
Math. Program., Ser. A (2012) 135:413–436
DOI 10.1007/s10107-011-0479-6

FULL LENGTH PAPER

A limited memory steepest descent method

Roger Fletcher

Received: 2 December 2009 / Accepted: 3 May 2011 / Published online: 21 July 2011
© Springer and Mathematical Optimization Society 2011

Abstract The possibilities inherent in steepest descent methods have been
considerably amplified by the introduction of the Barzilai–Borwein choice of step-
size, and other related ideas. These methods have proved to be competitive with
conjugate gradient methods for the minimization of large dimension unconstrained
minimization problems. This paper suggests a method which is able to take advantage
of the availability of a few additional ‘long’ vectors of storage to achieve a significant
improvement in performance, both for quadratic and non-quadratic objective func-
tions. It makes use of certain Ritz values related to the Lanczos process (Lanczos in
J Res Nat Bur Stand 45:255–282, 1950). Some underlying theory is provided, and
numerical evidence is set out showing that the new method provides a competitive and
more simple alternative to the state of the art l-BFGS limited memory method.

Mathematics Subject Classification (2000) 90C06 · 90C26 · 65K05

1 Introduction

This paper considers the problem of finding an unconstrained local minimizer x∗ of
a given continuously differentiable function f (x), x ∈ R

n , where the gradient vector
g(x) of first partial derivatives is available. The study has been motivated by some on-
going work concerning a Sequential Linear Programming (SLP) algorithm for large
scale Nonlinear Programming (NLP), in which a suitable algorithm is required for
carrying out unconstrained optimization in the null space. The algorithm would need
to be effective for both small and large numbers of variables, and would need to be

R. Fletcher (B)
Department of Mathematics, University of Dundee,
Dundee DD1 4HN, Scotland, UK
e-mail: fletcher@maths.dundee.ac.uk

123

414 R. Fletcher

matrix-free (in the sense of not storing any potentially large reduced Hessian matri-
ces). Currently the obvious Conjugate Gradient (CG) method has been used, but this
has not proved to be very suitable. In particular, in an SLP algorithm, once the correct
active set is identified, the null space basis usually changes smoothly as the solution is
approached. However, the CG algorithm must be restarted for each SLP iteration, and
it is not very convenient to make use of information from the previous SLP iteration.

Also CG algorithms can be very slow, and it would be an advantage if a limited
memory approach were available to make use of a limited number, m say, of additional
‘long’ vectors. The l-BFGS method [17] is such a method, and has proved to be very
successful in the context of unconstrained optimization, but is less convenient for NLP
when changes in the dimension or span of the null space basis take place on each SLP
iteration.

I have therefore, returned to some thoughts that I had some 20 years ago [8], occa-
sioned by innovative ideas inherent in the Barzilai–Borwein (BB) methods [1]. These
are steepest descent methods with a novel choice of the step-length on each iteration,
and have proved considerably superior to the largely ineffective classical steepest
descent method [3] in which the step-length is determined by making a line search
along the steepest descent direction. Other related choices of step-length have also
been proposed since that time (for example [6,11,21,22,26]). What little is known
about the theoretical properties of such methods is largely confined to the case in
which f (x) is a quadratic function whose Hessian matrix, A say, is positive definite.
The relevance of the eigenvalues of A to the analysis is pointed out in [8] and [9],
and it is suggested that a limited memory approach might be fashioned by using a
limited number of eigenvalue estimates, based on certain Krylov sequence properties.
However, the idea was not taken any further at the time, and it is a version of that idea
that is explored in this paper.

The methods that we consider are steepest descent methods, that is the generic
expression for a new iterate xc+1 is

xc+1 = xc − αcgc (1)

in which gc refers to g(xc), where xc is the current iterate, αc > 0 is a step-length
whose choice is determined by the method under consideration, and −gc is the steepest
descent direction at xc. We recall a result (see for example [7]) that steepest descent
methods are invariant under an orthogonal transformation of variables.

The theoretical basis of the methods under consideration derives from the minimi-
zation of a positive definite quadratic function, and this is set out in Sect. 2. In the
quadratic case, the steplength choice is usually the reciprocal of a Rayleigh quotient
of the Hessian matrix A. For example the Cauchy choice is

α−1
c = gcT Agc

/
gcT gc (2)

and the Barzilai–Borwein choice is

α−1
c = g(c−1)T Agc−1

/
g(c−1)T gc−1. (3)

123

A limited memory steepest descent method 415

(It is noted in passing that Barzilai and Borwein also consider a second steplength
formula based on the Rayleigh quotient

α−1
c = g(c−1)T A2gc−1

/
g(c−1)T Agc−1 (4)

and we return to consider this in Sect. 7.) In Sect. 2 a new concept of a sweep method
is described. This method might be considered as a generalization of the BB method
(3), insofar as (3) corresponds to the case m = 1 in the new method. Numerical evi-
dence indicates that a worthwhile improvement over the BB method can be gained
by increasing m. As with the BB method, the basic sweep method is non-monotonic
in regard to both the sequences { f c} and {||gc||}. Convergence can be proved using
a generalization of the approach given by Raydan [19], and this is set out in the
Appendix.

In Sect. 3, again for a quadratic function, modifications of the basic sweep method
are suggested that provide a certain monotonicity property in regard to { f c}. The
motivation is to provide a mechanism for forcing convergence that will carry over to
the non-quadratic case. Some numerical evidence indicates that these modifications
do not slow down the rate of convergence of the algorithm. Further difficulties arise
when the algorithm is generalised to minimize a non-quadratic function, and sug-
gestions for dealing with them are made. In Sect. 5 an implementation of the new
algorithm is tested against other common gradient methods, and in particular against
the l-BFGS method, with satisfactory results. It is well known that improvements in
the performance of CG methods can be obtained for certain types of problem by the
use of preconditioning. It is likely that similar improvements can be obtained with the
sweep methods of this paper. The necessary changes are set out in Sect. 6, and it is
shown that the extra storage and housekeeping demands are modest. Conclusions are
drawn in Sect. 8, along with suggestions for future work.

Unless otherwise specified in the paper, || · || refers to the L2 vector norm.

2 The quadratic case

In this section we consider the case in which f (x) is a positive definite quadratic
function. For theoretical purposes we may also take x∗ to be the zero vector and so
express

f = 1
2 xT Ax and g = Ax (5)

where A is a symmetric positive definite matrix.
To analyse the convergence of any SD method in this case, we can assume without

loss of generality that an orthogonal transformation has been made that transforms
A to a diagonal matrix � = diag(λi) of its eigenvalues. Moreover, if there are any
eigenvalues of multiplicity m > 1, then we can choose the corresponding eigenvec-
tors so that the initial (transformed) gradient vector, g1 say, has g1

i = 0 for at least
m −1 of its corresponding components. It follows from (1) and (5) that gradients recur
according to

123

416 R. Fletcher

gc+1 = gc − αc Agc (6)

or component-wise, when A = �, as

gc+1
i = (1 − αcλi)g

c
i i = 1, 2, . . . , n. (7)

Clearly, if gc
i is zero for some i , then this property is preserved by the iteration formula.

