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Abstract This paper is concerned with a primal–dual interior point method for
solving nonlinear semidefinite programming problems. The method consists of the
outer iteration (SDPIP) that finds a KKT point and the inner iteration (SDPLS) that
calculates an approximate barrier KKT point. Algorithm SDPLS uses a commutative
class of Newton-like directions for the generation of line search directions. By com-
bining the primal barrier penalty function and the primal–dual barrier function, a new
primal–dual merit function is proposed. We prove the global convergence property of
our method. Finally some numerical experiments are given.
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This paper is concerned with the following nonlinear semidefinite programming (SDP)
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90 H. Yamashita et al.

minimize f (x), x ∈ Rn,

subject to g(x) = 0, X (x) � 0
(1)

where the functions f : Rn → R, g : Rn → Rm and X : Rn → Sp are sufficiently
smooth, and Sp denotes the set of p-th order real symmetric matrices. By X (x) � 0
and X (x) � 0, we mean that the matrix X (x) is positive semidefinite and positive
definite, respectively.

The problem (1) is an extension of the linear SDP problem. For the case of the linear
SDP problems, all the functions f and g are linear and the matrix X (x) is defined by

X (x) =
n∑

i=1

xi Ai − B

with given matrices Ai ∈ Sp, i = 1, . . . , n, and B ∈ Sp. The linear SDP problems
include linear programming problems, convex quadratic programming problems and
second order cone programming problems, and they have many applications. Interior
point methods for the linear SDP problems have been studied extensively by many
researchers, see for example [20,23,25] and the references therein.

On the other hand, researches on theoretical properties and numerical methods for
nonlinear SDP are much more recent. Nonlinear SDP problems have been attracting a
great deal of research attention, because such problems arise from several application
fields, which include control theory, eigenvalue problems, finance and so forth (see [5–
7,12,18,24] for example). For this reason, it is desired to develop numerical methods
for solving nonlinear SDP problems. A few researchers have been studying these meth-
ods. For example, Kocvara and Stingl [13] developed a computer code PENNON for
solving nonlinear SDP, in which the augmented Lagrangian function method was used
(see also Stingle [19]). Fares, Apkarian and Noll [5] applied an augmented Lagrangian
method to a class of LMI-constraint problem. Correa and Ramirez [4] proposed an
algorithm which used the sequential linear SDP method. Fares, Noll and Apkarian [6]
applied the sequential linear SDP method to robust control problems. Freund, Jarre
and Vogelbusch [7] also studied a sequential SDP method. Kanzow, Nagel, Kato and
Fukushima [10] presented a successive linearization method with a trust region-type
globalization strategy. These methods generalize the SLP and SQP methods for non-
linear programming to solve nonlinear SDP problems. Furthermore, Tseng [22] briefly
stated an application of a primal interior point method for nonlinear programming to
nonlinear SDP problems. Jarre [9] applied a primal predictor corrector interior method
to nonconvex SDP problems. However, no primal–dual interior point type method for
general nonlinear SDP problems has been proposed yet to our knowledge. We note
that a preliminary technical report of our algorithm appears in [27].

In this paper, we propose a globally convergent primal–dual interior point method
for solving problem (1). This method consists of the outer iteration (SDPIP) that finds
a KKT point and the inner iteration (SDPLS) that calculates an approximate bar-
rier KKT point. The present paper is organized as follows. In Sect. 2, the optimality
conditions for problem (1) are described. In Sects. 3 and 4, our primal–dual interior
point method is proposed. Specifically, Sect. 3 presents the algorithm called SDPIP
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which constitutes the basic frame of primal–dual interior point methods. Section 4
gives the algorithm called SDPLS based on the line search strategy, which is an inner
iteration of algorithm SDPIP given in Sect. 3. In Sect. 4.1, we describe the Newton
method for solving nonlinear equations that are obtained by modifying the optimality
conditions given in Sect. 2. The method uses a commutative class of Newton-like
directions. In Sect. 4.2, we propose a new primal–dual merit function that consists of
the primal barrier penalty function and the primal–dual barrier function. Then Sect. 4.3
presents algorithm SDPLS, and Sect. 5 shows its global convergence property within
the framework of the line search strategy. Furthermore, some numerical experiments
are presented in Sect. 6. Finally, we give some concluding remarks in Sect. 7.

2 Optimality conditions

Throughout this paper, we define the inner product 〈X, Z〉 by 〈X, Z〉 = tr(X Z) for
any matrices X and Z in Sp, where tr(M) denotes the trace of the matrix M . The
superscript T denotes the transpose of a vector or a matrix, and (v)i denotes the i-th
element of the vector v if necessary.

This section introduces optimality conditions for problem (1) and a modification of
KKT conditions that will be used in an interior point method proposed in the following
sections. We first define the Lagrangian function of problem (1) by

L(w) = f (x)− yT g(x)− 〈X (x), Z〉,

where w = (x, y, Z), and y ∈ Rm and Z ∈ Sp are the Lagrange multiplier vector
and matrix which correspond to the equality and positive semidefiniteness constraints,
respectively. We also define matrices

Ai (x) = ∂X

∂xi

for i = 1, . . . , n. Then the Karush-Kuhn-Tucker (KKT) conditions for optimality of
problem (1) are given by the following (see [3]):

r0(w) ≡
⎛

⎝
∇x L(w)

g(x)
X (x)Z

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ (2)

and

X (x) � 0, Z � 0. (3)

Here ∇x L(w) is a gradient vector of the Lagrangian function and is given by

∇x L(w) = ∇ f (x)− A0(x)
T y − A∗(x)Z ,
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where A0(x) is a Jacobian matrix of g(x):

A0(x) =
⎛

⎜⎝
∇g1(x)T

...

∇gm(x)T

⎞

⎟⎠ ∈ Rm×n,

and A∗(x) is an operator such that for Z ,

A∗(x)Z =
⎛

⎜⎝
〈A1(x), Z〉

...

〈An(x), Z〉

⎞

⎟⎠ .

In the following, we will occasionally deal with the multiplication X (x) ◦ Z which is
defined by

X (x) ◦ Z = X (x)Z + Z X (x)

2

instead of X (x)Z . It is known that X (x)◦ Z = 0 is equivalent to the relation X (x)Z =
Z X (x) = 0 for symmetric positive semidefinite matrices X (x) and Z .

We call w = (x, y, Z) satisfying X (x) � 0 and Z � 0 the interior point. The
algorithm of this paper will generate such interior points. To construct such an interior
point algorithm, we introduce a positive parameter μ, called a barrier parameter, and
we replace the complementarity condition X (x)Z = 0 by X (x)Z = μI , where I
denotes the identity matrix. Then we try to find a point that satisfies the barrier KKT
(BKKT) conditions:

r(w,μ) ≡
⎛

⎝
∇x L(w)

g(x)
X (x)Z − μI

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ (4)

and

X (x) � 0, Z � 0.

3 Algorithm for finding a KKT point

We first describe a procedure for finding a KKT point by using the BKKT conditions.
In this section, the subscript k denotes an iteration count of the outer iterations. We
define the norm ‖r(w,μ)‖ by

‖r(w,μ)‖ =
√∥∥∥∥

(∇x L(w)
g(x)

)∥∥∥∥
2

+ ‖X (x)Z − μI‖2
F ,
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where ‖ · ‖ on the righthand side denotes the l2 norm for vectors and ‖ · ‖F denotes
the Frobenius norm for matrices. We also define ‖r0(w)‖ by ‖r0(w)‖ = ‖r(w, 0)‖.

Now we present the algorithm called SDPIP which calculates a KKT point.

Algorithm SDPIP

Step 0. (Initialize) Set ε > 0, Mc > 0 and k = 0. Let a positive sequence {μk} , μk ↓
0 be given.

Step 1. (Approximate BKKT point) Find an interior point wk+1 that satisfies

‖r(wk+1, μk)‖ ≤ Mcμk . (5)

Step 2. (Termination) If ‖r0(wk+1)‖ ≤ ε, then stop.
Step 3. (Update) Set k := k + 1 and go to Step 1. ��

We call condition (5) the approximate BKKT condition, and call a point that satis-
fies this condition the approximate BKKT point. We note that the barrier parameter
sequence {μk} in Algorithm SDPIP needs not be determined beforehand. The value
of each μk may be set adaptively as the iteration proceeds.

Remark 1 The procedure in Step 1 of Algorithm SDPIP will be given as Algorithm
SDPLS in Sect. 4.3. Thus Algorithm SDPIP is an outer iteration, while Algorithm
SDPLS is its inner iteration in which the previous approximate BKKT point wk can
be used as an initial point to find a new approximate BKKT point wk+1.

