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Abstract This paper formally introduces a linear complementarity system (LCS)
formulation for a continuous-time, multi-user class, dynamic user equilibrium (DUE)
model for the determination of trip timing decisions in a simplified single bottleneck
model. Existence of a Lipschitz solution trajectory to the model is established by a
constructive time-stepping method whose convergence is rigorously analyzed. The
solvability of the time-discretized subproblems by Lemke’s algorithm is also proved.
Combining linear complementarity with ordinary differential equations and being a
new entry to the mathematical programming field, the LCS provides a computational
tractable framework for the rigorous treatment of the DUE problem in continuous time;
this paper makes a positive contribution in this promising research venue pertaining
to the application of differential variational theory to dynamic traffic problems.
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1 Introduction

Dynamic user equilibrium (DUE), an extension of the traditional Wardop’s
equilibrium, is the most common behavioral assumption used in determining time
varying traffic flows in a transportation network. A convenient and a benchmark prob-
lem in trip timing decisions is Vickrey’s bottleneck model [26]. In this model, a fixed
number of homogeneous commuters travel on a single link that has a bottleneck with
limited capacity. Commuters experience queue delay at the bottleneck and early or
late arrival penalty, referred to as schedule delay, at the destination. The problem is to
determine the departure rates such that all individuals have the least possible total cost
and no individual can unilaterally shift and reduce cost. Several studies have exam-
ined the single bottleneck model [1,2,8,14,24]. The paper [14] derives expressions
for equilibrium departure rates when the schedule delay cost and travel cost are linear
functions of time; the paper [24] proves the existence of equilibrium solutions in a
more general class of models where individuals have different arrival time preferences;
the paper [8] provides the conditions under which this equilibrium is unique. All the
above studies were concerned with the single-user class problem where all users have
the same travel and schedule delay parameters. The single bottleneck model with het-
erogeneous (multi-user class) commuters has been studied by [17,25,27]. The paper
[16] provides an extensive analysis of the single bottleneck model with heteroge-
neous commuters, proving, under general assumptions, the existence and uniqueness
of a solution. However the proof is non-constructive and no solution algorithm is
provided.

A key drawback of the above studies is the lack of a tractable analytical formulation.
In addition to providing a rigorous mathematical framework for the unambiguous
investigation of the solution properties of the problem, appropriate analytical formu-
lations allow the development of computational algorithms for the model solution.
Such formulations also allow the addition and relaxation of assumptions in a more
systematic and controlled manner. For example, if an analytical model with linear
cost functions is obtained, it is straightforward to extend it to capture nonlinear cost
functions. Analytical formulations could also allow us to test sensitivity of assump-
tions. For example, [16] assumes that “a positive measure of users does not leave at
one instant”. In other words, the rate of departures is finite. Ideally, one would like
finite departure rate to be an outcome after solving the formulation, rather than a prior
assumption. Analytical formulations can be used to test the sensitivity of the model
with and without such a fixed departure rate assumption.

While the single bottleneck model is a simplified representation of traffic networks,
it serves as a benchmark problem for more complex network-wide problems. In par-
ticular, the single bottleneck model can provide very useful insight and necessary
technique for the study of more complex DUE problems involving more realistic fea-
tures. Moreover, it can serve as a test bed on which new mathematical paradigms can be
demonstrated before being applied to more complex problems. As such, a clear under-
standing of this problem using novel, rigorous mathematical programming techniques
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will eventually allow for a stronger foundation of dynamic equilibrium models, which
is very much needed in the area of dynamic traffic flow analysis.

Only recently, the paper [20] develops a linear complementarity formulation for a
single bottleneck model with heterogeneous commuters (multi-user class) in discrete
time, establishes the existence and uniqueness of a solution, and demonstrates the
computability of the solution using the well established Lemke’s algorithm [7]. In the
current work, we develop a continuous-time based model. A continuous-time formu-
lation is desirable for the following reasons: first, time is continuous; thus a solution
to the model captures the dynamics of traffic flow throughout a given time interval
of interest. Discrete systems approximate time by dividing into suitable intervals—
the finer the discretization the better the approximation. However, ideally, whenever
possible, time should be treated as a continuous variable. Second, discretizing time
leads to approximations in travel time computations. In the formulation developed in
[20], the travel time for all individuals departing in a time interval is approximated
as the average travel time over all individuals departing in that interval. When several
individuals depart in a short time interval, the difference between the first and the
last individual could be significantly large and the average over all individuals could
result in a poor approximation. In the continuous-time formulation, this problem is
avoided if the departure rate function is bounded. Third, discrete-time systems could
lead to inconsistent solutions when coupling the traffic flow behavior model with the
route flow propagation. This could lead to violation of FIFO in particular cases (see
[3]); continuous-time systems are inherently devoid of such a problem. Fourth, a dis-
crete-time model immediately raises the question of the meaning of a time unit and
the impact on the model solution if such a unit is refined; in a continuous-time model,
one is naturally interested in the analysis of the limiting properties of a discrete-time
model as the time step approaches zero.

In summary, from a modeling point-of-view, continuous-time models have multiple
advantages over discrete-time models; from an analytical point-of-view, continuous-
time models provide a rigorous framework for the understanding of many important
issues of traffic flows that are otherwise neglected in a discrete-time framework. This
paper is the beginning of a long-term research effort to systematically investigate
continuous-time dynamic user equilibrium problems via the theory and methods of
differential variational systems. Since this is a wide area of study that has so far lacks
a mathematically rigorous framework, we focus on a simplified model to provide a
proof of concept for this fruitful direction of research that promises a transformational
view of continuous-time traffic flow analysis.

Specifically, the main goal of this paper to introduce a formal mathematical for-
mulation of the continuous-time single bottleneck DUE model with heterogeneous
commuters as a linear complementarity system (LCS) and to show how a rigorous
analysis can be carried out based on the formulation. The LCS is a novel class of
nonsmooth differential systems that have recently attracted a lot of research interests
in mathematical programming and control theory. In general, an LCS comprises a
linear ordinary differential equation (ODE) with an algebraic variable that is required
to be a solution to a finite-dimensional linear complementarity problem (LCP) which
in turn is parameterized by the state variable in the linear ODE. Among the grow-
ing literature on this topic, the paper [19] is of particular relevance to our study; see
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also [10]. For other references on the LCS and extended systems that discuss funda-
mental issues associated with these novel dynamical systems, such as non-Zenoness,
well-posedness, and many system-theoretic properties, as well as broad applications
of these systems, the reader is referred to [4–6,9,11–13,18,21–23]. The LCSs and
the more general differential variational systems provide a very promising platform
on which rigorous analysis of dynamic traffic flow can be performed. Specifically,
the ODE component can be exploited to describe the dynamics and evolution of the
traffic conditions such as the congestion level and travel time; while the complemen-
tarity conditions or the more general finite-dimensional variational inequalities have
been demonstrated to be very powerful in modeling equilibrium conditions as well
as certain hybrid features of the dynamics. Therefore, the combination of these two
components forms an much needed modeling tool for the DUE problems. The research
in this paper exhibits an example of how this tool can be applied to a simplified DUE
problem. The present work is the start of a sustained effort aimed at employing the dif-
ferential variational inequality formalism to study realistic dynamic traffic equilibria.
In particular, an extension of the present work is already in progress.

