be seen that the joint chance
constraint (3) is equivalent to the robust individual chance constraint

inf
P∈P

P

(
y0(x)+ y(x)T ξ̃ ≤ 0

)
≥ 1− ε. (27)

Thus, the least conservative choice for εi which guarantees that (26) implies (3) is
εi = ε for i = 1, . . . , m. However, this means that the εi sum to mε instead of ε
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as required by the Bonferroni approximation. In fact, the optimal choice for ε ∈ E
is εi = ε/m for i = 1, . . . , m. This example demonstrates that the quality of the
Bonferroni approximation diminishes as m increases if the inequalities in the joint
chance constraint are positively correlated.

3.2 Approximation by Chen, Sim, Sun and Teo

In order to mitigate the potential over-conservatism of the Bonferroni approximation,
Chen et al. [9] proposed an approximation based on a different inequality from prob-
ability theory. The starting point is the observation that the joint chance constraint (3)
can be reformulated as

inf
P∈P

P

(
max

i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ̃
)}
≤ 0

)
≥ 1− ε (28)

for any vector of strictly positive scaling parameters α ∈ A = {α ∈ Rm : α > 0}.
Note that the choice of α ∈ A does not affect the feasible region of the chance con-
straint (28). Although these scaling parameters are seemingly unnecessary, it turns
out that they can be tuned to improve the approximation to be developed below. Chen
et al. [9] note that (28) represents a distributionally robust individual chance constraint,
which can be conservatively approximated by a Worst-Case CVaR constraint. Thus,
for any α ∈ A, the requirement

x∈ZJCC(α)=
{

x∈Rn : sup
P∈P

CVaRε

(
max

i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ̃
)})
≤ 0

}

(29)

implies that x ∈ X JCC, see Proposition 2.1. It is important to note that, in contrast
to the chance constraint (28), the Worst-Case CVaR constraint x ∈ ZJCC(α) does
depend on the choice of α ∈ A. Thus, the Worst-Case CVaR constraint in (29) is
not equivalent to the robust chance constraint (28) since the max function in (28) is
convex piecewise linear, see also Theorem 2.2 and Example 2.1.

The following theorem due to Chen et al. [9] relies on a classical result in order sta-
tistics and provides a tractable SOCP-based conservative approximation for ZJCC(α).

Theorem 3.2 (Approximation by Chen et al.) For any α ∈ A we have ZJCC
U (α)

⊆ ZJCC(α) ⊆ X JCC where ZJCC
U (α) = {x ∈ Rn : Ĵ (x,α) ≤ 0} and

Ĵ (x,α) = min
w0∈R,w∈Rk

{
min
β∈R

[
β + 1

ε
π
(
w0 − β, w

)]

+1

ε

[
m∑

i=1

π
(
αi y0

i (x)− w0, αi yi (x)− w
)]}

,

123



Distributionally robust joint chance constraints 183

where

π
(

z0, z
)
= 1

2

(
z0 + μT z

)
+ 1

2

∥∥∥
(

z0 + μT z, �1/2 z
)∥∥∥

2

Note that, since the feasible set ZJCC
U (α) constitutes a tractable conservative approx-

imation for X JCC for any α ∈ A, the union
⋃

α∈A ZJCC
U (α) still constitutes a conser-

vative approximation for X JCC. Chen et al. [9] prove also that their approximation is
tighter than the Bonferroni approximation by showing that ZJCC

B (ε) ⊆⋃α∈A ZJCC
U (α)

for all ε ∈ E . Unfortunately, similar to the Bonferroni approach, the approximation
by Chen et al. depends critically on the choice of α, while the problem of finding the
best α ∈ A for a generic chance constrained program of the type (4) is nonconvex and
therefore believed to be intractable.

3.3 The Worst-Case CVaR approximation

Both approximations discussed so far rely on inequalities from probability theory,
which are not necessarily tight. In this section we show that the set ZJCC(α) has
in fact an exact tractable representation in terms of LMIs and therefore promises to
provide a tight convex approximation for X JCC.

Theorem 3.3 For any fixed x ∈ Rn and α ∈ A, we have

ZJCC(α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn :
∃(β, M) ∈ R× Sk+1,

β + 1
ε
〈�, M〉 ≤ 0, M � 0,

M−
[

0 1
2αi yi (x)

1
2αi yT

i αi y0
i (x)− β

]
� 0 ∀i = 1, . . . , m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (30)

Proof We note that the constraint x ∈ ZJCC(α) is equivalent to J (x,α) ≤ 0, where

J (x,α) = sup
P∈P

CVaRε

(
max

i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ̃
)})

= inf
β∈R

{
β + 1

ε
sup
P∈P

EP

([
max

i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ̃
)}
− β

]+)}

(31)

denotes the Worst-Case CVaR. As in Sect. 2, the first step towards a tractable refor-
mulation of J (x,α) is to solve the worst-case expectation problem

sup
P∈P

EP

([
max

i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ̃
)}
− β

]+)
. (32)
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For any fixed x ∈ X , β ∈ R, and α ∈ A, Lemma A.1 enables us to reformulate (32)
as

inf
M∈Sk+1

〈�, M〉
s. t. M�0,

[
ξT 1
]

M
[
ξT 1
]T≥ max

i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ̃
)}
−β ∀ξ ∈Rk .