Also if αc = λ−1
i at any time, then gc+1

i = 0 for all subsequent iterations, and such
indices have no further effect on the convergence of the algorithm. Thus we can ignore
such indices and assume without any loss of generality that � has distinct eigenvalues

0 < λ1 < λ2 < · · · < λn, (8)

and that

gc
i �= 0 i = 1, 2, . . . , n (9)

on all iterations. A simple consequence of (7) is

A Finite Termination Property for SD: If the eigenvalues of A are known, and if
αc+i−1 = λ−1

i is chosen for i = 1, 2, . . . , n then gc+n = 0.

In order to fashion a limited memory method, we shall assume on any iteration that
in addition to xc and gc, the most recent m back values,

G =
[
gc−m, . . . , gc−2, gc−1

]
(10)

say, are also available in wrap-around storage, where m ≤ m is limited to an upper
bound m on the number of such vectors that can be stored. When n is large, it is
assumed that m � n. The resulting method can thus be implemented (also in the
non-quadratic case below) with m + 2 long vectors.

An important property, possessed by all steepest descent methods (1), is that

xc − xc−m ∈ span
{

gc−m, Agc−m, A2gc−m, . . . , Am−1gc−m
}

. (11)

That is to say, the displacement of the current iterate xc from any back value xc−m ,
lies in the span of the so-called Krylov sequence initiated from gc−m . It follows that

gc − gc−m ∈ span
{

Agc−m, A2gc−m, . . . , Amgc−m
}

. (12)

A remarkable property of this Krylov sequence is that it provides m distinct estimates
(so-called Ritz values) of the eigenvalues of A, which are contained in the spectrum
of A in a certain optimal sense. The theory of this is very extensive, relating to the CG
and Lanczos methods, see for example Golub and Van Loan [12].

The Lanczos iterative process [15], applied to the matrix A, starting from
q1 = gc−m/||gc−m ||, generates orthonormal basis vectors q1, q2, . . . , qk for the

123

A limited memory steepest descent method 417

Krylov sequence (11) of any dimension k. Because the columns of G are in this
Krylov sequence, we may express G = Q R where Q is the matrix with columns
q1, q2, . . . , qm , such that QT Q = I , and R is upper triangular and nonsingular,
assuming that the columns of G are linearly independent. The Ritz values on which
the new method is based are the eigenvalues of the matrix

T = QT AQ (13)

which, as we shall see, is tridiagonal. Under the conditions (8) and (9), the Lanczos
process would terminate after exactly n iterations, and so for m ≤ n, these Ritz values
exist, and if m = n they are identical to the eigenvalues of A. Moreover, if m = 1,
then Q = q1 = gc−m/||gc−m || and we see from (13) that there is a single Ritz value,
namely the Rayleigh quotient (3) on which the BB method is based.

In practice, computation of the Ritz values from the Lanczos process requires the
matrix A to be available, which will not be the case when we generalise to non-
quadratic functions. An alternative way of computing the Ritz values is the following.
Given m back gradients as in (10), we can rearrange the equations arising from (6) in
matrix form as

AG = [G gc]J (14)

where J is the (m + 1) × m matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

α−1
c−m

−α−1
c−m

. . .

. . . α−1
c−2

−α−1
c−2 α−1

c−1
−α−1

c−1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

It follows that

GT AG = GT [
G gc] J. (16)

If the columns of G are linearly independent, we may substitute G = Q R in (14) and
rearrange using (13), leading to

T =
[

R QT gc
]

J R−1. (17)

T is readily seen to be upper Hessenberg, and hence tridiagonal and positive definite,
since A is symmetric and positive definite. The eigenvalues of T are readily computed,
and are the Ritz values referred to above. We denote them by θi , i =1, 2, . . . , m. Bec-
ause T = QT AQ, it follows that the Ritz values are contained in the spectrum of A.

Computation of Ritz values in this way requires the computation of QR factors, for
example by the modified Gram-Schmidt method. This requires ∼ m2n flops. Also it

123

418 R. Fletcher

is required to find storage for the columns of Q which are ‘long’ vectors. A further
alternative is to compute R and r from the partially extended Choleski factorization

GT [
G gc] = RT [R r] . (18)

Substituting this equation into (16) and then using G = Q R and (13) leads to

T = [R r] J R−1. (19)

This requires only ∼ 1
2 m2n flops and no extra long vectors, and is the method that has

been used in preparing this paper. However, there are issues relating to ill-conditioning
and round-off error that have to be considered (see Sect. 4).

The Finite Termination Property of SD, referred to above, suggests using step-
lengths which are the inverse of estimates of the eigenvalues of A. The computation
of Ritz values provides a way of obtaining such estimates, and indeed the exact eigen-
values when m = n. Although m = n is impracticable for large dimension uncon-
strained optimization, it does occur in large scale constrained optimization when there
are many active constraints and the null space has small dimension, as often happens.
Thus the idea suggests itself of using step lengths which are the inverse of certain of
the Ritz values. The BB method is then a special case of this method when m = 1.
When m > 1, the question arises as to which Ritz values to choose. A previous idea
that I explored of trying to choose a ’best’ Ritz value on each iteration did not perform
much better than the BB method. To make use of the Finite Termination Property, all
the Ritz values need to be used on successive SD steps.

The type of method that is explored in this paper is therefore, based on this basic
idea. The sequence of steepest descent iterations is divided up into groups of m iter-
ations, referred to as sweeps. At the start of each sweep we denote the current iterate
and gradient by xk and gk , and we assume that there are available m Ritz values,
θ j,k−1, j = 1, 2, . . . , m from a previous sweep. Within each sweep we carry out m
steepest descent steps

x j+1,k = x j,k − α j,kg j,k j = 1, 2, . . . , m (20)

starting from x1,k = xk , and using step lengths α j,k = (θ j,k−1)
−1. Then xk+1 =

xm+1,k . Finally the gradients g j,k, j = 1, 2, . . . , m obtained on the sweep are used
to calculate Ritz values for the next sweep. If n ≤ m, the method terminates at the
minimizer of f (x) in (5) after two sweeps. There are still some issues to be addressed,
namely how to choose step lengths for the first sweep, and how to order the Ritz values
within a sweep. We return to these issues below.

In the notation of (7), if θc is the current Ritz value being used, then

gc+1
i =

(
1 − λi

θc

)
gc

i . (21)

Because θc ∈ (λ1, λn), we see that |g1| is monotonically decreasing, but at a poten-
tially slow rate when θc is close to λn . If however, θc is close to λ1, then |g1| is

123

A limited memory steepest descent method 419

Table 1 Benefits of increasing
m in the sweep method

m #sw #g

1 235 236

2 111 220

3 73 213

4 48 185

5 31 143

6 24 129

7 23 139

8 18 119

considerably reduced, but

∣∣∣gc+1
n

∣∣∣ =
∣∣∣∣1 − λn

θc

∣∣∣∣
∣∣gc

n

∣∣ (22)

increases by a factor close to the condition number of A. Hence, as for the BB
method, the sequence of gradient norms {||gk ||} is usually non-monotonic, as also
is the sequence of function values { f k}. Thus the convergence of the scheme is an
issue to be addressed.

