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Abstract In this paper, by examining the recession properties of convex polynomi-
als, we provide a necessary and sufficient condition for a piecewise convex polynomial
to have a Hölder-type global error bound with an explicit Hölder exponent. Our result
extends the corresponding results of Li (SIAM J Control Optim 33(5):1510–1529,
1995) from piecewise convex quadratic functions to piecewise convex polynomials.
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1 Introduction

Let f : R
n → R

⋃{+∞} be an extended value function. Define the solution set by
S := {x : f (x) ≤ 0}. We are interested in finding tractable conditions for the existence
of a constant τ such that

d(x, S) ≤ τ
([ f (x)]+ + [ f (x)]δ+

)
for all x ∈ R

n, (1.1)

where d(x, S) denotes the Euclidean distance between x and the set S, δ > 0 and
[α]+ = max{α, 0}. If f satisfies the above inequality (1.1), then we say f has a global
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38 G. Li

error bound. This inequality bounds the distance from an arbitrary point x ∈ R
n (which

explains the term “global”) to the set S in terms of a constant multiple of a comput-
able “residual function” which measures the violation of the constraint “S := {x :
f (x) ≤ 0}”. The study of error bound has attracted a lot of researchers and has found
many important applications (see [3,20,34,43] for excellent surveys). In particular,
it has been used in sensitivity analysis of linear programming/linear complementary
problem. It has also been used as termination criteria for decent algorithms.

The first error bound result is due to Hoffman. He showed that f has a global
error bound with the exponent δ = 1 (which we refer it as a Lipschitz-type global
error bound) if f can be expressed as the maximum of finitely many affine functions.
After the important work of Hoffman, a lot of researchers have devoted themselves
to the study of global error bound. For example, when f is convex and S is bounded
with nonempty interior, Robinson (cf. [35]) established that f has a Lipschitz-type
global error bound. Under the Slater condition and an asymptotic constraint qualifi-
cation, Mangasarian (cf. [29]) established the same result when f is the maximum of
finitely many differentiable convex functions. Later on, Auslender and Crouzeix (cf.
[3]) extended Mangsarian’s result to cover possible non-differentiable convex func-
tions. Li and Klatte [18,19] also achieved the Lipschitz-type global error bound by
imposing some appropriate conditions in terms of the Hausdorff continuity of the set S.
Besides, Deng [11,13] obtained the Lipschitz-type global error bound by assuming a
Slater condition on the recession function. For some other work, see [8,12,14,32]. All
the results we mentioned above are only for the case when (1.1) holds with δ = 1, and
they typically require the Slater condition. On the other hand, if the Slater condition
is not satisfied, Luo and Luo [27] and later, Wang and Pang [40] showed that f has a
global error bound with some exponent δ < 1 (which we often call it a Hölder-type
global error bound) if f can be expressed as the maximum of finitely many convex
quadratic functions. Moreover, Li [26] established that f has a Hölder-type global
error bound with exponent δ = 1/2 if f is a piecewise convex quadratic function and
f itself is also convex.

The purpose of this paper is to extend the above Li’s error bound result [26] from
piecewise convex quadratic functions to piecewise convex polynomials (which occurs
naturally in approximation theory, for example, see [39]). In this paper, we obtain a
simple necessary and sufficient condition for a piecewise convex polynomial f to have
a Hölder-type global error bound with an explicit Hölder exponent δ. We achieve this
by first establishing a global error bound result for a convex polynomial over poly-
hedral constraints, and then, gluing each pieces together. Much of our study on error
bound is in the spirit of [8,11] and is motivated from the recent work on extension
of Frank-Wolfe Theorem [7,33] (some other approaches and related references for
studying error bound can be found in [9,10,14,16,17,20,21,24,25,30,31,34,41,42]).
As we will see later, an advantage of our approach is that the corresponding Hölder
exponent δ in the Hölder-type global error bound result can be determined explicitly.

The organization of this paper is as follows. In Sect. 2, we collect some definitions
and basic results of convex functions. In Sect. 3, we provide a necessary and suffi-
cient condition characterizing when a piecewise convex polynomial has a Hölder-type
global error bound with an explicit Hölder exponent. Finally, in Sect. 4, we conclude
our paper and point out some possible future research directions.
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Global error bounds for piecewise convex polynomials 39

2 Preliminaries

Throughout this paper, Rn denotes Euclidean space with dimension n. The correspond-
ing inner product (resp. norm) in R

n is defined by 〈x, y〉 = xT y for any x, y ∈ R
n

(‖x‖ = (xT x)1/2, for any x ∈ R
n). We use B(x, ε) (resp. B(x, ε)) to denote the

open (resp. closed) ball with center x and radius ε. For a set A in R
n , the interior

(resp. relative interior, closure, convex hull, affine hull) of A is denoted by int A (resp.
riA, A, coA, aff A). If A is a subspace, the orthogonal complement of A is denoted
by A⊥ and is defined as A⊥ := {d : aT d = 0, ∀a ∈ A}. Let A be a closed convex set
in R

n . The indicator function δA : R
n → R ∪ {+∞} is defined by

δA(x) :=
{

0, if x ∈ A,

+∞, otherwise.
(2.1)

The (convex) normal cone of A at a point x ∈ R
n is defined as

NA(x) =
{ {y ∈ R

n : yT (a − x) ≤ 0 for all a ∈ A}, if x ∈ A,

∅, otherwise.

For a function f on R
n , the effective domain and the epigraph are respectively

defined by dom f := {x ∈ R
n : f (x) < +∞} and epi f := {(x, r) ∈ R

n × R :
f (x) ≤ r}. We say f is proper if f (x) > −∞ for all x ∈ R

n and dom f 
= ∅. For
each ε ∈ R, we use [ f ≤ ε] (resp. [ f = ε]) to denote the level set {x ∈ R

n : f (x) ≤ ε}
(resp. {x : f (x) = ε}). Moreover, if lim infx ′→x f (x ′) ≥ f (x) for all x ∈ R

n , then
we say f is a lower semicontinuous function. A function f : R

n → R∪{+∞} is said
to be convex if

f ((1 − μ)x + μy) ≤ (1 − μ) f (x) + μ f (y) for all μ ∈ [0, 1] and x, y ∈ R
n .

Let f be a proper lower semicontinuous convex functions on R
n . The (convex) sub-

differential of f at x ∈ R
n is defined by

∂ f (x)=
{{

z ∈ R
n : zT (y − x) ≤ f (y) − f (x)∀ y ∈ R

n
}
, if x ∈ dom f,

∅, otherwise.
(2.2)

The (right) directional derivative of f in the direction h is defined by f ′+(x; h) =
limt→0+ f (x+th)− f (x)

t . A useful property relates the subdifferential and the directional
derivative is that

f ′+(x; h) ≥ sup{zT h : z ∈ ∂ f (x)}.

Moreover, if we further assume that either f is continuous at x or f = g +δP where g
is a continuously differentiable convex function and P is an affine set, then the above
inequality can be strengthen to an equality, i.e.,

f ′+(x; h) = sup
{

zT h : z ∈ ∂ f (x)
}

. (2.3)
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40 G. Li

As usual, for any proper lower semicontinuous convex function f on R
n , its con-

jugate function f ∗ :Rn →R ∪ {+∞} is defined by f ∗(x∗)=supx∈Rn {〈x∗, x〉− f (x)}
for all x∗ ∈ R

n (cf. [15,23,36]). Let f be a proper function on R
n . Its associated

recession function f ∞ is defined by

f ∞(v) = lim inf
t→∞, v′→v

f (tv′)
t

for all v ∈ R
n . (2.4)

If f is further assumed to be lower semicontinuous and convex, then one has (cf.
[3, Proposition 2.5.2])

f ∞(v) = lim
t→∞

f (x + tv) − f (x)

t

= sup
t>0

f (x + tv) − f (x)

t
for all x ∈ dom f. (2.5)

As usual, we say f : R
n → R is a (real) polynomial if there exists r ∈ N such that

f (x) =
∑

0≤|α|≤r

λαxα

where λα ∈ R, x = (x1, . . . , xn), xα := xα1
1 · · · xαn

n , α j ∈ N ∪ {0} and |α| :=∑n
j=1 α j . The corresponding constant r is called the degree of f and is denoted by

deg( f ).

Definition 2.1 Recall that a continuous function on R
n is said to be a piecewise con-

vex polynomial if there exist finitely many polyhedra P1, . . . , Pk with
⋃k

j=1 Pj = R
n

such that

the restriction of f on each Pj is a convex polynomial.