(33)

We emphasize that (33) represents a lossless reformulation of the worst-case
expectation problem (32). The semi-infinite constraint in (33) can be expanded into
m simpler semi-infinite constraints of the form

[
ξT 1
]

M
[
ξT 1
]T ≥ αi

(
y0

i (x)+ yi (x)Tξ
)
− β ∀ξ ∈ Rk, i = 1, . . . , m,

which can be equivalently expressed as the following system of LMIs.

M−
[

0 1
2αi yi (x)

1
2αi yi (x)T αi y0

i (x)− β

]
� 0 ∀i = 1, . . . , m

We can therefore reformulate the worst-case expectation problem (32) as

inf
M∈S k+1

〈�, M〉

s. t. M � 0, M−
[

0 1
2αi yi (x)

1
2αi yi (x)T αi y0

i (x)− β

]
� 0 ∀i = 1, . . . , m.

(34)

Substituting (34) into (31) yields

J (x,α) = inf β + 1

ε
〈�, M〉

s. t. M ∈ Sk+1, β ∈ R

M � 0, M−
[

0 1
2αi yi (x)

1
2αi yi (x)T αi y0

i (x)−β

]
�0 ∀i=1, . . . , m,

(35)

and thus the claim follows. ��
Theorem 3.3 establishes that ZJCC(α) has an exact representation in terms of LMIs.

We have already seen in Sect. 3.2 that ZJCC(α) ⊆ X JCC for all α ∈ A and that
ZJCC

U (α) ⊆ ZJCC(α), see Theorem 3.2. Thus, ZJCC(α) constitutes a tractable conser-
vative approximation for X JCC which is at least as tight as ZJCC

U (α).
Recall from Sect. 3.2 that ZJCC

B (ε) ⊆⋃α∈A ZJCC
U (α) for all ε ∈ E . Moreover, we

have ZJCC
U (α) ⊆ ZJCC(α) ⊂ X JCC for all α ∈ A. This allows us to conclude that

our new approximation is at least as tight as the two state-of-the-art approximations
discussed above.
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Remark 3.1 In contrast to the classical Bonferroni approximation, the Worst-Case
CVaR approximation behaves reasonably in situations in which the m inequalities in
the chance constraint (3) are positively correlated. Indeed, by choosing αi := 1/δi > 0
for all i = 1, . . . , m in Example 3.1, the constraint x ∈ ZJCC(α) is equivalent to

∃β∈R, M∈Sk+1 : β+ 1

ε
〈�, M〉 ≤ 0, M � 0, M−

[
0 1

2 y(x)
1
2 y(x)T y0(x)− β

]
�0,

which can easily be identified as the SDP reformulation of the individual chance con-
straint (27). This implies that ZJCC(α) = X ICC for all α ∈ A in Example 3.1, see
also Theorem 21. Thus, by choosing α appropriately, our method can provide tight
approximations for distributionally robust joint chance constraints, even in situations
when the m inequalities are positively correlated.

3.4 Dual interpretation of the Worst-Case CVaR approximation

In this section we explore a different way to find a tractable conservative approxima-
tion for the chance constraint (3). Subsequently, we will prove that this approximation
is equivalent to the Worst-Case CVaR approximation.

Consider again the robust individual chance constraint (28) which is equiva-
lent to the robust joint chance constraint (3) for any fixed α ∈ A. Instead of
approximating (28) by a Worst-Case CVaR constraint, we can approximate the
max-function in the chance constraint (28) by a quadratic majorant of the form
q(ξ) = ξTQξ + ξTq + q0 that satisfies

q(ξ) ≥ max
i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ
)}
∀ξ ∈ Rk,

⇐⇒ q(ξ) ≥ αi

(
y0

i (x)+ yi (x)Tξ
)
∀ξ ∈ Rk, i = 1, . . . , m.

(36)

Replacing the max function in (28) by q(ξ) yields the distributionally robust (indi-
vidual) quadratic chance constraint

inf
P∈P

P

(
ξ̃TQξ̃ + ξ̃Tq + q0 ≤ 0

)
≥ 1− ε. (37)

For further argumentation, we define

ZJCC
Q (α) =

{
x ∈ Rn : ∃Q ∈ Sk, q ∈ Rk, q0 ∈ R such that

q(ξ) = ξTQξ + ξTq + q0 satisfies (36) and (37)

}
. (38)

Proposition 3.1 For any fixed α ∈ A the feasible set ZJCC
Q (α) constitutes a conser-

vative approximation for X JCC, that is, ZJCC
Q (α) ⊆ X JCC.
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Proof Note that any x feasible in (28) is also feasible in (38) since

P

(
ξ̃TQξ̃ + ξ̃Tq + q0≤0

)
≤P

(
max

i=1,...,m

{
αi (y0

i (x)+ yi (x)Tξ̃)
}
≤ 0

)
∀P ∈ P.