An important lesson derived from the cited references is that as an LCS, the contin-
uous-time single bottleneck DUE model involves many intricate details that need to be
carefully investigated in order to obtain a mathematically rigorous understanding and
demonstration of the model properties. Issues such as the existence and regularity of
the solution trajectories, the Zeno phenomenon of these trajectories (i.e., the phenome-
non of infinite number of event changes in finite time intervals), and the convergence of
the discrete-time approximations to a continuous-time trajectory are all non-trivial and
require a systematic treatment, which is made possible by the framework introduced
in this paper. Whereas all these are important issues, due to their technical challenges
and space limitation, we cannot deal with all of them in a single study like this one.
Therefore, in the rest of the paper, we focus only on 2 topics: model formulation and
a time-stepping method. Further study of the model and extensions to more realistic
traffic problems are currently in progress. Specifically, in Sect. 2 we introduce our LCS
model, formally define a solution concept, and contrast our model with past models.
In Sect. 3, we prove the existence of a solution constructively by applying a numerical
time-stepping scheme; this proof involves the demonstration that the time-discretized
subproblems all have solutions computable by Lemke’s algorithm. For a mathemat-
ical programming minded reader, our work provides a manifestation of the growing
importance of the LCS, which is an outgrowth of the classical topic of the LCP to deal
with systems under evolution.

2 The mathematical model

To present our formulation, we first define the parameters and the variables. In the for-
mulation, except for the index set G, all model parameters are positive scalars. Time
is treated as continuous and vehicle flow is approximated as fluid-flow. Therefore,
travelers are infinitesimal players participating in a non-atomic game. This assump-
tion is consistent with past studies [8,16,24]. However, past studies have tended to
opportunistically adopt the atomic player definition especially to illustrate concepts
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and draw insights. Such misleading and conflicting definitions have been consciously
avoided in this discussion.

For representational convenience, there are two classes of variables: primary and
derived. Primary variables include travel time, cumulative departure, and equilibrium
costs for the different user groups. Derived variables are those that are derived from
the primary variables.

Model parameters:

G user classes with elements g ∈ G

T total time duration
dg total demand of class g
s bottleneck capacity (number of vehicles per unit time)
αg class g’s value of travel time ($ per unit time)
βg class g’s value of schedule delay when arriving early ($ per unit time)
γg class g’s value of schedule delay when arriving late ($ per unit time)
t∗g class g’s preferred arrival time at destination

It is assumed that for each class g, βg < αg < γg: commuters would rather arrive at
work early than endure traffic congestion delay; arriving late to work is least preferred.
Furthermore, we assume without loss of generality that T > maxg∈G t∗g ; the duration
of the problem should be sufficiently long to ensure the preferred arrival time of all
user classes are included.

Primary variables: all nonnegative

TT(t) travel time of users departing at time instance t
(note: without loss of generality, we ignore the free-flow travel time,
therefore, TT(t) + t is the arrival time of users departing at time t)

Ng(t) class g’s cumulative departures in the time interval [0, t]
c∗

g equilibrium cost of class g.

Derived variables:

u(t) a slack variable � d TT(t)
dt − 1

s

[∑
g∈G rg(t) − s

]

rg(t) class g’s rate of departures at time t (departures per unit time) � d Ng(t)
dt

eg(t) duration between early arrival and preferred arrival time t∗g of users in

class g � max
{

0, t∗g − (TT(t) + t)
}

�g(t) duration between late arrival and preferred arrival time t∗g of users in class

g� max
{

0, (TT(t) + t) − t∗g
}

= −(t∗g − t) + TT(t) + eg(t)

Cg(t) travel cost of users in class g departing at time t
� αg TT(t) + βg eg(t) + γg �g(t) = −γg(t∗g − t)

+(αg + γg)TT(t) + (βg + γg) max
{

0, t∗g − (TT(t) + t)
}

.
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Note that Cg(t) ≥ 0 for all g ∈ G and all t ∈ [0, T ]; moreover, Cg(t) = 0 if and only
if t = t∗g and TT(t) = 0. Thus, TT(t) > 0 implies Cg(t) > 0 for all g ∈ G.

2.1 LCS formulation

Assuming that the traffic queue starts to build up at or after the initial time t = 0, the
multi-user class, single bottleneck DUE problem is to find nonnegative scalars {c∗

g}g∈G

and absolutely continuous functions TT(t) and {Ng(t)}g∈G such that the conditions
(A)–(C) are satisfied:

(A) for almost all t ∈ (0, T ],

d TT(t)

dt
= u(t) + 1

s

⎡
⎣∑

g∈G

rg(t) − s

⎤
⎦

d Ng(t)

dt
= rg(t), ∀ g ∈ G

0 ≤ u(t) ⊥ TT(t) ≥ 0

0 ≤ rg(t) ⊥ Cg(t) − c∗
g ≥ 0, ∀ g ∈ G,

where for two scalars a and b, a ⊥ b means ab = 0; for vectors, the ⊥ notation
denotes perpendicularity;

(B) the initial conditions:

TT(0) = max

⎛
⎝0,

1

s

∑
g∈G

Ng(0) − 1

⎞
⎠

0 ≤ Ng(0) ⊥ Cg(0) − c∗
g ≥ 0, ∀g ∈ G,

(C) the boundary conditions: Ng(T ) = dg for all g ∈ G.

In the above formulation, the first differential equation together with the first comple-
mentarity condition in (A) defines the dynamics of the travel time; these conditions,
at their times of validity, stipulate the instantaneous rate of change of the travel time
at an instance where the travel time is positive. The second complementarity condi-
tion in (A) defines the equilibrium condition; namely the total cost of a user class
departing at a time instance is minimum and equal to the equilibrium cost c∗

g when
there is a positive departure rate at that instance. Mathematically, two features of the
above LCS are worth noting: (i) it contains the algebraic time-invariant unknowns
c∗

g , and (ii) the initial conditions (B) are complementarity conditions to be satisfied by
(instead of explicitly defining) the initial values TT(0) and Ng(0). Thus the single-bot-
tleneck traffic model may be considered as an LCS with variational initial conditions
and also with the boundary conditions expressed in (C); this extends the standard
initial/boundary-value versions of the LCS studied in the literature.