It is important to establish that the sweep method improves on the BB method
(m = 1) as the number of back vectors m is increased. In practice this has always
been observed to be the case. A typical example is that shown in Table 1 based on
minimizing a quadratic function of 20 variables, with λ1 = 1 and the other eigenvalues
in geometric progression with ratio

√
2. The gradient components are all initialised

to 1, and the calculations are terminated when a value of ||gc|| ≤ 10−6||g1|| has been
achieved. Initialisation and ordering of the Ritz values is carried out as described in
the next section. It can be seen that a smooth and worthwhile improvement in the
number of sweeps (#sw) and more importantly the number of gradient calls (#g) is
obtained as m is increased. However, the method shows some indication of running
out of steam at around m = 7, which is perhaps a little disappointing, given that for
m = 20 we might expect to solve the problem with #g ≈ 40. A possible reason for
this is ill-conditioning in the computation of R as discussed below.

The theoretical properties of the sweep method are also of some interest. In fact,
Raydan [19] has proved convergence of the BB method for strictly convex quadratic
functions, and it is shown in the Appendix that a similar line of argument can be used
to establish convergence of the sweep method. As regards the rate of convergence,
Barzilai and Borwein [1] prove that the order of convergence of the BB method (m = 1)
is superlinear when n = 2, and Dai and Fletcher [4] give reasons to believe that this is
also true for n = 3 but not for n ≥ 4. An experiment to assess the situation for larger
values of m is shown in Fig. 1. In this example, n = 10, λ1 = 1, and the eigenvalues
are in geometric progression with ratio 2. The initial components of the gradient are
1’s and m initial Ritz values are specified, which are equally spaced in the interior of
the spectrum. The traces show a significant improvement as m increases (note that
exact termination would be expected when m = 10). Note also the extremely small

123

420 R. Fletcher

Fig. 1 Convergence of ||g|| for m = 1, 3, 5, 7, 9

Fig. 2 Visualising a sweep method

values of the gradient norm (∼10−60 or so) that are achieved as m increases. This can
only be observed because the quadratic function in (5) contains no linear terms. Given
that the calculations are carried out to a relative precision of 10−16 or so, we see that
the later iterations are also very effective at reducing rounding errors introduced ear-
lier in the calculation. The negative curvature trend of the traces for n = 5, 7 and 9 is
suggestive of R-superlinear convergence in exact arithmetic, and we might conjecture
that this is so if say 2m � n. However, the technical difficulty of proving such a result
would be considerable.

The sweep may be viewed as a piecewise curvilinear trajectory, somewhat similar
to following the SD trajectory ẋ = −g(x) with an ODE solver, as illustrated on the
left hand diagram of Fig. 2. The right hand diagram illustrates the Finite Termination
Property when n = 2. The two possible steplengths λ−1

1 and λ−1
2 are those which

yield points on the principal axes of the quadratic. However, monotonic decrease in
f (x) is obtained by choosing the smaller steplength first, corresponding to choosing
the eigenvalues of A in decreasing order of magnitude.

123

A limited memory steepest descent method 421

Table 2 Local behaviour of a sweep method for a non-quadratic function

diag(�∗) 78.078 4056.9 16624 70194 495510

Moduli of eigencomponents of g j,1

j |g1| |g2| |g3| |g4| |g5| f ‖g j,1‖
1 2.91e−4 4.73e−2 6.9e−2 1.9e−1 1.3e0 2.4e−6 1.3e0

2 2.85e−4 4.69e−2 6.7e−2 1.7e−1 2.9e−6 6.0e−7 1.9e−1

3 2.84e−4 4.42e−2 5.1e−2 8.9e−8 1.3e−5 3.2e−7 6.8e−2

4 2.83e−4 3.34e−2 1.6e−7 5.9e−8 3.9e−4 1.4e−7 3.3e−2

5 2.77e−4 5.86e−7 3.2e−7 1.2e−7 4.7e−2 2.8e−9 4.7e−2

6 5.52e−3 1.50e−2 2.0e−3 2.3e−2 3.0e2 9.1e−2 3.0e2

Replace last step with a line search step

6 2.77e−4 1.06e−6 3.6e−8 9.6e−8 2.5e−1 6.5e−8 2.5e−1

The idea of using multiple Ritz values in a sweep method is thought to be new.
However, a method of Yuan [26] has the property that it terminates finitely for a
2-dimensional quadratic function. Although the step-length formula is derived in a
quite different way to Eqs. (14–19) above, and looks quite different, I think it must be
closely related to the case m = 2 here.

3 A monotonic sweep method for quadratics

Although the non-monotonic sweep method is effective, the main aim of this paper is
to generalize to non-quadratic functions, in which case some attention has to be given
to forcing convergence. Moreover, for quadratic programming with box constraints,
Dai and Fletcher [5] have given counter examples to show that the BB method can
cycle when used in a projection method. So our attention is focussed on deriving a
sweep method in which the sequence { f k} decreases monotonically, whilst allow-
ing f j,k > f j−1,k within a sweep. First we consider minimizing a positive definite
quadratic function.

Our key proposal is to select the Ritz values in decreasing order of size, during a
sweep. If m = n we know that the method terminates, in which case selecting the
Ritz values in this order ensures that both f and ||g|| are monotonically decreased
(see [8]). In general, this ordering provides step-lengths α j,k that increase in size as
the sweep progresses. This gives the best chance that early steps in the sweep reduce
f j,k monotonically. However, if a step fails to improve on the value f k at the start of
sweep, then an interpolation is made to take the Cauchy step in that direction, and the
sweep is terminated.

We also terminate a sweep if f j,k improves on f k , but ||g j,k || ≥ ||g j−1,k ||. The
reasoning is that higher index components of g are now growing and the next step in
the sweep is likely to fail. Thus we hope to save a possibly unproductive step by this
means. An illustration of this is given in Table 2 of Sect. 4.

The algorithm might be summarized as follows

123

422 R. Fletcher

A Ritz Sweep Algorithm

Initialize xc and the stack of Ritz values
For k = 1, 2, . . . ,

Denote f k = f c

While the stack is not empty
Take a Ritz value θ off the stack
Set αc = θ−1

Set xc+1 = xc − αc gc

If f c+1 ≥ f k then
Reset αc = gcT gc/(gcT Agc)

Reset xc+1 = xc − αc gc and clear the stack
Else

If ||gc+1|| ≥ ||gc|| then clear the stack End
End
Set c = c + 1

End
Compute up to m new Ritz values
Place on the stack in increasing order

End

A consequence of terminating a sweep early is that fewer than m back values of the
gradient are available from that sweep. However, we can usually add back gradients
from a previous sweep. Thus where possible we always use m back gradients when
computing Ritz values. When k ≤ m there are not enough back gradients. We allow
the user to initialize from 1 up to m Ritz values for the first iteration. If only one value
is provided, the first and second sweeps have only one (BB) step. For the third sweep
there are two back gradients, and if these provide acceptable steps, the fourth sweep
has four back gradients, and so on.