Since x is feasible in (28) if and only if x ∈ X JCC, the claim follows. ��
Theorem 3.4 For any fixed x ∈ Rn and α ∈ A we have

ZJCC
Q (α) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x ∈ Rn :

∃Q ∈ Sk, q ∈ Rk, q0 ∈ R, β ∈ R, M ∈ Sk+1,

β + 1
ε
〈�, M〉 ≤ 0, M � 0, M−

[
Q 1

2 q
1
2 qT q0 − β

]
� 0,

[
Q 1

2 (q − αi yi (x))
1
2 (q − αi yi (x))T q0 − αi y0

i (x)

]
� 0 ∀i = 1, . . . , m

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Proof Note that the constraints in (36) are equivalent to

[
Q 1

2 (q − αi yi (x))
1
2 (q − αi yi (x))T q0 − αi y0

i (x)

]
� 0 ∀i = 1, . . . , m.

Moreover, by Theorem 2.2, the robust quadratic chance constraint (37) is equivalent
to the Worst-Case CVaR constraint

sup
P∈P

P-CVaR
(
ξ̃TQξ̃ + ξ̃Tq + q0

)

= inf
β∈R

{
β + 1

ε
sup
P∈P

EP

([
ξ̃TQξ̃ + ξ̃Tq + q0 − β

]+)} ≤ 0. (39)

By the proof of part (ii) in Theorem 2.3, we know that (39) can be written as

0 ≥ inf β + 1
ε
〈�, M〉

s. t. M ∈ Sk+1, β ∈ R

M � 0, M−
[

Q 1
2 q

1
2 qT q0 − β

]
� 0.

Thus, the claim follows. ��
In the following theorem we show that the approximate feasible set ZJCC

Q (α) is

equivalent to the set ZJCC(α) found in Sect. 3.3. This implies that the approximation
of a distributionally robust joint chance constraint by a Worst-Case CVaR constraint is
equivalent to the approximation of the max function implied by the joint chance con-
straint by a quadratic majorant. Note that both approximations depend of the choice
of the scaling parameters α.

Theorem 3.5 For any α ∈ A we have ZJCC
Q (α) = ZJCC(α).
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Proof By defining the combined variable

Y =
[

Q 1
2 q

1
2 qT q0

]
,

the set ZJCC
Q (α) can be rewritten as

ZJCC
Q (α)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x∈Rn :

∃Y∈Sk, β∈R, M∈Sk+1,

β+ 1
ε
〈�, M〉 ≤ 0, M � 0

M+
[

0 0

0T β

]
� Y �

[
0 1

2αi yi (x)

1
2αi yi (x)T αi y0

i (x)

]
∀i=1, . . . , m

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

It is easy to see that Y may be eliminated from the above representation of ZJCC
Q (α)

by rewriting the last constraint group as

M−
[

0 1
2αi yi (x)

1
2αi yi (x)T αi y0

i (x)− β

]
� 0 ∀i = 1, . . . , m.

This observation establishes the postulated equivalence. ��

3.5 Exactness of the Worst-Case CVaR approximation

So far we have shown that, for any fixed α ∈A, the feasible set ZJCC(α) consti-
tutes a tractable conservative approximation for X JCC. This implies that the union
ZJCC = ⋃α∈S ZJCC(α) still constitutes a conservative approximation for X JCC. We
now demonstrate that this improved approximation is essentially exact. To this end,
we introduce the feasible set

X JCC◦ =
{

x ∈ Rn : sup
P∈P

P

(
m⋂

i=1

{
y0

i (x)+ yi (x)Tξ̃ < 0
})
≥ 1− ε

}

corresponding to a strict version of the joint chance constraint.

Theorem 3.6 The Worst-Case CVaR approximation is essentially exact if α is treated
as a decision variable. Formally, we have X JCC◦ ⊆ ZJCC ⊆ X JCC.

Proof The theorem can be proved by invoking a Chebyshev-type bound for the worst-
case probability of a random vector to lie in the intersection of a set of quadratic (or,
a fortiori, linear) inequalities, see Vandenberghe et al. [28]. To keep this paper self-
contained, we provide here an elementary proof which is reminiscent of the exactness
proof in Sect. 3.5.

The second inclusion follows immediately from the known conservativeness of the
CVaR approximation. Therefore, it is sufficient to prove the first inclusion. By using
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similar arguments as in Sect. 3.1, we can rewrite X JCC◦ as

X JCC◦ =
{

x ∈ Rn : sup
P∈P

P

(
m⋃

i=1

{
y0

i (x)+ yi (x)Tξ̃ ≥ 0
})
≤ ε

}
.