123



A continuous-time linear complementarity system for dynamic user equilibria 443

2.2 Solution concept and discussion

The complementarity conditions in the LCS (A)–(C) induce event changes in the
dynamical system, i.e., mode switches1 in the terminology of switched systems, which
in turn imply that discontinuities could occur in a “solution” of the system. Thus one
needs to be careful in addressing the “regularity” of such a solution in order to estab-
lish its existence and to analyze its properties. As defined, for the differential vari-
ables TT(t) and Ng(t), we seek absolutely continuous functions of time; in particular,
these functions must be continuous on [0, T ] and differentiable almost everywhere
(but not necessarily everywhere) therein. For the algebraic variables rg(t), u(t), and
Cg(t), we require them to be (Lebesque) integrable on the interval [0, T ]. The latter
somewhat loose requirement allows the possibility for these algebraic functions to
be discontinuous; in turn, such discontinuity is the source for the lack of everywhere
differentiability of the differential variables and for the almost everywhere (instead of
everywhere) validity of the conditions in (A).

The LCS (A)–(C) is a switched dynamical system; this is in contrast to the model in
Lindsey [16] whose definition is to a large extent based on the geometry of the sched-
uled delay functions (denoted Dg(•) in the reference, which is equal to βgeg(t) +
γg�g(t) in our model) and does not involve differential equations. Several conse-
quences follow from our dynamical formulation: one, the differential equations give
detailed dynamics information about the travel times and the number of users in the
system; such dynamics is not apparent in Lindsey’s model. The LCS also reveals the
dynamics about the travel costs and departure rate functions, albeit not as fully as the
travel time functions, and suggests the possibility that the Zeno phenomenon could
be present in the DUE problem. In particular, the departure rate or the arrival rate of
a class may switch between a positive level and the zero level infinitely many times
in a finite time interval. In practice, this situation represents clumping of departures
at specific points in time interspersed with zero departures infinitesimal time inter-
vals. Never been a concern in the literature of this problem, the Zeno phenomenon
has theoretical, practical, and computational implications on the model; its detailed
investigation, including its presence or absence, is regrettably beyond the scope of this
paper. For references on the Zeno property for special classes of LCSs, see the recent
articles [6,18,22,23].

From a practical standpoint, the numerical solution of the LCS is accomplished
via a time-stepping scheme that involves the solution of a sequence of finite-dimen-
sional discrete-time subproblems. The calculation of the numerical trajectories and
their convergence analysis provide a constructive proof of existence of a solution to
the continuous-time DUE model. This is a significant point of contrast with past work.
For example, the proof of solution existence in [16] is based on the non-constructive
Kakutani’s fixed-point theorem. The convergence analysis of the numerical scheme
presented in this paper offers insights into the limiting behavior of the discrete-time
trajectories as the time step tends to zero.

1 In general, a switched system includes several “nice” dynamics (modes), the system can change back and
forth among these nice dynamics. These kind of changes are called mode switches. For an LCS, one can
define modes according to the fundamental index sets associated with the complementarity condition.
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In summary, the LCS (A)–(C) provides a fundamental formulation for the single-
bottleneck DUE problem with heterogeneous commuters and offers a computation-
ally tractable framework for the constructive analysis of this problem and many of its
ensuing issues. Due to space limitation, this paper addresses only the issue of solution
existence via a time-stepping scheme coupled with Lemke’s algorithm for solving the
discretized subproblems.

3 An implicit euler time-stepping method

In this section, we show the existence of nonnegative scalar equilibrium costs {c∗
g}g∈G

and absolutely continuous functions for travel time (TT(t)) and cumulative depar-
tures {Ng(t)}g∈G so that the conditions (A)–(C) are satisfied. The main theorem is as
follows.

Theorem 1 There exist nonnegative scalars {c∗
g}g∈G and absolutely continuous func-

tions TT(t) and {Ng(t)}g∈G, and integrable functions {rg(t)}g∈G and u(t) so that
conditions (A)–(C) are all satisfied.

The proof of the theorem is constructive. Namely, we establish the existence of a
said solution by constructing approximating iterates that will be shown to converge
to such a solution. In turn, the construction is by a well-known time-stepping method
used in ordinary differential equations extended to the LCS. Specifically, the method
is as follows. For a positive integer ν > 0, we divide the time interval [0, T ] into ν

subintervals of equal length hν � T/ν. We construct numerical trajectories T̂ T
ν
(t)

and N̂ ν
g (t) for t ∈ [0, T ] and for all g ∈ G by first computing the discrete-time iterates

{
TTν,0, TTν,1, . . . , TTν,ν

}
,

{
N ν,0

g , N ν,1
g , . . . , N ν,ν

g

}
g∈G

,
{

rν,1
g , . . . , rν,ν

g

}
g∈G

,

and the nonnegative scalars {cν,∗
g }g∈G. This is done via the solution of the discretiza-

tion of the continuous-time conditions (A)–(C) in which we approximate each time
derivative by the forward difference quotient:

dx(t)

dt
≈ x(t + hν) − x(t)

hν

.

Hence, the discrete-time approximation of conditions (A) is:

TTν,i − TTν,i−1

hν

= uν,i + 1

s

⎡
⎣∑

g∈G

rν,i
g − s

⎤
⎦

N ν,i
g − N ν,i−1

g

hν

= rν,i
g
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0 ≤ uν,i ⊥ TTν,i ≥ 0

0 ≤ rν,i
g ⊥ −γg(t

∗
g − i hν) + (αg + γg)TTν,i + (βg + γg)

× max
{

0, t∗g − (TTν,i + i hν)
}

− cν,∗
g ≥ 0.

From the first equation we get:

uν,i = TTν,i − TTν,i−1

hν

− 1

s

⎡
⎣∑

g∈G

rν,i
g − s

⎤
⎦ . (1)

Substituting it into the first complementarity condition and multiplying by hν , and
dividing the right-hand side of the second complementarity condition by 1/(αg +γg),
we obtain the conditions (Aν)–(Cν) below:

(Aν) for all i = 1, . . . , ν,

0 ≤ TTν,i ⊥ TTν,i − TTν,i−1 − hν

s

⎡
⎣∑

g∈G

rν,i
g − s

⎤
⎦ ≥ 0

N ν,i
g − N ν,i−1

g = h rν,i
g , ∀ g ∈ G

0 ≤ rν,i
g ⊥ −γg(t∗g − i hν)

αg + γg
+ TTν,i + βg + γg

αg + γg

× max
{

0, t∗g − (TTν,i + i hν)
}

− cν,∗
g

αg + γg
≥ 0, ∀ g ∈ G,

(Bν) the initial conditions:

0 ≤ TTν,0 ⊥ TTν,0 −
⎡
⎣1

s

∑
g∈G

N ν,0
g − 1

⎤
⎦ ≥ 0

0 ≤ N ν,0
g ⊥ − γg t∗g

αg + γg
+ TTν,0 + βg + γg

αg + γg
max

{
0, t∗g − TTν,0

}

− cν,∗
g

αg + γg
≥ 0, ∀ g ∈ G,

(Cν) the boundary conditions: N ν,ν
g =dg for all g ∈ G.