For a piecewise convex polynomial f , let f j be the restriction of f on Pj . The degree
of f is denoted by deg( f ) and is defined as the maximum of the degree of each f j .

For a piecewise convex polynomial f , if deg( f ) = 1 then it is usually referred as
a piecewise affine function. Moreover, if deg( f ) = 2, then it is usually referred as a
piecewise convex quadratic function.

Two simple and useful examples of piecewise convex polynomials on R
n are:

• f (x) = p(x) + L‖[Ax + b]+‖α, α ∈ {1} ∪ {2n : n ∈ N},
where p is a convex polynomial on R

n, A = (a1, . . . , am)T ∈ R
m×n, b =

(b1, . . . , bm) ∈ R
m and [Ax + b]+ = (max{aT

1 x − b1, 0} . . . , max{aT
m x −

bm, 0})T ∈ R
m ;

• f (x) = (q ◦ g)(x), ∀ x ∈ R
n,

where q is a convex polynomial on R
m, g = (g1, . . . , gm) is a vector value

function and each gi : R
n → R, i = 1, . . . , m, is a piecewise affine function.
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Global error bounds for piecewise convex polynomials 41

It should be noted that, in general, a piecewise convex polynomial need not to be
smooth or convex. For a simple example, consider f (x) := min{x, 1} for all x ∈ R.
In this case, it is clear that f is a piecewise convex polynomial which is neither smooth
nor convex.

Finally, we summarize some basic properties of convex polynomials in the follow-
ing two lemmas. For this first lemma, part (1) is taken from [33, Corollary 4.1 and
Lemma 2.4], part (2) is due to [3, Propsition 3.2.1] and part (3) is from [22, Theorem
3.4]. The second lemma is a Frank-Wolfe type result for a convex polynomial system
which was established in [7].

Lemma 2.1 Let f be a convex polynomial on R
n. Then the following statements hold:

(1) Let v ∈ R
n be such that f ∞(v) = 0. Then f (x + tv) = f (x) for all t ∈ R and

for all x ∈ R
n.

(2) Let x1, x2 be two points in R
n. If f takes a constant value on C := [x1, x2], then

f takes the same constant value on affC.
(3) The function f is asymptotic well behaved in the sense that

∇ f (xk) → 0 ⇒ f (xk) → inf f.

Lemma 2.2 Let f0, f1, . . . , fm be convex polynomials on R
n. Let C :=⋂m

j=1[ f j ≤0].
Suppose that inf x∈C f0(x) > −∞. Then, argminx∈C f0(x) 
= ∅.

3 Global error bound results

In this section, we study the global error bound results. To begin with, we formally
recall the following definitions of error bound.

Definition 3.1 Let f be a proper lower semicontinuous function on R
n . We say f has a

(1) Lipschitz-type global error bound if there exists τ > 0 such that

d(x, [ f ≤ 0]) ≤ τ [ f (x)]+ for all x ∈ R
n,

where [α]+ denotes the number max{α, 0}.
(2) Hölder-type global error bound if there exist τ, δ > 0 such that

d(x, [ f ≤ 0]) ≤ τ
([ f (x)]+ + [ f (x)]δ+

)
for all x ∈ R

n

(The corresponding δ satisfying the preceding inequality is called the Hölder
exponent).

(3) Hölder-type local error bound if there exist r, τ, δ > 0 such that

d(x, [ f ≤ 0]) ≤ τ
([ f (x)]+ + [ f (x)]δ+

)
for all x ∈ [ f ≤ r ].

To avoid the triviality, throughout this section, we assume that ∅ 
= [ f ≤ 0] 
= R
n .

Before we proceed to the study of error bound results, we first introduce a definition
and summarize some existing results.
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42 G. Li

Definition 3.2 Let n, d ∈ N. Define κ(n, d) := (d − 1)n + 1.

The following necessary and sufficient condition for a Lipschitz-type global error
bound plays an important role in our later analysis (cf [20, Theorem 1]). Here, we
state a simplified version of it which is convenient for us.

Lemma 3.1 Let f be a proper lower semicontinuous convex function on R
n and let

τ > 0. Then the following statements are equivalent:

(1) d(x, [ f ≤ 0]) ≤ τ [ f (x)]+ for all x ∈ R
n;

(2) inf{ f ′+(x; h) : h ∈ N[ f ≤0](x), ‖h‖ = 1} ≥ τ−1 for all x ∈ bd([ f ≤ 0]).
In general, verifying the above necessary and sufficient condition may not be an

easy task. Some simple and tractable sufficient conditions are listed below where (1)
and (2) are taken from [20, Corollary 2] and (3) is from [22, Theorem 4.1].

Lemma 3.2 Let f be a proper lower semicontinuous convex function on R
n. Then f

has a Lipschitz-type global error bound if one of the following conditions holds:

(1) [ f ≤ 0] is compact, and the Slater condition holds, i.e., there exists x0 ∈ R
n

such that f (x0) < 0.
(2) There exists v ∈ R

n such that f ∞(v) < 0.

(3) f is a separable function (in the sense that f (x) = ∑n
i=1 fi (xi ) where x =

(x1, . . . , xn) and each fi is a proper function on R) and the Slater condition
holds.

Finally, we also list three important results which will be used later on. The first
one is a Hölder-type global error bound result for a single convex polynomial which
was established in our recent paper [22, Theorem 4.10]. The second one is known as
the linear regularity for finitely many polyhedral sets. The last one is the fact that the
Slater condition implies the basic constraint qualification.

Lemma 3.3 Let f be a convex polynomial on R
n with degree d. Then, f has a Hölder-

type global error bound with exponent κ(n, d)−1, i.e., there exists a constant τ > 0
such that

d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x ∈ R
n . (3.1)

Lemma 3.4 (cf. [4, Corollary 5.26]) Let m ∈ N and let A1, . . . , Am be polyhedral
sets in R

n. Then {A1, . . . , Am} is linear regular in the sense that there exists a constant
τ > 0 such that

d

(

x,

m⋂

i=1

Ai

)

≤ τ

m∑

i=1

d(x, Ai ) for all x ∈ R
n .

Lemma 3.5 (cf. [43, Corollary 2.9.5]) Let f be a proper lower semicontinuous and
convex function satisfying the Slater condition, i.e., there exists x0 ∈ R

n such that
f (x0) < 0. Then the following basic constraint qualification (BCQ) holds:

N[ f ≤0](x) =
⋃

{λ∂ f (x) : λ ≥ 0, λ f (x) = 0} for all x ∈ [ f ≤ 0].
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Global error bounds for piecewise convex polynomials 43

3.1 Global error bound for convex polynomials over polyhedral constraints

In this subsection, we establish a global error bound result for convex polynomials
over polyhedral constraints. More explicitly, we study the global error bound for a
convex function f which takes the following form:

f (x) = g(x) + δP (x) =
{

g(x), if x ∈ P,

+∞, else.
(3.2)

where g is a convex polynomial on R
n and P is a polyhedron in R

n . The result pro-
vided in this subsection will serve as a basis for establishing the global error bound
result for piecewise convex polynomials. Below, we first establish a Lipschitz-type
global error bound result for a convex function f with the form (3.2), under the Slater
condition.

Proposition 3.1 Let g be a convex polynomial on R
n and let P be a polyhedron in R

n.
Let f := g + δP . Suppose that the Slater condition holds, i.e., there exists x0 ∈ R

n

such that f (x0) < 0.1 Then, f has a Lipschitz-type global error bound, i.e., there
exists a constant τ > 0 such that

d(x, [ f ≤ 0]) ≤ τ [ f (x)]+ for all x ∈ R
n . (3.3)

Proof Let P = {x : aT
i x ≤ bi , i = 1, . . . , m}. We prove (3.3) by induction on

the dimension n (of the underlying space). If n = 1, then f is a one dimensional
proper lower semicontinuous convex function satisfying the Slater condition. Then,
Lemma 3.2(3) implies that the conclusion holds for n = 1. Suppose that (3.3) holds
for any convex function f with the form f = g + δP where g is a convex poly-
nomial on R

s and P is a polyhedron in R
s such that f satisfy the Slater condition.