By Lemma A.2 in the Appendix we may thus conclude that

X JCC◦ =
{

x ∈ Rn : ∃M ∈ Sk+1, 〈�, M〉 ≤ ε, M � 0,[
ξT 1
]

M
[
ξT 1
]T ≥ 1 ∀ξ ∈⋃m

i=1

{
y0

i (x)+ yi (x)Tξ ≥ 0
}
}

.

The semi-infinite constraint in the above representation of X JCC◦ can be reexpressed
as

[
ξT 1
]

M
[
ξT 1
]T ≥ 1 ∀ξ : y0

i (x)+ yi (x)Tξ ≥ 0, ∀i = 1, . . . , m,

which, by the S-lemma, is equivalent to

∃α ≥ 0, M−
[

0 1
2αi yi (x)

1
2αi yi (x)T αi y0

i (x)+ 1

]
� 0 ∀i = 1, . . . , m.

Thus, the feasible set X JCC◦ can be written as

X JCC◦ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn :
∃M ∈ Sk+1, α ∈ Rm,

〈�, M〉 ≤ ε, M � 0, α > 0,

M−
[

0 1
2αi yi (x)

1
2αi yi (x)T αi y0

i (x)+ 1

]
� 0 ∀i = 1, . . . , m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(40)

Note that we require here without loss of generality that α is strictly positive. Indeed,
it can be shown that no feasible α has any vanishing components. By Theorem 3.3,
we have

ZJCC =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn :
∃β ∈ R, M ∈ Sk+1, α ∈ A
β + 1

ε
〈�, M〉 ≤ 0, M � 0,

M−
[

0 1
2αi yi (x)

1
2αi yT

i αi y0
i (x)− β

]
� 0 ∀i = 1, . . . , m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (41)

It is now clear that X JCC◦ ⊆ ZJCC since we are free to set β = −1 in (41) and
since −1 + 1

ε
〈�, M〉 ≤ 0 is equivalent to 〈�, M〉 ≤ ε. This observation completes

the proof. ��
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Remark 3.2 Note that ZJCC = X JCC for m = 1; see Corollary 2.1. In general,
however, both inclusions in Theorem 3.6 can be strict. If there is no degen-
erate constraint function with (y0

i (x), yi (x)T)T= 0 ∀x ∈Rn , then N = ⋃m
i=1{

x ∈ Rn : (y0
i (x), yi (x)T)T = 0

}
constitutes a Lebesgue null set as it is a

finite union of strict affine subspaces of Rn . By using similar arguments as in the
proof of Theorem 3.6 one can show that X JCC\X JCC◦ ⊆ N , which implies that X JCC

and X JCC◦ differ at most by a Lebesgue null set for well-specified chance constraints.

Theorem 3.6 implies that the original joint chance constrained program

minimize
x∈X∩X JCC

cTx

and its Worst-Case CVaR approximation

minimize
x∈X∩ZJCC(α)

α∈A
cTx (42)

attain the same optimal value except in degenerate cases. Unfortunately, optimizing
jointly over x ∈ X ∩ZJCC(α) and α ∈ A in (42) involves Bilinear Matrix Inequalities
(BMIs). It is known that generic BMI constrained problems are NP-hard, see [27].
Similar nonconvexities arise also in the approximations discussed in Sects. 3.1 and 3.2,
which underlines the general perception that problems with distributionally robust joint
chance constraints are hard to solve.

Recall, however, that for any fixed α ∈ A, the set ZJCC(α) is representable in terms
of tractable LMI constraints involving the auxiliary variables β and M. In particular,
the constraints in (41) are convex in β, M, and x for any fixed α, and convex in α for
any fixed β, M, and x. In Sect. 3.7 we will use this property to propose an algorithm
for solving (42) approximately.

3.6 Injecting support information

In many practical applications the support of the (true) distribution Q of ξ̃ is known to
be a strict subset of Rk . Disregarding this information in the definition of P can result in
unnecessarily conservative robust chance constraints. In this section we briefly outline
how support information can be used to tighten robust joint chance constraints and
their approximations developed in Sect. 3. To this end, we first revise our distributional
assumptions.

Distributional assumptions The random vector ξ̃ has a distribution Q with mean
vector μ and covariance matrix � 
 0. We assume that Q is supported on � =
{ξ ∈ Rk : [ξT 1]Wi [ξT 1]T ≤ 0 ∀i = 1, . . . , l}, where Wi ∈ Sk+1 for all i =
1, . . . , l.1 Thus, we have Q(ξ̃ ∈ �) = 1. We define P� as the set of all probability
distributions supported on � that have the same first- and second-order moments as Q.

1 Note that every finite intersection of half-spaces and ellipsoids in R
k is representable as a set of the

form �.
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In this section we are interested in tractable conservative approximations for the
feasible set

X JCC
� =

{
x ∈ Rn : inf

P∈P�

P

(
y0

i (x)+ yi (x)Tξ̃ ≤ 0 ∀i = 1, . . . , m
)
≥ 1− ε

}
.