If the matrix A0(x∗) is of full rank and there exists a nonzero vector v ∈ Rn such that

A0(x∗)v = 0 and X (x∗)+
n∑

i=1

vi Ai (x∗) � 0,

then we say that the Mangasarian-Fromovitz constraint qualification (MFCQ) condi-
tion is satisfied at a point x∗ (see [4] for example). The following theorem shows the
convergence property of Algorithm SDPIP under the MFCQ condition.

Theorem 1 Assume that the functions f , g and X are continuously differentiable.
Let {wk} be an infinite sequence generated by Algorithm SDPIP. Suppose that the
sequence {xk} is bounded and that the MFCQ condition is satisfied at any accumula-
tion point of the sequence {xk}. Then the sequences {yk} and {Zk} are bounded, and
any accumulation point of {wk} satisfies KKT conditions (2) and (3).

Proof To prove this theorem by contradiction, we suppose that either {yk} or {Zk} is
not bounded, i.e.

γk ≡ max {|(yk)1|, . . . , |(yk)m |, λmax(Zk)} → ∞, (6)

where λmax(Zk) denotes the largest eigenvalue of the matrix Zk . It follows from (5)
that the boundedness of {xk} implies

lim sup
k→∞

∥∥∥A0(xk)
T yk + A∗(xk)Zk

∥∥∥ < ∞.
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Then we have ‖A0(xk)
T yk/γk + A∗(x∗)Zk/γk‖ → 0. Letting an arbitrary accumula-

tion point of {xk, yk/γk, Zk/γk} be (x∗, y∗, Z∗), we have

A0(x∗)T y∗ + A∗(x∗)Z∗ = 0 and X∗Z∗ = Z∗ X∗ = 0, (7)

where X∗ = X (x∗). We will prove that Z∗ = 0. For this purpose, we assume that
λmax(Z∗) > 0 holds. Since the matrices X∗ and Z∗ commute, they share the same
eigensystem. Thus the matrices X∗ and Z∗ can be transformed to the diagonal matrices
by using the same orthogonal matrix P as follows:

X∗ ≡ P X∗ PT = diag(λ1, . . . , λp) and Z∗ ≡ P Z∗ PT = diag(τ1, . . . , τp),

where λ1 ≤ λ2 ≤ · · · ≤ λp and τ1 ≤ τ2 ≤ · · · ≤ τp are the nonnegative eigenvalues
of X∗ and Z∗, respectively. It follows from the assumption that there exists an integer
p′ such that 1 ≤ p′ < p, λp′ = 0 and λp′+1 > 0 hold. Furthermore, the MFCQ
condition implies that there exists a nonzero vector v ∈ Rn which satisfies

A0(x∗)v = 0 and X∗ +
n∑

i=1

vi Ai (x∗) � 0.

Therefore, we have

(X̄∗) j j +
n∑

i=1

vi (Ai (x∗)) j j > 0 (8)

for j = 1, . . . , p, where Ai (x∗) = P Ai (x∗)PT . Since the following holds

0 = λ j = (X∗) j j for j = 1, . . . , p′,

Eq. (8) yields

n∑

i=1

vi (Ai (x∗)) j j > 0 for j = 1, . . . , p′. (9)

By premultiplying (7) by vT , we have

0 = vT A0(x∗)T y∗ + vT A∗(x∗)Z∗ = vT A∗(x∗)Z∗ =
n∑

i=1

vi tr {Ai (x∗)Z∗}

=
n∑

i=1

vi tr
{

Ai (x∗)Z∗
} =

p∑

j=1

n∑

i=1

vi (Ai (x∗)) j jτ j

=
p′∑

j=1

n∑

i=1

vi (Ai (x∗)) j jτ j +
p∑

j=p′+1

n∑

i=1

vi (Ai (x∗)) j jτ j .
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Since the complementarity condition X∗Z∗ = 0 implies τ j = 0 for j = p′+1, . . . , p,
the equation above yields

p′∑

j=1

n∑

i=1

vi (Ai (x∗)) j jτ j = 0.

By (9), we have τ j = 0 for j = 1, . . . , p′, which contradicts the assumption
λmax(Z∗) > 0. Therefore we obtain Z∗ = 0, which yields A0(x∗)T y∗ = 0 from (7).
Since the matrix A0(x∗) is of full rank, we have y∗ = 0. This contradicts the fact that
some element of y∗ or Z∗ is not zero by (6). Therefore, the sequences {yk} and {Zk}
are bounded.

Let ŵ be any accumulation point of {wk}. Since the sequences {wk} and {μk}
satisfy (5) for each k and μk approaches zero, r0(ŵ) = 0 follows from the definition
of r(w,μ).

Therefore the proof is complete. ��

4 Algorithm for finding a barrier KKT point

In this section, we propose an algorithm that approximately finds a BKKT point for
a given fixed barrier parameter μ > 0. The algorithm given below is to be used as an
inner iteration of Algorithm SDPIP.

As in the case of linear SDP problems, we consider a scaling of the primal–dual
pair (X (x), Z) in applying the Newton method to the system of equations (4). In what
follows, we denote X (x) simply by X if it is not confusing. Throughout this section,
we assume that X � 0 and Z � 0 hold. We introduce a nonsingular matrix T ∈ Rp×p

and scale X and Z by

X̃ = T XT T and Z̃ = T −T Z T −1

respectively. Using the scaling matrix T , we replace the equation X Z = μI by a form
X̃ ◦ Z̃ = μI , and deal with the scaled symmetrized residual:

r̃S(w,μ) ≡
⎛

⎝
∇x L(w)

g(x)
X̃ ◦ Z̃ − μI

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ (10)

instead of (4) to form Newton directions as described in Sect. 4.1. We will propose a
new merit function in Sect. 4.2 and will summarize our algorithm in Sect. 4.3.

4.1 Newton method

This subsection describes a Newton-like method to the system of equations (10). Let
the Newton directions for the primal and dual variables be �x ∈ Rn and �Z ∈ Sp,
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respectively. We define �X = ∑n
i=1�xi Ai (x), and note that �X ∈ Sp. We also

scale �X and �Z by

�X̃ = T�XT T and �Z̃ = T −T�Z T −1.

Since (X̃ +�X̃) ◦ (Z̃ +�Z̃) = μI can be written as

(X̃ +�X̃)(Z̃ +�Z̃)+ (Z̃ +�Z̃)(X̃ +�X̃) = 2μI,

neglecting the nonlinear parts �X̃�Z̃ and �Z̃�X̃ implies the following Newton
equations for (10):

G�x − A0(x)
T�y − A∗(x)�Z = −∇x L(x, y, Z) (11)

A0(x)�x = −g(x) (12)

�X̃ Z̃ + Z̃�X̃ + X̃�Z̃ +�Z̃ X̃ = 2μI − X̃ Z̃ − Z̃ X̃ , (13)

where G denotes the Hessian matrix of the Lagrangian function L(w) or its approxi-
mation (see Remark 2 in Sect. 4.3).

Similarly to usual primal–dual interior point methods for linear SDP problems, we
derive an explicit form of the direction �Z ∈ Sp from Eq. (13) and substitute it into
Eq. (11) to obtain the Newton direction �w = (�x,�y,�Z) ∈ Rn × Rm × Sp. For
this purpose, we make use of various useful relations described in [1] and Appendix
of [21]. For U ∈ Sp, nonsingular P ∈ R p×p and Q ∈ R p×p, we define the operator

(P � Q)U = 1

2
(PU QT + QU PT )

and the symmetrized Kronecker product

(P ⊗S Q)svec(U ) = svec((P � Q)U ),

where the operator svec is defined by

svec(U ) = (U11,
√

2U21, . . . ,
√

2Up1,U22,
√

2U32, . . . ,√
2Up2,U33, . . . ,Upp)

T ∈ R p(p+1)/2.

We note that, for any U, V ∈ Sp,

〈U, V 〉 = tr(U V ) = svec(U )T svec(V ) (14)

holds. By using the above operator, the matrices X̃ , Z̃ ,�X̃ and�Z̃ can be represented
by

X̃ = (T � T )X, Z̃ = (T −T � T −T )Z , (15)

�X̃ = (T � T )�X and �Z̃ = (T −T � T −T )�Z . (16)
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Let P ′ ∈ R p×p and Q′ ∈ R p×p be nonsingular, and V ∈ Sp. By denoting the inverse
operator of svec by smat, we have

(P � Q)U = smat ((P ⊗S Q)svec(U )) . (17)

We also define

(P � Q)−1U = smat
(
(P ⊗S Q)−1svec(U )

)
. (18)

The expressions above give

(P � Q)(P ′ � Q′)U = smat
(
(P ⊗S Q)svec((P ′ � Q′)U )

)

= smat
(
(P ⊗S Q)(P ′ ⊗S Q′)svec(U )

)

and

{(P � Q)(P ′ � Q′)}−1U = (P ′ � Q′)−1(P � Q)−1U.