Now, let us consider the case when n = s + 1. If [ f ≤ 0] is compact, then the
conclusion holds immediately by Lemma 3.2(1). So, we assume without loss of gen-
erality that [ f ≤ 0] = [g ≤ 0] ∩ P is unbounded. Then, there exists a sequence
{xk} ⊆ [g ≤ 0] ∩ P such that ‖xk‖ → +∞. By passing to a subsequence if neces-
sary, we may further assume that

xk

‖xk‖ → v (3.4)

for some v ∈ R
s+1 with ‖v‖ = 1. It can be verified that aT

i v ≤ 0 for all i = 1, . . . , m,
and g∞(v) ≤ 0 (to see this, from (2.4), we see that

g∞(v) = lim inf
t→∞, v′→v

g(tv′)
t

≤ lim inf
n→∞

g
(
‖xn‖ xn‖xn‖

)

‖xn‖ = lim inf
n→∞

g(xn)

‖xn‖ ≤ 0.)

1 This is equivalent to the existence of x0 ∈ P with g(x0) < 0.
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44 G. Li

Suppose that g∞(v) < 0. It follows from (2.5) that

sup
t>0

g(x + tv) − g(x)

t
= g∞(v) < 0 for all x ∈ R

s+1.

Note that, for any x ∈ dom f = P, x + tv ∈ P ∀ t > 0, and so,

f ∞(v) = sup
t>0

f (x + tv) − f (x)

t
= sup

t>0

g(x + tv) − g(x)

t
< 0.

Therefore, the conclusion follows from Lemma 3.2(2). Now, suppose that g∞(v) = 0.
Then, Lemma 2.1(1) gives us that

g(x + tv) = g(x) for any x ∈ R
s+1 and for any t ∈ R. (3.5)

To show (3.3), we only need to show

d(x, [g ≤ 0] ∩ P) ≤ τ [g(x)]+ for all x ∈ P. (3.6)

Now, we consider the following two cases: Case 1, aT
i v = 0 for all i = 1, . . . , m;

Case 2, there exists i0 ∈ {1, . . . , m} such that aT
i0
v < 0.

Suppose that Case 1 holds. Define A = v⊥ := {d ∈ R
s+1 : dT v = 0}. Since

v 
= 0, we have dim A = s. Thus, there exists a full rank matrix Q ∈ R
(s+1)×s such

that {Qz : z ∈ R
s} = A. Note that R

s+1 = A ⊕ span{v} where ⊕ denotes the direct
sum and span{v} := {tv : t ∈ R}. For any x ∈ R

s+1, one has

x = PrA(x) + Prspan{v}(x), (3.7)

where Pr is the usual Euclidean projection. From (3.5), we see that g(x) = g(PrA(x))

for all x ∈ R
s+1. Letting h : R

s → R be defined by h(z) := g(Qz), it follows that h
is a convex polynomial on R

s . Let P ′ = {z ∈ R
s : Qz ∈ PrA(P)}. Then we see that

P ′ is a polyhedron in R
s . Since {Qz : z ∈ R

s} = A, there exists z0 ∈ R
s such that

Qz0 = PrA(x0). This gives us that z0 ∈ P ′ and

h(z0) = g(Qz0) = g(PrA(x0)) = g(x0) < 0.

Thus, the induction hypothesis implies that there exists μ1 > 0 such that

d(z, [h ≤ 0] ∩ P ′) ≤ μ1[h(z)]+ for all z ∈ P ′.

We now show that

Q([h ≤ 0]) + span{v} = [g ≤ 0] and Q(P ′) + span{v} = P. (3.8)

Indeed, to see the first relation of (3.8), let z ∈ [h ≤ 0] and t ∈ R. Then, from (3.5), we
see that g(Qz + tv) = g(Qz) = h(z) ≤ 0. Thus, Q([h ≤ 0]) + span{v} ⊆ [g ≤ 0].
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Global error bounds for piecewise convex polynomials 45

To see the converse inclusion, let x ∈ [g ≤ 0]. From (3.7), we have x = PrA(x) +
Prspan{v}(x). Since PrA(x) ∈ A = {Qz : z ∈ R

s}, there exists z0 ∈ R
s such that

PrA(x) = Qz0. Thus, we have x = Qz0 + Prspan{v}(x). Noting that Prspan{v}(x) ∈
span{v}, it suffices to show that z0 ∈ [h ≤ 0]. To see this, since g(x) = g(PrA(x)),
we have h(z0) = g(Qz0) = g(PrA(x)) = g(x) ≤ 0. To see the second relation,
take x ∈ P . From (3.7), we have x = PrA(x) + Prspan{v}(x). As PrA(P) = Q(P ′),
we see that P ⊆ Q(P ′) + span{v}. Conversely, let y ∈ Q(P ′) = PrA(P) and
z ∈ span{v}. Then, there exists x ∈ P such that y = PrA(x). It follows from (3.7)
that y − x ∈ span{v}, and so, y + z = x + (

(y − x) + z
) ∈ P + span{v}. Now, recall

that aT
i v = 0, i = 1, . . . , m and so, p + tv ∈ P for any p ∈ P and t ∈ R. Thus,

y + z ∈ P .
It follows from x ∈ P that there exist z ∈ P ′ and q ∈ R such that x = Qz + qv.

Moreover, (3.8) also implies that Q([h ≤ 0] ∩ P ′) + span{v} ⊆ [g ≤ 0] ∩ P , and so,

d(x, [g ≤ 0] ∩ P) ≤ d
(
Qz + qv, Q([h ≤ 0] ∩ P ′) + span{v})

≤ d
(
Qz, Q([h ≤ 0] ∩ P ′)

)

≤ ‖Q‖d(z, [h ≤ 0] ∩ P ′)
≤ μ1‖Q‖ [h(z)]+,

where ‖Q‖ = sup{‖Qz‖Rs+1 : ‖z‖ = 1, z ∈ R
s}. Since g(x) = g(Qz + qv) =

g(Qz) = h(z) and ‖Q‖ > 0 (as Q is of full rank), we have

d(x, [g ≤ 0] ∩ P) ≤ μ1‖Q‖ [g(x)]+ for all x ∈ P.

Thus, the conclusion holds in this case.
Suppose that Case 2 holds. From Lemma 3.1, it suffices to show that there exists

τ > 0 such that

inf{ f ′+(x; h) : h ∈ N[ f ≤0](x), ‖h‖ = 1} ≥ τ−1 for all x ∈ bd([ f ≤ 0]) (3.9)

To see (3.9), fix a point x ∈ bd([ f ≤ 0]) with g(x) < 0. Then, x ∈ bdP and so,
N[ f ≤0](x) = NP (x) 
= {0}. It follows that

x + th /∈ P for all h ∈ N[ f ≤0](x), ‖h‖ = 1 and t > 0.

Thus,

inf{ f ′+(x; h) :h ∈ N[ f ≤0](x), ‖h‖=1}=+∞ for all x ∈bd([ f ≤0]) with g(x)<0.

Therefore, to see (3.9), we only need to show that there exists τ > 0 such that

inf{ f ′+(x; h) : h ∈ N[ f ≤0](x), ‖h‖ = 1}
≥ τ−1 for all x ∈ bd([ f ≤ 0]) with g(x) = 0. (3.10)
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Note that [ f ≤ 0] = [g ≤ 0] ∩ P ,

f ′+(x; u) ≥ sup
{
wT u : w ∈ ∂ f (x)

}

= sup
{
wT u : w ∈ ∇g(x) + NP (x)

}

= sup

⎧
⎨

⎩
wT u : w = ∇g(x) +

∑

i∈I (x)

λi ai where λi ≥ 0

⎫
⎬

⎭
for all u ∈ R

n,

where I (x) := {1 ≤ i ≤ m : aT
i x = bi } and (from Lemma 3.5 that)

N[ f ≤0](x) =
⋃

α≥0

α∂ f (x) =
⋃

α≥0,λi ≥0

α

⎛

⎝∇g(x) +
∑

i∈I (x)

λi ai

⎞

⎠ .

It follows that for all x ∈ bd([ f ≤ 0]) with g(x) = 0 and h ∈ N[ f ≤0](x) with
‖h‖ = 1,

h = ∇g(x) +∑
i∈I (x) λi ai

∥
∥
∥∇g(x) +∑

i∈I (x) λi ai

∥
∥
∥

for some λi ≥ 0 and so,

f ′+(x; h) ≥
∥
∥
∥
∥
∥
∥
∇g(x) +

∑

i∈I (x)

λi ai

∥
∥
∥
∥
∥
∥

.

Therefore, to see (3.10), it remains to show

∥
∥
∥
∥
∥
∥
∇g(x) +

∑

i∈I (x)

λi ai

∥
∥
∥
∥
∥
∥

≥ τ−1 for all λi ≥ 0, x ∈ bd([g ≤ 0] ∩ P) with g(x) = 0.