As before, we study approximate feasible sets of the form

ZJCC
� (α) =

{
x ∈ Rn : sup

P∈P�

CVaRε

(
max

i=1,...,m

{
αi

(
y0

i (x)+ yi (x)Tξ̃
)})
≤ 0

}

for α ∈ A. By using similar arguments as in Sect. 2.1, one can show that ZJCC
� (α)

⊆ X JCC
� for all α ∈ A. However, the sets ZJCC

� (α) have no longer an exact repre-
sentation in terms of LMIs. Instead, they need to be conservatively approximated.

Theorem 3.7 For any fixed α ∈ A, we have YJCC
� (α) ⊆ ZJCC

� (α) ⊆ X JCC
� , where

YJCC
� (α) has the following tractable reformulation in terms of LMIs.

YJCC
� (α) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ R
n :

∃M ∈ S
k+1, β ∈ R, τi ∈ R

l ,

β + 1
ε
〈�, M〉 ≤ 0, τi ≥ 0 ∀i = 0, . . . , m

M+∑l
j=1 τ0, j W j � 0

M+∑l
j=1 τi, j W j −

[
0 1

2 αi yi (x)

1
2 αi yi (x)T αi y0

i (x)− β

]
� 0 ∀i = 1, . . . , m

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

(43)

Furthermore, for l = 1, we have YJCC
� (α) = ZJCC

� (α).

Proof The proof widely parallels the proof of Theorem 3.3. The only difference is
that Rk is replaced by � and that we use the S-lemma to approximate (for l > 1) or
reformulate (for l = 1) the semi-infinite constraints over � by LMI constraints. ��
Remark 3.3 While ZJCC(α) is exactly representable in terms of LMIs in the absence
of support information, Theorem 3.7 only provides a conservative LMI approximation
for ZJCC

� (α). Nevertheless, it is easily verified that ZJCC(α) ⊆ YJCC
� (α) and therefore

YJCC
� (α) constitutes a better approximation for ZJCC

� (α) than ZJCC(α). In fact, by
setting τi = 0 for all i = 0, . . . , m, (43) reduces to (35).

Remark 3.4 Support information can also be used in a straightforward way to tighten
the approximations discussed in Sects. 3.1 and 3.2.

3.7 Optimizing over the scaling parameters

By Theorem 3.6, the original distributionally robust chance constrained program (4)
can be written as

minimize
x∈Rn ,α∈A

cTx

subject to J (x,α) ≤ 0

x ∈ X ,

(44)
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where the Worst-Case CVaR functional J (x,α) is defined as in (31). Unfortunately,
as discussed in Sect. 3.3, J (x,α) is merely biconvex, but not jointly convex in x
and α. Thus, optimization problem (44) is nonconvex. By Theorem 3.3, however, the
problem becomes convex and tractable when the values of the scaling parameters α

are frozen.
For the further argumentation we define the set Ā = {α : α ≥ δe}, where e denotes

the vector of ones and δ > 0 represents a small tolerance, which we set to 10−7. Note
that, unlike A, the set Ā is closed. Consider now the following optimization model
where α ∈ Ā is fixed.

min
x∈Rn

cTx

s. t. J (x,α) ≤ 0

x ∈ X
(45)

We emphasize again that by Theorem 3.3 (45) is equivalent to a tractable SDP and that
any x feasible in (45) is also feasible in the original chance constrained problem (4).
In the remainder of this section we develop an algorithm that repeatedly solves (45)
while systematically improving the scaling parameters α.

The main idea of this approach, which is inspired by [9], is to minimize J (x,α)

over α ∈ Ā with the aim of enlarging the feasible region of problem (45) and thereby
improving the objective value. To this end, we introduce the following optimization
model which depends parametrically on x ∈ X .

min
α∈Rm

J (x,α)

s. t. α ∈ Ā
(46)

Theorem 3.3 implies that (46) can also be expressed as a tractable SDP.
Assume that x∗ is an optimal solution of problem (45) for a given α ∈ Ā. By the

feasibility of x∗ in (45) we know that J (x∗,α) ≤ 0. Keeping x∗ fixed, we then solve
problem (46) to obtain the optimal scaling parameters α∗ corresponding to x∗. By
construction, we find

J (x∗,α∗) ≤ J (x∗,α) ≤ 0. (47)

The above inequalities imply that the optimal objective value of problem (45) with
input α∗ must not exceed cTx∗. Therefore, by solving the problems (45) and (46) in
alternation, we obtain a sequence of monotonically decreasing objective values. This
motivates the following algorithm, which relies on the availability of an initial feasible
solution xinit for problem (45).

Algorithm 3.1 Sequential Convex Optimization Procedure

1. Initialization Let xinit be some feasible solution of problem (45). Set the current
solution to x0 ← xinit, the current objective value to f 0 ← cTx0, and the iteration
counter to t ← 1.