Furthermore, we have

〈U, (P � Q)V 〉 = tr {U (P � Q)V }
= 1

2
tr{U (PV QT + QV PT )}

= 1

2
tr{QT U PV + PT U QV }

= tr
{
((PT � QT )U )V

}

=
〈
(PT � QT )U, V

〉
(19)

and

〈
U, (P � Q)−1V

〉
= tr

{
U (P � Q)−1V

}

= tr
{
((PT � QT )(PT � QT )−1U )(P � Q)−1V

}

= tr
{
((PT � QT )−1U )(P � Q)(P � Q)−1V

}

= tr
{
((PT � QT )−1U )V

}

=
〈
(PT � QT )−1U, V

〉
.

Now we have the following theorem that gives the desired form of Newton directions.
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Theorem 2 Suppose that the operator X̃ � I is invertible. Then the direction�Z̃ ∈ Sp

is given by the form

�Z̃ = μX̃−1 − Z̃ − (X̃ � I )−1(Z̃ � I )�X̃ , (20)

or equivalently

�Z = μX−1 − Z − (T T � T T )(X̃ � I )−1(Z̃ � I )(T � T )�X, (21)

and the directions (�x,�y) ∈ Rn × Rm satisfy

(
G + H −A0(x)T

−A0(x) 0

)(
�x
�y

)
= −

(∇ f (x)− A0(x)T y − μA∗(x)X−1

−g(x)

)
, (22)

where the elements of the matrix H ∈ Rn×n are represented by the form

Hi j =
〈
Ãi (x), (X̃ � I )−1(Z̃ � I ) Ã j (x)

〉
(23)

with Ãi (x) = T Ai (x)T T .
Furthermore, if the matrix G + H is positive definite and the matrix A0(x) is

of full rank, then the Newton equations (11)–(13) give a unique search direction
�w = (�x,�y,�Z) ∈ Rn × Rm × Sp.

Proof By Eq. (13), we have

2(Z̃ � I )�X̃ + 2(X̃ � I )�Z̃ = 2μ(X̃ � I )X̃−1 − 2(X̃ � I )Z̃ ,

which implies that

(X̃ � I )
(

Z̃ +�Z̃ − μX̃−1
)

= −(Z̃ � I )�X̃ .

Thus we obtain Eq. (20). Since (T −T ⊗S T −T )−1 = (T −T )−1 ⊗S (T −T )−1 = T T ⊗S

T T holds (see Appendix of [21]), it follows from (18) and (17) that for any U ∈ Sp,

(T −T � T −T )−1U = smat
(
(T −T ⊗S T −T )−1svec(U )

)

= smat
(
(T T ⊗S T T )svec(U )

)

= (T T � T T )U.

By (15) and (16), Eq. (20) implies that

�Z = μX−1 − Z − (T T � T T )(X̃ � I )−1(Z̃ � I )(T � T )�X,
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which means Eq. (21). Then we have

A∗(x)�Z = μA∗(x)X−1 − A∗(x)Z − A∗(x)(T T � T T )

(X̃ � I )−1(Z̃ � I )(T � T )�X

= μA∗(x)X−1 − A∗(x)Z

−
n∑

j=1

A∗(x)(T T � T T )(X̃ � I )−1(Z̃ � I )(T � T )A j (x)�x j

= μA∗(x)X−1 − A∗(x)Z − H�x, (24)

where the elements of the matrix H are defined by the form

Hi j = tr
{

Ai (x)(T
T � T T )(X̃ � I )−1(Z̃ � I )(T � T )A j (x)

}

= tr
{
((T � T )Ai (x))(X̃ � I )−1(Z̃ � I )(T � T )A j (x)

}

= tr
{

Ãi (x)(X̃ � I )−1(Z̃ � I ) Ã j (x)
}

=
〈
Ãi (x), (X̃ � I )−1(Z̃ � I ) Ã j (x)

〉

with Ãi (x) = T Ai (x)T T . This implies (23). By substituting (24) into (11), the Newton
equations reduce to Eq. (22).

Furthermore, it is well known that the coefficient matrix of Eq. (22) becomes non-
singular if the matrix G + H is positive definite and the matrix A0(x) is of full rank.

Therefore the proof is complete. ��

We note that if the matrix G is updated by a positive definite quasi-Newton formula
(see Remark 2 in Sect. 4.3) and the matrix H is chosen as a positive definite matrix,
then Theorem 2 guarantees that the Newton direction is uniquely determined.

The following theorem shows the positive definiteness of the matrix H . In what fol-
lows, we assume that the matrices A1(x), . . . , An(x) are linearly independent, which
means that

∑n
i=1 vi Ai (x) = 0 implies vi = 0, i = 1, . . . , n.

Theorem 3 Suppose that X̃ and Z̃ are symmetric positive definite, and that X̃ Z̃ + Z̃ X̃
is symmetric positive semidefinite. Suppose that the matrices Ai (x), i = 1, . . . , n are
linearly independent. Then the matrix H is positive definite.

Furthermore, if X̃ Z̃ = Z̃ X̃ holds, then H becomes a symmetric matrix.

Proof If X̃ is symmetric positive definite, then the operator X̃ � I is invertible (see
Appendix 9 of [21]). Let Ũ =∑n

i=1 ui Ãi (x) for any u( �= 0) ∈ Rn . Since the linear
independence of the matrices Ai (x) for i = 1, . . . , n is equivalent to the linear inde-
pendence of the matrices Ãi (x) for i = 1, . . . , n, u �= 0 guarantees that Ũ �= 0. By
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defining V = (X̃ � I )−1Ũ �= 0, the quadratic form of H is written as

uT Hu =
n∑

i=1

n∑

j=1

ui tr
{

Ãi (x)(X̃ � I )−1(Z̃ � I ) Ã j (x)
}

u j

= tr
{

Ũ (X̃ � I )−1(Z̃ � I )Ũ
}

= tr
{
((X̃ � I )−1Ũ )(Z̃ � I )(X̃ � I )(X̃ � I )−1Ũ

}

= tr
{

V (Z̃ � I )(X̃ � I )V
}

= 1

2

{
tr
{

V (Z̃ � I )(X̃ � I )V
}+ tr

{
V (X̃ � I )(Z̃ � I )V

}}
.

From Property 6 of symmetrized Kronecker product in Appendix of [21] and relation
(14), we have

uT Hu = 1

4

{
tr
{

V ((Z̃ X̃ � I )+ (Z̃ � X̃))V
}+ tr

{
V ((X̃ Z̃ � I )+ (X̃ � Z̃))V

}}

= 1

4
svec(V )T

(
((X̃ Z̃ + Z̃ X̃)⊗S I )+ (X̃ ⊗S Z̃)+ (Z̃ ⊗S X̃)

)
svec(V ).

(25)

It follows from Property 11 of symmetrized Kronecker product in Appendix of [21]
that if X̃ and Z̃ are symmetric positive definite, then so are X̃ ⊗S Z̃ and Z̃ ⊗S X̃ .
It also follows from Property 9 that if X̃ Z̃ + Z̃ X̃ is symmetric positive semidefinite,
then so is (X̃ Z̃ + Z̃ X̃)⊗S I . Thus the matrix H is positive definite.

Next, we assume that X̃ Z̃ = Z̃ X̃ holds. Since the relation (X̃ � I )(Z̃ � I ) =
(Z̃ � I )(X̃ � I ) holds, we have

(X̃ � I )−1(Z̃ � I ) = (Z̃ � I )(X̃ � I )−1. (26)

For any vectors u, v ∈ Rn , we define

Ũ ≡
n∑

i=1

ui Ãi (x), Ṽ ≡
n∑

i=1

vi Ãi (x), Ũ ′ = (X̃ � I )−1Ũ and Ṽ ′ = (X̃ � I )−1Ṽ .

Then in a similar way to the above, we obtain

uT Hv = tr
{

Ũ (X̃ � I )−1(Z̃ � I )Ṽ
}

= tr
{

Ũ (Z̃ � I )(X̃ � I )−1Ṽ
}

(from (26))

= tr
{
(Z̃ � I )(X̃ � I )−1Ṽ Ũ

}

= tr
{

Ṽ (X̃ � I )−1(Z̃ � I )Ũ
}

(from (19))

= vT Hu.
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Letting u = ei and v = e j yields Hi j = Hji , which implies that the matrix H is
symmetric.