We proceed by the method of contradiction and suppose that there exist {xk} ⊆
bd([g ≤ 0] ∩ P) with g(xk) = 0 and λk

i ≥ 0, i ∈ I (xk) such that ∇g(xk) +
∑

i∈I (xk ) λk
i ai → 0. By passing to a subsequence if necessary, we may assume that

I (xk) ≡ I 
= ∅. This implies that aT
i xk = bi for all i ∈ I , and

∇g(xk) +
∑

i∈I

λk
i ai → 0. (3.11)

Recall that xk

‖xk‖ → v. Define I1 = {i ∈ I : aT
i v = 0} and I2 = {i ∈ I : aT

i v < 0}.
Note from (3.5) that ∇g(x)T v = 0 for all x ∈ R

n . As aT
i v = 0 for all i ∈ I1, it
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follows that

∑

i∈I2

λk
i aT

i v = ∇g(xk)T v +
∑

i∈I

λk
i aT

i v → 0.

Since aT
i v < 0 for all i ∈ I2, we have limn→∞ λk

i = 0 for all i ∈ I2. It then follows
from (3.11) that

∇g(xk) +
∑

i∈I1

λk
i ai → 0. (3.12)

Next, we observe that I1 
= ∅ (otherwise, I1 = ∅ and so ∇g(xk) → 0. Since g
is a convex polynomial, g is asymptotic well behaved (see Lemma 2.1(3)). Thus,
g(xk) → inf g. This together with g(xk) = 0 implies that inf g = 0. This makes
contradiction as g(x0) < 0). Consider PI1 = {x : aT

i x = bi , i ∈ I1}. We now claim
that there exists

x∗ ∈ PI1 such that g(x∗) < 0. (3.13)

To see this claim, we proceed by the method of contradiction and suppose that g is
nonnegative on PI1 . From the Lagrangian duality, there exist γi ∈ R, i ∈ I1, such that
0 ≤ infx∈PI1

g(x) = inf x∈Rn {g(x)+∑i∈I1
γi (aT

i x−bi )}. So, g(x)+∑i∈I1
γi (aT

i x−
bi ) ≥ 0 for all x ∈ R

n . As g(xk) = 0 and xk ∈ PI1 , infx∈PI1
g(x) = 0, we see that

g(xk) + ∑
i∈I1

γi (aT
i xk − bi ) = 0. It follows that the convex function q(x) :=

g(x) +∑
i∈I1

γi (aT
i x − bi ) attains its minimum at xk for all k ∈ N. Hence,

∇q(xk) = ∇g(xk) +
∑

i∈I1

γi ai = 0 for all k ∈ N

and so, ∇g(xk) ≡ −∑
i∈I1

γi ai is a constant vector. This together with (3.12) implies
that ‖∑i∈I1

λk
i ai‖ is bounded. Then, by the Hoffman error bound, we may assume

without loss of generality that λk
i is bounded (Indeed, consider the function A : R

|I1| →
R, defined by A(λ) = ‖∑i∈I1

λi ai‖∞ where ‖ · ‖∞ is the usual l∞ norm. Let S =
{λ ∈ R

|I1| : A(λ) = 0}. It is clear that S is a subspace. Let λk = (λk
i )i∈I1 ∈ R

|I1|. Then,
we can decompose λk = μk + γ k where μk ∈ S⊥ and γ k ∈ S. From the definition
of S, we have

∑
i∈I1

λk
i ai = ∑

i∈I1
μk

i ai +∑
i∈I1

γ k
i ai = ∑

i∈I1
μk

i ai . Moreover, by
the Hoffman error bound, there exists τ > 0 such that ‖μk‖ = d(λk, S) ≤ τ A(λk) =
τ‖∑i∈I1

λi ai‖∞. Thus, μk is bounded, and so, by replacing λk with μk if necessary,
we can always assume that λk is bounded.) By passing to a subsequence if neces-
sary, we have λk

i → λi ≥ 0, and so, ∇g(xk0) + ∑
i∈I1

λi ai = 0, where k0 is any
natural number. This implies that xk0 is a stationary point of the convex function
w(x) = g(x) +∑

i∈I1
λi (aT

i x − bi ), and so, g(x) +∑
i∈I1

λi (aT
i x − bi ) ≥ 0 for all

x ∈ R
n . However, this is impossible as x0 ∈ P and g(x0) < 0. So, noticing (3.13)
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and aT
i v = 0 for all i ∈ I1, and proceeding much as in case 1, we can find α > 0 such

that, for all x ∈ PI1 ,

d(x, [g ≤ 0] ∩ PI1) ≤ α[g(x)]+.

Let f = g + δPI1
. It follows that f is a proper lower semicontinuous convex function

and

d(x, [ f ≤ 0]) ≤ α[ f (x)]+ for all x ∈ R
n .

Thus, from Lemma 3.1 again, we have for all x ∈ bd([ f ≤ 0])

inf{ f
′
+(x; u) : u ∈ N[ f ≤0](x), ‖u‖ = 1} ≥ α−1.

Since aT
i xk = bi , ∀ i ∈ I1, we have xk ∈ bd([ f ≤ 0]) and (by (2.3))

f
′
+(xk; u) = sup

{
wT u : w ∈ ∂ f (xk)

}

= sup
{
∇g(x)T u + vT u : v ∈ NPI1

(xk)
}

= sup

⎧
⎪⎨

⎪⎩

⎛

⎝∇g(xk) +
∑

i∈I1

μi ai

⎞

⎠

T

u : μi ∈ R

⎫
⎪⎬

⎪⎭
.

This implies that

max

⎧
⎪⎨

⎪⎩

⎛

⎝∇g(xk) +
∑

i∈I1

μi ai

⎞

⎠

T

u : μi ∈ R

⎫
⎪⎬

⎪⎭

≥ α−1 for all u ∈ N[ f ≤0](xk) with ‖u‖ = 1. (3.14)

Let L = {x ∈ R
s+1 : aT

i x = 0, i ∈ I1}. Then L⊥ = {∑
i∈I1

λi ai : λi ∈ R
}
. Since

R
s+1 = L ⊕ L⊥, we can write ∇g(xk) = wk + vk where wk = PrL

(∇g(xk)
)

and
vk ∈ PrL⊥

(∇g(xk)
)
. Then we have

‖wk‖ = min

⎧
⎨

⎩

∥
∥
∥
∥
∥
∥
∇g(xk) +

∑

i∈I1

λi ai

∥
∥
∥
∥
∥
∥

: λi ∈ R

⎫
⎬

⎭

and

∇g(xk)T wk − ‖wk‖2 =
(
∇g(xk) − wk

)T
wk = (vk)

T wk = 0. (3.15)
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Moreover, for all x ∈ [ f ≤ 0] = [g ≤ 0] ∩ PI1 , we see that

(wk)T (x − xk) =
(
∇g(xk) − vk

)T
(x − xk) ≤ 0,

and so, wk ∈ N[ f ≤0](xk). Note that wk 
= 0 (otherwise, ∇g(xk) ∈ L⊥ and so, g

attains its minimum on PI1 at xk . This implies that g is nonnegative on PI1 which is

impossible). Then, we see that wk

‖wk‖ ∈ N[ f ≤0](xk). It follows from wk ∈ L (and so,

aT
i wk = 0 ∀ i ∈ I1), (3.15) and (3.14) that

α−1 ≤ sup

⎧
⎪⎨

⎪⎩

⎛

⎝∇g(xk) +
∑

i∈I1

μi ai

⎞

⎠

T (
wk

‖wk‖
)

: μi ∈ R

⎫
⎪⎬

⎪⎭

= ‖wk‖ = min

⎧
⎨

⎩

∥
∥
∥
∥
∥
∥
∇g(xk) +

∑

i∈I1

λi ai

∥
∥
∥
∥
∥
∥

: λi ∈ R

⎫
⎬

⎭

This contradicts (3.12) and completes the proof. ��

We have seen that the Slater condition guarantees a Lipschitz-type global error
bound. In general, the Lipschitz-type global error bound might fail if the Slater con-
dition is not satisfied. For a simple example, let n = 1, g(x) = x2 and P = R.
Then, f = g + δP = g. It is clear that [ f < 0] = ∅ and so, the Slater condition
is not satisfied. On the other hand, consider xk = 1/k (k ∈ N). It is easy to verify
that d(xk ,[ f ≤0])

[ f (xk)]+ → +∞, and so, the Lipschitz-type global error bound fails. Thus, it
is natural to ask what happens if the Slater condition is not satisfied.