The main question at issue is whether imposing monotonicity in this way reduces
the effectiveness of the sweep method in the quadratic case. Omitting step lengths
derived from small Ritz values might be expected to cause slow convergence of
small index components of the gradient to zero. In practice we have not noticed any
significant loss of effectiveness. This is supported by the following example with
n = 1,000, λ1 = 1, λn = 1,000, and eigenvalues in geometric progression. One Ritz
value (1,001/2) is provided initially. Figure 3 shows traces for m = 2 through 6, which
mostly improve as m is increased. Note that

√
f is plotted against the number of gra-

dient evaluations (not sweeps). (Since f ∗ = 0, we may regard 2
√

f as the weighted
norm ||g||A−1 of the gradient.) Figure 4 shows the corresponding behaviour of ||g||
in the case m = 6, comparing the monotonic algorithm above to the non-monotonic
sweep method of Sect. 2. We may observe that the monotonic method is in no way
inferior to the non-monotonic method. Also, although ||g|| is non-monotonic in both
cases, the amplitude of the non-monotonicity in ||g|| is significantly less when f
decreases monotonically.

Another issue that must be addressed is possible ill-conditioning or even singu-
larity in the matrix R. In exact arithmetic, if the problem satisfies (8) and (9), then

123

A limited memory steepest descent method 423

Fig. 3 Sweep-wise monotonic convergence of f for m = 2, . . . , 6

the Lanczos process started from any gk always takes n steps to terminate, and R
is nonsingular for any m ≤ n. It may be however, that A has multiple eigenvalues,
and/or some eigencomponents of the gradient are zero. In this case the Lanczos process
terminates in fewer steps, and may not be able to supply m Ritz values.

For inexact arithmetic, the back gradients can approach linear dependence as m is
increased. Directly computing GT G doubles the condition number and hence magni-
fies the effect of round-off error, for example GT G may become numerically indef-
inite. Even if QR factors are computed by modified Gram-Schmidt, R can become
increasingly ill-conditioned, or even numerically singular, and I have not found that it
generates better performance overall. Use of Householder QR would be the most sta-
ble method, but is excluded on storage considerations. In any event, for non-quadratic
problems, the effect of the non-quadratic terms is much more substantial than that of
round-off. In practice it is necessary to monitor the conditioning of R and be prepared
to use fewer back values in the computation of R and hence T . For this reason there
may be a practical limit to the size of m, beyond which numerical issues restrict the
effectiveness of the scheme. Values of m = 5, 6 or 7 as in Table 1, seem to be typical.

4 A monotonic sweep method for non-quadratic functions

When the objective function f (x) is non-quadratic, the mechanism for proving con-
vergence set out in the Appendix is no longer valid, and some form of monotonicity
is likely to be needed to drive the gradients to zero. Various researchers have recog-
nised this fact. Raydan [20] modifies the BB method in the manner of Grippo et al.
[14], requiring sufficient improvement in f k over the maximum of the back values
f k− j , j = 1, 2, . . . , M . Raydan chooses M = 10. If sufficient improvement is
not obtained, an Armijo line search is carried out. Raydan (private communication)
indicates that he occasionally might use smaller values (e.g. M = 2 or 3) in case of
difficulty, but points out the papers of Varadhan and Gilbert [24] and Vargas et al. [25],
where values of M = 20 or 50 are used. It is likely that the best choice of M is very

123

424 R. Fletcher

Fig. 4 Convergence characteristics of ||g|| for m = 6

problem dependent. Dai and Fletcher [5] suggest a method that is different to Grippo
et al. [14], and possibly more suited to BB methods, for maintaining monotonicity
on a subsequence. Dai and Yuan [6] investigate the long term behaviour of various
monotone methods, looking for a certain clustering property in the gradients that is
possessed by the BB method. Serafini et al. [22] are able to obtain monotonicity by
switching between the two BB methods and the Cauchy step, according to certain
criteria. Our approach has been to require monotonic decrease of the sequence { f k} in
the outer iteration sequence, whilst allowing limited increases in f k,l within a sweep,
as in the algorithm above.

The benefit of retaining monotonicity is illustrated by the following non-quadratic
example. It is an instance of the Trigonometric Test Problem [10] with n = 5.
A solution x∗ is designated as a vector of random numbers, uniformly distributed in
±π , and the starting point x1 is obtained by perturbing components of x∗ by uniformly

123

A limited memory steepest descent method 425

distributed random numbers in ±10−5. The eigensolution of the Hessian is calculated
at x∗. We see in Table 2 that the condition number κ = 6346 is quite large, but not
unduly so. This amount of information would be expected to provide rapid local con-
vergence from this x1 with a Newton method, and we would like to see something
similar for a sweep method. We use the (orthonormal) eigenvectors to transform the
Hessian at x∗ to a diagonal matrix, and the n eigenvalues diag(�∗), suitably ordered,
are supplied as the initial Ritz values θi for an iteration of the sweep method. Under
these conditions, for a quadratic problem, exact and monotonic termination would
occur in one sweep.

The actual behaviour of the eigencomponents of the gradient (transformed gradi-
ents) on the sweep is shown in Table 2. The first step uses the largest Ritz value λ5, and
drives |g5| almost to zero, as would be expected from a quadratic model. However,
there is a small error of 2.9e−6 due to non-quadratic effects. Similarly on step 2, λ4 is
used and |g4| is almost zeroed, and so on. We also see a lesser reduction in gradients to
the left of the one being almost zeroed. However, gradients to the right start to increase,
and the size of the increase is approximately determined by Eq. (22). In particular the
increases in |g5| start to become significant. On the last step, |g5| has increased to
3.0e2, resulting in ||g2|| being almost a factor of 200 greater than ||g1||. Moreover,
even |g1| has increased, showing that non-quadratic effects have become dominant.
Thus the last non-monotonic step is a disaster as regards providing local convergence.
On the other hand, replacing the last step of the sweep by a line search step maintains
the good overall progress of the sweep. In fact, because ||g|| increases from j = 4 to
j = 5, this is taken as an indication that the next step is likely to be unsatisfactory.
Thus in the algorithm above, the sweep would terminate with the j = 5 iterate.

There are several issues which must be addressed when generalising to the non-
quadratic case, in particular

• the matrix T is necessarily upper Hessenberg, but not usually tridiagonal,
• the matrix A is no longer available to compute the Cauchy step in the algorithm,

and
• there are various effects related to the existence of non-positive curvature.

None of these issues admits a single obvious solution, and various possibilities might
be followed up.