Therefore the theorem is proved. ��
We note that Theorems 2 and 3 correspond to Theorem 3.1 in [21].

The following theorem claims that a BKKT point is obtained if the Newton direction
satisfies �x = 0.

Theorem 4 Assume that�w solves (11)–(13). If�x = 0, then (x, y +�y, Z +�Z)
is a BKKT point.

Proof It follows from the Newton equations that

∇ f (x)− A0(x)
T (y +�y)− A∗(x)(Z +�Z) = 0,

g(x) = 0.

Since Eq. (21) implies

Z +�Z = μX−1,

we have

X ◦ (Z +�Z) = μI and Z +�Z � 0.

Therefore the point (x, y +�y, Z +�Z) satisfies the BKKT conditions. ��
In the subsequent discussions, we assume that the nonsingular matrix T is chosen

so that X̃ and Z̃ commute, i.e., X̃ Z̃ = Z̃ X̃ . In this case, the matrices X̃ and Z̃ share
the same eigensystem. To end this section, we give the two concrete choices of the
scaling matrix T that satisfy such a condition.

(i) HRVW/KSH/M direction
If we set T = X−1/2, then we have X̃ = I and Z̃ = X1/2 Z X1/2, which corre-
sponds to the HRVW/KSH/M direction for linear SDP problems [8,11,15]. In
this case, the matrices H and �Z can be represented by the form:

Hi j = tr
(

Ai (x)X
−1 A j (x)Z

)
,

�Z = μX−1 − Z − 1

2
(X−1�X Z + Z�X X−1).

(ii) NT direction
If we set T = W −1/2 with W = X1/2(X1/2 Z X1/2)−1/2 X1/2, then we have
X̃ = W −1/2 X W −1/2 = W 1/2 Z W 1/2 = Z̃ , which corresponds to the NT direc-
tion for linear SDP problems [16,17]. In this case, the matrices H and�Z can
be represented by the form:

Hi j = tr
{

Ai (x)W
−1 A j (x)W

−1
}
,

�Z = μX−1 − Z − W −1�X W −1.
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4.2 Primal–dual merit function

In what follows, we assume that the scaling matrix T is so chosen that X̃ Z̃ = Z̃ X̃
is satisfied. To obtain the global convergence property of the algorithm described in
Sect. 4.1, we use the line search strategy and propose the following merit function in
the primal–dual space:

F(x, Z) = FB P (x)+ νFP D(x, Z), (27)

where FB P(x) and FP D(x, Z) are the primal barrier penalty function and the primal–
dual barrier function, respectively, and they are given by

FB P (x) = f (x)− μ log(detX)+ ρ‖g(x)‖1, (28)

FP D(x, Z) = 〈X, Z〉 − μ log(detXdetZ), (29)

where ν and ρ are positive parameters. Though the functions FB P (x) and FP D(x, Z)
depend on the parameters ν, ρ and μ, we use the notation F(x, Z) for simplicity.
It follows from the fact X̃ Z̃ = T X Z T −1 that

〈
X̃ , Z̃

〉 = 〈X, Z〉 and FP D (̃x, Z̃) =
FP D(x, Z) hold.

The following lemma gives a lower bound on the value of the primal–dual barrier
function (29) and the asymptotic behavior of the function.

Lemma 1 The primal–dual barrier function satisfies

FP D(x, Z) ≥ pμ(1 − logμ) (30)

for any X � 0 and Z � 0. The equality holds in (30) if and only if X Z = μI is
satisfied. Furthermore, the following hold

lim〈X,Z〉↓0
FP D(x, Z) = ∞ and lim〈X,Z〉↑∞ FP D(x, Z) = ∞. (31)

Proof Let λi and τi for i = 1, . . . , p denote the eigenvalues of the matrices X̃ and Z̃ ,
respectively. We note that the matrices X̃ and Z̃ share the same eigensystem. Then the
matrix X̃ Z̃ has eigenvalues λiτi , i = 1, . . . , p, and we have

FP D(x, Z) = 〈
X̃ , Z̃

〉− μ log(det X̃det Z̃)

=
p∑

i=1

λiτi − μ log

( p∏

i=1

λiτi

)

=
p∑

i=1

(λiτi − μ log λiτi ) . (32)

123



A primal–dual interior point method for nonlinear semidefinite programming 103

It is easily shown that the function φ(ξ) = ξ −μ log ξ (ξ > 0) is convex and achieves
a minimum value at ξ = μ. Thus we obtain

FP D(x, Z) ≥
p∑

i=1

(μ− μ logμ)

= p (μ− μ logμ) . (33)

It is clear that the equality holds in inequality (33) if and only if λiτi = μ, i =
1, . . . , p are satisfied. Since X̃ and Z̃ commute, they can be represented by the forms
X̃ = P DX PT and Z̃ = P DZ PT for an orthogonal matrix P , where DX and DZ

are diagonal matrices whose diagonal elements are λi and τi , i = 1, . . . , p, respec-
tively. Thus, by noting the relation X̃ Z̃ = P DX DZ PT , we can show that X̃ Z̃ = μI
is equivalent to the equations λiτi = μ, i = 1, . . . , p. Furthermore, X̃ Z̃ = μI is
equivalent to X Z = μI . Therefore, the first part of this lemma is proved.

It follows from the algebraic and geometric mean 1
p

∑p
i=1 λiτi ≥ (∏p

i=1 λiτi
)1/p

that

− log

( p∏

i=1

λiτi

)
≥ −p log

( p∑

i=1

λiτi

)
+ p log p

= −p log 〈X, Z〉 + p log p.

We use the inequality above and Eq. (32) to obtain

FP D(x, Z) ≥ 〈X, Z〉 − μp log 〈X, Z〉 + μp log p.

Therefore, the expressions (31) hold. This completes the proof. ��
We introduce the first order approximation Fl of the merit function by

Fl(x, Z;�x,�Z) = F(x, Z)+�Fl(x, Z;�x,�Z),

which is used in the line search procedure. Here �Fl(x, Z;�x,�Z) corresponds to
the directional derivative and it is defined by the form

�Fl(x, Z;�x,�Z) = �FB Pl(x;�x)+ ν�FP Dl(x, Z;�x,�Z),

where

�FB Pl(x;�x) = ∇ f (x)T�x − μtr(X−1�X) (34)

+ρ (‖g(x)+ A0(x)�x‖1 − ‖g(x)‖1) ,

�FP Dl(x, Z;�x,�Z) = tr(�X Z + X�Z − μX−1�X − μZ−1�Z).

We show that the search direction is a descent direction for both the primal barrier
penalty function (28) and the primal–dual barrier function (29). We first estimate an
upper bound of �FB Pl(x;�x) for the primal barrier penalty function.
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Lemma 2 Assume that �w solves (11)–(13). Then the following holds

�FB Pl(x;�x) ≤ −�xT (G + H)�x − (ρ − ‖y +�y‖∞)‖g(x)‖1.

Proof It is clear from (12) and (34) that

�FB Pl(x;�x) = ∇ f (x)T�x − μtr(X−1�X)− ρ‖g(x)‖1. (35)

It follows from (11) that

∇ f (x)T�x = −�xT G�x +�xT A0(x)
T (y +�y)+�xT A∗(x)(Z +�Z).

Since A∗(x)(Z +�Z) = μA∗(x)X−1−H�x holds by (24), the preceding expression
implies that

∇ f (x)T�x = −�xT (G + H)�x − g(x)T (y +�y)+ μ�xT A∗(x)X−1.

By using the relations

�xT A∗(x)X−1 =
n∑

i=1

�xi tr(Ai (x)X
−1)= tr

((
n∑

i=1

�xi Ai (x)

)
X−1

)
= tr(X−1�X),

Eq. (35) yields

�FB Pl(x;�x) = −�xT (G + H)�x − g(x)T (y +�y)

+μtr(X−1�X)− μtr(X−1�X)− ρ‖g(x)‖1

≤ −�xT (G + H)�x − (ρ − ‖y +�y‖∞)‖g(x)‖1.

Therefore the lemma is proved. ��

Next we show that �FP Dl(x, Z;�x,�Z) is nonpositive for the primal–dual bar-
rier function (29).