Below, we will provide an answer for this question. More explicitly, we will show
that, a Hölder-type global error bound with Hölder exponent κ(n, d)−1 holds regard-
less whether the Slater condition holds or not. This Hölder-type global error bound is
achieved by applying the standard Lagrange multiplier technique and Lemma 3.3.

Theorem 3.1 Let g be a convex polynomial on R
n with degree d and let P be a poly-

hedron in R
n. Let f = g + δP . Then, f has a Hölder-type global error bound with

exponent κ(n, d)−1, i.e., there exists a constant τ > 0 such that

d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x ∈ R
n . (3.16)

Proof From the preceding proposition, we may assume without loss of generality that
f is nonnegative. This gives us that g is nonnegative on P . Let P = {x : aT

i x ≤
bi , i = 1, . . . , m}. Consider the following minimization problem:

(P) min g(x) s.t. aT
i x ≤ bi , i = 1, . . . , m.
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Take x ∈ [g ≤ 0] ∩ P = [g = 0] ∩ P . Then, x is a global minimizer of (P). Thus,
there exist λi ≥ 0, i = 1, . . . , m such that

∇g(x) +
m∑

i=1

λi ai = 0 and λi

(
aT

i x − bi

)
= 0, i = 1, . . . , m.

Define φ(x) := g(x) +∑m
i=1 λi (aT

i x − bi ). Then, we see that φ is a convex polyno-
mial with degree d satisfying ∇φ(x) = 0. This implies that φ attains its minimum at
x and min φ = φ(x) = 0. Thus, from Lemma 3.3, there exists μ > 0 such that

d(x, [φ = 0]) = d(x, [φ ≤ 0]) ≤ μ
(
φ(x) + φ(x)κ(n,d)−1

)
∀ x ∈ R

n . (3.17)

Let L = {x : (λi ai )
T x = λi bi , i = 1, . . . , m}. Next, we claim that

[φ = 0] ∩ P ∩ L = [g ≤ 0] ∩ P. (3.18)

Granting this and noting that [φ = 0], P and L are all polyhedral sets,2 Lemma 3.4
implies that there exists τ0 > 0 such that

d(x, [g ≤ 0] ∩ P) = d(x, [φ = 0] ∩ P ∩ L)

≤ τ0
(
d(x, [φ = 0]) + d(x, P) + d(x, L)

)
.

From the Hoffman’s lemma, we see that d(x, L) ≤ α
∑m

i=1 |λi (aT
i x − bi )|. This

implies that for all x ∈ P

d(x, [g ≤ 0] ∩ P) ≤ τ0d(x, [φ = 0]) + ατ0

m∑

i=1

∣
∣
∣λi

(
aT

i x − bi

)∣
∣
∣ .

Noting that φ(x) ≤ g(x) = [g(x)]+ for all x ∈ P , this together with (3.17) implies that

d(x, [g ≤ 0] ∩ P) ≤ μτ0

(
[g(x)]+ + [g(x)]κ(n,d)

+
)

+ατ0

m∑

i=1

∣
∣
∣λi

(
aT

i x − bi

)∣
∣
∣ ∀ x ∈ P.

Since φ is nonnegative, we see that for all x ∈ P

m∑

i=1

∣
∣
∣λi

(
aT

i x − bi

)∣
∣
∣ = −

m∑

i=1

λi

(
aT

i x − bi

)
= g(x) − φ(x) ≤ g(x).

2 To see [φ = 0] is a polyhedron, we assume without loss of generality that [φ = 0] is not a singleton.
Noting that [φ = 0] = {x : φ(x) = inf φ} is convex, it follows from Lemma 2.1 (2) that [φ = 0] is affine
and so is a polyhedral set.
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Thus, letting τ = τ0(μ + α), we have

d(x, [g ≤ 0] ∩ P) ≤ τ
(
[g(x)]+ + [g(x)]κ(n,d)−1

+
)

∀ x ∈ P,

and so, (3.16) holds. Finally, to see (3.18), we first note that [g ≤ 0] ∩ P ⊆ [φ ≤
0] ∩ P ∩ L = [φ = 0] ∩ P ∩ L always holds. To see the reverse inclusion, take
z ∈ [φ = 0] ∩ P ∩ L . Then, λi (aT

i z − bi ) = 0. On the other hand, since φ is
nonnegative and φ(z) = 0, we have

∇φ(z) = ∇g(z) +
m∑

i=1

λi ai = 0.

This implies that z satisfies the KKT condition of the problem (P). Note that (P) is a
convex problem with linear constraint. It follows that z is a global minimizer of (P)
and so (3.18) follows. ��

As a corollary, we provide the following Hölder-type error bound result on a com-
pact set. In the special case when f is a convex quadratic function, i.e., d = 2 (and
so, κ(n, d) = 2), this result has been presented in [28, Theorem 4.1]. It should be
emphasized that [28, Theorem 4.1] established a more general result. More explicitly,
they established that the conclusion is true when the Hessian of the quadratic function
is copositive on a set which is a translation of the corresponding polyhedron P .

Corollary 3.1 Let f be a convex polynomial on R
n with degree d and let P be a

polyhedron in R
n with the form P = {x ∈ R

n : aT
i x ≤ bi , i = 1, . . . , m}. Then, there

exists a constant τ > 0 such that

d(x, [ f ≤ 0] ∩ P)≤ τ

(

[ f (x)]++[ f (x)]κ(n,d)−1

+ + (1 + ‖∇ f (x)‖)
m∑

i=1

[aT
i x − bi ]+

+‖∇ f (x)‖κ(n,d)−1

(
m∑

i=1

[
aT

i x−bi

]

+

)κ(n,d)−1)

for all x ∈R
n .

(3.19)

In particular, for any compact set K , there exists a constant τK > 0 such that

d(x, [ f ≤ 0] ∩ P)

≤τK

(

[ f (x)]κ(n,d)−1

+ +
(

m∑

i=1

[
aT

i x − bi

]

+

)κ(n,d)−1 )

, for all x ∈ K . (3.20)

Proof From the preceding theorem and the Hoffman error bound, we can find τ1,

τ2 > 0 such that

d(z, [ f ≤ 0] ∩ P) ≤ τ1([ f (z)]+
+[ f (z)]κ(n,d)−1

+ )∀ z ∈ P and d(x, P) ≤ τ2

m∑

i=1

[
aT

i x − bi

]

+ ∀ x ∈ R
n .
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Fix an arbitrary x ∈ R
n . Let z ∈ P be such that z = PrP (x). Note from the triangle

inequality that

d(x, [ f ≤ 0] ∩ P) ≤ d(z, [ f ≤ 0] ∩ P) + ‖x − z‖ = d(z, [ f ≤ 0] ∩ P) + d(x, P).

Thus, we have

d(x, [ f ≤ 0] ∩ P) ≤ τ1

(
[ f (z)]+ + [ f (z)]κ(n,d)−1

+
)

+ τ2

m∑

i=1

[
aT

i x − bi

]

+ .

Now, by the convexity of f , we have

f (z) ≤ f (x) + ∇ f (x)T (z − x).

From the following elementary inequalities:

∀ q ≤ 1 and a ≤ b, [a]q
+ ≤ [b]q

+ and [a + b]q
+ ≤ [a]q

+ + [b]q
+,

it follows that for any q ≤ 1

[ f (z)]q
+ ≤ [ f (x) + ∇ f (x)T (z − x)]q

+ ≤ [ f (x)]q
+ + [∇ f (x)T (z − x)]q

+
≤ [ f (x)]q

+ + ‖∇ f (x)‖q ‖z − x‖q

= [ f (x)]q
+ + ‖∇ f (x)‖q d(x, P)q

≤ [ f (x)]q
+ + τ

q
2 ‖∇ f (x)‖q

(
m∑

i=1

[
aT

i x − bi

]

+

)q

.