In regard to the matrix T , it is required to compute some values in a way that
reduces to the Ritz values in the quadratic case. Since m is likely to be small, finding
all the eigenvalues of T is still an option, but then there is the possibility of complex
eigenvalues to be considered. Byrd et al. [2] address similar issues relating to limited
memory methods. In practice I have observed that, due to ill-conditioning in R, the
product with R−1 in (19) seriously magnifies non-quadratic terms in the upper triangle
of T . Therefore, my approach has been to construct a symmetric tridiagonal matrix,
T̃ say, essentially by replacing the strict upper triangle of T by the transpose of the
strict lower triangle. Then eigenvalues of T̃ are used to compute Ritz-like values for
the next sweep. However, in the case m = 1, the Ritz value arising from (19) is

θc = α−1
c−1

(
gc−1 − gc

)T
gc−1

/
g(c−1)T gc−1, (23)

123

426 R. Fletcher

which is the general form of the Barzilai–Borwein formula (3) for minimizing a non-
quadratic function.

Another issue is that the matrix A is no longer available to compute a Cauchy step.
The obvious alternative is to enter some sort of line search when f c+1 ≥ f k in the
algorithm. One might choose either a combination of Armijo search and interpolation,
such as Raydan [20] uses, or a slightly more elaborate search aiming to satisfy Wolfe-
Powell conditions (essentially that described in Section 2.6 of Fletcher [7]). I have
chosen the latter as it ensures that the resulting T̃ has at least one positive eigenvalue.

Effects related to non-positive curvature also show up in that the matrix T̃ may have
some negative eigenvalues. Various possibilities suggest themselves. One is to discard
the oldest back gradient and recompute a smaller matrix T̃ . Another is simply to put
all the Ritz-like values on the stack as before. Then one can either terminate the sweep
when a negative Ritz value is found, or carry out a line search before terminating
the sweep. Some limited experiments have suggested that there can be a significant
difference, and I have preferred the last option.

Finally there is the issue of how best to compute R. Although larger values of m
may be possible when using modified Gram Schmidt QR factors, the effect of non-
monotonicity, or non-quadratic effects, or negative eigenvalues of T̃ , is that fewer than
m of these Ritz values may actually be usable. There are also complications in storing
Q, if the provision of extra long vectors is to be avoided. Since computing R as the
Choleski factor of GT G is approximately twice as fast, this is the approach that I have
taken.

5 Numerical experience

A Fortran 77 subroutine has been written which implements the ideas of previous
sections. It is referred to as lmsd (limited memory steepest descent). It is compared
with (my) implementations of other standard first derivative methods, on some stan-
dard non-quadratic test problems. A more detailed comparison of the limited memory
methods lmsd and l-BFGS is also made, including some more difficult CUTEr test
problems [13]. The tests are run on a COMPAQ Evo N800v laptop (clock speed
1.3 GHz) under Linux, with optimized code from the Intel F90 compiler.

Other codes tested are the BFGS method, the Polak-Ribiere and Fletcher-Reeves
CG methods (see for example [7]), the l-BFGS method [17] and Raydan’s non-mono-
tonic BB method [20]. The CG methods use a fairly accurate line search with a two
sided test on the slope (σ = 0.1 as in [7]). The lmsd, BFGS and l-BFGS methods all
use the same Wolfe-Powell line search, with σ = 0.9 in a one sided test on the slope.
Test problems include different instances of the Trigonometric Test Problem [10], the
Convex2 problem [20], the Chained Rosenbrock Problem [23] starting from x1 = 0,
the Laplace2 problem [9] and various CUTEr test problems [13]. All codes use the
same termination condition, namely ||gc|| ≤ τ ||g1||. For Tables 3, 4 and 5, τ = 10−6,
and for Table 6, τ = 10−5.

For the lmsd runs, only one Ritz value was supplied initially. This was θ1 = 105 for
the Trigonometric problems, 102 for the Chained Rosenbrock and CUTEr problems,
and 1 for the other problems. No attempt was made to optimize over these choices.

123

A limited memory steepest descent method 427

Table 3 Trigonometric test problem

n = 50 n = 100

#sw/ ls # f #g #sw/ ls # f #g

lmsd 2 258 658 473 433 1,115 786

lmsd 3 199 714 583 356 1,281 1,042

lmsd 4 86 304 265 152 531 473

lmsd 5 111 429 388 141 558 494

lmsd 6 102 512 451 152 679 611

CG PR 558 1,515 1,074 795 2307 1,622

CG FR 319 941 678 628 1,888 1,337

BB-Raydan 1,285 1,780 1,286 2,182 3,142 2,183

l-BFGS 3 731 816 759 1,109 1,265 1,166

l-BFGS 5 719 776 732 1,005 1,113 1,033

BFGS 122 145 130 219 236 224

Table 4 Convex2 test problem

n = 103 n = 105

#sw/ ls # f #g #sw/ ls # f #g

lmsd 2 107 271 213 126 326 250

lmsd 3 64 217 185 74 259 214

lmsd 4 39 165 146 50 218 190

lmsd 5 26 126 114 39 200 177

lmsd 6 29 164 148 34 204 182

CG PR 118 202 194 254 463 402

CG FR 108 221 215 287 387 375

BB-Raydan 172 212 173 260 330 261

l-BFGS 3 132 138 134 210 218 213

l-BFGS 5 117 122 119 232 238 234

BFGS 124 129 126

Eigenvalues of T̃ are calculated by the (standard) QL algorithm with implicit shift.
For values of m ∼6 and large n, the time taken for this is entirely negligible.

The first set of tests is shown in Table 3 through Table 6. A range of values of m is
tested for the lmsd method. There is also a similar parameter m for the l-BFGS method,
and standard values m = 3 and 5 are tested. For l-BFGS, 2m +4 long vectors are used
in my implementation, as against m + 2 for lmsd. Note that Raydan’s BB method and
the CG-FR method require 3 long vectors and CG-PR requires 4. Of course, the BFGS
method requires 1

2 n2 + O(n) locations, so is not practical for large n. However, where
applicable, it shows up as the best method or nearly so in the comparisons, as might be
expected, and provides a standard of comparison for the other low storage methods.
Excluding BFGS, the run requiring the fewest gradient calls is italicised (Tables 3–7).

123

428 R. Fletcher

Table 5 Chained Rosenbrock test problem

n = 50 n = 100

#sw/ ls # f #g #sw/ ls # f #g

lmsd 2 1,269 3,319 2,526 1,689 4,360 3,367

lmsd 3 675 2,381 1,981 1,028 3,664 3,029

lmsd 4 853 3,120 2,841 938 3,712 3,301

lmsd 5 558 2,272 2,067 943 4,278 3,772

lmsd 6 608 2,725 2,455 2,490 1,0752 10,265

CG PR 551 1,237 1,000 874 1,842 1,515

CG FR >9,999 >9,999

BB-Raydan >9,999 >9,999

l-BFGS 3 305 319 308 586 605 589

l-BFGS 5 276 294 281 521 541 525

BFGS 249 328 280 483 634 540

Table 6 Non-quadratic Laplacian test problem (n = 106)

Laplace2 (a) Laplace2 (b)

#sw/ ls # f #g #sw/ ls # f #g

lmsd 2 586 1,553 1,165 503 1,340 1,001

lmsd 3 313 1,167 911 248 873 728

lmsd 4 165 732 633 193 859 746

lmsd 5 128 702 613 102 515 465

lmsd 6 111 686 626 100 606 557

CG PR 395 753 640a 423 787 675a

CG FR 332 597 521a 435 660 610a

BB-Raydan 1,032 1,395 1,033 1,187 1,620 1,188

l-BFGS 3 495 524 517 521 528 524

l-BFGS 5 395 407 400 471 480 474

a Failed to achieve a relative improvement of 10−5 in ||g||

The first observation that emerges is that overall a worthwhile improvement in the
performance of the lmsd method is seen as m is increased from 2 up to about 5 or 6,
beyond which little if any improvement is obtained. This is in line with what was
observed in Sect. 3, and the reasons why there is a limit on what can be achieved are
probably similar.