123



192 S. Zymler et al.

2. Scaling Parameter Optimization Solve problem (46) with input xt−1 and let α∗
denote an optimal set of scaling parameters. Set αt ← α∗.

3. Decision Optimization Solve problem (45) with input αt and let x∗ denote an
optimal solution. Set xt ← x∗ and f t ← cTxt .

4. Termination If ( f t − f t−1)/| f t−1| ≤ γ (where γ is a given small tolerance),
output xt and stop. Otherwise, set t ← t + 1 and go back to Step 2.

Theorem 3.8 Assume that xinit is feasible in problem (45) for some α ∈ Ā. Then,
the sequence of objective values { f t } generated by Algorithm 3.1 is monotonically
decreasing. If the set X is bounded, then the sequence {xt } is also bounded, while the
sequence { f t } converges to a finite limit.

Proof By the inequality (47), an update of the scaling parameters from αt−1 to αt

in Step 2 of the algorithm preserves the feasibility of xt−1 in problem (45). This
guarantees that the sequence of objective values { f t } is monotonically decreasing.
Furthermore, it is readily seen that the solution sequence {xt } is bounded if the feasi-
ble set X is bounded. Since (45) has a continuous objective function, the monotonicity
of the objective value sequence implies that { f t } has a finite limit. ��
Remark 3.5 Algorithm 3.1 can also be used in the presence of support information as
discussed in Sect. 3.6. In this case, the Worst-Case CVaR functional J (x,α) has to
be redefined in the obvious way. Algorithm 3.1 can further be used in the context of
the approximation by Chen et al. see Sect. 3.2. In this case, J (x,α) is replaced by its
conservative approximation Ĵ (x,α) defined in Theorem 3.2. Details are omitted for
brevity of exposition.

We emphasize that Algorithm 3.1 does not necessarily find the global optimum of
problem (44). Nevertheless, as confirmed by the numerical results in the next section,
the method can perform well in practice.

4 Numerical results

We consider a dynamic water reservoir control problem for hydro power generation,
which is inspired by a model due to Andrieu et al. [2]. Let ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃T ) denote
the sequence of stochastic inflows (precipitation) into the reservoir at time instances
t = 1, . . . , T . The history of inflows up to time t is denoted by ξ̃ t = (ξ̃1, . . . , ξ̃t ), where
ξ̃ T = ξ̃ . We let μ ∈ RT and � ∈ ST denote the mean vector and covariance matrix
of ξ̃ , respectively. Furthermore, ξ̃ is supported on a rectangle of the form � = [l, u].
However, we assume that no further information about the true distribution of ξ̃ is
available. As usual, we let P� denote the set of all distributions supported on � with
matching first- and second-order moments. We denote by xt (ξ̃

t ) the amount of water
released from the reservoir in period t . Note that the decision xt (ξ̃

t ) is selected at time
t after ξ̃ t has been observed and is therefore a function of the observation history. We
require xt (ξ̃

t ) ≥ 0 almost surely for all P ∈ P� and t = 1, . . . , T . The water level at
time t is computed as the sum of the initial level l0 and the cumulative inflows minus
the cumulative releases up to time t , that is,
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l0 +
t∑

i=1

ξ̃i −
t∑

i=1

xt (ξ̃
t ).

We require that the water level remains between some upper threshold lhigh (flood
reserve) and some lower threshold llow (dead storage) over all time periods
t = 1, . . . , T with probability 1 − ε, where ε ∈ (0, 1). The water released in any
period t is used to produce electric energy which is sold at a periodic price

ct = 10+ 5 sin

[
π(1− t)

3

]
∀t = 1, . . . , T .

The worst-case expected profit over all time periods is computed as

inf
P∈P�

EP

(
T∑

t=1

ct xt (ξ̃
t )

)
.

In order to determine an admissible control strategy that maximizes the worst-case
profit, we must solve the following distributionally robust joint chance constrained
problem.

maximize
x1(·),...,xT (·) inf

P∈P	

EP

(
T∑

t=1

ct xt (ξ̃
t )

)

subject to inf
P∈P	

P

(
llow≤ l0+

t∑
i=1

ξ̃i−
t∑

i=1

xt (ξ̃
t )≤ lhigh ∀t=1, . . . , T

)
≥1−ε

xt (ξ̃
t
) ≥ 0 P-a.s. ∀P ∈ P	, t = 1, . . . , T

(48)

Note that (48) is an infinite dimensional problem since the control decisions xt (·)
are generic measurable functionals of the uncertain inflows. To reduce the problem
complexity, we focus on policies that are affine functions of ξ̃ . Thus, we optimize over
affine disturbance feedback policies of the form

xt (ξ̃
t ) = x0

t + xT
t Pt ξ̃ ∀t = 1, . . . , T, (49)

where x0
t ∈ R, xt ∈ Rt and Pt : RT → Rt is a truncation operator that maps ξ̃ to

ξ̃ t . By focusing on affine control policies we conservatively approximate the infinite
dimensional dynamic problem (48) by a problem with a polynomial number of vari-
ables, namely, the coefficients {x0

t , xt }Tt=1. For more details on the use of affine control
policies in robust control and stochastic programming, see, e.g. , Ben-Tal et al. [3],
Chen et al. [10], and Kuhn et al. [15].