Therefore, we have

d(x, [ f ≤ 0] ∩ P) ≤ τ1

(
[ f (z)]+ + [ f (z)]κ(n,d)−1

+
)

+ τ2

m∑

i=1

[
aT

i x − bi

]

+

≤ τ1

(

[ f (x)]+ + τ2‖∇ f (x)‖
m∑

i=1

[
aT

i x − bi

]

+ + [ f (x)]κ(n,d)−1

+

+τ
κ(n,d)−1

2 ‖∇ f (x)‖κ(n,d)−1

(
m∑

i=1

[aT
i x−bi ]+

)κ(n,d)−1 )

+τ2

m∑

i=1

[
aT

i x − bi

]

+

≤ τ

(

[ f (x)]+ + [ f (x)]κ(n,d)−1

+ + (1 + ‖∇ f (x)‖)
m∑

i=1

[
aT

i x − bi

]

+

+‖∇ f (x)‖κ(n,d)−1

(
m∑

i=1

[
aT

i x − bi

]

+

)κ(n,d)−1 )

, (3.21)

where τ = τ1

(
1 + τ2 + τ

κ(n,d)−1

2

)
. Thus, (3.19) is shown. To see the last assertion,

let K be a compact set. Then, there exist M1, M2, M3 > 0 such that for all x ∈ K
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‖∇ f (x)‖ ≤ M1, [ f (x)]+ ≤ M2[ f (x)]κ(n,d)−1

+

and

m∑

i=1

[
aT

i x − bi

]

+ ≤ M3

(
m∑

i=1

[aT
i x − bi ]+

)κ(n,d)−1

.

Therefore, the assertion follows from (3.21). ��
Let f be a convex polynomial and let P be a polyhedron defined as P = {x :

aT x ≤ bi , i = 1, . . . , m}. As another corollary, we obtain a continuity result of a
set-valued mapping A : R → 2R

n
, defined by

A(λ) : = [ f ≤ λ] ∩ P

= {x : f (x) ≤ λ and aT x ≤ bi , i = 1, . . . , m}, λ ∈ R. (3.22)

Corollary 3.2 Consider the set-valued mapping A : R → 2R
n

defined as in (3.22).
Then, the mapping A is Hausdorff upper semicontinuous at 0 in the sense that

lim
λ→0+ sup

x∈A(λ)

d(x, A(0)) = 0.

Proof Let f = f + δP . It follows that A(0) = [ f ≤ 0], and f agrees f on P .
Applying Theorem 3.1 to f , this implies that there exists τ > 0 such that

d(x, A(0)) = d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

= τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for any x ∈ P. (3.23)

Let {λk} be an arbitrary sequence such that λk ≥ 0 and λk → 0 and fix any {xk} ⊆
A(λk). Noting that A(λk) ⊆ P , (3.23) implies that

d(xk, A(0)) ≤ τ
(
[ f (xk)]+ + [ f (xk)]κ(n,d)−1

+
)

≤ τ
(
λk + (λk)κ(n,d)−1

)
→ 0.

Thus, the conclusion follows.

The study of the continuity of a set-valued mapping is an important topic of set-
valued analysis and variational analysis [6,37,38]. It has attracted a lot of researchers
and has found many important applications. In particular, it is well known that a
group of researchers from the Moscow University has constructed subtle examples
(see [1,5,6,38]) of set-valued mapping M with the form

λ = (λ0, λ1 . . . , λm) ∈ R
m+1 �→ M(λ)

:=
{

x ∈ R
n : f (x) ≤ λ0 and aT

i x ≤ bi + λi , i = 1, . . . , m
}
,
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where f : R
n �→ R is a convex polynomial, ai ∈ R

n and bi ∈ R, such that the
set-valued mapping M is not Hausdorff upper semicontinuous at 0. It is worthy noting
that all examples given in [1,2,5,6,38] work with varying λ1, . . . , λm , while our result
in Corollary 3.2 works with a fixed polyhedral set P , that is, λi ≡ 0, i = 1, . . . , m
(see (3.22)). Below, we present an example illustrating this subtle difference. More
explicitly, making use of an example presented in [1,2], we construct two set-valued
mapping A1 and A2 with the following form

λ = (λ0, λ1, λ2) ∈ R
3 �→ A1(λ) :=

{
x ∈ R

4 : f (x) ≤ λ0, aT
i x ≤ λi , i = 1, 2

}

and

λ ∈ R �→ A2(λ) :=
{

x ∈ R
4 : f (x) ≤ λ, aT

i x ≤ 0, i = 1, 2
}

,

where f is a convex polynomial, and show that A1 is not Hausdorff upper semicon-
tinuous at 0 while A2 is Hausdorff upper semicontinuous at 0.

Example 3.1 We begin by recalling an example which was presented in [1,2]. Let
F : R

3 → R be defined by

F(x0, x1, x2) = μ0x8
0 x16

1 x2 + μ1x10
0 x12

1 x2
2 + μ2x32

1 x12
2 + μ3x204

2

+μ4x34
1 + μ5x12

0 x8
1 + μ6x6

0 x20
1 + μ7x16

0 + μ8x32
1 ,

where μ0 < 0 and μi ∈ R, i = 1, . . . , 8 are positive such that F is convex.3 Let
f0(x0, x1, x2, x3) = F(x0, x1, x2) − x3 and g(x0, x1, x2, x3) = x2

2 . It is clear that
f0 and g are both convex polynomials. Consider the associated set-valued mapping
M : R

2 → 2R
4
, defined by

M(λ) := {x = (x0, x1, x2, x3) ∈ R
4 : f0(x) ≤ λ1

and g(x) ≤ λ2}, λ = (λ1, λ2) ∈ R
2.

In [1,2] (see also [5, Example 6]), they showed that the set-valued mapping M is not
Hausdorff upper-semicontinuous at 04 by constructing γ > 0, μk = (μk

1, μ
k
2) → 0

and ak ∈ M(μk) such that

d(ak, M(0)) → γ. (3.24)

[Construction of the set-valued mapping]
Now, define two closed related set-valued mapping A1 : R

3 → 2R
4

and A2 : R → 2R
4

3 Possible choice of μ0, . . . , μ8 is examined and explicitly given in [6] (see also [1,2,5]).
4 Indeed, they have shown a stronger result, namely,

{b : ∃λk 
= 0, λk → 0 such that sup
x∈M(λk )

d(x, M(0)) → b} = {0, γ }.
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as follows

A1(λ) := {x = (x0, x1, x2, x3) ∈ R
4 : f0(x) ≤ λ1, x2 ≤ λ2

and − x2 ≤ λ3}, λ = (λ1, λ2, λ3) ∈ R
3

and

A2(λ) := {x = (x0, x1, x2, x3) ∈ R
4 : f0(x) ≤ λ, x2 ≤ 0 and − x2 ≤ 0}, λ ∈ R.

[Verifying that A1 is not Hausdorff upper-semicontinuous at 0]
Recall that μk = (

μk
1, μ

k
2

) → 0 and ak ∈ M(μk). This implies that ak ∈ M(μk) ⊆
A1

(

μk
1,

√
μk

2,

√
μk

2

)

and

(

μk
1,

√
μk

2,

√
μk

2

)

→ 0. Noting that A1(0) = M(0), it

follows from (3.24) that

d(ak, A1(0)) → γ > 0.

This shows that A1 is not Hausdorff upper-semicontinuous at 0.
[Verifying the Hausdorff upper semicontinuity of A2 at 0]

Now, consider the polyhedron P = {(x0, x1, x2, x3) ∈ R
4 : x2 = 0} and let

f = f0 + δP . We first verify that f has a global error bound. To see this, we first
observe that

[ f ≤ 0] = [ f0 ≤ 0] ∩ P = {(x0, x1, x2, x3) : x2 = 0

and μ4x34
1 + μ5x12

0 x8
1 + μ6x6

0 x20
1 + μ7x16

0 + μ8x32
1 ≤ x3}.

Define a new polynomial h as follows

h(a0, a1, a2) = μ4a34
1 + μ5a12

0 a8
1 + μ6a6

0a20
1 + μ7a16

0 + μ8a32
1 − a2.

Clearly, h is convex (as h(a0, a1, a2) = f0(a0, a1, 0, a2) ) and

h∞(0, 0, 1) = sup
t>0

h(a + t (0, 0, 1)) − h(a)

t
= −1 < 0 for all a ∈ R

3.

Thus, Lemma 3.2 (2) guarantees that there exists τ > 0 such that

d(a, [h ≤ 0]) ≤ τ [h(a)]+ for all a ∈ R
3.

Moreover, from the definition of h, we see that

[ f ≤ 0] = {(x0, x1, x2, x3) : x2 = 0 and h(x0, x1, x3) ≤ 0}.
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For any x = (x0, x1, x2, x3) ∈ P , we have x2 = 0 and so,

d(x, [ f ≤ 0]) = d((x0, x1, x3), [h ≤ 0])
≤ τ [h(x0, x1, x3)]+ = τ [ f0(x0, x1, 0, x3)]+.

In other words, for any x = (x0, x1, x2, x3) ∈ P, d(x, [ f ≤ 0]) ≤ τ [ f (x)]+. As f
takes the value +∞ outside the polyhedron P , it follows that

d(x, [ f ≤ 0]) ≤ τ [ f (x)]+ for all x ∈ R
n .