Note that it is not necessary to impose the nonnegativity of equilibrium cost cν,∗
g

explicitly; this will follow from the conditions (Aν)–(Cν). Indeed, suppose that rate of
departure for some group g, rν,i

g >0 for some i ∈ {1, . . . , ν}. Then, from the second
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complementarity condition above,

cν,∗
g = −γg(t

∗
g − i hν) + (αg + γg)TTν,i + (βg + γg) max

{
0, t∗g − (TTν,i + i hν)

}

≥ −γg t∗g + i γg hν + αg TTν,i + γg TTν,i + βg max
{

0, t∗g − (TTν,i + i hν)
}

+γg t∗g − γg TTν,i − i γg hν

= αg TTν,i + βg max
{

0, t∗g − (TTν,i + i hν)
}

≥ 0.

On the other hand if the departure rates rν,i
g = 0 for all i ∈ {1, . . . , ν}, then all vehicles

depart at t = 0; we have, N ν,0
g = N ν,ν

g = dg > 0, which implies

cν,∗
g ≥ αg TTν,0 + βg max

{
0, t∗g − TTν,0

}
≥ 0.

With a solution satisfying conditions (Aν)–(Cν), we construct the continuous piecewise
linear functions on the interval [0, T ]: for i = 0, 1, . . . , ν − 1,

T̂ T
ν
(t) � TTν,i + t−i hν

hν
(TTν,i+1 − TTν,i )

N̂ ν
g (t) � N ν,i

g + t−i hν

hν
(N ν,i+1

g − N ν,i
g ), ∀ g ∈ G

}
for t ∈ [i hν, (i + 1)hν]

From the travel time function T̂ T
ν
(t), we can construct the schedule delay and travel

cost functions, all being continuous and piecewise linear on [0, T ]: for all g ∈G,

ê ν
g (t) � max

{
0, t∗g − (

T̂ T
ν
(t) + t

)}

�̂ ν
g (t) � max

{
0,
(
T̂ T

ν
(t) + t

) − t∗g
}

Ĉ ν
g (t) � αg T̂ T

ν
(t) + βg ê ν

g (t) + γg �̂ ν
g (t).

We also construct auxiliary piecewise continuous functions û ν(t) and r̂ ν(t) as follows:

û ν(t) � uν,i = TTν,i −TTν,i−1

hν
−
⎡
⎣ 1

s

∑
g∈G

rν,i
g − 1

⎤
⎦ if t ∈ ((i − 1) hν, i hν]

r̂ ν
g (t) � rν,i if t ∈ ((i − 1) hν, i hν]

Our goal in the subsequent analysis is to establish the well-definedness and con-
vergence (in a sense to be made precise below) of these functions to a solution of
the single-bottleneck model defined by conditions (A)–(C). This task is carried out in
several steps. We will first establish the solvability of the discretized conditions (Aν)–
(Cν). We then derive several bounds for the discrete-time iterates. These bounds are
needed for the convergence of T̂ T

ν
(t), N̂ ν

g (t), û ν(t), and r̂ ν
g (t) as ν tends to infinity.

Finally, we prove that the limiting trajectories satisfy conditions (A)–(C) and hence
the main theorem holds.
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It should be noted that while there are previous studies [10,19] on the conver-
gence of numerical time-stepping methods for solving LCSs, with the exception of
Theorem 7.1 in [19], which is a general result with wide applicability, and also the
principal tool that we will use later, all results in these references are not applicable to
the system (A)–(C). By exploiting the structure of the system, we are able to provide
an independent proof of convergence that is based on the mentioned theorem. Thus,
a small part of the contribution of this work to mathematical programming is to dem-
onstrate how an extended LCP result—Lemma 2—that has so far received minimal
attention in this literature plays a central role in this particular application.

3.1 Solvability of the discrete-time system

We show that for each ν = 1, 2, . . . , there exist
(
TTν,i

)ν
i=0,

{(
N ν,i

g

)ν

i=0

}
g∈G

,
{(

rν,i
g

)ν

i=0

}
g∈G

, and
(
cν,∗

g
)

g∈G
satisfying the discrete-time conditions (Aν)–(Cν);

moreover these iterates can be computed by the well-known Lemke’s algorithm [7].
For this purpose, we derive an equivalent linear complementarity problem (LCP) for-
mulation for these conditions. Note that

N ν,ν
g − N ν,0

g = hν

ν∑
i=1

rν,i
g , or equivalently N ν,ν

g = N ν,0
g + hν

ν∑
i=1

rν,i
g ;

thus,

N ν,0
g = dg − hν

ν∑
i=1

rν,i
g , ∀ g ∈ G. (2)

Moreover, to convert the discrete system into an LCP in the standard form, we need
to introduce a new variable for each group g. Letting

f ν
g � −γg t∗g + (αg + γg)TTν,0 + (βg + γg) max

{
0, t∗g − TTν,0

}
− cν,∗

g ,

we deduce

cν,∗
g = −γg t∗g + (αg + γg)TTν,0 + (βg + γg) max

{
0, t∗g − TTν,0

}
− f ν

g , (3)

which we can substitute into condition (Aν). We also let eν,i
g � max

{
0, t∗g −

(TTν,i +i hν)
}
. Substituting the latter definition, (2), and (3) into the discrete-time sys-

tem (Aν)–(Cν), we obtain the following (LCPν) in which the variables are
(
TTν,i

)ν
i=0

and
{(

rν,i
g

)ν

i=1
, f ν

g ,
(

eν,i
g

)ν

i=0

}
g∈G

:
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0 ≤ TTν,0 ⊥ TTν,0 + hν

s

∑
g∈G

ν∑
i=1

rν,i
g − 1

s

∑
g∈G

dg + 1 ≥ 0

0 ≤ TTν,i ⊥ TTν,i − TTν,i−1 − hν

s

∑
g∈G

rν,i
g + hν ≥ 0, i = 1, . . . , ν

0 ≤ rν,i
g ⊥ i hν γg

αg+γg
+ TTν,i − TTν,0 + βg+γg

αg+γg
(eν,i

g − eν,0
g ) + f ν

g
αg+γg

≥ 0,

i = 1, . . . , ν; g ∈ G

0 ≤ f ν
g ⊥ dg − hν

ν∑
i=1

rν,i
g ≥ 0, g ∈ G

0 ≤ eν,i
g ⊥ −(t∗g − i hν) + TTν,i + eν,i

g ≥ 0, i = 0, 1, . . . , ν; g ∈ G.

The following lemma formally states the equivalence of LCPν to the original dis-
crete-time system (Aν)–(Cν). The proof is obvious and hence omitted.