By applying now standard robust optimization techniques [3], the requirement that
xt (ξ̃

t ) ≥ 0 holds almost surely can be expressed as
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x0
t + xT

t Ptξ ≥ 0 ∀ξ ∈ �

⇐⇒ 0 ≤ min
ξ∈RT

{
x0

t + xT
t Ptξ : l ≤ ξ ≤ u

}

⇐⇒ 0 ≤ max
λt∈RT

{
x0

t + xT
t Pt u + λT

t (l − u) : λt ≥ PT
t xt , λt ≥ 0

}

⇐⇒ ∃λt ∈ RT : x0
t + xT

t Pt u + λT
t (l − u) ≥ 0, λt ≥ PT

t xt , λt ≥ 0.

By substituting (49) into (48) we thus obtain the following conservative approximation
for (48).

maximize
T∑

t=1

ct

(
x0

t + xT
t Ptμ
)

subject to λt ∈ R
T , xt ∈ R

t ∀t = 1, . . . , T

inf
P∈P�

P

⎛
⎜⎜⎜⎜⎝

l0 − lhigh +
t∑

i=1

ξ̃i −
(

t∑
i=1

x0
i + xT

i Pi ξ̃

)
≤ 0 ∀t = 1, . . . , T

llow − l0 −
t∑

i=1

ξ̃i +
(

t∑
i=1

x0
i + xT

i Pi ξ̃

)
≤ 0 ∀t = 1, . . . , T

⎞
⎟⎟⎟⎟⎠
≥ 1− ε

x0
t + xT

t Pt u + λT
t (l − u) ≥ 0

λt ≥ PT
t xt , λt ≥ 0

}
∀t = 1, . . . , T (50)

Note that the joint chance constraint in (50) involves 2T inequalities that are bilinear in
the decisions {xt }Tt=1 and the random vector ξ̃ . Problem (50) can therefore be identified
as a special instance of problem (4) and is amenable to the approximation methods
described in Sect. 3. In the remainder of this section, we compare the performance of
these approximation methods.

In the subsequent tests, we set T = 5, l0 = 1, llow = 1, and lhigh = 5. The mean
value of ξ̃t is assumed to be 1, while its standard deviation is set to 10%, over all time
periods. Furthermore, we set the correlation of different stochastic inflows to 25% for
adjacent time periods and 0% otherwise. Finally, we assume that � = [0, 2]T . All
tests are run for a range of reliability levels ε between 1 and 10% in steps of 1%.

We first solve problem (50) using the Bonferroni approximation by decomposing
the joint chance constraint into 2T individual chance constraints with reliability factors
εi = ε/(2T ) for i = 1, . . . , 2T . The resulting optimal objective value is denoted by
V B , and the associated optimal solution is used to initialize Algorithm 3.1. We run the
algorithm using the Worst-Case CVaR approximation as well as the approximation by
Chen et al. described in Sect. 3.2. We denote the resulting optimal objective values
by V M and V U , respectively. In both cases the algorithm’s convergence threshold is
set to γ = 10−6. All SDPs arising from the Worst-Case CVaR approximation are
solved with SDPT3 using the YALMIP interface [16], while all SOCPs arising from
the Bonferroni approximation and the approximation by Chen et al. are solved with
MOSEK using the algebraic modeling toolbox ROME [13].

Table 1 reports the optimal objective values and the improvement of V M relative to
V U and V B . As expected, all three methods yield optimal objective values that increase
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Table 1 Optimal objective values of the water reservoir control problem for the Worst-Case CVaR approx-
imation (V M ), the approximation by Chen et al. (V U ), and the Bonferroni approximation (V B )

ε (%) V M V U V B (V M − V U )/ (V M − V B )/ RM RU RB

V U (%) V B (%)

1 44.3 44.3 44.3 0.0 0.0 2.18 2.50 0.82

2 44.9 44.3 44.3 1.4 1.3 17.47 2.51 0.82

3 49.4 44.4 44.3 11.3 11.4 14.99 4.19 0.81

4 52.4 46.7 44.5 12.2 17.6 14.14 4.17 0.82

5 54.5 49.0 45.2 11.2 20.5 15.79 4.18 0.81

6 56.3 50.9 46.0 10.6 22.5 17.30 4.24 0.82

7 57.8 53.0 46.7 9.1 23.6 15.98 4.54 0.86

8 58.9 54.7 47.3 7.7 24.5 13.82 4.62 0.82

9 59.9 56.0 47.8 7.0 25.2 17.70 4.16 0.82

10 60.7 57.1 48.8 6.3 24.5 14.29 4.24 0.81

The table also reports the percentage gaps (V M − V U )/V U and (V M − V B )/V B as well as the runtimes
for the three algorithms (RM , RU , RB ) in seconds