Turning to the low storage methods, the lmsd method provides the best method by
far for the trigonometric problems. These are quite nonlinear, with a quite large con-
dition number and have no special structure such as sparsity or multiple eigenvalues
etc. to take advantage of. This outcome may be an indication that lmsd is likely to
perform well on hard but not particularly large problems.

In the Convex2 problem, the objective function is separable, with n distinct eigen-
values in the Hessian at x∗. In terms of gradient counts, lmsd and l-BFGS perform

123

A limited memory steepest descent method 429

Table 7 Comparison of limited memory methods

n lmsd 5 l-BFGS 3 l-BFGS 5

f #g Time #g Time #g Time

Convex2 106 190 168 25.6 217 81.3 218 104.5

Laplace2a 106 702 613 100.1 517 199.8 400 200.9

Laplace2b 106 515 465 75.2 524 208.4 474 239.4

SPMSRTLS 104 330 299 3.6 322 4.1 288 3.7

NONCVXU2 104 9,528 8,381 53.9 2,161 15.1 2,198 17.0

NONCVXUN 104 13,541 11,979 77.8 3,735 26.3 3,732 28.6

MSQRTALS 1,024 7,491 6,590 61.1 7,283 63.3 4,310 36.3

MSQRTBLS 1,024 4,751 4,183 39.0 5,267 46.4 3,140 26.8

QR3DLS 610 81,777 70,217 125.5 330,316 575.7 176,732 230.0

similarly, with a worthwhile improvement over the CG and BB methods. Note however,
the timings below in Table 7, which are considerably in favour of lmsd. This reflects
the more simple housekeeping of the lmsd method when the cost of evaluating f and
g is negligible.

The Chained Rosenbrock problem provides a different picture with lmsd showing
up badly relative to l-BFGS, and to CG-PR to a lesser extent. It is difficult to provide
any very convincing reason for this. My impression is that, due to the way the func-
tion is constructed, the gradient path to the solution (as defined by ẋ = −g(x)) has to
follow a succession of steep curved valleys, and it is something similar that the lmsd
method is doing. Methods which can take large steps may be able to ‘jump over’ some
of the difficulties and hence reach the solution more quickly.

The Laplace2 problem is from a three dimensional p.d.e., with a mildly nonlinear
term on the diagonal of the Hessian. An accuracy criterion of τ = 10−6 proved dif-
ficult to achieve due to full accuracy in f ∗ already having been obtained with lower
accuracy in g. Thus the termination criterion has been relaxed for this example. The
l-BFGS 5 method is a little better on Laplace2 (a), but otherwise there is little to
choose, apart from the BB-Raydan method being less successful.

I think these results provide some evidence that the limited extra storage available
to the lmsd and l-BFGS methods does in the main lead to improved performance.
The next comparison in Table 7 aims to measure the relative performance of these
methods. The test set takes in some additional CUTEr test problems which are quite
challenging. Mostly these are least square problems derived from a square system
of nonlinear equations. Solving these as least square problems might be expected to
adversely affect the conditioning of the problem. (If A denotes the Jacobian of the
equations, then the Hessian includes a term AAT). Thus, in order to get reasonably
accurate solutions in x, the tolerance on the gradient was decreased to τ = 10−8 for
the CUTEr problems. The timings given are in seconds. In the table, for the l-BFGS
methods, no function counts are given, as these are marginally greater than the number
of gradient counts, except for the QR3DLS problem.

123

430 R. Fletcher

Table 8 Comparison of l-BFGS 5 and 10

n l-BFGS 5 l-BFGS 10

#g Time #g Time

Convex2 106 218 104.5 243 184.4

Laplace2a 106 400 200.9 372 282.3

Laplace2b 106 474 239.4 383 292.0

SPMSRTLS 104 288 3.7 276 4.8

NONCVXU2 104 2,198 17.0 2,114 17.3

NONCVXUN 104 3,732 28.6 3,564 29.8

MSQRTALS 1,024 4,310 36.3 3,790 33.3

MSQRTBLS 1,024 3,140 26.8 2,742 24.2

QR3DLS 610 176,732 230.0 15,9738 308.9

I have selected m = 5 as a reasonable compromise as to what can best be achieved
with the lmsd approach. This requires 7 long vectors of storage to implement. The
choices of m = 3 and 5 for l-BFGS are usually recommended, and require 10 and 14
long vectors, respectively (at least, in my implementation). Thus the lmsd results are
achieved with less storage requirement. These figures are also reflected to some extent
in the timings.

The results provide no conclusive outcome either way. The l-BFGS methods mostly
do better on the NONCVX and MSQRT problems, but not by more than a factor of
about 3. SPMSRTLS is about equal, and the other problems favour lmsd 5, again by a
factor of up to 3 or 4. None of the methods fail to solve any of the problems (or those
in Table 3 through 6) in reasonable time.

A referee asks that the choice m = 10 for the l-BFGS method should also be inves-
tigated. I give the results for this in Table 8. I also asked Jorge Nocedal for his current
assessment of the best choice of m. He writes that for many years he thought that m = 3
or 5 was best, but a later study revealed that for some problems, values such as 20, 50
or even higher could be effective, at least in terms of function evaluations. The results
of Table 8 support this, showing a modest improvement in gradient counts, albeit at a
cost of significant increases in computation time on the higher dimension problems.
I do not think that the conclusions regarding lmsd versus l-BFGS are much affected.

6 Preconditioning

It is well established that the performance of conjugate gradient methods on certain
types of problem can be improved by the use of preconditioning. Preconditioning has
also been successfully used by Molina and Raydan [16] to accelerate the BB method. It
seems reasonable to expect therefore, that preconditioning might be used to advantage
in the context of the sweep methods described in this paper. This section briefly sets
out what would be involved.

The basis of preconditioning is to make a linear transformation of variables

y = LT x (24)

123

A limited memory steepest descent method 431

in which L is nonsingular, with the aim of improving the spectral distribution of
some underlying Hessian matrix A. Also L should be easy to calculate, and solves
with L should be inexpensive. Gradients and Hessians then transform according to
g = gx = Lgy and A = Ax = L Ay LT (see for example [7]). The ideal transformation
would be that for which Ay is the unit matrix, showing that in general we should choose
L such that L LT is an approximation to A. In our case we would then implicitly carry
out the steepest descent method yc+1 = yc −αcgc

y in the transformed variables, which
maps into

xc+1 = xc − αc L−T L−1gc (25)

in the x variables. The step lengths αc are to be the inverses of Ritz values computed

from the Choleski factor of GT
y

[
Gy gc

y

]
, as indicated in (18) and (19). Thus the sim-

plest way to implement the preconditioned sweep method is to store the transformed
gradients gy = L−1gx. Assuming that Lgy = gx can be solved in situ (such as when
L is triangular) then no additional storage is needed, other than what is needed to
store L . An additional solve with LT is needed to update xc as in (20), and this may
require an extra long vector to implement.