Lemma 3 Assume that �w solves (11)–(13). Then the following holds

�FP Dl(x, Z;�x,�Z) ≤ 0. (36)

The equality holds in (36) if and only if the matrices X and Z satisfy the relation
X Z = μI .
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Proof It follows from the Newton equation (13) that

�FP Dl(x, Z;�x,�Z) = tr
{
(I − μX̃−1 Z̃−1)(Z̃�X̃ + X̃�Z̃)

}

= 1

2
tr
{
(I − μX̃−1 Z̃−1)(Z̃�X̃ + X̃�Z̃ +�X̃ Z̃ +�Z̃ X̃)

}

= tr
{
(I − μX̃−1 Z̃−1)(μI − X̃ Z̃)

}

= −tr
{

X̃−1 Z̃−1(μI − X̃ Z̃)2
}

= −tr
{
(X̃ Z̃)−1/2(μI − X̃ Z̃)2(X̃ Z̃)−1/2

}
.

Since the matrix (X̃ Z̃)−1/2(μI − X̃ Z̃)2(X̃ Z̃)−1/2 is symmetric positive semidefinite,
we have

�FP Dl(x, Z;�x,�Z) ≤ 0.

It is clear that the equality holds in the above if and only if the matrix μI − X̃ Z̃
becomes the zero matrix. Therefore the proof is complete. ��

By using the preceding two lemmas, we obtain the following theorem, which shows
that the Newton direction �w becomes a descent search direction for the proposed
primal–dual merit function (27).

Theorem 5 Assume that �w solves (11)–(13) and that the matrix G + H is positive
definite. Suppose that the penalty parameter ρ satisfies ρ > ‖y + �y‖∞. Then the
following hold:

(i) The direction�w becomes a descent search direction for the primal–dual merit
function F(x, Z), i.e. �Fl(x, Z;�x,�Z) ≤ 0.

(ii) If �x �= 0, then �Fl(x, Z;�x,�Z) < 0.
(iii) �Fl(x, Z;�x,�Z) = 0 holds if and only if (x, y +�y, Z) is a BKKT point.

Proof (i) and (ii) : It follows directly from Lemmas 2 and 3 that

�Fl(x, Z;�x,�Z) ≤ −�xT (G + H)�x

−(ρ − ‖y +�y‖∞)‖g(x)‖1

≤ 0. (37)

The last inequality becomes a strict inequality if �x �= 0. Therefore the results hold.
(iii) If �Fl(x, Z;�x,�Z) = 0 holds, then �FB Pl(x;�x) = 0 and �FP Dl(x, Z;
�x,�Z) = 0 are satisfied, and Eq. (37) yields

�x = 0 and g(x) = 0.

Since by Lemma 3, �FP Dl(x, Z;�x,�Z) = 0 implies X ◦ Z = μI , i.e.
X Z = μI , Eq. (21) yields �Z = 0. Then Eq. (11) implies that ∇ f (x) − A0(x)T

(y +�y)− A∗(x)Z = 0. Hence (x, y +�y, Z) is a BKKT point.
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Conversely, suppose that (x, y +�y, Z) is a BKKT point. Eqs. (11) and (24) imply
that

G�x − A∗(x)�Z = 0 and A∗(x)�Z = −H�x .

Since this means (G + H)�x = 0, we have �x = 0. Using Eq. (35) and Lemma 3
yields

�FB Pl(x;�x) = 0 and �FP Dl(x, Z;�x,�Z) = 0,

which implies �Fl(x, Z;�x,�Z) = 0. Therefore, the theorem is proved. ��

4.3 Algorithm SDPLS that uses the line search procedure

In order to construct a globally convergent algorithm to a BKKT point for a fixed
μ > 0, we should modify the basic Newton iteration. Our iterations take the form

xk+1 = xk + αk�xk, Zk+1 = Zk + αk�Zk and yk+1 = yk +�yk

where αk is a step size determined by the line search procedure described below.
Throughout this section, the index k denotes the inner iteration count for a given
μ > 0. We note that Xk � 0 and Zk � 0 are maintained for all k in the following. We
also denote X (xk) by Xk for simplicity.

Since the main iteration is to decrease the value of the merit function (27), the step
size is determined by the sufficient decrease rule of the merit function. Specifically,
we adopt Armijo’s rule. At the current point (xk, Zk), we calculate the initial step size
by

ᾱxk =
{− γ

λmin(X
−1
k �Xk )

if X (x) is linear

1 otherwise
(38)

and

ᾱzk = − γ

λmin(Z
−1
k �Zk)

, (39)

where λmin(M) denotes the minimum eigenvalue of the matrix M , and γ ∈ (0, 1) is a
constant. If the minimum eigenvalue in either expression (38) or (39) is positive, we
ignore the corresponding term. A step to the next iterate is given by

αk = ᾱkβ
lk , ᾱk = min {ᾱxk, ᾱzk, 1} ,

where β ∈ (0, 1) is a constant, and lk is the smallest nonnegative integer such that the
sufficient decrease condition

F(xk + ᾱkβ
lk�xk, Zk + ᾱkβ

lk�Zk) ≤ F(xk, Zk)+ ε0ᾱkβ
lk�Fl(xk, Zk;�xk,�Zk)

(40)
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and the positive definiteness condition

X (xk + ᾱkβ
lk�xk) � 0 (41)

hold, where ε0 ∈ (0, 1) is a constant. Lemma 4 (ii) given below guarantees that an
integer lk exists.

Now we give a line search algorithm called Algorithm SDPLS. Since this algo-
rithm should be regarded as the inner iteration of Algorithm SDPIP (see Step 1 of
Algorithm SDPIP), ε′ given below corresponds to Mcμ and an initial point can be set
to the approximate BKKT point obtained at the previous outer iteration in Algorithm
SDPIP.

Algorithm SDPLS

Step 0. (Initialize) Let w0 ∈ Rn × Rm × Sp (X0 � 0, Z0 � 0), μ > 0, ρ > 0 and
ν > 0 be given. Set ε′ > 0, γ ∈ (0, 1), β ∈ (0, 1) and ε0 ∈ (0, 1). Let k = 0.

Step 1. (Termination) If ‖r(wk, μ)‖ ≤ ε′, then stop.
Step 2. (Compute direction) Calculate the matrix Gk and the scaling matrix Tk . Deter-

mine the direction �wk by solving (11)–(13).
Step 3. (Step size) Find the smallest nonnegative integer lk that satisfies the criteria

(40) and (41), and calculate

αk = ᾱkβ
lk .

Step 4. (Update variables) Set

xk+1 = xk + αk�xk, Zk+1 = Zk + αk�Zk and yk+1 = yk +�yk .

Step 5. Set k := k + 1 and go to Step 1. ��
Remark 2 When the matrix Gk approximates the Hessian matrix ∇2

x L(wk) of the
Lagrangian function by using the quasi-Newton updating formula in Step 2, we have
the following secant condition

Gk+1sk = qk,

where sk = xk+1 − xk and

qk = ∇x L(xk+1, yk+1, Zk+1)− ∇x L(xk, yk+1, Zk+1)

= (∇ f (xk+1)− A0(xk+1)
T yk+1 − A∗(xk+1)Zk+1)

−(∇ f (xk)− A0(xk)
T yk+1 − A∗(xk)Zk+1)

= ∇ f (xk+1)− ∇ f (xk)− (A0(xk+1)− A0(xk))
T yk+1

−(A∗(xk+1)− A∗(xk))Zk+1.

We note that it is easy to calculate the vector qk . In order to preserve the positive
definiteness of the matrix Gk , we can use the modified BFGS update proposed by
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Powell, which is given by the form

Gk+1 = Gk − GksksT
k Gk

sT
k Gksk

+ q̂k q̂T
k

sT
k q̂k

,

where

q̂k = ψkqk + (1 − ψk)Gksk,

ψk =
⎧
⎨

⎩

1 if sT
k qk ≥ 0.2sT

k Gksk

0.8sT
k Gksk

sT
k (Gksk − qk)

otherwise.

Remark 3 If we want to use the Hessian matrix ∇2
x L(wk) for the matrix Gk , we adopt

the Levenberg-Marquardt type modification of ∇2
x L(wk) to obtain a positive semi-

definite Gk for global convergence property shown in the next section. Namely, we
compute a parameter σ ≥ 0 which gives a positive semidefinite matrix ∇2

x L(wk)+σ I .
The procedure used in the numerical experiments in Sect. 6 is as follows (see also [19]):

Step 0. Calculate the Cholesky decomposition of ∇2
x L(wk). If it is successful, set

σ = 0, and stop. If not, set σ = 1.0, and go to Step 1.
Step 1. Calculate the Cholesky decomposition of ∇2

x L(wk)+ σ I . If it is successful,
go to Step 2. Otherwise go to Step 3.

Step 2. Repeat σ := σ/2 until the Cholesky decomposition fails. Set σ := 2σ , and
stop.