Lemma 1 Suppose
(
TTν,i

)ν
i=0 and

{(
rν,i

g

)ν

i=1
, f ν

g ,
(

eν,i
g

)ν

i=0

}
g∈G

solve LCPν . Let
{(

N ν,i
g

)ν

i=1

}
g∈G

and
(
cν,∗

g
)

g∈G
be given by

N ν,0
g = dg − hν

ν∑
i=1

rν,i
g , ∀ g ∈ G

N ν,i
g = hνrν,i

g + N ν,i−1
g , ∀ i = 1, . . . , ν, ∀ g ∈ G

cν,∗
g = −γg t∗g + (αg + γg)TTν,0 + (βg + γg) max

{
0, t∗g − TTν,0

}

− f ν
g , ∀ g ∈ G

Then
(
TTν,i

)ν
i=0,

{(
N ν,i

g

)ν

i=0

}
g∈G

,
{(

rν,i
g

)ν

i=0

}
g∈G

and
(
cν,∗

g
)

g∈G
satisfy conditions

(Aν)–(Cν). 	


Thus to show that the discrete-time system (Aν)–(Cν) has a solution, it suffices to
show the same for the LCPν . This LCP can be written in the standard form of an LCP
[7] of finding a vector x satisfying 0 ≤ x ⊥ qν + Mνx ≥ 0, where

x �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TTν,0(
TTν,i

)ν
i=1{(

rν,i
g

)ν

i=1

}
g∈G(

f ν
g

)
g∈G{(

eν,i
g

)ν

i=0

}
g∈G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, qν �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
s

∑
g∈G

dg + 1

hν 1ν{(
i hν γg
αg+γg

)ν

i=1

}
g∈G(

dg
)

g∈G

−
{(

t∗g − i hν

)ν

i=0

}
g∈G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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with 1ν being the ν-vector of all ones, and

Mνx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TTν,0 + hν

s

∑
g∈G

ν∑
i=1

rν,i
g

⎛
⎝TTν,i − TTν,i−1 − hν

s

∑
g∈G

rν,i
g

⎞
⎠

ν

i=1{(
TTν,i − TTν,0 + βg+γg

αg+γg
(eν,i

g − eν,0
g ) + f ν

g
αg+γg

)ν

i=1

}
g∈G

−hν

(
ν∑

i=1

rν,i
g

)

g∈G{(
TTν,i + eν,i

g

)ν

i=0

}
g∈G

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In turn, to show the solvability of LCPν , we employ an existence result from LCP
theory. Let the solution set of the LCP: 0 ≤ z ⊥ q + Mz ≥ 0 be denoted by
SOL(q, M). We recall that a matrix M is a semimonotone if for every vector x � 0,
there exists a component xi > 0 such that (Mx)i ≥ 0 [7]. To present our proof, we
also briefly review the well-known Lemke’s method for solving LCPs. For an LCP
0 ≤ z ⊥ q + Mz ≥ 0, Lemke’s method works with the following augmented LCP:

0 ≤ z ⊥ w = q + d z0 + Mz ≥ 0

where d > 0 is a so-called covering vector. The algorithm is initialized with z = 0 and
z0 = maxi {−qi/di }, and goes through, via linear programming pivoting, basic feasi-
ble solutions of the system of equations: w − Mz −dz0 = q until it reaches a solution
to the original LCP (z0 = 0) or terminates on a so-called secondary ray. Therefore
this method will successfully compute a solution to the original LCP if it can be shown
that a secondary ray cannot exist. The following lemma provides sufficient conditions
for this to occur; its proof is based on combining the proofs of Theorems 4.4.9 and
4.4.11 in [7].

Lemma 2 Let M be a semimonotone matrix. If d > 0 is such that for every τ > 0,
SOL(q +τd, M) is bounded, then the LCP (q, M) has a solution that can be computed
by Lemke’s algorithm with d as the covering vector.

Proof We use the same notation as in the proof of [7, Theorem 4.4.9]. As shown
therein, if the algorithm terminates at an secondary ray, then there exists a tuple
(w∗, w̃, z∗

0, z̃0, z∗, z̃) such that for all λ ≥ 0

w∗ + λw̃ = q + d(z∗
0 + λz̃0) + M(z∗ + λz̃) (4)

and

(w∗
i + λw̃i )(z

∗
i + λz̃i ) = 0, ∀i = 1, . . . , n, (5)

123



450 J.-S. Pang et al.

where z̃ �= 0. It is clear that if z∗
0 = 0 then z∗ is a solution of the original LCP. There-

fore, without loss of generality we assume z∗
0 > 0. As pointed out in the proof of

Theorem 4.4.11, the semimonotonicity of M implies z̃0 = 0. Thus by (4) and (5)
we deduce that z∗ + λz̃ is a solution to the LCP(q + z∗

0d, M) for every λ ≥ 0. This
contradicts the boundedness assumption of the Lemma. Hence we have the desired
result. 	


Specializing the above lemma to the LCPν , we have the following result.

Lemma 3 For each integer ν = 1, 2, . . . , the LCPν has a solution that can be com-
puted by Lemke’s algorithm with any positive vector as the covering vector.

Proof Fix an integer ν > 0. To show the semimonotonicity of Mν , let x � 0 be given.
There are five components to the vector x . We examine each in turn here. If eν,i

g > 0

for some g ∈ G and some i ∈ {0, 1, . . . , ν}, then TTν,i + eν,i
g > 0. Hence we may

assume that eν,i
g = 0 for all g ∈ G and all i ∈ {0, 1, . . . , ν}. If TTν,0 > 0, then the

corresponding component in Mνx is

TTν,0 + hν

s

∑
g∈G

ν∑
i=1

rν,i
g > 0.

Hence we may further assume TTν,0 = 0. If rν,i
g > 0 for some g ∈ G and some

i ∈ {0, 1, . . . , ν}, then the component of Mνx corresponding to rν,i
g is

TTν,i + f ν
g

αg + γg
≥ 0.

Thus the semimonotonicity of Mν follows in this case. Therefore, we may assume that
rν,i

g = 0 for all g ∈ G and all i ∈ {0, 1, . . . , ν}. If TTν,i >0 for some i ∈ {0, 1, . . . , ν},
we take i∗ to be the first index i such that TTν,i > 0. In this case, the element of Mνx
corresponding to TTν,i∗ is simply TTν,i∗ ; thus the semimonotonicity of Mν also holds.
Therefore, we may assume that TTν,i =0 for all i . Since x is nonzero, we must have
f ν
g >0 for some g, and the semimonotonicity of Mν follows readily too.