Alternatively, a symmetric positive definite matrix B which approximates A−1 may
be available. Then we have B = L−T L−1 and the update formula (25) becomes

xc+1 = xc − αc Bgc, (26)

and the Choleski factor of GT B[G gc] is used to compute Ritz values.
It will be interesting to evaluate the performance of the preconditioned sweep

method on problems for which good preconditioners are available, such as when solv-
ing certain types of differential equation.

7 The second Barzilai–Borwein formula

One referee asks whether the second Barzilai–Borwein formula based on the Rayleigh
quotient (4) is a special case of a different lmsd scheme. That indeed is the case and
the outcome is of some interest. The difference between (3) and (4) is that an extra A
appears in the inner products that comprise the numerator and denominator. Now the
CG method is related to another method, the MINRES method, in exactly the same
way, differing only in the use of a scalar product xT Ay in place of xT y. A benefit of
the MINRES method is that it is applicable to solve systems Ax = b in which A is
symmetric and nonsingular but indefinite. An important problem of this type is the
KKT system.

A =
[

B C
CT O

]
. (27)

Now the Ritz values in Sect. 2 are the eigenvalues θi of the matrix T in (13). These
eigenvalues are in fact the roots of a monic polynomial Pm(λ) that relates the residual

123

432 R. Fletcher

rm+1 in the CG method to the initial residual r1 through the equation rm+1 = Pm(A)r1.
Thus the Ritz values play an important role in interpreting the behaviour of the CG
method. We might write these eigenvalues
 = diag(θi) as being determined by the
eigensystem

(
QT AQ

)
X =

(
QT Q

)
X
. (28)

If we were to include an extra A in the innerproducts we would obtain a generalised
eigensystem

(
QT A2 Q

)
X =

(
QT AQ

)
X
. (29)

The eigenvalues
 of this system are referred to by Paige et al. [18] as harmonic
Ritz values. Analogous to the above, they determine polynomials which describe the
behaviour of residuals in the MINRES method. In the case m = 1 there is just one
harmonic Ritz value which is that given by the second BB formula (4).

For m > 1, the matrix T = QT AQ can be found as in (19), and in a similar way,
the matrix P = QT A2 Q can be found from the equation

P = R−T J T
[

R r
ρ

]T [
R r

ρ

]
J R−1 (30)

where
[

R r
ρ

]
is the Choleski factor of [G gc]T [G gc]. We observe that P is a penta-

diagonal matrix. The possibility therefore, arises of computing harmonic Ritz values
for use in a limited memory scheme. If A is indefinite, then it is possible that T is
indefinite, and reciprocals of the harmonic Ritz values should be computed from

T X = P X diag(αi). (31)

as this generalised eigensystem has the positive definite matrix P on the right hand side.

8 Summary and discussion

The main aim of this project has been to investigate what benefit can be gained in
smooth unconstrained minimization from storing a limited number of back values of
the gradient vector in a steepest descent method. The approach has been to make use
of Ritz values implicit in the Krylov sequence. On the basis of the variety of numerical
evidence provided, I feel it is reasonable to conclude that a substantial benefit is avail-
able, and that the performance of the resulting method(s) is comparable for large scale
systems to what can be obtained from the l-BFGS method. Moreover this is achieved
with less extra storage and housekeeping cost.

In applications to non-quadratic problems, it is seen to be important to preserve
some sort of monotonicity property in order to be assured of global convergence.

123

A limited memory steepest descent method 433

The indications are that this does not interfere with the underlying effectiveness of the
unmodified method for a quadratic function.

I see sweep methods as being useful in a number of situations. One is in large
scale systems of elliptic p.d.e’s, both linear and nonlinear, possibly taking advantage
of preconditioning. Another is in projection methods for large scale box constrained
optimization, both for quadratic and non-quadratic objective functions. Likewise, in
active set methods for general linearly constrained optimization, it is attractive to have
the possibility of both termination or rapid convergence for small null spaces, and yet
good performance when the null space is large. Finally, for nonlinear programming,
when the null space basis changes slowly from one iteration to the next, the Ritz vectors
from one iteration are likely to remain beneficial, and provide a simple and convenient
way of carrying forward curvature information from one iteration to the next.

It is a little disappointing that there seems to be a limit to the number of back
vectors that can be utilised effectively. It is conjectured in Sect. 3 that this may be
due to numerical loss of rank in the bundle of back vectors, in which case there may
be nothing that can usefully be done. Another explanation might be that adequate
coverage of the spectrum of A can be achieved by only a few Ritz values. Fortunately
the suggested choice of m = 5 is a not unreasonable value for the number of extra
long vectors that might be available in a large scale application.

Acknowledgments I am very grateful for helpful comments from the two anonymous referees, and from
Jorge Nocedal, Marcos Raydan and Valeria Simoncini.

Appendix: a convergence theorem

In this Appendix a theorem is proved that the basic non-monotonic sweep method of
Sect. 2 converges when applied to minimize a strictly convex quadratic function. It
is assumed that the transformations of Sect. 2 have been carried out, and that (8) and
(9) are valid. The theorem follows a similar type of argument to that of Raydan [19].
First we may usefully prove the following lemma.

Lemma Let {ak} be a sequence of positive numbers, let ε > 0 be arbitrarily small,
and let c < 1 and C ≥ 1 be positive constants. If

ak < ε ⇒ ak+2 ≤ Cak+1 (32)

ak ≥ ε ⇒ ak+2 ≤ cak+1 (33)

then {ak} converges to zero.

Proof Let (32) and (33) hold. If ak ≥ ε for all k sufficiently large, then (33) leads
to a contradiction. Any group of terms for which ak ≥ ε, ak+1 < ε and ak+2 ≥ ε is
also excluded, since (33) is again contradicted. Hence terms for which ak < ε must
occur in groups of two or more. Let ak−1 < ε, ak < ε and ak+1 ≥ ε. It follows that
ak+1 ≤ Cε. Moreover, if ak+2 ≥ ε then it follows that ak+2 ≤ C2ε. However, for
any subsequent terms the bound is contracted, until the next term with ak+ j < ε is

123

434 R. Fletcher

reached. Thus ak ≤ C2ε for all k sufficiently large. Because ε is arbitrarily small, the
sequence {ak} converges to zero.
�

We now come to the main theorem. In this we use various bounds on how the
components of the gradient propagate. These are all simply derived from the equations

gc+1
i =

(
1 − λi

θc

)
gc

i i = 1, 2, . . . , n (34)

for a single step, where θc is the Ritz value being used, as in (21).