Thus, f has a global error bound. Now, let {λk} be an arbitrary sequence such that
λk ≥ 0 and λk → 0, and fix any xk ∈ A2(λ

k) ⊆ P . As f has a global error bound,
we have

d(xk, A2(0)) = d(xk, [ f ≤ 0]) ≤ τ [ f (x)]+ ≤ τλk → 0.

This shows that limλ→0+ supx∈A2(λ) d(x, A2(0)) = 0, that is, A2 is Hausdorff upper
semicontinuous at 0.

3.2 Global error bound for piecewise convex polynomial

In this subsection, we provide a necessary and sufficient condition characterizing when
a piecewise convex polynomial has a Hölder-type global error bound with an explicit
Hölder exponent. To begin with, as a simple application of Lemma 2.2, we first provide
a Frank-Wolfe type result for a piecewise convex polynomial.

Lemma 3.6 Let f be a piecewise convex polynomial on R
n. Suppose that

inf f > −∞. Then, we have argmin f 
= ∅.

Proof Since f is a piecewise convex polynomial, there exist finitely many polyhedra
P1, . . . , Pk with

⋃k
j=1 Pj = R

n such that the restriction of f on each Pj is a
convex polynomial. As inf f > −∞, we see that inf x∈Pj f (x) > −∞, j =
1, . . . , k. Thus, by Lemma 2.2, we have argminx∈Pj

f (x) 
= ∅. Note that inf f =
min1≤ j≤k minx∈Pj f (x). Therefore, we see that argmin f 
= ∅. ��

Now, we establish a Hölder-type local error bound result for piecewise convex poly-
nomials. Later, we will use this result to examine a sufficient and necessary condition
for the Hölder-type global error bound results of piecewise convex polynomials.

Proposition 3.2 Let f be a piecewise convex polynomial on R
n with degree d. Then,

f has a Hölder-type local error bound with exponent κ(n, d)−1, i.e., there exist r > 0
and τ > 0 such that

d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x ∈ [ f ≤ r ]. (3.25)
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Proof Since f is a piecewise convex polynomial on R
n with degree d, there exist

finitely many polyhedra P1, . . . , Pk with
⋃k

j=1 Pj = R
n such that the restriction of

f on each Pj is a convex polynomial with degree at most d. Let J = {1, . . . , k},
J1 := { j ∈ J : Pj ∩ [ f ≤ 0] 
= ∅} and J2 := { j ∈ J : Pj ∩ [ f ≤ 0] = ∅}.

Note that for each j ∈ J2, f (x) > 0 for all x ∈ Pj . Let Pj = {x : (al
j )

T x ≤ bl
j , l =

1, . . . , m j } where m j ∈ N and j ∈ J2. It follows from Lemma 2.2 that inf Pj f is
attained, and so, infx∈Pj f (x) > 0. Thus, we have

λ := inf

⎧
⎨

⎩
f (x) : x ∈

⋃

j∈J2

Pj

⎫
⎬

⎭
> 0.

Now, let r = λ/2 > 0. Then, by the construction of r , we have

[ f ≤ r ] ⊆
⋃

{Pj : j ∈ J1}. (3.26)

On the other hand, let f j ( j ∈ J ) be convex polynomials on R
n such that it agrees f

on Pj , i.e., f j + δPj = f + δPj . Applying Theorem 3.1 to h j := f j + δPj , we see
that, for each j ∈ J1, there exists τ j > 0 such that for all x ∈ Pj ,

d(x, [ f ≤ 0] ∩ Pj ) = d(x, [h j ≤ 0])
≤ τ j

(
[h j (x)]+ + [h j (x)]κ(n,d)−1

+
)

= τ j

(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

.

Let τ := max{τ j : j ∈ J1}. From
⋃

j∈J1

([ f ≤ 0] ∩ Pj
) = [ f ≤ 0], we have

d(x, [ f ≤ 0]) ≤ τ([ f (x)]+ + [ f (x)]κ(n,d)−1

+ ) for all x ∈
⋃

{Pj : j ∈ J1}.
Therefore, the conclusion follows by (3.26). ��

As a corollary, we obtain the following error bound type result near the set [ f ≤ 0].
Corollary 3.3 Let f be a piecewise convex polynomial on R

n with degree d. Then,
for any δ > 0, there exists τ > 0 such that

d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x with d(x, [ f ≤ 0]) ≤ δ.

(3.27)

Proof From Proposition 3.2, we can find r > 0 and τ1 > 0 such that

d(x, [ f ≤ 0]) ≤ τ1

(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x ∈ [ f ≤ r ].

If x ∈ [ f ≤ r ] and d(x, [ f ≤ 0]) ≤ δ, then we have

d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

.
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On the other hand, suppose that x ∈ [ f > r ] and d(x, [ f ≤ 0]) ≤ δ. Then, we obtain
that

d(x, [ f ≤ 0]) ≤ δ ≤ δ

r + rκ(n,d)−1

(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

.

Therefore, the conclusion follows with τ = τ1 + δ

r+rκ(n,d)−1 . ��

As another corollary, we obtain the following result estimating the distance between
a point to the solution set argmin f . In the special case when d = 2 (and so, κ(n, d) =
2), this result has been presented in [26].

Corollary 3.4 Let f be a piecewise convex polynomial on R
n with degree d. Then,

there exist r > inf f and τ > 0 such that

d(x, argmin f )≤τ
(
( f (x) − inf f ) + ( f (x) − inf f )κ(n,d)−1

)
for all x ∈ [ f ≤ r ].

(3.28)

Proof Without loss of generality, we may assume that inf f > −∞ (Otherwise, the
right hand side of (3.28) equals +∞ and the conclusion follows). Then Lemma 3.6
implies that argmin f 
= ∅. Now, applying Proposition 3.2 to g := f − inf f , we can
find δ > 0 and τ > 0 such that

d(x, argmin f ) = d(x, [g ≤ 0]) ≤ τ
(
[g(x)]+ + [g(x)]κ(n,d)−1

+
)

= τ
(
( f (x) − inf f ) + ( f (x) − inf f )κ(n,d)−1

)
for all x ∈ [g ≤ δ].

Letting r = inf f + δ, then the conclusion follows as [g ≤ δ] = [ f ≤ r ]. ��
The preceding proposition (Proposition 3.2) illustrates that Hölder-type local error

bound holds for piecewise convex polynomials. However, in general, the following
one dimensional example shows that a global error bound might fail.

Example 3.2 Consider the following piecewise convex polynomial f : R → R,
defined by

f (x) =
{

1, if x ≥ 1,

x4, if x < 1.

Clearly, [ f ≤ 0] = {0}. Consider xk = k. Then d(xk, [ f ≤ 0]) = k but f (xk) = 1.
Therefore, there is no global error bound in this case. Notably, in this example, the
following implication fails

d(x, [ f ≤ 0]) → ∞ ⇒ f (x) → +∞.
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The above example prompt us to examine a condition ensuring a global error bound
for piecewise convex polynomial. Below, we state our main result in this subsection,
i.e. a necessary and sufficient condition characterizing when a piecewise convex poly-
nomial has a Hölder-type global error bound with an explicit Hölder exponent.

Theorem 3.2 Let f be a piecewise convex polynomial on R
n with degree d. Then,

the following statements are equivalent:

(1) d(x, [ f ≤ 0]) → +∞ ⇒ f (x) → +∞.
(2) There exists τ > 0 such that

d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x ∈ R
n . (3.29)

Proof [(2) ⇒ (1)] This part is direct.
[(1) ⇒ (2)] Since f is a piecewise convex polynomial on R

n with degree d, there
exist finitely many polyhedra P1, . . . , Pk with

⋃k
j=1 Pj = R

n such that the restriction
of f on each Pj is a convex polynomial with degree at most d. Let J = {1, . . . , k}
and

J∞ =
{

j ∈ J : sup
x∈Pj

f (x) = +∞
}

.

Take λ > 0 large enough such that

sup

⎧
⎨

⎩
f (x) : x ∈

⋃

j∈J\J∞
Pj

⎫
⎬

⎭
≤ λ and inf{ f (x) : x ∈ Pj } < λ for all j ∈ J∞.