To complete the proof of the theorem, we consider only the case where we use
the vector 1 of all ones as the covering vector; a similar proof applies to any positive
vector. Suppose that for some scalar τ > 0, the LCP (qν + τ 1, Mν) has a sequence
of solutions:
(

TTν,0,k,
(

TTν,i,k
)ν

i=1
,

{(
rν,i,k

g

)ν

i=1

}
g∈G

,
(

f ν,k
g

)
g∈G

,
{(

eν,i,k
g

)ν

i=1

}
g∈G

)
,

which satisfy the following complementarity conditions:

0 ≤ TTν,0,k ⊥ TTν,0,k + hν

s

∑
g∈G

ν∑
i=1

rν,i,k
g − 1

s

∑
g∈G

dg + 1 + τ ≥ 0 (6)
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0 ≤ TTν,i,k ⊥ TTν,i,k − TTν,i−1,k − hν

s

∑
g∈G

rν,i,k
g + hν

+τ ≥ 0, i = 1, . . . , ν (7)

0 ≤ rν,i,k
g ⊥ i hν γg

αg + γg
+ TTν,i,k − TTν,0,k + βg + γg

αg + γg
(eν,i,k

g − eν,0,k
g )

+ f ν,k
g

αg + γg
+ τ ≥ 0, i = 1, . . . , ν; g ∈ G (8)

0 ≤ f ν,k
g ⊥ dg − hν

ν∑
i=1

rν,i,k
g + τ ≥ 0, g ∈ G (9)

0 ≤ eν,i,k
g ⊥ −(t∗g − i hν) + TTν,i,k + eν,i,k

g + τ ≥ 0,

i = 0, 1, . . . , ν; g ∈ G. (10)

We will show the desired boundedness of these solutions in several steps: first TTν,0,k ,
next eν,i,k

g , then f ν,k
g , followed by rν,i,k

g , and last TTν,i,k .
Boundedness of TTν,0,k . Suppose that this is not true. We may assume without

loss of generality that

lim
k→∞ TTν,0,k = ∞.

Therefore, we may assume further that TTν,0,k > 0 for all k = 1, . . . ,∞. If follows
from (6) that

TTν,0,k + hν

s

∑
g∈G

ν∑
i=1

rν,i,k
g − 1

s

∑
g∈G

dg + 1 + τ = 0,

for all k = 1, . . . ,∞. By the nonnegativity of rν,i,k
g , we deduce

TTν,0,k ≤ 1

s

∑
g∈G

dg.

This is a contradiction. So the boundedness of TTν,0,k follows.
Boundedness of eν,i,k

g . Suppose that this is not true for some g∗ and i∗. We may
assume without loss of generality that

lim
k→∞ eν,i∗,k

g∗ = ∞.

Similar to above reasoning, we deduce from (10) that

−(t∗g∗ − i∗ hν) + TTν,i∗,k + eν,i∗,k
g∗ + τ = 0,
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for all k = 1, 2, . . .. By the nonnegativity of TTν,i∗,k , it follows that

eν,i∗,k
g∗ ≤ t∗g∗ − i∗ hν ≤ t∗g∗ .

This is again a contradiction. So the boundedness of eν,i,k
g follows for all i = 1, . . . , ν

and all g ∈ G.
Boundedness of f ν,k

g . Suppose that this is not true for some g∗. We may assume
that

lim
k→∞ f ν,k

g∗ = ∞.

In turn, we may assume that f ν,k
g∗ > 0 for all k = 1, 2, . . .. Thus, from (9), we have

dg∗ − hν

ν∑
i=1

rν,i,k
g∗ + τk = 0, (11)

for all k = 1, 2, . . .. On the other hand, due to the boundedness of TTν,0,k and eν,0,k
g∗ ,

we have

i hν γg∗
αg∗ + γg∗

+ TTν,i,k − TTν,0,k + βg∗ + γg∗
αg∗ + γg∗

(eν,i,k
g∗ − eν,0,k

g∗ ) + f ν,k
g∗

αg∗ + γg∗
+ τ > 0

for all i = 1, . . . , ν and all k sufficiently large. From (8) we have rν,i,k
g∗ = 0 for all

i = 1, . . . , ν and all k sufficiently large. But this contradicts (11). Therefore, the bound-
edness of f ν,k

g holds readily.

Boundedness of rν,i,k
g . This is obvious because by (9), we have

∑ν
i=1 rν,i,k

g ≤
h−1

ν (dg + τ).
Boundedness of TTν,i,k . Let i∗ ∈ {1, 2, . . . , ν} be the smallest i such that TTν,i,k

is unbounded. We may assume

lim
k→∞ TTν,i∗,k = ∞,

and TTν,i∗,k > 0 for all k = 1, 2, . . .. Thus,

TTν,i∗,k − TTν,i∗−1,k − hν

s

∑
g∈G

rν,i∗,k
g + hν + τ = 0

for all k = 1, 2, . . .. This implies that

TTν,i∗,k − TTν,i∗−1,k ≤ hν

s

∑
g∈G

rν,i∗,k
g
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for all k = 1, 2, . . .. Due to the boundedness of rν,i∗,k
g , we can conclude that TTν,i∗−1,k

is also unbounded. This contradicts the definition of i∗. Now, applying Lemma 2, we
get the desired result. 	


By combining Lemmas 1 and 2, the solvability of the time-discretized system
(Aν)–(Cν) follows.

3.2 Boundedness of the discrete-time iterates

We next establish that the solutions to conditions (Aν)–(Cν) are uniformly bounded
in norm by a constant that is independent of ν. First, for all g ∈ G and all ν, since
N ν,i

g − N ν,i−1
g = hrν,i

g ≥ 0 for all i = 1, . . . , ν, we have

N ν,0
g ≤ N ν,1

g ≤ · · · N ν,ν
g = dg.

Thus

TTν,0 = max

⎛
⎝0,

1

s

∑
g∈G

N ν,0
g − 1

⎞
⎠ ≤ max

⎛
⎝0,

1

s

∑
g∈G

dg − 1

⎞
⎠ , ∀ ν.

We next bound |TTν,i − TTν,i−1| and rν,i
g . Consider an index i ≥ 1, we bound

TTν,i − TTν,i−1 from both above and below. To bound it from below, from the first
complementary condition in (Aν), we clearly have

TTν,i − TTν,i−1 ≥ hν

s

⎡
⎣∑

g∈G

rν,i
g − s

⎤
⎦ ≥ −hν .

To bound TTν,i − TTν,i−1 from above we consider two cases:

Case 1 TTν,i = 0. In this case, we simply have TTν,i − TTν,i−1 ≤ 0 and

−TTν,i−1 − hν

s

⎡
⎣∑

g∈G

rν,i
g − s

⎤
⎦ ≥ 0,

which implies
∑

g∈G rν,i
g ≤ s.