Theorem The sequence {gk} generated by the basic m−step sweep method (m ≥ 1)
either terminates at, or converges to, the zero vector.

Proof We need only consider the case that the sequence does not terminate. First we
show that

{
gk

1

}
converges to zero. It is a property of the Krylov sequence that Ritz

vectors lie in the interval (λ1, λn). It follows for a sweep of m steps that

∣∣∣gk+1
1

∣∣∣ ≤
(

1 − λ1

λn

)m ∣∣∣gk
1

∣∣∣ , (35)

and hence
{
gk

1

}
converges to zero.

Now let p ∈ [2, n + 1] be the largest integer such that the sequences{
gk

1

}
,
{
gk

2

}
, . . . ,

{
gk

p−1

}
all converge to zero. If p = n +1, the theorem is proved, so

we consider p ≤ n and seek to establish a contradiction. Because
{

gk
p

}
does not con-

verge, there exists ε̄ > 0 such that for all ε ∈ (0, ε̄], there exists an infinite subsequence

S such that
∣∣∣gk

p

∣∣∣ ≥ ε, k ∈ S and
∣∣∣gk

p

∣∣∣ < ε, k �∈ S. We consider any such value of ε.

Consider the computation of Ritz values for k ∈ S. Because ||gk || ≥ ε, any accu-
mulation point q∞ of the sequence qk = gk/||gk ||, k ∈ S, has q∞

1 = q∞
2 = . . . =

q∞
p−1 = 0, so Ritz values computed from q∞ would lie in [λp, λn]. It therefore, follows

by continuity of eigenvalues that we can find an iteration number kε ∈ S for which

θk,l ∈ (2
3λp, λn

)
l = 1, 2, . . . , m (36)

for all k ∈ S, k ≥ kε. These Ritz values are used on iteration k + 1, so it follows for
such k that

∣∣∣gk+2
p

∣∣∣ ≤ cm
p

∣∣∣gk+1
p

∣∣∣ , (37)

where

cp = max

(
1

2
, 1 − λp

λn

)
< 1. (38)

123

A limited memory steepest descent method 435

Now we consider the entire sequence
{

gk
p

}
. Iterations with k ∈ S have

∣∣∣gk
p

∣∣∣ ≥ ε,

and provide the bound (37). Iterations k �∈ S have
∣∣∣gk

p

∣∣∣ < ε, for which we only have

the bound

∣∣∣gk+2
p

∣∣∣ ≤ Cm
∣∣∣gk+1

p

∣∣∣ , (39)

where

C =
∣∣∣∣
λn

λ1
− 1

∣∣∣∣ . (40)

If C < 1, it follows immediately that the sequence
{

gk
p

}
converges to zero. If C ≥ 1

we may invoke the above lemma, again showing that the sequence converges. But this
contradicts the definition of p. Thus the theorem is proved.
�
Remark Using bounds derived from (37), it also follows that the intermediate gradi-
ents on each sweep converge to zero.

References

1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148
(1988)

2. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of Quasi-Newton matrices and their use in
limited memory methods. Math. Progr. 63, 129–156 (1994)

3. Cauchy, A.: Méthode générale pour la résolution des systèms d’équations simultanées. Comp. Rend.
Sci. Paris 25, 536–538 (1847)

4. Dai, Y.H., Fletcher, R.: On the asymptotic behaviour of some new gradient methods. Math. Progr.
103, 541–559 (2005)

5. Dai, Y.H., Fletcher, R.: Projected Barzilai–Borwein methods for large-scale box-constrained quadratic
programming. Numer. Math. 100, 21–47 (2005)

6. Dai, Y.H., Yuan, Y.: Analysis of monotone gradient methods. J. Ind. Manag. Optim. 1, 181–192 (2005)
7. Fletcher, R.: Practical Methods of Optimization. 2nd edn. Wiley, Chichester (1987)
8. Fletcher, R.: Low storage methods for unconstrained optimization. In: Allgower, E.L., Georg, K. (eds.)

Computational Solution of Nonlinear Systems of Equations. Lectures in Applied Mathematics (AMS),
vol. 26, pp. 165–179 (1990)

9. Fletcher, R.: On the Barzilai–Borwein method. In: Qi, L., Teo, K., Yang, X. (eds.) Optimization and
Control with Applications, Series in Applied Optimization, vol. 96. Kluwer, pp. 235–256 (2005)

10. Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6,
163–168 (1963)

11. Friedlander, A., Martínez, J.M., Molina, B., Raydan, M.: Gradient method with retards and general-
izations. SIAM J. Numer. Anal. 36, 275–289 (1999)

12. Golub, G.H., Van Loan, C.F.: Matrix Computations. 3rd edn. The Johns Hopkins Press, Baltimore
(1996)

13. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr (and SifDec), a constrained and unconstrained testing
environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

14. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23, 707–716 (1986)

15. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. J. Res. Nat. Bur. Stand. 45, 255–282 (1950)

123

436 R. Fletcher

16. Molina, B., Raydan, M.: Preconditioned Barzilai–Borwein method for the numerical solution of partial
differential equations. Numer. Algoritm. 13, 45–60 (1996)

17. Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 773–782 (1980)
18. Paige, C.C., Parlett, B.N., van der Vorst, H.: Approximate solutions and eigenvalue bounds from Krylov

subspaces. Numer. Linear Algebra Appl. 2, 115–133 (1995)
19. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer.

Anal. 13, 321–326 (1993)
20. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization

problem. SIAM J. Optim. 7, 26–33 (1997)
21. Raydan, M., Svaiter, B.F.: Relaxed steepest descent and Cauchy-Barzilai–Borwein method. Comput.

Optim. Appl. 21, 155–167 (2002)
22. Serafini, T., Zanghirati, G., Zanni, L.: Gradient projection methods for quadratic programs and appli-

cations in support vector machines. Optim. Methods Softw. 20, 353–378 (2005)
23. Toint, Ph.L.: Some numerical results using a sparse matrix updating formula in unconstrained optimi-

zation. Math. Comput. 32, 839–852 (1978)
24. Varadhan, R., Gilbert, P.D.: BB: an R package for solving a large system of nonlinear equations and

for optimizing a high-dimensional nonlinear objective function. J. Stat. Softw. 32, 1–26 (2009)
25. Vargas, W.E., Azofeifa, D.E., Clark, N.: Retrieved optical properties of thin films on absorbing

substrates from transmittance measurements by application of a spectral projected gradient method.
Thin Solid Films 425, 1–8 (2003)

26. Yuan, Y.: A new stepsize for the steepest descent method. J. Comput. Math. 24, 149–156 (2006)

123

	A limited memory steepest descent method
	Abstract
	1 Introduction
	2 The quadratic case
	3 A monotonic sweep method for quadratics
	4 A monotonic sweep method for non-quadratic functions
	5 Numerical experience
	6 Preconditioning
	7 The second Barzilai--Borwein formula
	8 Summary and discussion
	Acknowledgments
	Appendix: a convergence theorem
	References