Step 3. Repeat σ := 2σ until the Cholesky decomposition succeeds. Stop. ��
This method is used to solve large scale nonconvex problems in our experiments.

5 Global convergence to a barrier KKT point

In this section, we prove global convergence of Algorithm SDPLS. For this purpose,
we make the following assumptions.

Assumptions

(A1) The functions f , gi , i = 1, . . . ,m, and X are twice continuously differentiable.
(A2) The sequence {xk} generated by Algorithm SDPLS remains in a compact set�

of Rn .
(A3) For all xk in �, the matrix A0(xk) is of full rank and the matrices A1(xk), . . . ,

An(xk) are linearly independent.
(A4) The matrix Gk is uniformly bounded and positive semidefinite.
(A5) The scaling matrix Tk is chosen such that X̃k and Z̃k commute, and both of the

sequences {Tk} and {T −1
k } are bounded.

(A6) The penalty parameter ρ is sufficiently large so that ρ > ‖yk +�yk‖∞ holds
for all k. ��
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Remark 4 We should note that if a quasi-Newton approximation is used for comput-
ing the matrix Gk , then we only need the continuity of the first order derivatives of
functions in assumption (A1). Assumption (A2) assures the existence of an accumula-
tion point of the generated sequence {xk}. The boundedness of the generated sequence
{xk} is derived if there exist upper and lower bounds on the variable x , which is a
reasonable assumption in practice. Though (A6) requires that the penalty parameter ρ
be sufficiently large, the value of ρ is increased if necessary in practical computation
(see Sect. 5.1.7 of [29] for the detailed procedure).

In order to show the global convergence property, we first present the following lemma
that gives a base for Armijo’s line search rule. The merit function is differentiable
except for the part ‖g(x)‖1, so we can prove this lemma in the same way as Lemmas
2 and 3 in [26].

Lemma 4 Let dx ∈ Rn and Dz ∈ R p×p be given. Define F ′(x, Z; dx , Dz) by

F ′(x, Z; dx , Dz) = lim
t↓0

F(x + tdx , Z + t Dz)− F(x, Z)

t
.

Then the following hold:

(i) There exists a θ ∈ (0, 1) such that

F(x + dx , Z + Dz) ≤ F(x, Z)+ F ′(x + θdx , Z + θDz; dx , Dz),

whenever X (x + dx ) � 0 and Z + Dz � 0.
(ii) Let ε0 ∈ (0, 1) be given. If �Fl(x, Z; dx , Dz) < 0, then

F(x + αdx , Z + αDz)− F(x, Z) ≤ ε0α�Fl(x, Z; dx , Dz),

for sufficiently small α > 0. ��
The following lemma shows the boundedness of the sequence {wk} and the uniformly
positive definiteness of the matrix Hk .

Lemma 5 Suppose that assumptions (A1), (A2) and (A6) are satisfied. Let the
sequence {wk} be generated by Algorithm SDPLS. Then the following hold.

(i) lim infk→∞ det(Xk) > 0 and lim infk→∞ det(Zk) > 0.
(ii) The sequence {wk} is bounded.

In addition, if assumptions (A3), (A4) and (A5) are satisfied, the following hold.
(iii) There exists a positive constant M such that

1

M
‖v‖2 ≤ vT (Gk + Hk)v ≤ M‖v‖2 for any v ∈ Rn

for all k ≥ 0.
(iv) The sequence {�wk} is bounded.

123



110 H. Yamashita et al.

Proof (i) Since the sequence {FP D(xk, Zk)} is bounded below from Lemma 1,
the sequence {FB P (xk)} is bounded above, because the function value of
F(xk, Zk) decreases monotonically. Therefore it follows from the log bar-
rier term in FB P (x) that detXk is bounded away from zero, and we have
lim infk→∞ detXk > 0. This implies that lim infk→∞ detZk > 0 also holds,
because {FP D(xk, Zk)} is bounded above and below and 〈Xk, Zk〉 ≥ 0 is satis-
fied.

(ii) The boundedness of the sequences {Zk} and {yk} follows from assumptions (A2),
(A6) and the monotone decreasing of F(xk, Zk). Therefore the sequence {wk}
is bounded.

(iii) From Appendix 9 of [21], the operator X̃ � I is invertible. For the vector V
defined in the proof of Theorem 3, svec(V ) can be represented by the form

svec(V ) = svec
(

smat((X̃ ⊗S I )−1Ũ )
)

= (X̃ ⊗S I )−1
n∑

i=1

ui svec( Ãi (x)),

where Ũ ≡∑n
i=1 ui Ãi (x) �= 0. Letting

Ã(x) = (svec( Ã1(x)), . . . , svec( Ãn(x))
) ∈ R p(p+1)/2×n

and

u = (u1, . . . , un)
T ,

we have

svec(V ) = (X̃ ⊗S I )−1 Ã(x)u.

Therefore it follows from (25) that

uT Hku = uT Ã(xk)
T ((X̃k ⊗S I )−1)T Ĥk(X̃k ⊗S I )−1 Ã(xk)u,

where

Ĥk = ((X̃k Z̃k + Z̃k X̃k)⊗S I )+ (X̃k ⊗S Z̃k)+ (Z̃k ⊗S X̃k).

The boundedness of the sequence {wk} and the uniformly positive definiteness
of {Xk} and {Zk} guarantee the uniformly positive definiteness and boundedness
of the matrix ((X̃k ⊗S I )−1)T Ĥk(X̃k ⊗S I )−1. Since the linear independence of
the matrices Ai (xk) for i = 1, . . . , n is equivalent to the linear independence of
the vectors svec( Ãi (xk)) for i = 1, . . . , n, the matrix Ã(xk) is of column full
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rank. This implies that there exist positive constants λmin and λmax , which are
independent of k , such that

λmin‖u‖2 ≤ uT Hku ≤ λmax‖u‖2

holds. Thus by assumption (A4), we obtain the result.
(iv) Since, by results (ii) and (iii) shown above, the sequence {wk} is bounded and
{Gk + Hk} is bounded and positive definite, Theorem 2 guarantees the desired
result. ��

By Theorem 4, �xk = 0 guarantees that (xk, yk + �yk, Zk + �Zk) is a BKKT
point. Thus in what follows, we assume that �xk �= 0 for any k ≥ 0. The following
theorem gives the global convergence of an infinite sequence generated by Algorithm
SDPLS.

Theorem 6 Suppose that assumptions (A1)–(A6) hold. Let an infinite sequence {wk}
be generated by Algorithm SDPLS. Then there exists at least one accumulation point
of {wk} , and any accumulation point of the sequence {wk} is a BKKT point.

Proof In the proof, we define the following notations

uk =
(

xk

Zk

)
and �uk =

(
�xk

�Zk

)

for simplicity. By Lemma 5(ii), the sequence {wk} has at least one accumulation point.
The boundedness of the sequence {wk} implies that all eigenvalues of Xk and Zk are
bounded above. It follows from Lemma 5(i) that each smallest eigenvalue of Xk and
Zk is bounded away from zero. By Lemma 5(iv), ‖�wk‖ is uniformly bounded above.
Hence, we have lim infk→∞ ᾱk > 0. Furthermore, the sequence {lk} that satisfies
X (xk + ᾱkβ

lk�xk) � 0 is uniformly bounded above.
It follows from Lemma 5(iii) that there exists a positive constant M such that

1

M
‖v‖2 ≤ vT (Gk + Hk)v ≤ M‖v‖2

for any v ∈ Rn and all k ≥ 0. Thus by (37), we have

�Fl(uk;�uk) ≤ −‖�xk‖2

M
< 0,

and inequality (40) yields

F(uk+1)− F(uk) ≤ ε0ᾱkβ
lk�Fl(uk;�uk)

≤ −ε0ᾱkβ
lk

‖�xk‖2

M
< 0. (42)
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Because the sequence {F(uk)} is monotonically decreasing and bounded below, the
left-hand side of (42) converges to 0, which implies that

lim
k→∞β

lk�Fl(uk;�uk) = 0.

We consider the following two cases:

(i) If there exists a finite number N such that lk < N for all k, then we have
limk→∞�Fl(uk;�uk) = 0 clearly.