with ε because the joint chance constraint becomes less restrictive as ε grows. At
ε = 1% the objective values of the different approximations coincide. However, V M

exceeds V U and V B for all the other values of ε. In this particular example, our method
outperforms the Bonferroni approximation by up to 25% and the approximation by
Chen et al. by up to 12%. Table 1 also reports the runtimes of the different algorithms.
All instances based on the Worst-Case CVaR approximation are solved in less then
20 seconds, while the instances based on the approximation by Chen et al. and the
Bonferroni approximation are solved in less then 5 and 1 seconds, respectively. Thus,
as expected, the improved solution quality offered by the (SDP-based) Worst-Case
CVaR approximation over the two (SOCP-based) benchmark approximations comes
at an increased computational overhead.

Acknowledgments The authors are indebted to Prof. A. Ben-Tal for valuable discussions on the topic of
this paper and would also like to thank EPSRC for financial support under grant EP/H0204554/1.

Appendix A: Worst-Case expectation and probability problems

Lemma A.1 Let f : Rk → R be a measurable function, and define the worst-case
expectation θwc as

θwc = sup
P∈P

EP

(
( f (ξ̃))+

)
,

where P represents the usual set of all probability distributions on Rk with given mean
vector μ and covariance matrix � 
 0. Then,
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θwc = inf
M∈Sk+1

{
〈�, M〉 : M � 0,

[
ξT 1
]

M
[
ξT 1
]T ≥ f (ξ) ∀ξ ∈ Rk

}
,

where � is the second-order moment matrix of ξ̃ .

Proof The worst-case expectation θwc can equivalently be expressed as

θwc = sup
μ∈M+

∫

Rk

max{0, f (ξ)}μ(dξ)

s. t.
∫

Rk

μ(dξ) = 1

∫

Rk

ξμ(dξ) = μ

∫

Rk

ξξTμ(dξ) = � + μμT,

(51)

where M+ represents the cone of nonnegative Borel measures on Rk . The optimization
variable of the semi-infinite linear program (51) is the nonnegative measure μ. Note
that the first constraint forces μ to be a probability measure. The other two constraints
enforce consistency with the given first- and second-order moments, respectively. We
now assign dual variables y0 ∈ R, y ∈ Rk , and Y ∈ Sk to the equality constraints in
(51), respectively, and introduce the following dual problem (see, e.g. , [25]).

inf y0 + yTμ+ 〈Y,� + μμT〉
s. t. y0 ∈ R, y ∈ Rk, Y ∈ Sk

y0 + yTξ + 〈Y, ξξT〉 ≥ max{0, f (ξ)} ∀ξ ∈ Rk

(52)

Because � 
 0, it can be shown that strong duality holds [14]. Therefore, the worst-
case probability θwc coincides with the optimal value of the dual problem (52). By
defining the combined variable

M =
[

Y 1
2 y

1
2 yT y0

]
,

problem (52) reduces to

inf
M∈Sk+1

〈�, M〉
s. t.
[
ξT 1
]

M
[
ξT 1
]T ≥ max{0, f (ξ)} ∀ξ ∈ Rk .

(53)

Note that the semi-infinite constraint in (53) can be expanded in terms of two equivalent
semi-infinite constraints.
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[
ξT 1
]

M
[
ξT 1
]T ≥ 0 ∀ξ ∈ Rk (54a)

[
ξT 1
]

M
[
ξT 1
]T ≥ f (ξ) ∀ξ ∈ Rk (54b)

Since (54a) is equivalent to M � 0, the claim follows. ��
Lemma A.2 Let S ⊆ Rk be any Borel measurable set (which is not necessarily
convex), and define the worst-case probability πwc as

πwc = sup
P∈P

P{ξ̃ ∈ S}, (55)

Then,

πwc = inf
M∈Sk+1

{
〈�, M〉 : M � 0,

[
ξT 1
]

M
[
ξT 1
]T ≥ 1 ∀ξ ∈ S

}
.

.

Proof The proof is due to Calafiore et al. [7], see also Zymler et al. [29]. A sketch
of the proof is provided here to keep this paper self-contained. Define the indicator
function of the set S as

IS(ξ) =
{

1 if ξ ∈ S,

0 otherwise.

The worst-case probability problem (55) can equivalently be expressed as

πwc = sup
μ∈M+

∫

Rk

IS(ξ)μ(dξ)

s. t.
∫

Rk

μ(dξ) = 1

∫

Rk

ξμ(dξ) = μ

∫

Rk

ξξ T μ(dξ) = � + μμT .

By dualizing this problem and applying similar manipulations as in the proof of
Lemma A.1 we obtain the postulated result. ��
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