Case 2 TTν,i > 0. In this case, we have

TTν,i − TTν,i−1 = hν

s

⎡
⎣∑

g∈G

rν,i
g − s

⎤
⎦ .
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Clearly, if rν,i
g = 0 for all g ∈ G then TTν,i − TTν,i−1 = − hν . Thus, we may assume

there exists a class g ∈ G for which rν,i
g > 0. We then have, by the second comple-

mentarity condition in (Aν) and the fact that eν,i
g = max{0, t∗g − (TTν,i + ihv)},

−γg(t∗g − i hν)

αg + γg
+ TTν,i + βg + γg

αg + γg
eν,i

g − cν,∗
g

αg + γg

= 0 ≤ −γg(t∗g − i hν + hν)

αg + γg
+ TTν,i−1 + βg + γg

αg + γg
eν,i−1

g − cν,∗
g

αg + γg
,

which yields

TTν,i − TTν,i−1 + βg + γg

αg + γg
(eν,i

g − eν,i−1
g ) ≤ − γg

αg + γg
hν. (12)

Hence, if eν,i−1
g = 0, then

TTν,i − TTν,i−1 = hν

s

⎡
⎣∑

g ′∈G

rν,i
g ′ − s

⎤
⎦ ≤ −hν

γg

αg + γg
.

On the other hand, if eν,i−1
g > 0, then

−(t∗g − (i − 1) hν) + TTν,i−1 + eν,i−1
g = 0 ≤ −(t∗g − i hν) + TTν,i + eν,i

g ,

which yields

TTν,i − TTν,i−1 + eν,i
g − eν,i−1

g ≥ −hν,

or equivalently,

eν,i
g − eν,i−1

g ≥ −hν − (TTν,i − TTν,i−1).

This, together with (12), gives

(TTν,i − TTν,i−1) − βg + γg

αg + γg
hν − βg + γg

αg + γg
(TTν,i − TTν,i−1)

≤ TTν,i − TTν,i−1 + βg + γg

αg + γg
(eν,i

g − eν,i−1
g ) ≤ − γg

αg + γg
hν.

Recalling that βg < αg < γg , we therefore have

αg − βg

αg + γg
(TTν,i − TTν,i−1) ≤ βg

αg + γg
hν.
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Summarizing, we deduce that, for all i = 1, . . . , ν,

− hν ≤ TTν,i − TTν,i−1 ≤ hν max
g∈G

βg

αg − βg
. (13)

and
∑
g∈G

rν,i
g ≤ s

[
1 + max

g∈G

βg

αg − βg

]
, (14)

which in turn implies that

N ν,i
g − N ν,i−1

g

hν

≤ s

[
1 + max

g∈G

βg

αg − βg

]
. (15)

Thus, for all i = 1, . . . , ν,

TTν,i = TTν,0 +
i∑

j=1

(TTν, j − TTν, j−1) ≤ max

⎛
⎝0,

1

s

∑
g∈G

dg − 1

⎞
⎠

+T max
g∈G

βg

αg − βg
. (16)

By (1), we have for all i = 1, . . . , ν,

uν,i = TTν,i − TTν,i−1

hν

− 1

s

⎡
⎣∑

g∈G

rν,i
g − s

⎤
⎦ ≤ max

g∈G

βg

αg − βg
+ 1. (17)

Moreover, similar to the proof of the nonnegativity of cν,∗
g , we can deduce that, for all

g ∈ G,

cν,∗
g ≤ max

0≤i≤ν

[
−γg(t

∗
g − i hν) + (αg + γg)TTν,i + (βg + γg)

× max
{

0, t∗g − (TTν,i + i hν)
} ]

≤ T γg + max
0≤i≤ν

[
(αg + γg)TTν,i + (βg + γg ) max

{
0, t∗g − TTν,i

} ]

≤ a constant independent of ν.

With the above established bounds, we can complete the convergence analysis of
the numerical time-stepping scheme, by following a similar analysis as done in [19,
Section 7], which can be somewhat simplified due to the special structure of the con-
ditions (A)–(C).

3.3 Convergence of the numerical trajectories

We show that the numerical trajectories converge subsequentially in a certain sense
to limiting trajectories that satisfy the conditions (A)–(C), which include differen-
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tial equations, complementarity conditions, and boundary conditions. We shall verify
them one by one.

To establish the convergence result, we need to apply well-known convergence
theorems in functional spaces. These theorems can be found in any standard func-
tional analysis text. In fact, the bounds (13) and (15) show that the functions T̂ T

ν
(t)

and N̂ ν
g (t) are in fact equi-Lipschitz continuous on the interval [0, T ]; i.e., they are

Lipschitz continuous with a common Lipschitz constant that is independent of ν. Thus,
by the Arzelá-Ascoli theorem (see, e.g., [15, pp. 57–59]), there is an infinite subset κ

of positive integers ν such that the subsequences of functions
{
T̂ T

ν}
ν∈κ

and
{

N̂ ν
g

}
ν∈κ

converge, respectively, in the supremum (i.e., L∞)-norm to Lipschitz functions T̂ T
∞

and N̂ ∞
g on [0, T ]; hence so does the sequence of cost functions

{
Ĉ ν

g

}
ν∈κ

to a Lips-

chitz function Ĉ ∞
g . Clearly, T̂ T

∞
(t) ≥ 0 for all t ∈ [0, T ]. Due to the boundedness

of cν,∗
g , without loss of generality, we may assume that the subsequence of scalars

{cν,∗
g }ν∈κ converges to a scalar c∞,∗

g for each g ∈ G. By (13) and (14), we know that
ûν(t) and r̂ν

g (t) are uniformly bounded in the L∞-norm on [0, T ]. Therefore, by the
argument used in the proof of Theorem 7.1 in [19], it follows that, by working with an
appropriate infinite subset of κ if necessary, the sequences of functions {̂u ν}ν∈κ and
{̂r ν

g }ν∈κ are weakly convergent with limits û ∞ and r̂ ∞
g , respectively, that are square

integrable functions on [0, T ]; moreover, the latter limit functions are nonnegative
almost everywhere on [0, T ]. Furthermore, as proved in the reference, the differential
equations:

d T̂ T
∞

(t)

dt
= û ∞(t) + 1

s

⎡
⎣∑

g∈G

r̂ ∞
g (t) − s

⎤
⎦ and

d N̂ ∞
g (t)

dt
= r̂ ∞

g (t)

hold for almost all t ∈ [0, T ].
It is not difficult to see, by passing the limit ν(∈ κ) → ∞, that the initial and

boundary conditions (B) and (C) must be satisfied by the limits T̂ T
∞

(0), N̂ ∞
g (0),

N̂ ∞
g (T ), Ĉ ∞

g (0), and c∞,∗
g . We then show that the complementarity conditions in (A)

are satisfied. The nonnegativity of T̂ T
∞

(t), û ∞(t) and r̂ ∞
g is clear. To show that

Ĉ∞
g (t) − c∞,∗

g is also nonnegative, we first prove the following lemma.

Lemma 4 Let Ĉν
g (t) and cν,∗

g be as defined above. There exists a constant σ > 0 such
that

Ĉ ν
g (t) ≥ cν,∗

g − σ hν

for all ν, g ∈ G and all t ∈ [0, T ].