(ii) Next we consider the case where there exists a subsequence K ⊂ {0, 1, · · · }
such that lk → ∞, k ∈ K . Then we can assume lk > 0 for sufficiently large
k ∈ K without loss of generality, which means that the point uk + θ ′

kαk�uk/β

does not satisfy condition (40) for some θ ′
k ∈ (0, 1). Thus, we get

F(uk + θ ′
kαk�uk/β)− F(uk) > ε0θ

′
kαk�Fl(uk;�uk)/β. (43)

By Lemma 4 (i), there exists a θk ∈ (0, 1) such that for k ∈ K ,

F(uk + θ ′
kαk�uk/β)− F(uk) ≤ θ ′

kαk F ′(uk + θkθ
′
kαk�uk/β;�uk)/β

≤ θ ′
kαk�Fl(uk + θkθ

′
kαk�uk/β;�uk)/β.

(44)

Then, from (43) and (44), we see that

ε0�Fl(uk;�uk) < �Fl(uk + θkθ
′
kαk�uk/β;�uk).

This inequality yields

�Fl(uk + θkθ
′
kαk�uk/β;�uk)−�Fl(uk;�uk)

> (ε0 − 1)�Fl(uk;�uk) > 0. (45)

Thus by the fact lk → ∞, k ∈ K , we have αk → 0
and then ‖θkθ

′
kαk�uk/β‖ → 0, k ∈ K , because ‖�uk‖ is uniformly bounded.

Here ‖�uk‖ is defined by

‖�uk‖ =
√

‖�xk‖2 + ‖�Zk‖2
F .

This implies that the left-hand side of (45) and therefore �Fl(uk;�uk) con-
verges to zero when k → ∞, k ∈ K .

By the discussions above, we have proved that

lim
k→∞�Fl(uk;�uk) = 0. (46)

Since Eq. (46) implies that

�FB Pl(xk;�xk) → 0 and �FP Dl(xk, zk;�xk,�zk) → 0,
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It follows from Eqs. (37), (12) and Lemma 3 that

�xk → 0, g(xk) → 0, Xk Zk → μI (X̃k Z̃k → μI ).

Therefore, Eq. (21) yields

�Zk → 0.

By Eq. (11), we have

∇x L(xk, yk +�yk, Zk) → 0,

which implies that

r(xk, yk +�yk, Zk, μ) → 0.

Since xk+1 = xk + αk�xk, Zk+1 = Zk + αk�Zk,�xk → 0,�Zk → 0 and yk+1 =
yk +�yk , the desired result follows. Therefore, the theorem is proved. ��

The preceding theorem guarantees that any accumulation point of the sequence
{(xk, yk, Zk)} satisfies the BKKT conditions. If we adopt a common step size αk as
wk+1 = wk +αk�wk in Step 4 of Algorithm SDPLS, where αk is determined in Step
3, then the result of the theorem is replaced by the statement that any accumulation
point of the sequence {(xk, yk +�yk, Zk)} satisfies the BKKT conditions.

6 Numerical experiments

The proposed algorithm of this paper is implemented and some numerical experi-
ments are done in order to verify the theoretical results of the algorithm. The program
is written in C++, and is run on 3.2 GHz Pentium IV PC with LINUX OS.

In the following experiments, initial values of various quantities are set as fol-
lows: μ0 = 1.0, X0 = I, Z0 = I . The barrier parameter is updated by the rule
μk+1 = μk/10.0 after an approximate barrier KKT point is obtained in Step 1 of
Algorithm SDPIP (outer iteration) where we set Mc = 0.1 and γ = 0.9, and the
scaling matrix is set to be T = X−1/2 at each iteration of Algorithm SDPLS (inner
iteration). We solved various test problems (Problems (P1)–(P6)) in the following. In
Problems (P5) and (P6), we used the Levenberg-Marquardt type algorithm given in
Remark 3 in Sect. 4.3.

(P1) The first problem is Gaussian channel capacity problem which is described in
[24]:

minimize
1

2
(log det(X + R)− log det R),

subject to
1

n
tr(X) ≤ P, X � 0,
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where noise covariance R ∈ Sn is known and given, and input covariance X ∈ Sn

is the variable to be determined. The parameter P ∈ R gives a limit on the aver-
age total power in the input. If all channels are independent, i.e., all covariances
are diagonal, and the noise covariance depends on X as Rii = ri +ai Xii , ai > 0
(case of near-end cross-talk), the above problem can be written as

minimize
1

2

n∑

i=1

log

(
1 + Xii

ri + ai Xii

)
,

subject to
1

n

n∑

i=1

Xii ≤ P, Xii ≥ 0.

This problem can be transformed to the following SDP:

minimize
1

2

n∑

i=1

log(1 + ti ),

subject to
1

n

n∑

i=1

Xii ≤ P, Xii ≥ 0, ti ≥ 0,

(
1 − ai ti

√
ri√

ri ai Xii + ri

)
� 0, i = 1, . . . , n.

In our experiment, ri and ai are set to uniform random numbers between 0 and
1. P is set to 1. We solved problems with n = 10, 20, . . . ,10240 using the exact
Hessian of the Lagrangian as the matrix G. The numerical results are shown in
Table 1 in which the total inner iteration counts and the run time (sec) are given.

(P2) The second problem is minimization of the minimal eigenvalue problem defined
as:

Table 1 Gaussian channel
capacity problem

n Iteration CPU (s)

10 28 0.03

20 26 0.17

40 31 0.11

80 39 0.32

160 48 1.07

320 52 3.8

640 40 10.2

1,280 44 41.3

2,560 38 137

5,120 43 607

10,240 45 2, 559

123



A primal–dual interior point method for nonlinear semidefinite programming 115

minimize λmin(M(q)),

subject to q ∈ Q,

where q ∈ Rn , Q ⊂ Rn , and M ∈ Sp is a function of q. We formulate this
problem as follows:

minimize tr(�M(q)),

subject to tr(�) = 1,

� � 0,

q ∈ Q,

where � ∈ Sp is an additional matrix variable. In our experiment, we set
q = (x, y)T , and M = xy A + x B + yC with given A, B,C ∈ Sp. The ele-
ments of matrices A, B and C are set from uniform random numbers in [−5, 5].
The constraint region Q for the variable q is set to [−1, 1]×[−1, 1]. We solved
problems with the sizes of M,�, A, B,C equal to 10, 20, 40, 80 respectively,
with the BFGS quasi-Newton update for the matrix G. The numerical results
are shown in Table 2 in which the total inner iteration counts and the run time
(sec) are given.

(P3) The third problem is a real financial one and taken from [12]. The model is
to discriminate failure and non-failure companies by a Logit model using a
positive semidefinite quadratic discriminant function. The problem for learn-
ing is defined by

maximize
M∑

i=1

(yi z(xi )− log(1 + ez(xi ))), a ∈ R, b ∈ Rq , Q ∈ Sq ,

subject to Q � 0,

where z(x) = a + bT x + 1
2 xT Qx , and xi = (x1, . . . , xq)i gives financial data

of each company i = 1, . . . ,M . The value of yi gives failure or non-failure as
follows:

yi = 0 ⇔ (x1, . . . , xq)i ∈ M0(non-failure),

yi = 1 ⇔ (x1, . . . , xq)i ∈ M1(failure).

Table 2 Minimization of the
minimal eigenvalue problem

p Iteration CPU (s)

10 30 0.12

20 32 0.88

40 69 46.9

80 56 1, 176
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Table 3 Logit model/Example 1: number of variables = 28, q = 6,M = 6,084, M0 = 6,053

Algorithm Final objective Final λmin(Q) Iteration Time (s)

cutting plane −153.0808 −9.59e−05 − 7.77

ours (bfgs) −153.0828 1.76e−09 117 1.65

ours (hesse) −153.0828 1.77e−09 27 0.80

Table 4 Logit model/Example 2: number of variables = 45, q = 8,M = 6,084, M0 = 6,053

Algorithm Final objective Final λmin(Q) Iteration Time (s)

cutting plane −143.7445 −9.17e−05 − 30.3

ours (bfgs) −143.7468 3.88e−09 233 4.2

ours (hesse) −143.7468 4.01e−09 30 1.5

In [12], Konno et.al. proposed a method that used a cutting plane approxima-
tion of positive semidefinite condition and solved resulting linearly constrained
problems using an interior point NLP algorithm in NUOPT. In Tables 3 and
4, we list two examples. These tables show the results with both the BFGS
update (bfgs) and the exact Hessian (hesse) for the matrix G. In each table,
the algorithms used, the final objective function value, the minimum eigen-
value of the obtained matrix Q, the total inner iteration counts and the run time
(sec) are given. The learning experiments were done by Japan Credit Rating
Agency, Ltd. with their own financial data including the data provided by Tokyo
Shoko Research, Ltd. These tables show that our methods solve the problems
efficiently and that our method (hesse) performs better than our method (bfgs).
Tables 5 and 6 show the required iteration counts for each value of μ. It is clear
that majority of iterations are required at the first few values of μ.