By the construction of λ, Pj ∩ [ f ≤ λ] 
= ∅ for each j ∈ J∞. Now, let f j ( j ∈ J )
be convex polynomials on R

n such that they agree f on Pj , i.e., f j + δPj = f + δPj .
For each j ∈ J∞, applying Theorem 3.1 to h j := f j − λ + δPj , we can find γ j > 0
such that, for all x ∈ Pj ,

d(x, Pj ∩ [ f ≤ λ]) = d(x, [h j ≤ 0]) ≤ γ j

(
[h j (x)]+ + [h j (x)]κ(n,d)−1

+
)

= γ j

(
[ f (x) − λ]+ + [ f (x) − λ]κ(n,d)−1

+
)

.

Letting τ1 = max{γ j : j ∈ J∞}, it follows that

d(x, [ f ≤ λ]) ≤ d(x, Pj ∩ [ f ≤ λ]) ≤ τ1([ f (x) − λ]+
+[ f (x) − λ]κ(n,d)−1

+ ) for all x ∈
⋃

j∈J∞
Pj . (3.30)

On the other hand, from our assumption, we can find r > 0 such that

d(x, [ f ≤ 0]) > r ⇒ f (x) > λ.
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This implies that [ f ≤ λ] ⊆ {x : d(x, [ f ≤ 0]) ≤ r}. Now, by Corollary 3.4, we can
find τ2 > 0 such that

d(x, [ f ≤ 0]) ≤ τ2

(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x with d(x, [ f ≤ 0]) ≤ r.

This implies that

d(x, [ f ≤ 0]) ≤ τ2

(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x ∈ [ f ≤ λ]. (3.31)

Now, we show that, for all x ∈ R
n ,

d(x, [ f ≤ 0]) ≤ 21−κ(n,d)−1
(τ1 + τ2)

(
f (x) + f (x)κ(n,d)−1

)
. (3.32)

Clearly, if x ∈ [ f ≤ λ], then (3.32) holds. So, it remains to consider the case when
x ∈ [ f > λ]. Take an arbitrary x0 ∈ [ f > λ]. From our construction of λ, we have
x0 ∈ ⋃

j∈J∞ Pj . Let x1 ∈ [ f ≤ λ] be such that ‖x0 − x1‖ = d(x0, [ f ≤ λ]). Then,
we see that f (x1) = λ > 0 and (by (3.30) and x0 ∈ ⋃ j∈J∞ Pj )

‖x0 − x1‖ = d(x0, [ f ≤ λ]) ≤ τ1

(
[ f (x0) − λ]+ + [ f (x0) − λ]κ(n,d)−1

+
)

= τ1

((
f (x0) − f (x1)

)+ (
f (x0) − f (x1)

)κ(n,d)−1)
.

Now, by (3.31), we have

d(x1, [ f ≤ 0]) ≤ τ2

(
[ f (x1)]+ + [ f (x1)]κ(n,d)−1

+
)

= τ2

(
f (x1) + f (x1)

κ(n,d)−1
)

.

Thus, the triangle inequality implies that

d(x0, [ f ≤ 0]) ≤ d(x1, [ f ≤ 0]) + ‖x0 − x1‖
≤ (τ1 + τ2)

(
(

f (x0) − f (x1)
)+ (

f (x0) − f (x1)
)κ(n,d)−1

+ f (x1) + f (x1)
κ(n,d)−1

)

= (τ1 + τ2)

(

f (x0) + (
f (x0) − f (x1)

)κ(n,d)−1 + f (x1)
κ(n,d)−1

)

.

From the concavity of xq (q ≤ 1), we have ( a+b
2 )q ≥ 1

2 (aq + bq) for all a, b > 0,
and so, (a + b)q ≥ 2q−1(aq + bq) for all a, b > 0. This implies that

(
f (x0) − f (x1)

)κ(n,d)−1 + f (x1)
κ(n,d)−1 ≤ 21−κ(n,d)−1

f (x0)
κ(n,d)−1

.

It follows that d(x0, [ f ≤ 0]) ≤ 21−κ(n,d)−1
(τ1 + τ2)

(
f (x0) + f (x0)

κ(n,d)−1)
and so,

(3.32) holds.
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Next, we provide two verifiable sufficient conditions ensuring the implication
“d(x, [ f ≤ 0]) → ∞ ⇒ f (x) → +∞”, and so, we obtain Hölder-type global
error bound results under these two sufficient conditions. In the special case when
d = 2 (and so, κ(n, d) = 2), part (2) of this result has been presented in [26].5

Corollary 3.5 Let f be a piecewise convex polynomial on R
n with degree d. Suppose

that one of the following two condition holds:

(1) f is coercive in the sense that ‖x‖ → +∞ ⇒ f (x) → +∞;
(2) f is convex.

Then, there exists τ > 0 such that

d(x, [ f ≤ 0]) ≤ τ
(
[ f (x)]+ + [ f (x)]κ(n,d)−1

+
)

for all x ∈ R
n . (3.33)

Proof To see the conclusion, from Theorem 3.2, we only need to show

d(x, [ f ≤ 0]) → ∞ ⇒ f (x) → +∞. (3.34)

[Proof of (1)] To see (3.34), suppose that f is coercive and d(x, [ f ≤ 0]) → ∞.
Since d(x, [ f ≤ 0]) → ∞, we have ‖x‖ → +∞. Thus, the coercive assumption of
f implies that f (x) → +∞.

[Proof of (2)] To see (3.34), we proceed by the method of contradiction and suppose
that there exist {xk} ⊆ R

n and M > 0 such that

d(xk, [ f ≤ 0]) → ∞ and 0 < f (xk) ≤ M.

Let yk ∈ [ f ≤ 0] be such that ‖xk − yk‖ = d(xk, [ f ≤ 0]). Then f (yk) = 0. Clearly,
we have

f (xk) − f (yk)

‖xk − yk‖ → 0.

Since ‖xk − yk‖ → ∞, we may assume that ‖xk − yk‖ > δ for all k ≥ 1. Let
λk = δ

‖xk−yk‖ ∈ (0, 1) and zk = yk +λk(xk − yk). Then, for all x ∈ [ f ≤ 0], we have

‖xk − yk‖ ≤ ‖xk − x‖ ≤ ‖xk − zk‖ + ‖zk − x‖ = (1 − λk)‖xk − yk‖ + ‖zk − x‖.
This implies that ‖zk − x‖ ≥ λk‖xk − yk‖ = ‖zk − yk‖ for all x ∈ [ f ≤ 0]. This
implies that d(zk, [ f ≤ 0]) = ‖zk − yk‖ = λk‖xk − yk‖ = δ. On the other hand, by
the convexity of f , we see that

f (zk) ≤ λk f (xk) + (1 − λk) f (yk)

= f (yk) + λk( f (xk) − f (yk)) = δ
f (xk) − f (yk)

‖xk − yk‖ → 0.

5 In [26], Li denoted all piecewise convex quadratic function which is also itself a convex function by con-
vex piecewise quadratic function and showed that Hölder-type global error bound results holds for convex
piecewise quadratic function with Holder exponent 1/2.
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This implies that d(zk, [ f ≤ 0]) = δ > 0 and [ f (zk)]+ → 0 which contradicts
Corollary 3.2. Thus, the conclusion follows.

Corollary 3.6 Let f be a piecewise convex polynomial on R
n with degree d. Suppose

that f is convex. Then, for any r ≥ inf f , there exists τ > 0 such that

d(x, argmin f ) ≤ τ( f (x) − inf f )κ(n,d)−1
for all x ∈ [ f ≤ r ]. (3.35)

Proof First of all, we may assume that inf f > −∞. Then, from Lemma 3.6,
argmin f 
= ∅. Applying part (2) of the preceding Corollary with g = f − inf,
we can find τ > 0 such that for any x ∈ R

n

d(x, argmin f ) ≤ τ
(
( f (x) − inf f ) + ( f (x) − inf f )κ(n,d)−1

)
.

Fix an arbitrary r ≥ inf f . Note that, for any x ∈ [ f ≤ r ], f (x)− inf f ≤ M( f (x)−
inf f )κ(n,d)−1

where M = (r − inf f )1−κ(n,d)−1
. Thus, the conclusion follows.

4 Conclusions and remarks

By examining the recession properties of convex polynomials, we provide a neces-
sary and sufficient condition for a piecewise convex polynomial to have a Hölder-
type global error bound with an explicit Hölder exponent. Our result extends the
corresponding results of [26] from piecewise convex quadratic functions to piecewise
convex polynomials.

As the error bound theory often has important implication in the sensitivity analysis
and error estimation for optimization methods, it would be interesting to investigate
whether our new error bound results will give effective global error estimates for some
particular methods in solving a convex optimization problem, such as the proximal
point method and the bundle method. These will be our further research directions and
will be examined in a forthcoming paper.
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