Proof Let t ∈ (ihν, (i + 1)hν) for some i ∈ {0, 1, . . . , ν − 1}. We can write t =
(i + τ)hν = (1 − τ) ihν + τ(i + 1)hν for some τ ∈ (0, 1). Thus

T̂ T
ν
(t) = TTν,i + (i + τ)hν − ihν

hν

(TTν,i+1 − TTν,i )=(1 − τ)TTν,i +τTTν,i+1.
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For an arbitrary g ∈ G, first consider the case when t∗g − (TTν,i + ihν) ≥ 0 > t∗g −
(TTν,i + (i + 1)hν). We have

t∗g − (
T̂ T

ν
(t) + t

) = t∗g −
[
(1 − τ)TTν,i + τTTν,i+1

]
− (i + τ)hν

= (1−τ)[t∗g −(TTν,i + i hν)]+τ [t∗g − (TTν,i+1 + i hν + hν)]
= [t∗g − (TTν,i + i hν)] − τ(TTν,i+1 − TTν,i + hν)

≥ (1 − τ)[ t∗g − (TTν,i + i hν)] − hν

[
max
g′∈G

βg′

αg′ − βg′
+ 1

]
,

where the last inequality is due to (13). Notice that in this case we have

Ĉν
g (ihν) = −γg(t

∗
g − ihν) + (αg + γg)TTν,i + (βg + γg)(t

∗
g − TTν,i − ihν),

Ĉν
g ((i + 1)hν) = −γg(t

∗
g − ihν − hν) + (αg + γg)TTν,i+1.

Thus,

Ĉ ν
g (t) = −γg(t

∗
g − t) + (αg +γg)T̂ T

ν
(t) + (βg +γg) max

{
0, t∗g − (

T̂ T
ν
(t) + t

)}

≥ (1−τ)Cν
g (ihν) + τ Cν

g (ihν +hν) − hν(βg + γg)

[
max
g ′∈G

β
g ′

α
g ′ − β

g ′
+ 1

]

≥ cν,∗
g − σ hν,

with

σ �
[

max
g∈G

(βg + γg)

] [
max
g∈G

βg

αg − βg
+ 1

]
.

Next we consider the case when t∗g − (TTν,i+1 + (i +1)hν) ≥ 0 > t∗g − (TTν,i + ihν).
Then, applying (13), we have

t∗g − (
T̂ T

ν
(t) + t

) = t∗g − TTν,i+1 + TTν,i+1 − (1 − τ)TTν,i − τTTν,i+1

−(i + 1)hν + (1 − τ)hν

= [t∗g − (TTν,i+1 + i hν + hν)]
+(1 − τ)(TTν,i+1 − TTν,i + hν)

≥ τ [t∗g − (TTν,i+1 + i hν + hν)].
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Hence

Ĉ ν
g (t) = −γg(t

∗
g − ihν − τhν) + (αg + γg)[τTTν,i+1 + (1 − τ)TTν,i ]

+τ(βg + γg) max
{

0, t∗g − (
T̂ T

ν
(t) + t)

)}

≥ −τγg(t∗ − ihν − hν) − (1 − τ)γg

×(t∗g − ihν) + (αg + γg)[τTTν,i+1 + (1 − τ)TTν,i ]
+[t∗g − (TTν,i+1 + ihν + hν)]

= (1 − τ)Ĉg(ihν) + τ Ĉg(ihν + hν) ≥ cν,∗
g ≥ cν,∗

g − σhν.

In the remaining two cases when both t∗g −(TTν,i+1+ihν+hν) and t∗g −(TTν,i +ihν) are

nonnegative or both are nonpositive, it is easy to show that Ĉ ν
g (t)= cν,∗

g ≥cν,∗
g −σhν .

This establishes our claim that Ĉ ν
g (t) ≥ cν,∗

g −σ hν for all ν, g ∈ G and all t ∈ [0, T ].
	


Notice that σ in the above lemma is independent of ν and t . We may pass to limit
ν(∈ κ) → ∞, yielding Ĉ ∞

g (t) ≥ c∞,∗
g for all t ∈ [0, T ]. To complete the convergence

analysis, and thus the proof of Theorem 1, it remains to verify the almost everywhere
complementarity conditions. Clearly, it suffices to show the following two integral
conditions, by the nonnegativity of the integrands:

T∫

0

û ∞(t) T̂ T
∞

(t) dt = 0,

T∫

0

r̂ ∞
g (t)(Ĉ∞

g (t) − c∞,∗
g )dt = 0, ∀ g ∈ G.

Since
{
T̂ T

ν}
ν∈κ

converges uniformly to T̂ T
∞

and û ∞ is a weak limit of the sequence
{̂u ν}ν∈κ , it follows that

T∫

0

û ∞(t) T̂ T
∞

(t) dt = lim
ν(∈κ)→∞

T∫

0

û ν(t) T̂ T
ν
(t) dt.

On the other hand, we have

T∫

0

û ν(t) T̂ T
ν
(t) dt

=
ν−1∑
i=0

(i+1)hν∫

ihν

uν,i+1
[

TTν,i + t − i hν

hν

(TTν,i+1 − TTν,i )

]
dt
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=
ν−1∑
i=0

(i+1)hν∫

ihν

uν,i+1
[(

t − i hν

hν

− 1

)
(TTν,i+1 − TTν,i ) + TTν,i+1

]
dt

=
ν−1∑
i=0

(i+1)hν∫

ihν

t − i hν − hν

hν

uν,i+1(TTν,i+1 − TTν,i )dt

= 1

2

ν−1∑
i=0

hν uν,i+1(TTν,i+1 − TTν,i ) = O(hν),

where the last equality holds because TTν,i+1 − TTν,i is of order O(hν) and uν,i+1 is
uniformly bounded. Consequently,

T∫

0

û ∞(t) T̂ T
∞

(t) dt = 0.

In a similar fashion, we can establish that

T∫

0

r̂ ∞
g (t)(Ĉ∞

g (t) − c∞,∗
g )dt = 0,

for all g ∈ G. Therefore, the complementarity conditions are satisfied. This completes
the proof of Theorem 1.

4 Concluding remarks

In this paper, we use a novel model paradigm, the Linear Complementarity System
(LCS), to formulate the single bottleneck DUE problem and provide a rigorous analy-
sis of the solution existence. Our constructive proof also provides a numerical scheme
to compute a solution to the problem. Most importantly, the LCS formulation provides
a rigorous mathematical foundation for the single bottleneck problem which is the sim-
plest model to examine departure time decisions in dynamic traffic equilibrium. While
this model is simple, it is a benchmark problem for transportation decision making
and as such a rigorous understanding of this problem in addition to the foundational
contributions to the dynamic equilibrium literature, will further the development of
network-wide dynamic equilibrium problems. Given the nature of the DTA problems,
the LCS is a promising methodology to formulate more complex network level models
and obtain solution properties. Extensions of the analysis herein to more general DUE
problems are under investigation.
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