(P4) The fourth problem in our experiment is from the nearest correlation matrix
problem:

minimize
1

2
‖X − A‖F ,

subject to X � ε I,

Xii = 1, i = 1, . . . , n,

where A ∈ Sn is given, and we want to obtain X ∈ Sn which is nearest to
A and satisfies the given constraints. In the above problem, eigenvalues of X
should not be less than ε > 0, and the diagonals of X is equal to 1. There exist
special purpose algorithms for solving this type of problem (e.g., [18]). In our
experiments, we add additional constraints which gives an upper bound on the
condition number of the matrix X :
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Table 5 Logit model: iteration
counts for each μ in Example 1

μ bfgs hesse

1.0e0 75 17

1.0e−1 25 2

1.0e−2 14 2

1.0e−3 4 2

1.0e−4 3 1

1.0e−5 3 2

1.0e−6 1 1

1.0e−7 1 1

Table 6 Logit model: iteration
counts for each μ in Example 2

1.0e0 150 19
1.0e−1 35 3

1.0e−2 23 2

1.0e−3 9 1

1.0e−4 11 2

1.0e−5 3 2

1.0e−6 2 1

1.0e−7 1 1

minimize
1

2
‖X − A‖F ,

subject to z I � X � y I,

y ≤ κz, z ≥ ε

X � ε I,

Xii = 1, i = 1, . . . , n,

where y and z denote the maximal and minimal eigenvalue of X respectively, and
the upper bound of their ratio (condition number) κ > 0 is given. Elements of the
matrix A are uniform random numbers in [−1, 1] with Aii = 1, i = 1, . . . , n.
We set ε = 10−3, κ = 10.0. Results of various values of n are given in Table 7,
where the exact Hessian is used for the matrix G.

(P5) The fifth problem area is the so called static output feedback (SOF) problems
from C O M Pleib library [14]. The following is the SOF-H2 type problem:

Table 7 Nearest correlation
matrix problem

n Iteration CPU (s)

10 22 0.05

20 19 0.80

40 18 24.88

80 19 594.08
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minimize tr(X),
subject to Q � 0,

A(F)Q + Q A(F)T + B1 BT
1 � 0,(

X C(F)Q
QC(F)T Q

)
� 0,

where X ∈ Snz×nz , F ∈ Rnu×ny and Q ∈ Snx ×nx are variable matrices
to be determined. The matrices A ∈ Rnx ×nx , B ∈ Rnx ×nu , B1 ∈ Rnx ×nw ,

C ∈ Rny×nx ,C1 ∈ Rnz×nx , D11 ∈ Rnz×nw , D12 ∈ Rnz×nu and D21 ∈ Rny×nw

are given constant matrices, and form the matrices A(F), B(F),C(F), D(F)
which appear in the problem definition as follows:

A(F) = A + B FC,

B(F) = B1 + B F D21,

C(F) = C1 + D12 FC,

D(F) = D11 + D12 F D21.

The initial interior points are not known for this type of problem, and it turns
out that it is not easy to find them. So we try various starting points, and solve
the problems for which we can find initial interior points. We list the results
for these problems in Table 8. Iterations are stopped when the norm of KKT
conditions is less than 10−6. In [19], numerical results for these problems per-
formed by PENBMI, a specialized BMI-version of PENNON is reported. We
list CPU data of PENBMI multiplied by a factor 2.5/3.2 which is a ratio of
CPU speeds used in two experiments. We note that the various conditions of
these experiments are not equal, so the PENBMI’s CPU data is listed to crudely
observe how our algorithm performs compared with PENBMI. The CPU data
with * means that the norm tolerance is set to 10−5.

We next describe the results for SOF-H∞ problem which is defined by the
following:

minimize γ,
subject to Q � 0,

γ ≥ 0,⎛

⎝
A(F)T Q + Q A(F) Q B(F) C(F)T

B(F)T Q −γ I D(F)T

C(F) D(F) −γ I

⎞

⎠ � 0,

where Q ∈ Snx ×nx and F ∈ Rnu×ny are variable matrices to be determined. As
in the SOF-H2 type problems, we report the results for problems with feasible
initial point obtained in Table 9.

(P6) The last set of problems is obtained from SDPLIB to check our algorithms for
large scale problems. SDPLIB is a library for linear SDP problems (see [2]). We
add the quadratic term 1

2 xT Qx to the original linear objective function cT x to
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Table 8 SOF-H2 problem

Problem n nx ny nu nw nz Iteration CPU (s) CPU (PENBMI)

AC1 27 5 3 3 3 2 38 0.11 0.62

AC2 39 5 3 3 3 5 138 0.64 1.25

AC3 38 5 4 2 5 5 41 0.19 0.56

AC6 64 7 4 2 7 7 68 0.69 2.53

AC17 22 4 2 1 4 4 117 0.26 0.27

HE1 15 4 1 2 2 2 174 0.31 0.17

HE2 24 4 2 2 4 4 33 0.09 0.59

HE3 115 8 6 4 1 10 269 7.94 1.53

REA1 26 4 3 2 4 4 76 0.21 0.74

DIS1 88 8 4 4 1 8 47 0.93 5.04

DIS2 16 3 2 2 3 3 43 0.08 0.18

DIS3 58 6 4 4 6 6 252 2.33 1.93

DIS4 66 6 6 4 6 6 30 0.38 2.91

AGS 160 12 2 2 12 12 43 2.28 130

BDT1 96 11 3 3 1 6 46 1.07∗ 2.78

MFP 26 4 2 3 4 4 112 0.33 0.46

EB1 59 10 1 1 2 2 55 0.68 16.2

EB2 59 10 1 1 2 2 50 0.61 21.0

PSM 49 7 3 2 2 5 46 0.29 2.01

NN2 7 2 1 1 2 2 27 0.03 0.22

NN4 26 4 3 2 4 4 32 0.09 0.30

NN8 16 3 2 2 3 3 63 0.12 0.27

NN11 157 16 5 3 3 3 188 12.19∗ 223

NN15 20 3 2 2 1 4 64 0.13 0.27

NN16 62 8 4 4 8 4 124 1.51 36.4

Table 9 SOF-H∞ problems

Problem n nx ny nu nw nz Iteration CPU (s) CPU (PENBMI)

AC4 13 4 2 1 2 2 188 0.34 0.64

HE2 15 4 2 2 4 4 64 0.15 0.13

DIS2 11 3 2 2 3 3 156 0.24 8.00

AGS 83 12 2 2 12 12 116 6.84 3.27

MFP 17 4 2 3 4 4 102 0.27 0.42

EB1 57 10 1 1 2 2 277 4.63 1.43

EB2 57 10 1 1 2 2 74 1.21 1.79

PSM 35 7 3 2 2 5 78 0.39 0.58

NN2 5 2 1 1 2 2 27 0.03 0.06
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Table 10 SDPLIB with
nonlinear objective

Problem n p Iteration CPU (s)

arch8 174 335 51 14.10

control7 136 45 33 95.38

maxG11 800 800 27 252.44

mcp500-1 500 500 39 84.17

qap10 1,021 101 35 65.85

ss30 132 426 47 44.71

theta6 4,375 300 68 3,695.86

truss8 496 628 31 14.89

form nonlinear objective function 1
2 xT Qx + cT x where the matrix Q is sparse

and symmetric positive definite. The values of the diagonal elements of Q are
set to 1, and those of the off-diagonal elements are uniform random numbers
from [0, 1], and if generated random number is greater than 0.03, the value is
set to 0. Therefore the density of nonzero elements of the matrix Q is approxi-
mately 3%. In Table 10, p denotes the size of the matrix that is constrained to
be positive semidefinite.

From the above experiments for Problems (P1)–(P6), we think the proposed
method works as described in this paper, and hope the method is similarly
efficient as existing primal–dual interior point methods for ordinary nonlinear
programming [26].

7 Concluding remarks

In this paper, we have proposed a primal–dual interior point method for solving non-
linear semidefinite programming problems. Our method uses a commutative class of
Newton-like directions. Within the line search strategy, we have proposed the pri-
mal–dual merit function that consists of the primal barrier penalty function and the
primal–dual barrier function, and we have proved the global convergence property of
our method. Our numerical experiments show the practical efficiency of our method.

Analysis of the rate of convergence are studied by Yamashita and Yabe [28]. They
showed the superlinear convergence of the primal–dual interior point method based
on the unscaled Newton method, which corresponded to the case Tk = I , and the
two-step superlinear convergence of the primal–dual interior point methods based on
the scaled Newton methods, which corresponded to the cases (i) and (ii) discussed at
the end of Sect. 4.1.
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